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Abstract: Bladder cancer, a common and increasingly prevalent malignant neoplasm, has become a major threat to 

public health. The major significance enjoyed by this combination is that it emphasizes the need to comprehend and 

diagnose a condition at a very young age. A number of automatic diagnostic techniques employing Artificial 

Intelligence technology have been deployed in the area of bladder cancer and have generally been found to be effective 

but the actual percentage accuracy required for real-world diagnosis has not been achieved yet. The proposed hybrid 

model integrates Vision Transformers and Convolutional Neural Networks to enhance the performance of medical 

vision tasks, such as the classification and prediction of bladder cancer. Vision Transformers excel in capturing long-

range relationships through self-attention mechanisms, while Convolutional Neural Networks are more effective in 

extracting local features using spatial convolution filters. This combination leverages the strengths of both 

architectures to achieve superior results in medical image analysis. The Endoscopy dataset, and Pathological dataset 

were used and the hybrid model provided better accuracy for diagnosing bladder cancer than the basic CNN model 

and transferred learning, VGG16, Inception-v3, MobileNetV2 of 99.93%, 93.67%, 97.8%, 95.5%, 95% respectively. 

The experiments show that these hybrid architectures are more effective than the conventional Convolutional Neural 

Networks for the Bladder cancer Image classification and establish the suitability of Vision Transformer in progressing 

towards higher performance with the Bladder cancer Image analysis. 

Keywords: Artificial intelligence, Bladder cancer, Classification, Transfer learning, Vision transformer. 

 

 

1. Introduction  

Bladder cancer is among the most frequently 

diagnosed and rapidly rising neoplasms, and it 

represents a considerable threat to world health care. 

The time of diagnosis can be considered as the critical 

factor related to the potential treatment efficacy as 

with early diagnosis appropriate treatment can be 

started. Diagnostic techniques with AI in automatic 

diagnosis methods proposed for bladder cancer 

diagnosis shows a positive outcome; but high 

accuracy is still a problem. Rule-based and statistical 

AI paradigms are relatively insensitive to local 

structures and cannot successfully identify long-

range connections inside the medical images for 

which they are used. Bladder cancer is an important 

global health concern and this has remained a leading 

instance across the globe. As stated by the World 

Health Organization WHO [1]. It is estimated to be 

one of leading causes of cancer worldwide. However, 

the outcome for bladder cancer still remains 

unsatisfactory, mainly because of diagnostic delays 

[2]. Consequently, timely identification continues to 

present as a major driver of increased survival and 

lessening of the impact of bladder cancer on patients 

and healthcare organizations. Current approaches to 

early diagnosis of bladder cancer are based on the 

results of clinical examination and, in certain 

circumstances, biopsy. However, these methods have 

their downfall. These images are difficult to analyse 

with precision and speed; a fast processing demands 

computational methods that create the basis of 

artificial intelligence within the field of bladder 
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cancer diagnosis [3]. Many applications of artificial 

intelligence have shown a great deal of efficiency in 

some areas, and AI has had a particularly strong 

performance in medical imaging [4]. CNNs have 

always dominated the image classification area 

especially in the diagnosis of pathologies from 

medical images. However, there has been a shift of 

paradigm with the advances of transformer based 

architectures [5]. The transformer model, introduced 

by Vaswani et al. [6], revolutionized the field of NLP 

with its self-attention mechanism, enabling the 

modelling of long-range dependencies. This study 

investigates the adaptation of the transformer 

architecture for image classification, known as the 

Vision Transformer (ViT). Unlike traditional 

Convolutional Neural Networks (CNNs), ViT 

operates on sequences of image patches, thereby 

leveraging the transformer's inherent ability to 

capture intricate features across the entire image. 

Chapman-Sung et al. in 2020 [7], the authors’ 

argument is that extracted features with CNN through 

classifying classifiers are less accurate when 

manually extracted from domain knowledge. Hence, 

the aim was to classify two challenging early stages 

of bladder cancer: Ta (noninvasive) and T1 

(superficially invasive) that are histologically similar. 

Overall, 1177 scans of bladder formed totals in the 

dataset, of which 460 were identified as minimally 

invasive, and 717 as superficially invasive. The CNN 

classifiers achieved only 84.0% accuracy and was 

significantly below the other supervised machine 

learning classifiers developed using manually 

defined features. Sarkar et al. [8] in 2023, intended to 

build a diagnosis model of bladder cancer by using 

the radionics aided interpretation of CT scan. The 

three classification tasks performed include: Normal 

vs bladder cancer, NMIBC vs MIBC and PTC vs 

MIBC. The dataset contained 165 regions of interest 

(ROI), 100 normal images, and 65 cancer images. 

Firstly, it was a retrospective study; secondly, it was 

conducted in a single-centre only. Cross validation 

was performed 10 time The results of tests for the 

LDA classifier on characteristics based on Xception 

Net for differentiation of having or not having cancer 

were 86,07%. 

Liu D, Wang S, Wang J, et al in 2020 [9] used CT 

data from 75 patients with bladder for classification 

and staging of this disease by using a ResNet based 

model and applied super-Resolution to improve 

medical pictures. This model developed has a 

sensitivity rate of 94.74% and was achieved after the 

data received from 76 people with bladder cancer had 

been reviewed in order to compare it with the 

preoperative pathological diagnosis.  

Zhang, G. et al [10] in 2021, in this study 183 

patients that made up the dataset utilized were 

divided into three sets: There are 110 participants for 

training, 73 for internal validation and 75 for external 

testing. The researchers developed a completely 

novel convolutional network known as FGP-Net to 

incorporate DFL and Dense Blocks. Specification of 

the FGP-Net on the internal dataset resulted in an 

AUC (Area Under the Receiver Operating 

Characteristic Curve) of 0.861 and accuracy at 0.795. 

The AUC and the accuracy of the FGP-Net on the 

external data base were equal to 0.791 and 0.747 

respectively. These results pinpoint the efficiency of 

the FGP-Net in the classification and its performance 

on the external dataset.  

Chen et al. [11], introduced TransUnet, a model 

incorporating both transformers and Unet for medical 

image segmentation. Their investigation 

demonstrated that transformers function as robust 

encoders for medical image segmentation tasks. The 

amalgamation with Unet enhances finer details by 

recovering localized spatial information, leading to 

superior performance compared to various competing 

methods across diverse medical applications. The 

strengths of the proposed method can be summarized 

as follows: the hybrid model, which combines Vision 

Transformers (ViTs) and Convolutional Neural 

Networks (CNNs), represents a significant 

advancement in bladder cancer classification. Vision 

Transformers excel at capturing long-range 

dependencies through self-attention mechanisms, 

making them particularly effective for medical 

images, where dispersed pathologies may exist across 

various regions. Conversely, CNNs are highly 

efficient at identifying local features using spatial 

convolution filters. By integrating these two 

architectures, the hybrid model successfully 

overcomes the limitations inherent in each individual 

approach, resulting in enhanced performance. 

Specifically, this hybrid model addresses the 

challenges faced by traditional convolution-based 

networks, such as difficulty in capturing global 

contextual information, as well as the feature 

mismatch issues observed in transfer learning 

techniques applied to medical images. 

The experimental results indicate a marked 

improvement in accuracy, with the hybrid model 

outperforming established models such as VGG16, 

Inception-v3, and MobileNetV2, achieving an 

exceptional 99.93% accuracy in bladder cancer 

diagnosis. Consequently, these results indicate the 

promise of the proposed method in the development 

of the state of the art in bladder cancer image analysis. 

The organization of the paper is as follows: the 

introduction brought out the subject of bladder cancer 
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around the world and the difficulties of diagnosing 

the disease and the subsequent literature review 

section reviews some of the general traditional AI 

techniques and their drawbacks. The next topic to be 

presented will be the introduction of the hybrid model 

alongside a discussion of how the features of the ViTs 

and the CNNs are integrated. The features notations, 

data sets employed in this study, the proposed model 

design and the experimental details will be captured 

under the methodology section. The performance 

analysis as well as comparison with traditional 

models will be presented in the result section. At the 

end, the conclusion will briefly discuss the main 

findings of the current study and possible research 

avenue for the future. 

