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Abstract: Resource allocation in vehicular networks defines the strategic distribution of accessible communication 

resources like time slots, power, and bandwidth between infrastructures and vehicles to ensure the effective 

transmission of data. It handles a dynamic network condition and balances the requirements of different users while 

reducing interference and increasing network effectiveness. However, resource allocation faces challenges in 

effectively handling limited communication resources due to high energy consumption and network delays caused by 

frequent changes in network topology and varying user demands by the high mobility of vehicles. This research 

proposes the Information volume Evidential Markov Decision Process-based Hierarchical Meta Reinforcement 

Learning (IEMDP-HMRL) for resource allocation in vehicular networks. In traditional RL, the IEMDP-HM is 

incorporated to enhance resource allocation by enabling adaptive decision-making in dynamic environments. HMRL 

enables rapid adaptation to new tasks by leveraging learned policies from prior experiences which increases both 

efficiency and flexibility in resource management. In scenario 3, the IEMDP-HMRL achieves a lesser average task 

delay of 0.34 ms for the number of vehicles 10 compared to existing methods like Intelligent Distributed Resource 

Allocation and Task Scheduling (IRATS). 

Keywords: Delay, Hierarchical meta reinforcement learning, Information volume evidential Markov decision process, 

Resource allocation, Vehicular networks. 

 

 

1. Introduction 

Resource allocation refers to the process of 

effectively allocating available resources across 

different tasks to increase performance or outcomes. 

In vehicular networks, the goal is to determine road 

safety, maximise traffic effectiveness, and create a 

new level of onboard entertainment. To achieve this, 

vehicles are required to communicate with other 

entities for data exchange, which is known as 

Vehicle-to-Everything (V2X) [1]. V2X involves 

Vehicle-to-Vehicle (V2V) and Vehicle-to-

Infrastructure/Network (V2I/N) communication, 

which enables data exchange among vehicles and 

nearby infrastructure [2]. In vehicular networks, V2V 

is a significant communication mode that generates a 

primary basis for vehicular data exchange among 

vehicles [3]. Furthermore, vehicular network differs 

significantly from traditional cellular networks for 

strong dynamics in network topology and channel 

conditions, which leads to high mobility of vehicles 

[4, 5]. These features enable the design of effective 

resource allocation methods, which becomes 

challenging for V2V systems [6, 7]. Vehicles are 

unified with Onboard Units (OBU) in vehicular 

communication for communicating with Road Side 

Units (RSU) organised with the road [8]. Also, RSUs 

play a significant role as Base Station (BS) and 

function as internet access points and routers [9].  

Moreover, the computational volume limitation 

for RSU strengthens the resource competition [10] 

[11]. Meanwhile, vehicular networks consume an 

enhancing demand for wide resources associated 

with networking, caching, and computing to 

efficiently handle the resources is a significant 

problem in vehicular networks [12, 13]. The resource 

allocation process is difficult in Virtual Machine 
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(VM) migration as it involves determining an 

appropriate physical server for locating VMs [14]. 

With the rise of innovative vehicular applications, 

particularly in the era of autonomous driving, 

vehicular networks are established to offer high-

bandwidth services [15]. V2V offloading 

significantly increases the system’s computing ability 

and eases the load of RSU [16, 17]. Artificial 

Intelligence (AI) based methods are increasingly 

being utilised to optimise resource allocation, which 

improves the decision-making process and enhances 

overall system effectiveness in vehicular networks 

[18]. Nevertheless, it struggles with difficulties in 

managing limited communication resources due to 

high energy consumption and network delays that 

lead to frequent changes in network topology and 

varying user demands by high mobility of vehicles. 

To address this problem, the IEMDP-HMRL is 

proposed for resource allocation in vehicular 

networks by applying hierarchical structures to 

adaptively handle limited communication resources 

effectively.  

The main contribution of this research is 

explained below, 

• IEMDP-HMRL manages the dynamic 

vehicular network by its hierarchical structure, 

which permits rapid adaptation to changes in 

network topology and user demands. 

• Meta-learning enables the system to rapidly 

adapt learned policies to new scenarios, which 

enhances overall performance in dynamic 

environments. 

• By performing this process, resource 

allocation in vehicular networks becomes 

more effective and results in less delay and 

enhanced connectivity for users. 

This research paper is structured as follows: 

Section 2 provides an existing method’s literature 

survey and Section 3 illustrates a brief explanation of 

the proposed methodology. Section 4 indicates an 

experimental result, and the conclusion of this 

research paper is given in Section 5. 

2. Literature survey 

Zhang [19] introduced Multiagent Reinforcement 

Learning (MARL) termed as Complete-Game-

MARL (CG-MARL) and Mean-Field MARL (MF-

MARL), for resource allocation in vehicular 

networks. The power allocation and joint spectrum 

management in vehicular communication systems 

were determined by considering the interactions 

between environments and vehicles. This was 

achieved by integrating the cooperative stochastic 

game theory with MARL, which led to improved 

stability and faster convergence. However, MARL 

was challenging in managing dynamic and 

unpredictable environments because the agents 

struggled to adapt to rapidly changing network 

conditions. 

Mafuta [20] presented a Multi-Agent Double 

Deep Q-Network (MA-DDQN) to alleviate the 

system and increase the Vehicle-to-Infrastructure 

(V2I) capacity links by satisfying the delay and 

reliability constraint for V2V links. The selection of 

transmission mode was applied to avoid interference 

produced by unstable V2V links in the scheme design. 

