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Abstract: Epithelial Ovarian Carcinoma (EOC) is one of the fatal cancers, with intricate molecular features that impact 

its diagnosis and treatment within the female reproductive system worldwide. EOC remains one of the most lethal 

gynaecological malignancies, primarily due to the molecular heterogeneity in its occurrence, which complicates the 

classification of Primary Tumours (PT) and recurrent Tumours (RT) using traditional methods. The critical challenge 

lies in the size of numerous genes present in the high-dimensional data sets that possibly reduce the learning algorithm's 

ability and the dataset's imbalanced nature, particularly with the small number of RT samples, which led to initial 

models failing to classify recurrent tumours accurately. Hence, the present research introduces a Balanced EOC using 

the Artificial Neural Network (BEOC- ANN) model to address the challenge of accurately classifying PT and RT in 
EOC using RNA-sequencing (RNA-Seq) data. The dataset sourced from The Cancer Genome Atlas (TCGA) database 

includes 374 PT samples and 5 RT samples. A pre-processing stage is implemented, using the DESeq normalization 

method to handle the raw HTSeq count data and filtering 112 ovarian cancer-related genes from an initial 27,620 gene 

features. To resolve this, the ANN model has been fine-tuned by adding dropout layers and class weights, which helped 

balance the dataset. The ANN model is trained with ReLU activations for input and hidden layers, sigmoid for output, 

and an Adam optimizer and binary cross-entropy for loss function. A significant improvement was observed when the 

test size increased from 10% to 30%, allowing three RT records to be recognized. The research results demonstrate 

that the model achieves a training accuracy of 98%, a testing accuracy of 96%, and a recall rate of 33% for RT samples.  

Keywords: Artificial neural network, Class weight balance, Epithelial ovarian cancer, Primary tumours, Recurrent 

tumours, Gene expression data. 

 

 

1. Introduction 

 One challenging aspect of treating ovarian 
cancer (OC), the most dangerous gynaecological 

cancer, is the high recurrence rate that patients with 

this disease experience. Consequently, target therapy 

techniques can be improved by thoroughly 
understanding the genetic [1] and molecular causes 

of OC recurrence. Among gynaecological 

malignancies, epithelial ovarian carcinoma ranks 
second in terms of mortality. The diagnosis is 

advanced in about 75% of patients, making treatment 

challenging [2]. Given its high mortality rate and late 
diagnosis, ovarian cancer research is essential for 

early detection and treatment. Advances in surgical 

approaches aim to improve patient outcomes in 

earlier research in addition to the classification of 

EOC tumours in terms of primary and recurrent [3]. 
Cancers will be efficiently and effectively classified 

by utilizing microarray gene expression profiles. Due 

to the enormous number of genes and the minor 
amount of trials in gene expression information, this 

is a highly computational task [4]. Existing genetic 

testing techniques are inadequate, leaving many 

individuals at risk and significantly hampers 
prevention efforts, thus leading to inaccurate 

classification and missed opportunities for early 

intervention and improved outcomes [5].  
Previous models were limited with small input 

samples and the lack of ability to understand the 
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contextual information led to misclassification. Thus, 
an effective Machine Learning (ML) approach 

employing a neural network model to classify 

accurately is crucial [6]. The vital aspect of 

maintaining ML model accuracy in classification is 
reducing overfitting by applying filtering methods 

since it performs well with high dimensional gene 

data [7]. These genes provide significant biomarkers 
for cancer diagnosis, and identification of 

differentially expressed genes obtained from TCGA 

leads to the accurate classification of Primary 
Tumour (PT) and Recurrent Tumour (RT) [8]. 

As an alternative option for existing microarrays 

with transcriptome analysis, the RNA-Seq method is 

currently being applied. It provides the accuracy 
required for complicated analysis, such as differential 

gene expression, by recording transcription activity 

and genome-wide gene expression. Its versatility 
makes it an essential tool for efficiently analyzing 

molecular profiles in different types of study [9].   