2. Literature review  

The application of deep learning solutions in 

bladder cancer analysis has extended its contributions 

in the diagnosis, detection, classification as well as 

staging. Investigators have used different deep 

learning approaches, such as CNNs, ResNet, U-Net, 

and Transformer networks to perform diagnostic 

analysis of histopathology, endoscopy, and 

cystoscopy image modalities. 

In (2021), Qiu et al., applied a deep learning 

algorithm for classification of subtypes of bladder 

cancer based on histopathological images. Made use 

of ResNet50 model for distinguishing between 

multiple forms of cancers that are characterized by 

histopathological patterns. The extraction of features 

was done using some of its layers and was further 

trained using transfer learning to achieve ideal 

characteristic of images of bladder cancer. 

Contributed a set of 1389 histopathological images 

where each image was labeled for at least three 

subtypes of bladder cancer. None of the 

preprocessing steps was left unlabeled, and 

normalization and augmentation were performed to 

improve the model. The proposed methodology was 

validated by getting a maximum of 88.7% accuracy 

of bladder cancer subtypes classification. This could 

help pathologists to well diagnose and sort out 

various types of cancer at high level of accuracy [12]. 

In (2020), Zhu et al further proposed a deep learning 

model for detecting bladder cancer from cystoscopy 

images. Used the cystoscopy image specialized 

custom CNN model. The architecture was aimed at 

identifying features that where associated with 

bladder tumours. Image pre-processing included 

contrast stretching and noise filtering. Consisted of 

cystoscopy picture captured during normal 

endoscopic examinations. This training set contain 

samples of tissues of cancer and normal status. 

Reaching a sensitivity of 93.5 % and specificity of 

89.2 % the model proved itself good at recognising 

cars in automated manner [13].  

In (2019), Wang et al. perform a method of 

segmenting tumour regions in endoscopic image and 

classifies for detection of bladder cancer. 

Implemented segmentations that used a U-Net model 

and a CNN for classification. This architecture was 

selected for its potential to segment the medical 

images effectively. These were comprised of 

endoscopic images with regions of tumour outlined. 

For the purpose of the evaluation the dataset was 

further divided into training, validation, and test sets. 

The measures of segmentation accuracy were 85%, 

and classification accuracy were 87%. It also 

demonstrated that the method could assist clinicians 

in differentiating malignant tissues during 

endoscopic examination [14].  

Song et al. in (2022) develop an advanced 

pathway for performance improvement in the 

classification of bladder cancer through the use of the 

AHBIC fusing pathological and endoscopic images 

deep learning model. To handle multimodal data, the 

CNNs were combined with Transformer 

architectures through a model they established. The 

Transformer part learned contextual interactions in 

the image input, while the CNN part detected 

informative features. Combined both pathological 

and endoscopic images from a particular patient. The 

use of multiple data modes proved to yield better 

representation of data and, therefore, better 

classification across the various scenarios. They 

labelled a combined dataset that when used in 

training the model attained ninety-one-point two 

percent accuracy was higher than the accuracy of 

models trained on either kind of data [15]. Liu et al., 

in their work in (2020) have used deep learning to 

distinguish between malignant and benign bladder 

tumours. In the present study, transfer learning was 

utilised where the pre-trained InceptionV3 model 

was fine-tuned on the bladder tumour image dataset. 

This approach it made use of the model in its capacity 

as a general image processor thus efficient in 

processing data in the different image forms. 

Contains histopathological images of bladder tissues 

where the images are ‘Benign’ or ‘Malignant’. Pre-

processing of data was done to increase the size of the 

dataset and minimize over fitting of the models. 

Using transfer learning, the developed model reached 

a classification accuracy of 90.5% thus proving that 

transfer learning is a useful technique for 

histopathological image analysis [16].  

In (2021), Matsumoto et al. proposed a method of 

using deep learning in order to compare and detect 

early bladder cancer in optical endoscopy images. 



Received:  October 29, 2024.     Revised: November 21, 2024.                                                                                        611 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.43 

 

Used a deep CNN in order to detect pre-malignant 

changes in mucosa in endoscopic pictures of the 

gastrointestinal tract. The above model architecture 

was designed to minimize the reduction of certain 

easy patterns decreasing the possibility of performing 

well when faced with complicated patterns within the 

frames of endoscopic videos. Contained endosomal 

images in which patients that were normally 

diagnosed with bladder cancer underwent normal 

screening test. In image pre-processing, efforts were 

made to control noise and also scale the images to 

equal pixel dimensions. The model had a sensitivity 

of 92.3% and specificity of 88.7% to diagnose early-

stage bladder cancer [17]. In 2022, Jiang et al. 

Integrated pathological and endoscopic imaging data 

to predict bladder cancer stages, utilizing a multi-

view CNN technique to combine features from both 

datasets. 

 

 
Table 1. Summary of the deep learning techniques in bladder cancer classification 

Author / 

Ref. 

Dataset Type Model Objective Result Strengths Limitations 

Qiu et al. 

(2021) 

[12]  

Histopathologica

l images 

ResNet50 

with transfer 

learning 

Classify 

bladder 

cancer 

subtypes 

Accuracy of 

88.7% 

High accuracy 

with transfer 

learning; aids 

pathologists in 

subtype 

classification 

Limited to 

histopathologica

l images only; 

subtype-specific 

performance 

unreported 

Zhu et al. 

(2020) 

[13] 

Cystoscopy 

images 

Custom CNN Detect 

bladder 

cancer in 

cystoscopy 

images 

Sensitivity of 

93.5%, 

specificity of 

89.2% 

Effective for 

clinical 

detection with 

high sensitivity 

and specificity 

Custom model 

may lack 

generalizability; 

focus limited to 

cystoscopy data 

Wang et 

al. (2019) 

[14] 

Endoscopic 

images 

U-Net for 

segmentation

, CNN for 

classification 

Segment and 

classify 

tumor 

regions 

Segmentatio

n accuracy of 

85%, 

classification 

accuracy of 

87% 

Provides 

accurate 

segmentation; 

assists 

clinicians 

during 

endoscopy 

Limited to 

endoscopic 

imaging; 

separate 

segmentation 

and 

classification 

stages 

Song et al. 

(2022) 

[15] 

Pathological and 

endoscopic 

images 

Hybrid CNN-

Transformer 

model 

Improve 

classificatio

n with 

multimodal 

data 

Accuracy of 

91.2% with 

combined 

data 

High accuracy 

leveraging 

multimodal 

data; better 

representation 

Complexity of 

model 

integration; 

requires both 

data types from 

each patient 

Liu et al. 

(2020) 

[16] 

Histopathologica

l images 

InceptionV3 

with transfer 

learning 

Differentiate 

malignant 

from benign 

tumors 

Classificatio

n accuracy of 

90.5% 

Effective 

transfer 

learning on 

histopathology

; robust 

performance 

Focus limited to 

binary 

classification 

(malignant vs. 

benign); less 

nuanced 

Matsumoto 

et al. 

(2021) 

[17] 

Endoscopic 

images 

Deep CNN Detect early-

stage 

bladder 

cancer 

Sensitivity of 

92.3%, 

specificity of 

88.7% 

High 

sensitivity for 

early-stage 

detection; 

useful in 

routine 

screening 

Limited to early-

stage cancers; 

possible 

overfitting due 

to image 

preprocessing 

Jiang et al. 