Also, a binarised weight approach was established to 

increase the learning process of deep neural networks, 

which assists with computational complexity. 

Nevertheless, the MA-DDQN struggled in scaling 

with a large number of agents because of the 

exponential increase in state-action space.  

Gao [21] developed a two-layer optimization 

approach to address the problem of resource 

allocation to reduce the task completion of energy 

consumption and delay in vehicular networks. In the 

upper layer, tasks offloading and scheduling were 

applied to improve the CPU frequency allocation, 

which obtained the scheduling and offloading 

decisions. However, the two-layer optimization 

suffer from high energy consumption due to the 

complexity of addressing both layers simultaneously 

particularly in dynamic environments with limited 

resources. 

Shu and Li [22] established a Quantum particle 

swarm optimization for a joint offloading and 

resource allocation scheme in a vehicular network. 

To reduce the energy consumption and delay cost, a 

task execution optimisation was designed to evaluate 

the task to available service nodes that contain service 

vehicles and RSU.  Then, a vehicle selection 

approach was used to acquire the best offloading 

decision sequence for the task offloading process 

through V2V communication. Nevertheless, the 

established approach face inefficiency in exploring 

the large and dynamic solution space because of 

quantum state collapse which degrades the model 

performance in vehicular network. 

Jamil [23] suggested a Proximal Policy 

Optimization (PPO) for Intelligent Distributed 

Resource Allocation and Task Scheduling (IRATS) 

in vehicular networks. IRATS determined the 

resource allocation issue using the Markov decision 

process to reduce the delay of tasks and waiting time. 

The task scheduler was designed for vehicles to share 

their idle resources tasks based on priorities by 

employing multi-level queues. However, the PPO 

cause high average task delay because of inefficient 
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exploration in highly dynamic environments which 

leads to suboptimal performance. 

Hang Fu [24] established a Dense Multi-Agent 

RL (DMARL) aided Multi-Unmanned Aerial 

Vehicle (UAV) coverage data for vehicular networks. 

By generating the critical state approach, the MDP 

was applied which allows the selection of state for a 

more effective training process. Furthermore, the 

established DMARL improves the effectiveness in 

training and distribution within the multi-UAV 

system. Nevertheless, the DMARL struggled with 

scalability as the number of UAVs and network 

agents increases cause potential ineffectiveness and 

delayed responses in dynamic environments. 

Amjad Alam [25] developed a Particle Swarm 

Optimization (PSO) for resource allocation and joint 

computational task offloading in vehicular edge 

networks. The computational efficiency for 

Connected Autonomous Vehicle (CAV) was 

determined by enabling an optimized decision on 

allocating resources. The developed PSO enhance the 

overall system energy effectiveness by increasing 

resource allocation in energy constraints. However, 

the developed approach suffers from premature 

convergence which leads to suboptimal resource 

allocation. 

In the overall analysis, the existing method had 

limitations like challenges in scaling with a large 

number of agents, high energy consumption, 

inefficiency in exploring the large and dynamic 

solution space, and high average task delay. To solve 

this issue, the IEMDP-HMRL is proposed for 

resource allocation in vehicular networks by using a 

hierarchical approach that effectively handles the 

dynamic nature. The proposed approach minimizes 

energy consumption and adapts policies depending 

on information volume that makes better energy 

usage. Moreover, the IEMDP-HMRL reduces 

average task delay via meta-learning by learning 

optimal decision-making policies which provides 

rapid adaptation in network conditions. 

3. Proposed methodology 

This research proposes IEMDP-MHRL for 

resource allocation in vehicular networks. The 

IEMDP processes the data and defines possible states, 

actions, and rewards for optimal decision-making.  

In HRL, the top-level handles broad strategic 

decisions, whereas the low-level manages more 

detailed with fine-tuned decisions. The Meta-

learning mechanism makes the system adapt rapidly 

to new scenarios, which enhances decision-making 

efficiency. Fig. 1 shows a block diagram for the 

IEMDP-MHRL technique. 

 
Figure. 1 Block diagram of the proposed IEMDP-

MHRLtechnique 

 

 

 
Figure. 2 System model 

 

3.1 System model 

Fig. 2 represents a system model and a vehicular 

network consists of a BS and numerous Vehicle User 

Equipment (VUE) devices. As shown in Fig 2, the BS 

is located at a crossroad’s center, whereas the VUEs 

are located on the roads. The BS and VUEs are all 

evaluated with a single antenna. V2VU and V2IU 

represent VUE communicating through V2V and V2I 

links correspondingly. Consider that there are 𝑀V2I 

Unit (V2IU) and 𝐾 V2V Unit (V2VU) in the network 

environment. Especially, the V2IU necessitates a V2I 

connection link via the interface to generate high-

ability communication with BS, whereas V2VU 

requires a V2V link to share the data via the PC5 

interface for effective management of traffic safety. 

Each BS 𝑏 It associates with a cache to determine if 

the content is cached or not, depending on a certain 

probability. The binary variable for state 𝑖 with BS 𝑏 
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is applied to define it which is represented as ∅𝑖
𝑏. It 

involves two cases: ∅𝑖
𝑏 = 1 , the state 𝑖  occurs in 

cache and ∅𝑖
𝑏 = 0  otherwise. It establishes a two-

state Markov chain 𝐻 = {0,1} and employs a ∅𝑖
𝑏(𝑡) 

to evaluate cache at time 𝑡 where 𝑡 = {0,1, … , 𝑇 − 1}. 