Currently, the RNA-Seq [10] technique is faster, 
more accurate, more reliable, and widely used for 

gene expression examination to report the 

development of transcriptome methods. The analysis 

of the TCGA portal and gene expression data was 
retrieved with the DESeq analysis to recognize the 

differentially expressed genes and indicate the high-

risk factors for improving survival rates of cancer 
patients by classifying both gene types [11]. The 

DESeq2 normalization method, which assumes that 

most genes remain unaltered, along with basic 

normalization techniques counts per million (CPM) 
and overall counts, functioned reasonably well [12]. 

Training a neural network for classification is 

performed with a class weight balancing since the 
minority RT samples provided more weight than the 

majority PT classes [13]. The dropout technique is 

applied to a fully connected neural network layer to 
estimate the prediction of machine learning model 

uncertainty [14]. Gene expression analysis applied 

for classifying cancers using ML methods helps to 

handle the high dimensionality of data and provides 
valuable data for computationally efficient analysis 

[15]. The main challenge in ovarian cancer 

classification is the imbalance in class distributions, 
especially the difficulty in detecting RT within a 

highly imbalanced dataset. RTs are considered to be 

less common but it is crucial for patient diagnosis, 
and are often underrepresented in clinical data. 

Traditional methods like NB and KNN techniques 

have struggled with accurately identifying minority 

classes, leads to low recall rates for RT cases. 
Additionally, these methods often fail to capture the 

complex, high-dimensional nature of gene expression 

data.  

      The innovation of this research lies in the BEOC-
ANN model development, which combines an 

enhanced DESeq data with a focused set of filtered 

genes. The use of class weighting and dropout to 

handle the severe class imbalance achieves over 96% 
test accuracy and 33% RT recall. With an improved 

classification performance across many metrics like 

accuracy, better precision, recall, and f1-score when 
compared with the other existing models. This 

resultant model enhances the interpretability while 

maintaining high performance in distinguishing 
between PT and RT classes, as shown in ROC 

analysis. 

The critical area of research contributions is given 
as follows: 

• To enhance the classification accuracy of PT 

and RT in EOC using RNA sequencing data. 
• To implement the DESeq normalization 

method to handle raw HTSeq count data from RNA 

sequencing. 
• To address the challenge of imbalanced 

datasets in EOC classification that can effectively 

handle high-dimensional gene expression data while 

maintaining good generalization 
• To develop a Balanced EOC using an 

Artificial Neural Network (BEOC-ANN) model to 

address the challenge of accurately classifying PT 
and RT in EOC.  

• Dropout layers and class weights should be 

applied to balance the dataset and improve model 
performance. 

• To achieve training accuracy of 98%, testing 

accuracy of 96%, and a recall rate of 33% for RT 

samples, demonstrating improved classification of 
RT classes. 

The research article is arranged in the following 

sequence: section 2 follows the existing research on 
OC classification using ML models. Section 3 

provides the research idea of the BEOC-ANN model 

design for classifying the PT and RT samples with the 

class weight balance technique. section 4 examines 
the results and discusses the implemented model with 

training and testing accuracies and Recall evaluation. 

Section 5 settles the research work and provides the 
future research scope.   

2.  Literature review 

The RNA-Seq gene expression measures provide 
natural heterogeneity and noise recognition called 

dropouts while performing sequencing reads, hence 

for predicting cancer diagnosis. Kim et al. [16] 
applied ML methods such as Naïve Bayes (NB) and 

k-Nearest Neighbour implemented on binary 
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classification of cancer samples. Gene associations 
were taken out from the high-dimensional gene 

expression information samples obtained from 

TCGA databases using stacked autoencoders. A 

model for ovarian tumour classification utilizing 
radiomics and the Dual-View Global Representation 

(DVGR) and Local Cross Transformer (LCT) is 

projected by Rong et al. [17]. Deep learning with 3D 
CT image processing combination results in an AUC-

ROC of 91.35% and an AUC-PR of 90.20%. They 

found that combining modern imaging techniques 
and machine learning enhanced cancer classification.  