(2022) 

[18] 

Endoscopic and 

pathological 

images 

Multi-view 

CNN 

Predict 

bladder 

cancer stage 

Staging 

accuracy of 

89.8% 

Joint learning 

from 

multimodal 

data; valuable 

for staging 

Dependent on 

availability of 

both imaging 

types; may not 

generalize across 

institutions 
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The design improved the model's capacity to forecast 

cancer stage by enabling collaborative learning from 

both sources of input. included matching pathology 

and endoscopic pictures of patients with bladder 

cancer, together with staging data as ground truth. 

demonstrated the benefit of using multi-view data for 

clinical decision support by achieving an 89.8% 

staging accuracy [18]. 

Table 1 shows various deep learning techniques 

applied to bladder cancer classification focusing on 

the approach, methodology, and results across 

various datasets and clinical applications. These 

studies highlight the effectiveness of deep learning 

techniques in bladder cancer imaging, revealing that 

hybrid models and transfer learning improve 

classification and detection accuracy. However, 

challenges include limited generalizability and the 

need for multimodal data, which may restrict clinical 

applicability. 

3. Transformers  

Transformers were originally developed for 

natural language processing (NLP) tasks, especially 

machine translation, and have since proven highly 

effective across multiple fields, including NLP, 

image generation, and bioinformatics. This neural 

network architecture is based on an encoder-decoder 

framework, where each component consists of 

several identical transformer blocks. The encoder 

processes input data into a series of encodings, which 

are then used by the decoder, enhanced with 

contextual information, to generate output sequences. 

Each transformer block incorporates a multi-head 

attention layer for capturing relationships across 

different parts of the input, a feed-forward neural 

network, and optimization layers such as shortcut 

connections and layer normalization. [19]. 

Transformers employ an encoder and decoder 

structure with stacked encoder and decoder layers. 

The encoder layer has two sub-layers: self-attention 

and position-wise feed-forward [20]. The decoder 

layer has three sub-layers: self-attention, encoder-

decoder, attention, and position-wise feed-forward as 

shown in Fig. 1 [21]. 

3.1 Encoder and decoder stack 

The encoder is composed of a stack of N = 6 

identical layers. Two sub-layers make up each layer. 

A multi-head self-attention mechanism is the first, 

and a straightforward feed-forward network with 

position-wise full connectivity is the second. 

implemented layer normalization after a residual 

connection was made around each of the two sub-

layers [22]. The stack of N = 6 identical layers also 

makes up the decoder. Each encoder layer has two 

sub-layers, and the decoder adds a third sub-layer to 

carry out multi-head attention over the encoder 

stack's output. Like the encoder [20-22]. 

3.2 Attention 

The mapping of a query and a collection of key-

value pairs to an output, where the query, keys, values, 

and output are all vectors, is known as an attention 

function. The results are calculated as a weighted sum 

of the values, with each value's weight determined by 

the query's compatibility function with the relevant 

key [22]. 

3.2.1. Scaled dot-product attention 

Scaled Dot-Product Attention is a fundamental 

mechanism in the Transformer architecture. It allows 

a model to focus on different parts of the input 

sequence, effectively capturing dependencies and 

relationships within the data. The core idea behind 

this mechanism is to compute the attention between 

different elements in the input data using a 

mathematical formulation based on dot products. 

Attention mechanism, three key components, queries 

(Q), keys (K), and values (V) are used. These are 

derived from the input sequence. Each query vector 

is dot-multiplied with all key vectors to measure the 

similarity between them. The dot product measures 

how much focus each key should get from the query 

[21]. 

3.2.2. Position-wise feed-forward networks 

Position-wise Feed-Forward Networks (FFNs) 

are essential components of both the encoder and 

decoder layers. Unlike the attention mechanisms, 

which model interactions between tokens in a 

sequence, FFNs apply transformations independently 

to each token in a sequence. 

The FFN is responsible for introducing non-

linearity into the model and contributes to the 

representational power of the Transformer 

architecture. FFNs consists of two fully connected 

layers with a nonlinear activation function ReLU, 

each token in the input sequence is processed 

individually and independently by the same FFN. 

This position-wise processing ensures that each token 

is transformed based on its own features without any 

interaction with other tokens, and the final output as 

follows [22, 24]: 

 

FFN(𝑥) = max(0 . 𝑥𝑊1 +  𝑏1)𝑊2 +  𝑏2       (1) 
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The output of the point-wise FFN contributes to 

the enriched representation of each position in the 

ViT, enabling the model to learn and represent 

intricate features in the input image sequence. While 

the linear transformations are the same across 

different positions, they use different parameters 

from layer to layer [20, 24]. 

4. Materials and methods  

4.1 Vision transformer 

In the field of computer vision, the Vision 

Transformer (ViT) architecture was first introduced 

by Dosovitskiy et al., ViT have been widely adopted 

for various tasks, including image classification, 

video classification, semantic segmentation, and 

object detection, video object segmentation, and 3D 

object detection [25]. Unlike traditional 

convolutional neural networks (CNNs), ViT leverage 

a self-attention mechanism, enabling them to learn 

intricate relationships between different parts of an 

image by processing all image segments 

simultaneously. This global context understanding is 

particularly beneficial for tasks that require capturing 

long-range dependencies. 

ViT offer several advantages over CNNs. They 

do not rely on image-specific biases, as they divide 

images into positional embedding patches, which are 

then processed by the transformer encoder to capture 

both local and global image features. ViT have 

garnered significant interest in the medical imaging 

community, where they have been applied to multiple 

medical imaging tasks different image segments 

during learning, providing interpretability and 

improving performance across a range of vision tasks 

[28].  

The architecture of ViT includes residual 

connections after each block, facilitating the flow of 

information through the network without needing to 

pass through non-linear activations, and the MLP 

layer implements the classification head for image 

classification [21, 26]. 

The self-attention estimates the significance of 

one item with others, explicitly modelling the 

interactions among them for structured prediction, 

updating each component via global information 

aggregation from the entire input sequence as shown 

in Fig. 2. Consider a sequence of 𝑛  items with 𝑑 

embedding dimension i.e., 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} ∈
𝑅𝑛×𝑑  then the aim is to capture all the interaction, 

encoding each entity in terms of the global contextual 

information by three learnable weight matrices, 

including Keys ( 𝑊𝐾 ∈ 𝑅𝑛×𝑑𝑘  ), Queries ( 𝑊𝑄 ∈

𝑅𝑛×𝑑𝑞 ) and Values (𝑊𝑉 ∈ 𝑅𝑛×𝑑𝑣  ), 

 
Figure. 1 Structure of the original transformer [21] 

 

 

then projecting 𝑋  on the mentioned matrices to 

obtain 𝐾 = 𝑋𝑊𝐾 , 𝑄 = 𝑋𝑊𝑄 , and 𝑉 = 𝑋𝑊𝑉  , 

compute the matrix of Attention(𝑄 . 𝐾 . 𝑉 ) as 

follows [22, 29]: 

 

𝑆𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄 𝐾𝑇

 √𝑑𝑘 
) . 𝑣                                   (2) 

 

Where 𝑆𝑎 ∈ 𝑅𝑛×𝑑𝑣  is the self-attention layer's 

output achieved by computing the dotproduct of the 

query with all keys for a given item; furthermore, 

softmax is applied to get the normalized attention 

scores where individual items become the weighted 

sum of all items. It is to be noted that the attention 

scores provide weights [27-29]. 

The multi-head approach allows the model to 

focus on different aspects of the input sequence, 

effectively capturing both fine-grained and coarse-

grained features. This enhanced representational 

capacity is a critical factor in the success of ViTs 

across a wide range of computer vision tasks. The 

integral components of transformers are Self-

attention and multi-head self-attention that can be 

mathematically expressed as follows. WQ, WK, WV 

are the learned weight matrices for the query (Q), key 

(K), and value (V) transformations. The multi-head 
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attention is composed of multiple self-attention 

modules to capture multiple complex relationships 

between various items in a sequence as Eq.3, where 

each modules learns the weight 

matrices 𝑊𝑖
𝑄

, 𝑊𝑖
𝐾 , 𝑊𝑖

𝑉 . At the end of multi-head 

attention, the ℎ  self attention modules are 

concatenated [𝑆𝑎0, 𝑆𝑎1, ⋯ , 𝑆𝑎(ℎ−1)] ∈ 𝑅𝑛×ℎ⋅𝑑𝑣  and 

then projected onto a 𝑊 ∈ 𝑅ℎ⋅𝑑𝑣×𝑑  weight matrix 

[21]. 