The cache state transmits from one state to another 

based on the probability of state transition Γ𝑖(𝑡) for 

state 𝑖 at time 𝑡 using Eq. (1). 

 

Γ𝑖(𝑡) = [𝑌𝑧1,𝑧2(𝑡)]2×2    (1) 

 

𝑌𝑧1,𝑧2(𝑡) = Pr (∅𝑖
𝑏(𝑡 + 1) = 𝑧2|∅𝑖

𝑏(𝑡) = 𝑧1)  (2) 

 

Where ∅𝑖
𝑏(𝑡) determines binary variable at time 𝑡 

for state 𝑖 with BS 𝑏,Pr represents probability, and 

𝑌𝑧1,𝑧2(𝑡)  denotes probability of transitioning from 

cache state 𝑧1 to 𝑧2  at time 𝑡 which is indicated in Eq. 

(2). 

3.2 Computing model 

This model contains two components: content 

size and an appropriate number of CPU cycles to 

provide the request from vehicles using 𝑇𝑟 =
{𝑜𝑟, 𝑞𝑟}. Where 𝑇𝑟 indicates vector at vehicle 𝑟, 𝑜𝑟 

represents content size for vehicle 𝑟 , and 𝑞𝑟 

determines CPU cycles to process vehicle 𝑟. Based 

on the probability of state transition, the 𝑀𝑒
𝑏(𝑡) 

denotes computing ability at time 𝑡 for an entity 𝑒 

with BS 𝑏 that is changed from 1 state to another. For 

instance, changing from pair of states 𝑞1  to 𝑞2  at 

time 𝑡 is represented as Ω𝑞1,𝑞2
(𝑡). Hence, the 𝑁𝑒

𝑏(𝑡) 

determines computing power of state transition 

probability at time 𝑡  for an entity 𝑒  with BS 𝑏  is 

applied as 𝑛 × 𝑛 the matrix using Eqs. (3) and (4). 

 

𝑁𝑒
𝑏(𝑡) = [Ω𝑞1,𝑞2

(𝑡)]𝑛×𝑛    (3) 

 

Ω𝑞1,𝑞2
(𝑡) = Pr (𝑀𝑒

𝑏(𝑡 + 1) = 𝑞2|𝑀𝑒
𝑏(𝑡) = 𝑞1)     (4) 

 

𝑞𝑟  represents the task’s computation execution 

for vehicle 𝑟  at a multi-user server is expressed using 

Eq. (5), and the computation rate is represented in Eq. 

(6). 

 

𝑡𝑒
𝑏 =

𝑞𝑟

𝑀𝑒
𝑏(𝑡)

      (5) 

 

𝑅𝑟,𝑒
𝑐𝑜𝑚𝑝(𝑡) =

𝑜𝑟

𝑡𝑒
𝑏 =

𝑀𝑒
𝑏(𝑡)𝑜𝑟

𝑞𝑟
    (6) 

 

Also, the 𝑈𝑟
𝑏(𝑡) is used to evaluate whether the 

multi-user server for vehicle 𝑟 with BS 𝑏 at time 𝑡 is 

related with BS 𝑏 is chosen; if it is 𝑈𝑟
𝑏(𝑡) = 1 else, 

𝑈𝑟
𝑏(𝑡) = 0. 𝑅𝑟,𝑒

𝑐𝑜𝑚𝑝(𝑡) represents computing resource 

for vehicle 𝑟 and entity 𝑒 at time 𝑡 and 
𝑜𝑟

𝑡𝑒
𝑏 represents 

ratio of content size vehicle 𝑟 to the time required to 

process the vehicle at entity 𝑒 with BS 𝑏. The 𝑀𝑥𝑒 

indicates maximum amount of requests that is 

established simultaneously multi-user server using 

Eq. (7). 

 

∑ ∑ 𝑈𝑟
𝑏(𝑡)𝑜𝑟 ≤ 𝑀𝑥𝑒𝑏𝜖𝐵 𝑟𝜖𝑅              (7) 

3.3 Communication model 

The data is transferred over a wireless channel in 

a communication model, and those wireless channel 

among vehicles and BS is considered as a realistic 

time-varying channel. The received Signal-to-Noise 

Ratio (SNR) is applied as a parameter to determine 

the channel quality. The random variable 𝑘𝑟
𝑏  Is 

defined to evaluate the received SNR among BS 𝑏 

and vehicle 𝑟 . Based on transition probability, the 

obtained SNR𝐶𝑟
𝑏(𝑡) changes from 1 state to another. 

For instance, changing from a state 𝑑1 to 𝑑2 at time 𝑡 

is represented as Υ𝑑1,𝑑2
(𝑡). The ℎ × ℎ matrix 𝐺𝑟

𝑏(𝑡) 

is applied to determine state transition probability 

among BS 𝑏 and vehicle 𝑟 using Eqs. (8) and (9). 

 

𝐺𝑟
𝑏(𝑡) = [Υ𝑑1,𝑑2

(𝑡)]ℎ×ℎ    (8) 

 

Υ𝑑1,𝑑2
(𝑡) = 𝑃𝑟(𝐶𝑟

𝑏(𝑡 + 1) = 𝑑2|𝐶𝑟
𝑏(𝑡) = 𝑑1)        (9) 

 

The 𝐺𝑟
𝑏 Hz is applied to determine the bandwidth 

which is allocated to vehicle 𝑟  for available 

bandwidth of BS 𝑏, 𝐶𝑟
𝑏(𝑡) indicates current state at 

time 𝑡 , (𝐶𝑟
𝑏(𝑡 + 1)  represents current state at next 

time step 𝑡 + 1 , 𝑑1  and 𝑑2  denotes distance. The 

backhaul capability of BS  𝑏  represented as 𝐿𝑏  and 

the overall vehicle rate of BS do not exceed it 

backhaul ability, and their vehicle communication 

rate related to BS is determined using Eqs. (10) and 

(11). Where 𝐿𝑏  indicates maximum allowable 

resource limit for BS 𝑏. 