A Deep Semi-Supervised Generative Learning 

with Deep Convolutional Neural Network model 

(DSSGL-DCN2) is proposed by Nagarajan et al. [18] 
to tackle the problem of ovarian cancer classification 

from CT images. Experimental results demonstrate 

that the combined model outperforms separate 
networks and helps to improve cancer detection by 

applying deep learning to overcome obstacles like 

data limits and enhance classification accuracy. For 
malignancies with an uncertain primary origin of 

majority classes, Zhao et al. [19] suggested that the 

Cancers of Unknown Primary CUP-AI-Dx classifier 

uses RNA gene expression data and a 1D Inception 
convolutional neural network (1D-CNN) to 

determine the central tissue of gene. The model's 

performance declined to 86.96% and 72.46% on 
distinct datasets, indicating difficulties in real-world 

generalization despite achieving a top-1 cross-

validated accuracy of 98.54% and 96.70% in test 

datasets during classification. 
Laios et al. [20] compared different classifiers 

and feature selection strategies to apply ML for 

analyzing the classification performance of the 2-
year diagnosis in advanced-level high-grade serous 

ovarian carcinoma (HGS-OC). The ensemble 

subspace discriminant and support vector machine 
techniques outperformed logistic regression, leading 

to an average classification accuracy of 73% with low 

dimensionality reduction in the feature selection 

process. Although the study demonstrates better 
prognosis accuracy, the dataset size and scope of the 

algorithms studied are limitations. Yan et al. [21] 

applied Macro ANN to simulate the immunogenomic 
analysis of transcriptome profiling and heterogeneity 

with improved outcomes of acquired RNA-Seq data 

from TCGA. The model also helps analyze the 
classification of high-dimensional data with subtype 

classification of OC samples. The applied prognostic 

factor using an ML model called MacroANN with 

feed-forward neural networks provides a high 
response rate with better clinical outcomes. 

Conventional ovarian cancer classification 

models face huge challenges. For instance, in [16] 

NB and KNN techniques struggles hard with the 
high-dimensionality of RNA-Seq data, leading to 

challenges in classification accuracy and complexity 

in computation process. Radiomics assisted DVGR 

[17] model requires significant processing techniques, 
making them less suitable for classifying the gene 

expression data. The DSSGL-DCN2 method [18] 

offered effective cancer detection, faces challenges in 
handling small labeled datasets, which leads to 

generalization problem. The CUP-AI-Dx classifier, 

designed for cancers of unknown PT, lacks flexibility 
in classifying data from diverse gene origins [19]. 

SVM and ensemble classifiers relies on feature 

selection, omits filtering, and leads to overfitting [20]. 

In comparison to these, the proposed BEOC-ANN 
model implements gene filtering, dynamic class 

weighting, and advanced regularization techniques to 

address these above-mentioned issues, ensures 
accurate classification even with limited input 

samples and improves generalizability over 

conventional models. By combining gene filtering, 
dynamic class weighting, and advanced 

regularization strategies, the proposed BEOC-ANN 

model overcomes these obstacles. The performance 

of predicting ovarian cancer prognosis using RNA-
Seq data, even with small sample sizes, and 

classification has also increased.     

3. Research methodology 

3.1  Data collection 

The clinical data is taken from the TCGA 

repository (https://portal.gdc.cancer.gov/) from the 

Genomic Data Commons portal mentioned in [22]. 
Then, the information is divided into a training 

portion (70%) and a testing portion (30%), in which 

265 samples are used for training and 114 samples for 
testing.  

 

 
Figure. 1 Gene Feature Reduction: Pre-processing Stages 
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Figure. 2 Proposed BEOC-ANN Algorithm  

 

This split ensures the model is trained on diverse 
samples and tested on an independent set to assess 

generalization. Fig.1 illustrates the reduction in gene 

features across three key pre-processing stages in the 

data analysis. The initial stage starts with 27,621 
features. A collection of drivers, oncogenes, and 

tumour suppressor genes in cancer called 

CancerMine was gathered from existing research 
papers, including 1123 genes related to OC [23]. The 

filtered genes stage further refines 27,621 to 112 

genes compared with the CancerMine mentioned 
1123 genes, which are highlighted to emphasize their 

significance in the analysis. 