 

MultiHead(𝑸, 𝑲, 𝑽 ) =  

Concat(head  1, head  2, ⋯ , head  ℎ)𝑾𝒐          (3) 

 

Where, 𝑊𝑜  Represents the learnable parameters, 

ℎ𝑒𝑎𝑑 𝑖 =  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄 𝑊𝑖
𝑄

, 𝐾 𝑊𝑖
𝐾 , 𝑉 𝑊𝑖

𝑉  ), 𝑖 =

1,2, … , ℎ  𝑄 𝑊𝑖
𝑄

, 𝐾 𝑊𝑖
𝐾 , 𝑉 𝑊𝑖

𝑉 The projections are 

parameter matrices. 

The self-attention is applied to the same features 

and then concatenated. Similarly, to other sequence 

transduction models, learned embedding to convert 

the input tokens and output tokens to vectors of 

dimension d (model), also use the usual learned linear 

transformation and soft max function to convert the 

decoder output to predicted next-token probabilities. 

In this model, share the same weight matrix between 

the two embedding layers and the pre-soft max linear 

transformation, similar to [22]. 

4.2 Convolutional neural network 

A convolutional neural network (CNN) is a type 

of deep learning network inspired by artificial neural 

networks. CNNs are typically structured as a series of 

stages composed of different layers. Essentially, a 

CNN is a multi-layer network consisting of five main 

layers: the input layer, convolutional layer, pooling 

layer, fully connected layer, and output layer. The 

convolutional layer contains multiple feature maps, 

which are generated by convolving the convolution 

kernel from the previous layer [30]. 

4.3 Transfer learning 

The machine learning paradigm known as 

transfer learning employs a model developed for a 

specific task as the foundational framework for a 

model addressing an alternative task. This 

methodology proves to be particularly advantageous 

when there exists an insufficiency of training data for 

the secondary task. 

Transfer learning demonstrates significant 

efficacy in computer vision applications, wherein the 

low-level features (for instance, edges and shapes) 

acquired by a convolutional neural network (CNN) 

model trained on an extensive dataset such as 

ImageNet can be proficiently repurposed for a 

diverse array of tasks including image classification, 

object detection, or segmentation [31]. VGG16: - A 

Convolutional Neural Network (CNN) architecture 

that was developed by researchers at the University 

of Oxford's Visual Geometry Group (VGG). It was 

introduced in 2014 and has become one of the most 

widely used pre-trained models for transfer learning 

in computer vision tasks. 

VGG16: has a total of 16 weighted layers (13 

convolutional layers, 5 max-pooling layers, and 3 

fully connected layers) [32]. 

 

 

 
Figure. 2 Architecture of self-attention [29] 
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MobileNetV2: A convolutional neural network 

architecture developed by researchers at Google in 

2018. It is an improvement over the original 

MobileNet architecture and is designed for efficient 

performance on mobile and embedded devices [33]. 

Inception-v3: An improved version of the 

original GoogLeNet (Inception-v1) architecture, 

developed by researchers at Google. It was 

introduced in 2015 and is one of the more advanced 

Inception-based models in the Inception family. 

Inception-v3 has a total of 48 layers (not including 

the final average pooling layer) [34]. 

5. The proposed hybrid model  

5.1 Model’s algorithm 

The proposed model is to combine ViT and CNN 

as described in Algorithm 1, to form a new network 

structure, to enhance the extraction of deep local and 

learn global relationships between them. The Vision 

Transformer (ViT) and Convolutional Neural 

Networks (CNN) are employed in a sequential 

architecture, wherein the output generated by one 

module is directly transmitted to subsequent modules. 

The initial module is dedicated to the extraction of 

features, while the subsequent module is responsible 

for producing an abstract representation that is 

informed by the interpretation of the preceding 

module. Consequently, the interdependence between 

the CNN and ViT modules is significantly 

pronounced. Despite the successful implementation 

of vision transformers across a spectrum of visual 

tasks, attributable to their proficiency in capturing 

long-range dependencies within the input data, 

performance disparities persist between transformers 

and traditional CNNs. A principal factor contributing 

to this phenomenon is the transformer’s inadequacy 

in local information extraction. In addition to the 

aforementioned variants of ViT that augment locality, 

the integration of transformers with convolutional 

mechanisms represents a more straightforward 

approach to incorporate local features into the 

standard transformer architecture. The initial phase of 

this framework involves employing Convolutional 

Neural Networks (CNN) to derive localized features 

as a substitute for unprocessed image patches; 

subsequently, the input sequence can be generated 

from the feature maps, followed by the reshaping of 

the feature map into patches, which are then 

subjected to linear projection to form embeddings. In 

the subsequent phase utilizing Vision Transformers 

(ViT), the image is divided into linear patches 

(tokens) that are processed through encoder blocks 

via linear layers to capture the global 

interrelationships within the images, whereby patch 

embedding projection is implemented on the patches 

extracted from the CNN feature map.  
 

Algorithm 1:- The Hybrid Model (CNN + 

Vit) of BC Classification 

Input: Image dataset 𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁  with 

images 𝑥𝑖 and labels 𝑦𝑖. 

Output: Predicted labels �̂�𝑖 for each 𝑥𝑖. 

Begin  

Step1: Import necessary libraries and modules: 

Import PyTorch, NumPy, Pandas, and 

Sklearn modules. 

Step2: Load and pre-process the dataset: Load 

the dataset from folders,   

Step3: Split the dataset into training and 

validation sets, and testing set. 

Step4: Pre-processing: 

• Normalize images 𝑥𝑖  to size 𝐻 × 𝑊 

and rescale pixel values. 

• Optionally apply data augmentation 

(e.g., flip, rotate). 

Step5: CNN Feature Extraction: 

Extract feature maps 𝑧𝑖  from 𝑥𝑖  using 

CNN. 

Step6: Define the Vision Transformer model: 

• Patch Embedding: Reshape feature map 

𝑧𝑖 into patches 𝑝𝑖, and linearly project to 

embedding 𝑝𝑖
′. 

• ViT Encoding: Add positional 

embedding to 𝑝𝑖
′  and process through 

ViT using MHSA and FFN layers. 

• Classification Token: Append [CLS] 
token to the patch embeddings, and use 

the [CLS] output after ViT encoding as 

the global image representation. 

• Classification Head: Apply FFN and 

softmax to [CLS] to predict class 

probabilities �̂�𝑖. 

• Loss Computation: Calculate cross-

entropy loss ℒCE  between �̂�𝑖  and 𝑦𝑖 . 

Define the optimizer (Adam) to update 

the model parameters.  

Step7: Train the model: Train the Vision 

Transformer model using the training set.  

• For each epoch, iterate through the 

training set in batches, 

• Forward pass the images through the 

model,  

• Calculate the loss 

• Back propagate the gradients. 
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• Update the model parameters with the 

optimizer to minimize ℒCE  using Adam 

optimizer. 

Step8: Evaluate the model on the validation set 

by iterating through the validation  

      set in batches,  

• Forward pass the images through the 

model 

• Calculate the accuracy and other 

evaluation metrics such as SE, SP and F1 

score. 

Step9: Test the final model on a separate test set 

to evaluate its performance. For new 

images, repeat steps 2 to 6 for predictions 

�̂�new. 