 

𝑅𝑟,𝑏
𝑐𝑜𝑚𝑚(𝑡) = 𝑈𝑟

𝑏(𝑡)𝐷𝑟
𝑏(𝑡)𝐶𝑟

𝑏              (10) 

 
∑ ∑ 𝑅𝑟,𝑏

𝑐𝑜𝑚𝑚 ≤ 𝐿𝑏 , ∀𝑏𝜖𝐵𝑟𝜖𝑅𝑏𝜖𝐵              (11) 

3.4 Problem formulation 

In this section, the resource allocation issue is 

transformed into the RL process and its has 𝑁 

number of various MDP scenarios. For all scenario, 

it is considered that there involves a BS, multi-user 

server, and content cache Ξ . Every BS is related to 
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the content cache and server while the effectiveness 

of the wireless channel between BS and vehicle is 

split into ℎ levels and follows a Markov process. To 

determine channel effectiveness, the 𝐶𝑟
𝑏(𝑡) is used 

among BS and vehicles at time 𝑡 . Likewise, the 

computing power of multi-user server split into 𝑛 

levels and 𝑀𝑒
𝑏(𝑡) is applied to evaluate the multi-user 

server computing power with BS at time 𝑡. Consider 

𝐻𝜉
𝑏(𝑡) indicate content saved in cache 𝜉 related with 

BS and 𝐻𝜉
𝑏(𝑡) =

[Φ1(𝑡), Φ2(𝑡), … , Φ𝑖(𝑡), … , Φ𝑛(𝑡)], 𝜉𝜖{1,2, … , Ξ}, Φ𝑖(𝑡) 𝜖 {0,1}

To effectively allocate resources in a vehicular 

environment is essential. The vehicular environment 

changes as vehicles move and during these changes, 

the proposed approach shares a low-level set of 

primitives that enhance the generalization of the 

learning model.  

3.5 Information Volume Evidential Markov 

Decision Process based Hierarchical Meta 

Reinforcement Learning (IEMDP-MHRL) 

The IEMDP-MHRL is used for resource 

allocation to manage uncertainty by incorporating 

evidence-based reasoning method in vehicular 

networks. The hierarchical structure enhances 

scalability by dividing allocation into low-level and 

high-level decisions which increase both immediate 

action and long-term performance. Also, IEMDP 

assists in adapting to changing network conditions 

which makes more effective and reliable resource 

distribution. Conventional RL [26] typically acts 

infeasible in complex tasks: the action and state 

spaces are greater; trajectories are higher; the tasks 

are complex domain and reward signals are sparse; 

and so on. Irradiated by human societies where a 

hierarchical organization is applied to address 

complex tasks, a hierarchical process is used in RL to 

solve more complicated issues. The purpose of HRL 

is observed as a divide-and-conquer scheme where a 

complicated task is hierarchically split into various 

smaller sub-tasks and then limited solutions are 

combined into a full and more cost-efficient solution 

for the issue. The hierarchical process establishes a 

reduction in computation, space, and time complexity 

for both learning and overall task execution. A sub-

policies set is shared and switched among various 

tasks by master policy and meta-learning is integrated 

in learning new unseen tasks more rapidly. 

While a controller obtains a vehicle request, it 

assigns a BS via HMRL that has two parts: master-

policy network 𝜑  and sub-policy network 𝑦  as 

{𝜔1, 𝜔2, … , 𝜔𝑦} . When a request is received, the 

controller initially evaluates the master policy to 

determine the appropriate sub-policy based on 

present observation 𝑆𝑡 in the vehicular network. Then, 

the chosen sub-policy is applied to generate a 

particular allocation policy. Based on state 𝑆𝑡 , the 

master policy process specifies a sub-policy network 

using Eq. (12). 

 

𝑠𝑢𝑏𝑘~𝜋𝜑(𝑠𝑢𝑏𝑘|𝑆𝑡), 𝑠𝑢𝑏𝑘𝜖{𝑠𝑢𝑏1,𝑠𝑢𝑏2, … , 𝑠𝑢𝑏𝑦} 

                              (12) 

 

Where 𝜋𝜑(. |𝑆𝑡)  represents master policy at 

present state 𝑆𝑡  and 𝑘  indicates sub-policies index. 

The master policy 𝜑  is reorganized by gradient 

method using Eq. (13). 

 

𝜑𝑖 = 𝜑𝑖−1 + 𝜇∇𝜑𝑖𝑟𝐻              (13) 

 

Where 𝜇  determines learning rate, 𝑟𝐻  indicates 

gain of master policy from sub-policy 𝑠𝑢𝑏𝑘  at 𝑆𝑡 . 

Also, it computes a rewarded value at timestep 𝑇 . 

Then, the gradient update 𝜑 is represented using Eq. 

(14). 

 

𝜑𝑖 = 𝜑𝑖−1 +
𝜇 ∑ ∑ 𝛽𝑡

𝑡𝑡=0 𝑅𝐻(𝑆𝑡, 𝑆𝑢𝑏𝑡)∇𝜑𝑙𝑜𝑔𝜋𝜑(𝑠𝑢𝑏𝑘|𝑆𝑡)    (14) 

 

Once, the sub-policy is chosen, then the resource 

allocation phase is performed in that master-policy 

and sub-policies are focused based on environment. 