Fig. 2 illustrates the BEOC-ANN design, which 

is intended to classify primary and recurring cancers 
in an imbalanced dataset. After collecting TCGA data, 

DESeq normalization is performed to eliminate 

inconsistencies or bias in the RNA-Seq data. Gene 
filtering minimizes dimensionality, concentrating on 

112 OC genes.  

The ANN model has a layer of inputs for these 
genes, a hidden layer with ReLU activation function, 

with an applied dropout rate of 0.3, followed by 

applying a class weight balancing and a binary 

classification output layer. Recurrent tumours are a 
minority class addressed by class weight balancing. 

Additionally, the model is skilled using the Adam 

optimizer and assessed for model evaluation in terms 
of accuracy and recall, especially the minority class 

called RT identification. 

3.2  Data pre-processing 

Initially, HTSeq counts represent the raw counts 

of reads like RNA sequences that map to each gene; 
HTSeq is a tool that provides these counts by aligning 

sequencing reads to a reference genome. The DESeq 

algorithm adjusts these raw counts to normalize the 
raw HTSeq count data for sequencing depth and other 

systematic biases, ensuring comparability across 

gene samples. The average geometric mean of a gene 
throughout all samples is used to divide the numbers 

for that gene in each sample. An estimated size 
scaling factor is calculated by taking the median of 

the gene ratios in a given sample and applying it to 

the total count of mapped reads in that sample. 

 

                      𝐾𝑖𝑗 =
𝑘𝑖𝑗

𝑠𝑗×𝑓𝑖
                                  (1) 

 

Where 𝐾𝑖𝑗  in Eq. (1) is the normalized count for 

gene 𝑖 in sample 𝑗, the raw count is indicated as , 𝑘𝑖𝑗  

and 𝑠𝑗  is the size factor for sample 𝑗  used for 

correcting the differences in sequencing depth. The 

variable 𝑓𝑖  represents a gene-specific normalization 
factor accounting for variability in gene expression 

levels. The model can perform accurate downstream 

analysis by normalizing the gene counts using DESeq, 
such as identifying differentially expressed genes 

between samples. The ensemble IDs are unique 

identifiers used by the ensemble database in the form 

of (ENSG00000228037.1) to refer to specific genes, 
and these IDs are often used in raw sequencing data. 

The ensemble ID to common gene names, making the 

data more accessible to interpret and analyse. Filter 
out gene rows with unannotated sequences, and fewer 

counts, which refer to genes with shallow expression 

levels across the samples. These low-count filters 

reduce noise and focus on genes more likely to be 
biologically significant. 

3.3  Designing an ANN model architecture 

The detailed steps above explain how RNA-Seq 

data is collected, pre-processed and fed into a 
specified ANN architecture explicitly designed for 

classifying PT and RT in EOC. The preprocessing 

ensures the data is clean, normalized, and focused on 
the most relevant genes. The BEOC-ANN 

architecture has ReLU, sigmoid activations, and 

dropout layers. An Adam optimizer trained explicitly 

to handle the high-dimensional, imbalanced nature of 
the dataset, ultimately leading to improved 

classification performance. The training parameters 

involve ten epochs and 15 as batch size, which means 
it updates its parameters after processing 15 samples. 

This mini-batch approach helps train the model 

efficiently with limited memory. 

3.4  Input layer 

The input layer consists of 64 neurons, 
corresponding to the 112 filtered genes from the pre-

processing stage. The activation function called 

Rectified Linear Unit (ReLU) calculated in Eq. (2) 
introduces non-linearity into the gene expression data, 

enabling it to learn complex patterns and lessen the 
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vanishing gradient problem.  Gradually reduce the 
number of filters to 60 to 30 to capture more features 

and progress performance. 

 

               𝑓(𝑥) = 𝑚𝑎𝑥⁡(0, 𝑥)                           (2) 

3.5  Hidden layer  

The hidden layer consists of 32 neurons. As with 

the input layer, ReLU is used here to introduce non-

linearity, which is crucial for distinguishing between 
PT and RT samples, given the data's high-

dimensional and potentially non-linear nature. For 

regularization, the dropout technique with a rate of 

0.3, 30% of the neurons in this layer are randomly set 
to 0 during each training epoch. The model begins 

with a low dropout value of 0.3 to observe baseline 

performance. Additionally, more dropout values, 
such as 0.5 and 0.7, are needed to find a balance 

where the model generalizes without losing too much 

learning capacity.     