End  

 

Notably, as a specific instance, the patches may 

possess a spatial dimension of 1x1, indicating that the 

input sequence is derived by merely flattening the 

spatial dimensions of the feature map and projecting 

it onto the transformer dimensionality. The input 

embedding and positional embedding (PE) are 

incorporated into the feature maps as delineated in 

Fig.3. CNN use a convolution operation, which 

applies a filter or kernel to the input image to produce 

feature maps. This operation can be mathematically 

expressed as follows: 

 
(𝐹 ∗ 𝐾)(𝑖, 𝑗) =  
∑  𝑚 ∑  𝑛 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) ⋅ 𝐾(𝑚, 𝑛)                     (4) 

 

Where, 𝐼 is the input image, 𝐾 is the kernel, and 

(𝑖, 𝑗)  represents the pixel position in the output 

feature map.  

The resulting feature maps capture local spatial 

features such as edges, textures, and shapes.the 

output of each convolutional layer is passed through 

an activation function (e.g., ReLU) to introduce non-

linearity, allowing the network to learn complex 

patterns. The self- attention mechanism in ViTs, 

which allows the model to capture long-range 

dependencies across the entire image. 

5.2 Mathematical overview and nomenclature 

This section offers a comprehensive explanation 

of the formulas and variables used in the study. Table 

2 provides clear definitions of the variables and 

symbols used in the mathematical formulas 

throughout the study. The main mathematical 

elements in the study involve the convolutional 

neural network (CNN) operations, Vision 

Transformer (ViT) processes, and the self-attention 

mechanism, each playing a crucial role in processing 

bladder cancer images as follows: 

 

A. CNN Convolution Operation: 

𝐹(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑥 − 𝑖, 𝑦 − 𝑗) ⋅ 𝐾(𝑖, 𝑗)
𝑗𝑖

  

This operation defines the feature extraction 

process in the CNN module, where each image 

segment (patch) is processed with a kernel or filter 

matrix K to produce a feature map F. The kernel 

slides across the image I, accumulating weighted 

sums of pixel values. 

 

B. Self-Attention Mechanism: 

Attention (Q,  K,V) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄 𝐾𝑇

 √𝑑𝑘 
) V 

The self-attention mechanism computes attention 

scores, allowing the model to focus on different 

image regions based on their importance. Here, 

queries (Q), keys (K), and values (V) are computed 

using learned weight matrices. The softmax function 

normalizes the attention scores. 

 
Table 2. Nomenclature and Symbol Definitions 

Symbol Definition 

F(x, y)  Feature map produced at coordinates (x,  y) 

during convolution 

I(x, y) Input pixel value from the image or feature 

map at position (x, y) 

K(i, j) Convolutional kernel (filter) value at 

coordinates (i, j) 

Q Query matrix, derived from input tokens for 

computing attention 

K Key matrix, derived from input tokens for 

computing attention 

V Value matrix, derived from input tokens for 

computing attention 

dk Dimension of key vectors, used to scale the 

dot product in self-attention 

softmax Softmax function to convert attention scores 

into probabilities 

headi Output of the iii-th attention head in multi-

head attention 

WO Output weight matrix applied after 

concatenating multiple attention heads 

x Input vector to the feed-forward network 

(FFN) 

W1,W2 Weight matrices in the feed-forward layers of 

transformer 

b1,b2 Bias terms in the feed-forward network 

CLS Special token in ViT that aggregates 

information for final classification 

output Classification result after softmax 

transformation 
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Figure. 3 Hybrid model (CNN and ViT) 

 

C. Multi-Head Attention: 

MultiHead (Q,K,V)= Concat(head1,…,headh)W
O 

Multi-head attention enables the model to capture 

diverse aspects of the image by applying self-

attention multiple times in parallel (each as a “head”) 

and combining results. 

 

D. Feed-Forward Network in Transformer 

Layers: 

FFN(x)=ReLU(xW1+b1)W2+b2 

This layer provides additional non-linearity and 

capacity to learn complex features. Each token’s 

vector is processed independently by two linear 

transformations with a ReLU activation in between. 

 

E. Classification Head: 

Output= softmax (FFN(CLS token)) 

The classification token (CLS) is passed through 

the final feed-forward network and softmax for 

classification. 

6. Experimental results  

6.1 The dataset 

In this study, two distinct datasets were used to 

classification images. These datasets include a 

proprietary collection developed at Zagazig 

University in Eygpt, and a set of endoscopic images 

from patients undergoing clinical procedures. The 

comprehensive details of these datasets are as 

follows: 

Dataset1 (Pathological):  

The first dataset used in this research is a 

proprietary collection created by the team at Zagazig 

University in Egypt, authorized under the 
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Institutional Review Board (IRP) number 11044-22-

8-2023. This dataset consists of 2,629 pathological 

images categorized into three classes: non-invasive 

malignant, invasive malignant and normal bladder 

mucosa, which serves as a standard for deep learning 

measurement [35]. 

Dataset2 (Endoscopic):  

The second dataset comprises 1,754 endoscopic 

images from 23 patients undergoing Trans-Urethral 

Resection of Bladder Tumour (TURBT). These 

images are labelled based on histopathology analysis 

from the resected tissue. The endoscopic procedures 

utilize White Light Imaging (WLI) and, when 

available, Narrow Band Imaging (NBI). This dataset 

is categorized into four classes following the World 

Health Organization WHO and the International 

Society of Urological Pathology guidelines: Low-

Grade Cancer (LGC), High-Grade Cancer (HGC), 

No Tumour Lesion (NTL) which includes cystitis and 

other inflammatory conditions, and Non-Suspicious 

Tissue (NST) [36]. 

6.2 Experimental setup 

Code implementation was made on colab, trained 

all the networks in this study with cross-entropy loss 

and Adam optimization algorithm. In this study, 

divided the dataset into three distinct subsets to 

ensure a robust evaluation of the model’s 

performance. Specifically, allocated 70% of the data 

for training, allowing the model to learn from a 

substantial portion of the data. The remaining 30% 

was further split into 10% for validation and 20% for 

testing. The evaluation measures used in this paper 

are, accuracy, precision, recall, and F1-score as 

follows [7]: 

 

Precision =
 TP

 TP + FP 
                                              (5) 

 

Sensitivity (Recall) =
 TP

 TP + FN 
                               (6) 

 

F1 Score = 2 ∗
 Precision × Recall 

 Precision + Recall 
                          (7) 

 

Accuracy =
 TP + TN 

 TP +TN + FP + FN 
                             (8) 

 

Where:  

TP is True Positive, TN is True Negative, FP is 

False Positive, and FN is False Negative. 

6.3 The results 

In this study, the hybrid model is compared with 

CNN and transfer learning methods, Inception V3, 

VGG16, and MobileNet-V2. The performance of 

these models was compared through sensitivity, 

specificity, recall, train accuracy, validation accuracy 

as shown in Table 3, when using ViT alone to train 

dataset1. Table 4, shows the performance of the 

hybrid model for dataset1. Table 5 shows the 

performance for dataset2 by ViT alone, while Table 

6 display the performance of dataset2 when using 

hybrid model. Table 7 compares ViT alone, 

MobileNet-V2, Inception-V3, VGG16, and CNN 

models at 50 epochs. 

As shown, the hybrid model achieves superior 

results, with a sensitivity of 0.9438, precision of 

0.9439, F1 score of 0.9437, confidence of 99.00, and 

accuracy of 99.93%. These metrics indicate that the 

hybrid model surpasses the accuracy and sensitivity 

of ViT alone, MobileNet-V2, Inception-V3, and 

VGG16. 

Table 8 presents a comparative analysis of 

classification and segmentation accuracies achieved 

by previous models on Pathological and Endoscopy 

datasets alongside the proposed model. Table 8 

includes sensitivity, specificity, and overall accuracy 

metrics, showcasing how various models—such as 

CNNs, U-Nets, GAN-based frameworks, and Vision 

Transformers (ViT)—have performed in past studies. 

This comparison underscores the effectiveness of the 

proposed CNN-ViT combined model, which 

achieves notably high accuracy rates in both datasets, 

thereby highlighting improvements in classification 

performance relative to previous models. 