Then, the 2nd phase is determined using Eq. (15). 

 

𝑏𝑗~𝜋𝜔𝑠𝑢𝑏𝑘(𝑏𝑗|𝑆𝑡), 𝑏𝑗𝜖{1,2, … , 𝐵}             (15) 

 

Where 𝜋𝜔𝑠𝑢𝑏𝑘(. |𝑆𝑡)  represents a sub-policy 

network that evaluates a BS to request a vehicle in 𝑆𝑡, 

𝑏𝑗  determined chosen BS. Also, the sub-policy 

parameter is reorganized by the gradient approach 

and it computes the reward function at time 𝑡 . 

Moreover, the BS information is reorganized; the 

request data is verified in the BS table, and then 

computing power, channel, and present cache 

environment are reorganized based on IEMDP. For 

modelling the decision-making progress, MDP [27] 

is utilized. The primary goal of IEMDP is to create an 

uncertain state in the decision system, various beliefs 

and actions below certain and uncertain states are 

established. Then, a mass function of various actions 

and beliefs is determined by the dynamic evolution of 

Markov model. Then, instead of Deng's entropy, the 

Information Volume (IV) of mass function is 

introduced to distribute uncertain belief states that 

consider the overall amount of data. At last, the 

probability distribution is acquired and its difference 

determines the disjunction effect. A new uncertainty 
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parameter 𝜂 is calculated depending on IV using Eq. 

(16) for a probability distribution. 

 

𝜂 =
𝐻𝐼𝑉

𝐷 −𝐻𝐼𝑉
𝐶𝐷

𝐻𝐼𝑉
𝐷 +𝐻𝐼𝑉

𝐶𝐷               (16) 

 

Where 𝐻𝐼𝑉
𝐷  and 𝐻𝐼𝑉

𝐶𝐷  represents the amount of 

information at Information Volume (IV) in C-D 

condition. Hence, the transformation rules in the C-D 

condition and D-condition for the mass function is 

calculated using Eqs. (17) to (18). 

 

𝑃𝐷
′𝑛(𝐴) = 𝑚𝑛(𝐴𝑈) + (

1

2
+ 𝜂) ∗ 𝑚𝑛(𝑈𝑈)      (17) 

 

𝑃𝐶𝐷
′𝑛 (𝐴) = 𝑚𝑛(𝐴𝑈) +

1

2
∗ 𝑚𝑛(𝑈𝐺) + 𝑚𝑛(𝐴𝐵) +

1

2
∗ 𝑚𝑛(𝑈𝐵)                           (18) 

 

Where 𝐴𝑈  indicates interaction between input 

signal 𝐴  and distortion or noise term 𝑈 , 𝑈𝑈 

represents self-interaction of a distortion and noise 

term 𝑈, 𝑈𝐺 determines interaction among distortion 

𝑈  and variable 𝐺 , 𝐴𝐵  denotes interaction between 

input signal 𝐴 and Bias 𝐵, 𝑚𝑛indicates measure 𝑚 at 

𝑛𝑡ℎ iteration, and 𝑈𝐵  represents distortion or noise 

term 𝑈  and Bias 𝐵 .The disjunction effects 

represented as 𝐷𝑖𝑠
′  is reproduced by the probability 

difference in C-D condition and D-condition (i.e., the 

difference among Eqs. (17) and (18).  

 

𝐷𝑖𝑠
′ = 𝑃𝐷

′𝑛(𝐴) − 𝑃𝐶𝐷
′𝑛 (𝐴)              (19) 

 

Where 𝑛 represents the number of states in Eq. 

(19). IEMDP-MHRL improves resource allocation in 

vehicular networks by enhancing decision-making in 

dynamic environments. It incorporates information 

uncertainty management by evidential reasoning, 

making resource allocation more reliable. Also, 

hierarchical structure rapidly adapts to changing 

network conditions whereas meta-learning increases 

learning over tasks, leading to more effective 

resource allocation in vehicular communication.  

 

Pseudo code for proposed IEMDP-HMRL method 

Step 1: Initialize parameters for Master policy and 

Sub-policy networks 

initialize master policyparameters (𝜑) 

initialize subpolicy parameters(𝜔1, 𝜔2, … , 𝜔𝑦) 

Step 2: Define Learning Rates, Reward Functions 

and State Transitions 

define learningrate (𝜇) using Eq. (13) 

define rewardfunction (𝑅𝐻, 𝑅𝐿)which is represented 

using Eq. (15) 

define statetransitionmatrix (𝑆) by applying Eq. (1) 

Step 3: Master Policy Network chooses a Sub-Policy 

depending on present state 

for each request obtained in a dynamic vehicular 

environment: 

      Observe present state 𝑆𝑡 from vehicular network 

 Master policy chooses a sub-policy 

depending on the state 

 𝑠𝑢𝑏𝑘 = selects policy depends on state 

 Update master policy network utilizing 

gradient approach 

 𝜑 = 𝜑 + 𝜇 ∗ ∇𝜑 ∗  reward master policy 

(𝑅𝐻(𝑆𝑡, 𝑠𝑢𝑏_𝑝𝑜𝑙𝑖𝑐𝑦_𝑘)) using Eq. (13) 