3.6  Class weight balance  

The Class weights, if not adjusted, the prediction 

model can be biased toward the majority class and 

may not perform well on the minority class like RT. 

The experiment with weights applies different class 
weights, such as 70 and 74.8, and observes the 

changes in recall for the minority class and overall 

accuracy. Balancing the contribution of each majority 
and minority class helps the model to achieve better 

prediction performance and learn better from 

minority classes by achieving class weight balance 

sets, specifically at 74.8. 
 

                𝑅𝑚𝑡𝑦 = 𝑁𝑃𝑇/𝑁𝑅𝑇                      (3) 

 

𝛽 in Eq. (3) is a hyperparameter controlling the 

sensitivity of the dynamic scaling factor to the class 

imbalance. The parameter 𝑁𝑅𝑇  defines the no. of 

recurrent tumour samples and 𝑁𝑃𝑇  defines the no. of 

primary tumour samples. The term 𝑁𝑡𝑜𝑡𝑎𝑙  indicates 

that the combined samples from 𝑁𝑅𝑇  and 𝑁𝑃𝑇  are 
given as in Eq. (4). 

 

      CW = {0 :1, 1: (𝑅𝑚𝑡𝑦 − 𝛽) }                    (4) 

 

 
Table 1. BEOC-ANN Model Architecture 

The class weight for RT gives higher weight to 
the RT class by scaling the total sample size and 

normalizing it based on the majority class count 𝑁𝑃𝑇 . 

The dynamic scaling factor 𝛽  emphasizes this 

weighting based on empirical results from training. 
This results in prioritizing the minority class 

influence in the learning process while maintaining a 

balance based on the overall class distribution and 
dynamic adjustment during training. 

Table 1 provides a comprehensive overview of 

the BEOC-ANN model for classifying ovarian cancer. 

The input layer model comprises 112 neurons, one 
for each gene. Then, to avoid overfitting, 32 neurons 

in a hidden layer service the ReLU activation method. 

The output layer practices sigmoid to classify 
tumours as Primary Tumours (PT) or Recurrent 

Tumours (RT). Finally, to make the model dense, 

class weight balancing is employed to account for the 
imbalanced dataset. 

3.7  Output layer     

The output layer has one neuron since it is a 

binary classification that can be PT or RT. It uses a 

sigmoid activation function for binary classification, 
producing an expected value between 0 and 1. The 

classification tasks allow the model to provide a 

probability score indicating whether a sample is more 
likely to be an RT. The output y  ̂which indicates the 

probability that the sample is of class RT is computed 

using Eq. (5).   

             

               �̂� = 𝜎(𝑧) =
1

1+𝑒−𝑧
                             (5) 

 

Where �̂� is the predicted probability that a sample 

belongs to the RT class, 𝑧 indicates the output of the 
final layer that indicates the linear combination of the 

weights 𝑊 . The term 𝜎(𝑧)  represents the sigmoid 

function that squashes the output 𝑧  into a range 
between 0 and 1, which is interpreted as a probability 

the proposed model predicts the greatest possibility 

for being RT if the result of �̂� is closer to 1. The 

proposed model predicts the greatest possibility for 

being PT if the value of �̂� the result is closer to 0. A 

probability score �̂�  where 0≤ ⁡�̂�  ≤1, indicating the 

possibility that a sample is RT. Input 𝑥 represents the 

features of the gene samples, and bias 𝑏  can be 
calculated using Eq. (6) as follows: 

 

                   𝑧 = 𝑊 ∙ 𝑥 + 𝑏                               (6) 
 

 Here, W indicates the weight vector for the 

connections from the previous layer to the output 
neuron.  