Table 8 provides a comparison of deep learning 

models used for medical image classification, 

demonstrating that the VIT-CNN model proposed in 

this study outperforms previous models. This 

superior performance is attributed to the integration 

of ConvNet and Vision Transformer architectures. 

 

 
Table 3. Performance results of the endoscopy dataset using ViT. 

Epoch Train-

Acc. 

Train 

Loss 

Val.-

Acc. 

Val. 

Loss 

Precision Sensitivity 

(Recall) 

F1 

Score 

Confidence 

10 82.62% 0.5095 67.16% 0.9653 0.5110 0.3765 0.3654 0.64 

20 91.83% 0.3027 73.49% 0.5735 0.4348 0.3847 0.3885 0.80 

30 91.70% 0.1977 73.60% 0.3745 0.4007 0.3333 0.3270 0.91 

40 92.26% 0.1234 77.19% 0.2338 0.4881 0.3698 0.3714 0.97 

50 92.28% 0.0930 76.17% 0.1763 0.4568 0.3416 0.3551 0.94 
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Table 4. Performance results of the hybrid model (CNN with ViT) on the endoscopy dataset. 

Epoch Train-

Acc. 

Train 

Loss 

Val.-

Acc. 

Val. 

Loss 

Precision Sensitivity 

(Recall) 

F1 

Score 

Confidence 

10 92.23% 0.2562 92.08% 1.2865 0.9146 0.9145 0.9136 0.75 

20 93.45% 0.0290 92.40% 0.3384 0.9374 0.9345 0.9354 0.93 

30 92.59% 0.0160 92.50% 0.2799 0.9282 0.9259 0.9251 0.91 

40 99.29% 0.0367 98.29% 0.3249 0.9441 0.9430 0.9425 0.93 

50 99.91% 0.0027 99.43% 0.0067 0.9715 0.9715 0.9715 0.95 

 
Table 5. Performance results of the Pathological dataset using ViT. 

Epoch Train-

Acc. 

Train 

Loss 

Val.-

Acc. 

Val. 

Loss 

Precision Sensitivity 

(Recall) 

F1 

Score 

Confidence 

10 70.71% 0.5828 66.86% 2.2826 0.5041 0.5056 0.5030 0.52 

20 80.43% 0.4347 75.05% 1.7024 0.5422 0.5226 0.5269 0.85 

30 84.55% 0.3849 79.85% 1.5077 0.6061 0.5989 0.6018 0.74 

40 89.61% 0.2664 84.38% 1.0433 0.6701 0.6215 0.6358 0.89 

50 93.67% 0.1918 88.95% 0.7512 0.9033 0.9067 0.8980 0.75 

 
Table 6. Performance results of the pathological dataset using a hybrid model (CNN combined with ViT). 

Epoch Train-

Acc. 

Train 

Loss 

Val.-

Acc. 

Val. 

Loss 

Precision Sensitivity 

(Recall) 

F1 

Score 

Confidence 

10 89.48% 0.2850 81.95% 2.4340 0.5072 0.5000 0.4882 0.64 

20 95.47% 0.0233 92.83% 1.2366 0.6591 0.6469 0.6356 0.94 

30 97.41% 0.0200 94.45% 1.2006 0.7591 0.7769 0.7256 0.96 

40 99.47% 0.0113 97.83% 1.2366 0.8595 0.8169 0.8056 0.97 

50 99.93% 0.0083 92.56% 1.4641 0.9439 0.9438 0.9437 0.99 

 
Table 7. Performance comparison results of different models on the Pathological dataset over 50 epochs. 

Model Train-

Acc. 

Train 

Loss 

Val.-

Acc. 

Val. 

Loss 

Precision Sensitivity 

(Recall) 

F1 

Score 

Time 

(Sec) 

CNN 97.89% 0.0062 99.95% 0.0088 0.9742 0.9739 0.9740 15257 

VGG16 98.33% 0.0022 96.95% 0.0338 0.9782 0.9129 0.9800 14807 

MobileNet-V2 97.39% 0.0032 95.95% 0.0558 0.9672 0.9459 0.9900 14607 

Inception-V3 95.81% 0.1689 96.05% 0.2039 0.9542 0.9539 0.9540 29963 

ViT 93.67% 0.1918 88.95% 0.7512 0.9033 0.9067 0.8980 11209 

Proposed 

Hybrid 

99.93% 0.0083 92.56% 1.4999 0.9439 0.9438 0.9437 14454 

 
Table 8. Comparative Accuracy Analysis of Pathological and Endoscopy Studies with Proposed Model 

Dataset Author/Year/Ref. Model Accuracy 

Endoscopy Zhu et al. (2020) [13] Custom CNN 91.35% 

Endoscopy 
Wang et al. (2019) [14] 

U-Net for segmentation, CNN for 

classification 
86% 

Endoscopy Matsumoto et al. (2021) [17] Deep CNN 92.5% 

Endoscopy (WLI & NBI) Lazo et al. (2023) [36] GAN-based model 91% 

The proposed model for Endoscopy CNN combined with ViT 99.91% 

Pathological Qiu et al. (2021) [12] ResNet50 with transfer learning 88.7% 

Pathological Liu et al. (2020) [16] InceptionV3 with transfer learning 90.5% 

Pathological Ola et al. (2023) [35] Vision Transformer (ViT_B32 model) 99.49% 

The proposed model for Pathological CNN combined with ViT 99.93% 

 

The training process using a vision Transformer 

for BC classification real dataset would involve the 

following stages: 

1-Dataset preparation: Begin by downloading the 

dataset and dividing it into training, validation, and 

test sets. Pre-process the images by performing tasks 

like resizing and enhancement images. 

2- Feature extraction: using CNN of feature 

extractors. The last fully connected layers of the 

models are removed and the output of the previous 
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layers are used as input for new models that will be 

trained for the dataset. 

3-Model training: Train the model using the 

training set and evaluate its performance using the 

validation set. 

4-Model evaluation: Evaluate the model using the 

test set, employing various evaluation metrics such as 

accuracy, sensitivity, specificity, and F1 score. 

5-Inference procedure: After the model has been 

trained, evaluated, and deemed satisfactory, utilize it 

to make predictions on new, unseen data. 

It is worth noting that the vision with CNN 

Transformer is different from traditional CNN it can 

process the whole image directly.  

Table 8 provides a detailed comparison of various 

deep learning models, specifically analyzing their 

performance on sensitivity, specificity, and overall 

accuracy across pathological and endoscopy datasets. 

Each model's architecture plays a pivotal role in its 

performance: 

• CNNs: Known for their strong feature extraction 

capabilities through convolutional layers, CNNs 

excel in capturing spatial hierarchies in images. 

However, they may struggle with complex, high-

dimensional data unless they are very deep, which 

can lead to overfitting. 

• U-Nets: Typically used for segmentation tasks, 

U-Nets combine encoder and decoder structures 

to precisely localize and classify image pixels. 

Their strength lies in detailed segmentation, but 

they can be computationally expensive and less 

effective for classification tasks compared to 

CNNs. 

• GAN-based Frameworks: GANs are exceptional 

in generating synthetic data and addressing data 

imbalance. However, their application in 

classification tasks can be challenging due to 

instability during training and the requirement for 

extensive data to produce high-quality synthetic 

samples. 

• Vision Transformers (ViT): ViTs leverage self-

attention mechanisms to process image patches, 

capturing long-range dependencies effectively. 

They are particularly powerful for high-

resolution images and diverse datasets but may 

require large amounts of data and computational 

power for training. 

The proposed CNN-ViT hybrid model combines 

the strengths of CNNs and Vision Transformers, 

resulting in superior performance metrics. This 

model particularly excels in scenarios involving 

complex, high-resolution medical images where both 

local and global feature extraction is crucial. 

• Pathological Dataset: The CNN-ViT model 

achieves an accuracy of 99.91%, outperforming 

other models by effectively capturing intricate 

details and global patterns in pathological images. 