 Calculate reward for master policy over time 

steps 

 Rewardmaster 𝜑𝑖 = 𝜑𝑖−1 +
𝜇 ∑ ∑ 𝛽𝑡

𝑡𝑡=0 𝑅𝐻(𝑆𝑡, 𝑆𝑢𝑏𝑡)∇𝜑𝑙𝑜𝑔𝜋𝜑(𝑠𝑢𝑏𝑘|𝑆𝑡) by 

applying Eq. (14) 

 Update master policy gradient 

 𝜑= update master policy (𝜑, reward master) 

Step 4: Sub-policy network chooses Base Station 

(BS) and allocates resources for subpolicy in 

selectedsubpolicy𝑘: 

for subpolicy in selectedsubpolicy𝑘: 

 Sub- policy chooses a BS for resource 

allocation 

 Basestation 𝑗  = ChooseBS 

(𝜋𝜔(𝑠𝑢𝑏 𝑝𝑜𝑙𝑖𝑐𝑦 𝑘|𝑆𝑡))  

 Update subpolicy parameters depending on 

reward at timestep 𝑡 

 𝜔 subpolicy 𝑘 = 𝜔  subpolicy 𝑘 + 𝜇 ∗

∇𝜔subpolicy+ 𝑘 ∗ rewardsubpolicy(𝑅𝐿(𝑆𝑡 , 𝐵𝑆𝑗)) 

 Calculate subpolicy reward 

 Rewardsub = sum (𝛽𝑡 ∗
𝜋𝜔(subpolicy𝑘|𝑆𝑡)*RL(𝑆𝑡 , 𝐵𝑆𝑗)) using Eq. (12) 

 Update subpolicy gradient 

 𝜔 subpolicy 𝑘 = update 

subpolicy(𝜔subpolicy𝑘, rewardsub) 

Step 5: Use Evidential Reasoning for uncertainty 

management for each belief and action: 

 massfunction = Calculatemassfunction 

(actions, beliefs) using Eq. (16) 

 informationvolume = Calculate 

informationvolume (mass function) by utilizing Eq. 

(17) and (18) 

 uncertaintyparameter = Calculate 

uncertainty (𝜂)which is formulated in Eq. (16) 

 Use IVbased probability distribution 

 Pdistribution = updateprobabilitydistribution 

(informationvolume) using Eq. (19) 

Step 6: Resource allocation and request processing in 

a dynamic environment 

AllocateresourcestoBS (𝐵𝑆𝑗) 
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Updatestateinformation (𝐵𝑆𝑗,  network conditions, 

computing power) 

Step 7: Repeat steps for new vehicles requests and 

environment changes until a predetermined 

maximum number of iterations is reached. 

4. Results 

The proposed IEMDP-MHRL is simulated based 

on MATLAB R2020b with an i7 intel processor, 128 

GB RAM, and Windows 10 operating system. The 

performance measures like Probability of satisfied 

V2V links, cost, energy consumption, task 

completion rate, Packet loss, Average task wait (ms), 

and Average task delay (ms) are calculated to identify 

the model performance for resource allocation in 

vehicular networks. The mathematical formula for 

the performance metrics is represented using (20) to 

(25). Table 1 represents a simulation setting.  

 

𝐷𝑒𝑙𝑎𝑦 =
𝑆𝑢𝑚 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑖𝑛𝑔 𝑎𝑛𝑑 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠
    (20) 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 + 𝐸𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

                 (21) 

 

𝑇𝑎𝑠𝑘 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =

 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓.𝑡𝑎𝑠𝑘𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑
                          (22) 

 

𝑃𝑎𝑐𝑘𝑒𝑡 𝑙𝑜𝑠𝑠 =

 
𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡−𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡
             (23) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑎𝑠𝑘 𝑟𝑎𝑡𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛
              (24) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑎𝑠𝑘 𝑑𝑒𝑙𝑎𝑦 =
∑ (𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒𝑖−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒𝑖

𝑛
𝑖=1

𝑛

                             (25) 

 

Where 𝑛 represent a total number of tasks and 𝑖 
indicates the number of tasks respectively. 

4.1 Performance analysis 

Table 2 determines a performance evaluation of 

energy consumption (J). The existing methods like 

RL, HRL, and MHRL are used to compare with the 

proposed IEMDP-MHRL method. When compared 

to these existing methods, the IEMDP-MHRL 

achieves less energy consumption of 0.09 J for many 

vehicles 2 because it leverages evidential reasoning 

to manage uncertainty which enhances decision-

making efficiency. This results in better resource 

allocation and optimized action selection which 

minimize unwanted energy use. 

Table 3 represents a performance analysis of task 

completion rate. The proposed IEMDP-MHRL 

method achieves a high task completion rate of 0.96 

for vehicle 2 due to its efficient evidential decision-

making process which enhances accuracy in 

choosing optimal actions under uncertainty. Its 

hierarchical structure makes exact task coordination 

over various layers which results in more effective 

task execution compared to RL, HRL, and MHRL.  

Fig. 3 indicates a graphical representation of the 

average task wait (ms). The existing methods like RL, 

HRL, and MHRL are compared with IEMDP-MHRL. 

The proposed IEMDP-MHRL achieve a lower 

average task wait of 0.95ms for vehicle 10 by using 

evidential reasoning to enable rapid process and more 

accurate decisions under uncertainty which 

minimizes delays in task execution. 

Its hierarchical meta-learning structure enables 

effective task prioritization and resource 

management over various layers. This leads to rapid 

task completion and reduced waiting times in 

vehicular environments. Fig. 4 denotes a graphical 

representation of the average task delay (ms). The 

proposed IEMDP-MHRL obtains a less average task 

delay of 0.35ms for vehicle 10 by including meta 

 

 
Table 1. Simulation settings 

Parameters Values 

Number of vehicles 2 to 10 

Carrier frequency  2 GHZ 

Speed of vehicles 36 to 54 km/h 

Bandwidth 4 MHz 

Remaining time for message 

delivery 

100 ms 

 

Table 2. Performance evaluation of energy consumption 

(J) 

Methods No. of vehicles 

2 4 6 8 10 

RL 1.19 1.21 2.25 2.29 2.46 

HRL 0.21 0.24 0.33 0.56 0.60 

MHRL 0.16 0.19 0.21 0.24 0.29 

IEMDP-MHRL 0.09 0.12 0.14 0.17 0.23 

 
Table 3. Performance analysis of task completion rate 

Methods No. of vehicles 

2 4 6 8 10 

RL 0.86 0.82 0.76 0.74 0.72 

HRL 0.91 0.89 0.88 0.86 0.84 

MHRL 0.93 0.87 0.86 0.84 0.81 

IEMDP-MHRL 0.96 0.94 0.91 0.90 0.86 
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Figure. 3 Graphical representation of average task wait 

(ms) 

 

 
Figure. 4 Graphical representation of average task 

delay(ms) 

 

 

learning and evidential methods that enhance the 

decision-making accuracy under uncertainty and 

minimize delayed or incorrect actions. Its 

hierarchical structure enables more effective task 

decomposition and rapid response in dynamic 

environments.  

4.2 Comparative analysis 

Table 4 demonstrates an analysis of simulation 

parameters. Tables 5, 6, and 7 present a performance 

analysis for the proposed IEMDP-MHRL with 

existing methods [20-23]. The scenario 1 is for 

existing method [20], scenario 2 is for [21], whereas 

scenario 3 is for [23]. The Vehicle speed, Number. of 

vehicles/ vehicle density, Bandwidth, and Diameter of 

RSU coverage/ Transmission range of RSU are considered 
for simulation parameter and those parameters values 

are presented clearly in Table 4. Vehicle speed 

reflects different traffic conditions, Vehicle density 

modeling varying congestion levels, bandwidth 

provides different network conditions, and Diameter 

of RSU coverage/ Transmission range of RSU represents 

varying infrastructure availability. When compared to 

these existing methods, the proposed IEMDP-MHRL 

obtains a better performance. For example, the 

proposed IEMDP-MHRL obtains a lesser average 

task delay of 0.34 ms for 10 vehicles due to its 

evidential decision-making process which minimizes 

uncertainty in state transition and results in rapid task 

execution in Table 7 compared to existing methods 

like IRATS [23]. The HRL enable parallelized task 

management over different layers which optimize 

resource distribution. Moreover, meta-learning 

increases the adaptability to dynamic environments 

which reduces delay in response time compared to 

[23]. 

 
Table 4. Simulation parameter 

Parameters Scenarios 

1 2 3 

Vehicle speed 36 

km/h 

22 

m/s 

12~20 

km/h 

Number. of vehicles/ 

vehicle density 

20 to 

100 

16 10~50 

Bandwidth 10 

MHz 

5 ×
106 

Hz 

N/A 

Diameter of RSU coverage/ 

Transmission range of RSU  

N/A 500 

m 

3000 m 

 

Table 5. Performance analysis of IEMDP-MHRL with existing MA-DDQN 

Methods Scenario Performance 

measures 

Number of vehicles 

20 40 60 80 100 

MA-DDQN [20] 1 Probability of satisfied V2V links 0.990 0.985 0.970 0.975 0.96 

ProposedIEMDP-MHRL  0.999 0.992 0.986 0.989 0.98 

 

Table 6. Performance analysis of IEMDP-MHRL with existing JDGO 

Methods Scenario Performance measures Number of vehicles 

4 6 8 10 12 14 16 

JDGO [21]  

 

 

 

2 

Cost 65 100 150 200 230 240 250 

Energy consumption 10 18 23 30 38 42 49 

Task completion rate 0.80 0.82 0.85 0.81 0.84 0.85 0.88 

Proposed 

IEMDP-MHRL 

Cost 45 63 72 87 120 155 179 

Energy consumption 5 12 17 23 29 34 38 

Task completion rate 1.00 0.97 0.92 0.90 0.89 0.88 0.87 
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Table 7. Performance analysis of IEMDP-MHRL with existing IRATS 

Methods Scenario Performance 

 measures 

Number of vehicles 

10 20 30 40 50 

IRATS [23]  

 

 

 

 

 

 

3 

Percentage of completion task 72 55 59 51 42 

Packet loss 100 380 480 790 1000 

Average task wait (ms) 1.87 2.00 2.00 1.98 1.50 

Average task delay (ms) 1.98 2.10 2.15 2.00 1.50 

Proposed 

IEMDP-MHRL 

Percentage of completion task 92 81 87 78 75 

Packet loss 87 231 376 694 872 

Average task wait (ms) 0.76 1.36 1.36 0.82 0.54 

Average task delay (ms) 0.34 1.23 1.25 1.43 1.44 

4.3 Discussion 

The advantages of the proposed IEMDP-MHRL 

method and the disadvantages of existing methods 

are presented in this section. The existing method 

limitations like MA-DDQN [20] struggled in scaling 

with a large number of agents because of the 

exponential increase in state-action space. The two-

layer optimization [21] suffer from high energy 

consumption due to the complexity of addressing 

both layers simultaneously particularly in dynamic 

environments with limited resources. PPO [23] cause 

high average task delay because of inefficient 

exploration in highly dynamic environments which 

leads to suboptimal performance. The proposed 

IEMDP-MHRL overcomes these existing method 

limitations by incorporating evidential reasoning and 

meat-learning strategies to handle uncertainty. Its 

hierarchical structure increases scalability and allows 

for better coordination between different vehicles and 

tasks. Also, using a meta-learning approach changes 

vehicular conditions and maintains stability as well 

as decision-making progress. This analysis not only 

minimizes delays but also reduces energy 

consumption across different scenarios.   