The CNN component efficiently extracts local 

features, while the ViT captures broader 

contextual information, enhancing overall 

classification accuracy and sensitivity. 

• Endoscopy Dataset: With an accuracy of 99.93%, 

the hybrid model demonstrates its robustness in 

handling diverse imaging techniques like White 

Light Imaging (WLI) and Narrow Band Imaging 

(NBI). The combination of CNN and ViT ensures 

precise detection and classification of various 

tissue types and abnormalities. 

The findings have significant implications for 

clinical practice: 

• Improved Diagnostic Accuracy: Higher accuracy 

and sensitivity in detecting bladder cancer can 

lead to more reliable diagnoses, reducing the 

likelihood of false negatives and ensuring timely 

treatment. 

• Enhanced Patient Outcomes: Accurate and early 

detection of cancerous lesions facilitates prompt 

medical intervention, potentially improving 

patient survival rates and quality of life. 

• Data Utilization: The ability to leverage high-

resolution images and diverse datasets enhances 

the diagnostic capabilities of medical imaging 

systems, paving the way for more advanced and 

reliable AI-assisted diagnostic tools. 

To provide in depth evaluation of the proposed 

CNN-ViT hybrid model, Fig. 4 shows the confusion 

matrix that highlights the model's performance across 

different classes.  

 

 

 
Figure. 4 The confusion matrix of the proposed model for 

Pathological 
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The confusion matrix offers a detailed analysis of true 

positives, true negatives, false positives, and false 

negatives, allowing for a more granular 

understanding of the model’s accuracy and 

effectiveness. This additional analysis underscores 

the robustness of the proposed approach in accurately 

classifying bladder cancer images, further supporting 

the superior performance metrics discussed in the 

study. 

The experimental results underscore the efficacy 

of the proposed CNN-ViT hybrid model, which 

outperforms existing models in terms of accuracy and 

sensitivity. This model's ability to integrate local and 

global feature extraction techniques is particularly 

advantageous for complex medical imaging tasks, 

making it a valuable tool for enhancing diagnostic 

accuracy in clinical settings. 

7. Conclusions and future work  

In the domain of global health, the rising 

incidence of bladder cancer necessitates the 

development of innovative diagnostic methodologies. 

This investigation examines the efficacy of hybrid 

Vision Transformers (ViT) in the classification of 

bladder cancer images. Benchmark evaluations 

indicate that the pre-trained hybrid ViT model 

attained an accuracy rate of 99.7% in multi-class 

classification, surpassing the ViT model by 2.3% and 

exceeding the performance of conventional models 

such as VGG16, Inception v3, MobileNetV2, and 

CNN, which recorded accuracy rates of 97.2%, 

96.5%, and 98.33%, respectively. These results 

highlight the potential of Transformer-based 

architectures, specifically the hybrid (CNN 

integrated with ViT) model, in enhancing the 

precision of bladder cancer image analysis. The 

experimental outcomes illustrate the promising 

capabilities of the Vision Transformer in extending 

the frontiers of bladder cancer image analysis and 

advancing the contemporary standards in this 

scientific domain. 

While this research substantiates the efficacy and 

promise of transformer-based classification for 

bladder cancer, subsequent studies could concentrate 

on investigating the feasibility of real-world 

integration, refining transfer learning methodologies, 

and examining multimodal strategies in light of the 

availability of a previously compiled multimodal 

bladder cancer dataset. Furthermore, it is imperative 

to assess the reliability, interpretability, and 

trustworthiness of transformer-based models in the 

context of bladder cancer diagnosis. Addressing these 

facets in future inquiries could significantly enhance 

the broader applicability of transformer-based 

architectures, thereby promoting progress in global 

healthcare. As delineated, the proposed model 

demonstrates a detection accuracy of 99.91% and a 

classification accuracy of 99.93% when compared to 

alternative methodologies. However, among more 

conventional models, including custom CNNs and 

transfer learning techniques (ResNet50 and 

InceptionV3), accuracy rates fluctuate between 

88.7% and 93.5%, whereas alternative 

methodologies such as U-Net coupled with CNNs 

and GAN-derived models exhibit a maximum 

accuracy of up to 92%. The extraordinary 

performance of the proposed method can be 

attributed to the synergistic integration of aspect-

based spatial features derived from CNN and global 

contextual insights from the enhanced ViT. The 

comparative analysis distinctly indicates that the 

proposed combined model, which incorporates both 

CNN and ViT, represents the most effective approach 

for further enhancing the accuracy of medical image 

analysis. 

Conflicts of Interest 

The authors declare no conflict of interest. 

Author Contributions  

Author 1: Conceptualization, analysis, 

methodology, and coding, project administration, 

data curation, written original draft.  

Author 2: Responsible for the supervision, 

visualization, conceptualization, review, writing 

review, and editing.  

Author 3: Supervision, validation, formal 

analysis, review, writing review, and editing. 

References 

[1] World Health Organization. “Cancer: Bladder 

Cancer”, World Health Organization, n.d. 

Available:https://www.who.int/cancer/preventi

on/diagnosis-screening/bladder-cancer 

[2] R. L. Siegel, K. D. Miller, and A. Jemal. 

“Cancer Statistics, 2020”, CA: A Cancer 

Journal for Clinicians, Vol. 70, No. 1, pp. 7-30, 

2020, doi: 10.3322/caac.21590. 

[3] M. Burger, J. W. Catto, G. Dalbagni, H. B. 

Grossman, H. Herr, P. Karakiewicz, ... & S. F. 

Shariat. “Epidemiology and Risk Factors of 

Urothelial Bladder Cancer”, European Urology, 

Vol. 63, No. 2, pp. 234-241, 2013, doi: 

10.1016/j.eururo.2012.07.033. 

[4] M. Babjuk, M. Burger, E. Comperat, P. Gontero, 

A. H. Mostafid, J. Palou, ... & M. Roupret. 

“European Association of Urology Guidelines 



Received:  October 29, 2024.     Revised: November 21, 2024.                                                                                        622 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.43 

 

on Non–Muscle-Invasive Bladder Cancer 

(TaT1 and Carcinoma in Situ) – 2019 Update”, 

European Urology, Vol. 76, No. 5, pp. 639-657, 

2019, doi: 10.1016/j.eururo.2019.08.016. 

[5] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. 

Setio, F. Ciompi, M. Ghafoorian, ... & J. A. van 

der Laak. “A Survey on Deep Learning in 

Medical Image Analysis”, Medical Image 

Analysis, Vol. 42, pp. 60-88, 2017, doi: 

10.1016/j.media.2017.07.005. 

[6] A. Vaswani, N. Shazeer, N. Parmar, J. 

Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, 

and I. Polosukhin. “Attention is All You Need”, 

In: Proc. of the 31st International Conference 

on Neural Information Processing Systems 

(NIPS 2017), pp. 6000–6010, 2017, doi: 

10.48550/arXiv.1706.03762. 

[7] D. H. Chapman-Sung, J. Chiang, S. Zhang, R. 

Liu, and D. Shen. “Convolutional Neural 

Network-Based Decision Support System for 

Bladder Cancer Staging in CT Urography: 

Decision Threshold Estimation and Validation”, 

Medical Imaging 2020: Computer-Aided 

Diagnosis, 2020, doi: 10.1117/12.2551309. 

[8] S. Sarkar, D. Kumari, V. Singh, and S. Sharma. 

“Performing Automatic Identification and 

Staging of Urothelial Carcinoma in Bladder 

Cancer Patients Using a Hybrid Deep-Machine 

Learning Approach”, Cancers (Basel), Vol. 15, 

pp. 1-15, 2023, doi: 10.3390/cancers15061673. 

[9] D. Liu, S. Wang, and J. Wang. “The Effect of 

CT High-Resolution Imaging Diagnosis Based 

on Deep Residual Network on the Pathology of 

Bladder Cancer Classification and Staging”, 

Computers in Biology and Medicine, 106635, 

2022, doi: 10.1016/j.cmpb.2022.106635. 