5. Conclusion 

This research proposed IEMDP-MHRL for 

resource allocation in vehicular networks. By 

effectively adding uncertainty via evidential 

reasoning, the proposed method enhances decision-

making in dynamic environments. The HRL enables 

effective and scalable resource management which 

adapts to varying demands over various network 

levels. Moreover, the meta-learning process provides 

an information transfer across tasks which enhances 

learning efficiency. It considers both long-term and 

short-term rewards which results in a more effective 

and sustainable process. From the overall analysis, 

the proposed IEMDP-MHRL makes a more robust 

and enhanced resource allocation mechanism in 

vehicular networks. When compared to existing 

methods like IRATS, the proposed IEMDP-MHRL 

achieves a lesser average task delay of 0.34 ms for 

vehicle 10 respectively. In the future, the advanced 

technique like transformer model will be considered 

in RL for further increasing the model performance 

in resource allocation. 

Notation Description 

Symbols Description 

𝑏 Base Station (BS) 

∅𝑖
𝑏 Binary variable for state 𝑖 with BS 𝑏 

Γ𝑖(𝑡) Probability of state transition for state 

𝑖 at time 𝑡 

∅𝑖
𝑏(𝑡) Binary variable at time 𝑡  for state 𝑖 

with BS 𝑏 

Pr Probability 

𝑌𝑧1,𝑧2(𝑡) Probability of transitioning from 

cache state 𝑧1 to 𝑧2  at time 𝑡 

𝑇𝑟 Vector at vehicle 𝑟 

𝑜𝑟 Content size for vehicle 𝑟 

𝑞𝑟 CPU cycles to process request 𝑟 

𝑀𝑒
𝑏(𝑡) Computing ability at time 𝑡  for an 

entity 𝑒 with parameter 𝑏 

Ω𝑞1,𝑞2
(𝑡) Pair of states 𝑞1 to 𝑞2 at time 𝑡 

𝑁𝑒
𝑏(𝑡) Computing power of state transition 

probability at time 𝑡  for an entity 𝑒 

with parameter 𝑏 

𝑞𝑟 Task’s computation execution for 

request 𝑟 

𝑈𝑟
𝑏(𝑡) Multi-user server for vehicle 𝑟 with 

BS 𝑏 at time 𝑡 

𝑅𝑟,𝑒
𝑐𝑜𝑚𝑝(𝑡) Computing resource for request 𝑟 

and entity 𝑒 at time 𝑡 
𝑜𝑟

𝑡𝑒
𝑏
 Ratio of content size request 𝑟 to the 

time required to process the request 

at entity 𝑒 with parameter 𝑏 

𝑀𝑥𝑒 Maximum amount of requests that is 

established simultaneously multi-

user server 

𝑘𝑟
𝑏 Random variable among BS 𝑏  and 

vehicle 𝑟 

Υ𝑑1,𝑑2
(𝑡). Changing from a state 𝑑1  to 𝑑2  at 

time 𝑡 

ℎ × ℎ  matrix 

𝐺𝑟
𝑏(𝑡) 

State transition probability among 

BS 𝑏 and vehicle 𝑟 
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𝐺𝑟
𝑏  Bandwidth which is allocated to 

vehicle 𝑟 for available bandwidth of 

BS 𝑏 

𝐻𝜉
𝑏(𝑡) Content saved in cache 𝜉 related with 

BS 

Ξ Content cache 

𝜋𝜑(. |𝑆𝑡) Master policy at present state 𝑆𝑡 

𝑘 Sub-policies index 

𝜑 Master policy is reorganized by 

gradient method 

𝜇 Learning rate 

𝑟𝐻 Gain of master policy from sub-

policy 𝑠𝑢𝑏𝑘 at 𝑆𝑡 

𝜋𝜔𝑠𝑢𝑏𝑘(. |𝑆𝑡) Sub-policy network that evaluates a 

BS to request a vehicle in 𝑆𝑡 

𝑏𝑗 Chosen BS 

𝐻𝐼𝑉
𝐷  and 𝐻𝐼𝑉

𝐶𝐷  Amount of information in 

Information Volume (IV) in C-D 

condition 

𝜂 New uncertainty par 

𝐴𝑈 Interaction between input signal 𝐴 

and distortion or noise term 𝑈 

𝑈𝑈 Self-interaction of a distortion and 

noise term 𝑈 

𝑈𝐺 Interaction among distortion 𝑈  and 

variable 𝐺 

𝐴𝐵 Interaction between input signal 𝐴 

and Bias 𝐵 

𝑈𝐵 Distortion or noise term 𝑈 and Bias 

𝐵 

𝐷𝑖𝑠
′  Disjunction effect is reproduced by 

the probability difference in C-D 

condition and D-condition 

𝑛 Number of states 

𝑚𝑛 Measure 𝑚 at 𝑛𝑡ℎiteration 
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