[10]  G. Zhang, L. Yang, L. Zhang, and H. Sun. 

“Deep Learning on Enhanced CT Images Can 

Predict the Muscular Invasiveness of Bladder 

Cancer”, Frontiers in Oncology, 2021, doi: 

10.3389/fonc.2021.654685. 

[11]  J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. 

Wang, and Y. Zhou. “TransUNet: Transformers 

Make Strong Encoders for Medical Image 

Segmentation”, arXiv preprint 

arXiv:2102.04306, 2021, doi: 

10.48550/arXiv.2102.04306. 

[12]  S. Qiu, et al. “Deep Learning-Based 

Classification of Bladder Cancer Subtypes 

Using Histopathological Images”, Scientific 

Reports, Vol. 11, p. 8723, 2021, doi: 

10.1038/s41598-021-87629-0. 

[13]  Q. Zhu, et al. “Automated Bladder Cancer 

Detection Using Cystoscopy Images with a 

Deep Learning Approach”, Computers in 

Biology and Medicine, Vol. 126, p. 104025, 

2020, doi: 

10.1016/j.compbiomed.2020.104025. 

[14]  Z. Wang, et al. “Endoscopic Image Analysis 

for Bladder Cancer Detection Using a U-Net 

Based Approach”, Medical Image Analysis, Vol. 

55, pp. 78-87, 2019, doi: 

10.1016/j.media.2019.05.001. 

[15]  J. Song, et al. “A Hybrid CNN-Transformer 

Model for Bladder Cancer Classification Using 

Multimodal Data from Pathological and 

Endoscopic Images”, Journal of Biomedical 

Informatics, Vol. 131, p. 104047, 2022, doi: 

10.1016/j.jbi.2022.104047. 

[16]  J. Liu, et al. “Transfer Learning for the 

Differentiation of Malignant and Benign 

Bladder Tumors in Histopathological Images”, 

Journal of Medical Imaging, Vol. 7, No. 4, p. 

045501, 2020. doi: 10.1117/1.JMI.7.4.045501. 

[17]  R. Matsumoto, et al. “Early Detection of 

Bladder Cancer Using a Deep Convolutional 

Neural Network on Endoscopic Images”, 

European Urology Open Science, Vol. 24, p. 

e1168, 2021, doi: 10.1016/j.euros.2021.07.072. 

[18] L. Jiang, et al. “Multi-View Convolutional 

Neural Networks for Bladder Cancer Stage 

Prediction Using Endoscopic and Pathological 

Images”, IEEE Journal of Biomedical and 

Health Informatics, Vol. 26, No. 3, pp. 756-765, 

2022, doi: 10.1109/JBHI.2022.3141512. 

[19] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. 

Wang. “Transformer in Transformer”, 

Advances in Neural Information Processing 

Systems, Vol. 34, pp. 15908-15919, 2021. 

[20] A. Dosovitskiy. “An Image is Worth 16x16 

Words: Transformers for Image Recognition at 

Scale”, arXiv preprint arXiv:2010.11929, 2020. 

[21] A. K. Sharma and N. K. Verma. “A Novel 

Vision Transformer with Residual in Self-

Attention for Biomedical Image Classification”, 

arXiv preprint arXiv:2306.01594, 2023. 

[22] H. Touvron, M. Cord, M. Douze, F. Massa, A. 

Sablayrolles, and H. Jégou. “Training Data-

Efficient Image Transformers & Distillation 

Through Attention”, In: Proc. of International 

Conference on Machine Learning, pp. 10347-

10357, 2021. 

[23] W. Ullah, K. Javed, M. A. Khan, F. Y. 

Alghayadh, M. W. Bhatt, I. S. Al Naimi, and I. 

Ofori. “Efficient Identification and 

Classification of Apple Leaf Diseases Using 

Lightweight Vision Transformer (ViT)”, 

Discover Sustainability, Vol. 5, No. 1, p. 116, 

2024. 



Received:  October 29, 2024.     Revised: November 21, 2024.                                                                                        623 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.43 

 

[24] B. Song, D. R. Kc, R. Y. Yang, S. Li, C. Zhang, 

and R. Liang. “Classification of Mobile-Based 

Oral Cancer Images Using the Vision 

Transformer and the Swin Transformer”, 

Cancers, Vol. 16, No. 5, p. 987, 2024. 

[25] S. Fayou, H. C. Ngo, Z. Meng, and Y. W. Sek. 

“Loop and Distillation: Attention Weights 

Fusion Transformer for Fine-Grained 

Representation”, IET Computer Vision, Vol. 17, 

No. 4, pp. 473-482, 2023. 

[26] D. Govindasamy. “Evaluating the Performance 

of Vision Transformer Architecture for 

Deepfake Image Classification”, University 

Dublin for the degree of M. Sc. in Computer 

Science, 2022. 

[27] Y. Hu, Y. Cheng, A. Lu, Z. Cao, D. Wei, J. Liu, 

and Z. Li. “LF-ViT: Reducing Spatial 

Redundancy in Vision Transformer for 

Efficient Image Recognition”, In: Proc. of the 

AAAI Conference on Artificial Intelligence, Vol. 

38, No. 3, pp. 2274-2284, March 2024. 

[28]  A. Halder, S. Gharami, P. Sadhu, P. K. Singh, 

M. Woźniak, and M. F. Ijaz. “Implementing 

Vision Transformer for Classifying 2D 

Biomedical Images”, Scientific Reports, Vol. 

14, No. 1, p. 12567, 2024. 

[29] M. Tahir and S. Anwar. “Transformers in 

Pedestrian Image Retrieval and Person Re-

Identification in a Multi-Camera Surveillance 

System”, Applied Sciences, Vol. 11, No. 19, p. 

9197, 2021. 

[30] C. S. Velmahos, M. Badgeley, and Y. C. Lo. 

“Using Deep Learning to Identify Bladder 

Cancers with FGFR-Activating Mutations from 

Histology Images”, Cancer Medicine, Vol. 10, 

No. 14, pp. 4805-4813, 2021. 

[31] J. Llamas, P. M. Lerones, R. Medina, E. Zalama, 

and J. Gómez-García-Bermejo. “Classification 

of Architectural Heritage Images Using Deep 

Learning Techniques”, Applied Sciences, Vol. 7, 

No. 10, p. 992, 2017. 

[32] A. Krishnaswamy Rangarajan and R. 

Purushothaman. “Disease Classification in 

Eggplant Using Pre-Trained VGG16 and 

MSVM”, Scientific Reports, Vol. 10, No. 1, p. 

2322, 2020. 

[33] W. Wang, Y. Li, T. Zou, X. Wang, J. You, and 

Y. Luo. “A Novel Image Classification 

Approach via Dense-MobileNet Models”, 

Mobile Information Systems, 2020. 

[34] C. Wang, D. Chen, L. Hao, X. Liu, Y. Zeng, J. 

Chen, and G. Zhang. “Pulmonary Image 

Classification Based on Inception-V3 Transfer 

Learning Model”, IEEE Access, Vol. 7, pp. 

146533-146541, 2019. 

[35] O. S. Khedr, M. E. Wahed, A. S. R. Al-Attar, 

and E. A. Abdel-Rehim. “The Classification of 

Bladder Cancer Based on Vision Transformers 

(ViT)”, Scientific Reports, Vol. 13, No. 1, p. 

20639, 2023. doi: 10.1038/s41598-023-47731-

1 

[36] J. F. Lazo, B. Rosa, M. Catellani, M. Fontana, 

F. A. Mistretta, G. Musi, O. de Cobelli, M. de 

Mathelin, and E. De Momi. “Endoscopic 

Bladder Tissue Classification Dataset [Data 

Set]”, IEEE Transactions on Biomedical 

Engineering (TBME), Vol. 70, No. 10, pp. 

2822-2833, 2023. 