Layer 

Type 

No. of 

Neurons 

Activation 

Function 

Regularization/Dropou

t 

Input 112 ReLU None 

Hidden 32 ReLU Dropout (rate varies) 

Output  1 Sigmoid Class Weight Balancing 
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Pseudocode 1: BEOC-ANN Model 

Input: filtered genes, 𝑒𝑝𝑜𝑐ℎ𝑠, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 

Output: test_acc, RT_recall 

Step 1: def pre-process_data(raw_data): 

normalized_data = 

DESeq_normalization(raw_data) 

filtered_data=filter_OC_genes (normalized_data, 

112) 
return split_data  

Step 2: def create_model(input_size=112): 

  model = Sequential ([ 

Dense (64, activation='ReLU', 

input_shape= (112)), Dropout (0.3), 

Dense (32, activation='ReLU'), Dropout 

(0.3), 

Dense (1, activation='sigmoid') ]) 

Step 3: calculate 𝑅𝑚𝑡𝑦 = 𝑁𝑃𝑇/𝑁𝑅𝑇 

return (0 :1, 1: (𝑅𝑚𝑡𝑦 − 𝛽) ) 

Step 4: model. compile (Adam (), ℒ, ['accuracy']) 

for each epoch in range (E) do 

model. fit (X_train, y_train, epochs, batch_size, 

validation_split, class_weight) 

model. evaluate (X_test, y_test) 

model. predict (X_test) 

calculate  test_acc, RT_recall. 

   end for. 

return test_acc, RT_recall 

 

 

The mathematical idea behind the pseudocode of 

proposed BEOC-ANN to predict cancerous gene 
involves with data preprocessing of genes which 

includes normalization and gene selection. The 

BEOC-ANN neural architecture implements ReLU 
activations in the hidden layers and a sigmoid 

function in the output layer, which produces a 

probability value between 0 and 1. The use of class 
imbalance handling adjusts the class weights based 

on the ratio of PT and RT samples to address class 

imbalance. The model is trained with the binary cross 

entropy loss function and evaluated using accuracy 
and RT recall metrics to assess how well it identifies 

samples.   
The BEOC-ANN model's hyperparameters are 

listed in Table 2, as well as their descriptions, 

possible values, and ranges. For example, it specifies 

the number of epochs as 10, batch size as 15, and 
dropout rate as 0.3, all of which regulate different 

parts of model validation and training the BEOC-

ANN model. The table also includes information 

about the learning rate at 0.001, which is essential for 
controlling overfitting, ensuring equal distribution of 

classes, and optimizing the model. It details the 

network's architecture, comprising its hidden layer of 
one and 32 neurons per layer and its setup and tuning 

parameters.    
 

Table 2.  BEOC-ANN Hyperparameter Settings  

Hyperparameter Value 

Used 

Potential 

Range 

Description 

Number of Epochs 10 5-50 No. of complete 

epochs used for 

training. 

Batch Size 15 8-32 No. of instances 
applied before 

the model update. 

Dropout Rate 0.3 0.2-0.7 Probability of 

dropping units to 

prevent 

overfitting. 

Learning Rate 0.001 

(default) 

0.0001-

0.01 

Step size used in 

the Adam 

optimizer to 

update model 

weights. 

Hidden Layers 1 1-3 No. of hidden 

layers in the 
network. 

Neurons in Hidden 

Layer 

32 16-128 No. of neurons in 

each hidden 

layer. 

3.8  Optimization using Adaptive Momentum  

Adam is an optimization algorithm chosen for its 

adaptive learning rates and potential for handling 
sparse gradients. It adjusts the learning rate for each 

input parameter. Adam uses AdaGrad for sparse 

gradients and RMSProp for online and gene 
expression data across samples. As in Eq. (7), it 

exhibits different learning behaviours. 

 

       𝜃𝑡+1 = 𝜃𝑡 − 𝛼 ∙
𝑚𝑡

√𝑣𝑡+𝜖
                              (7) 

 
The core update rule of Adam, where the model's 

parameters 𝜃  are updated based on the computed 

gradients 𝑚𝑡 and variance 𝑣𝑡, with an added term 𝜖 

to prevent division by zero. The term 𝜃𝑡  represents 

the current weights of the model at step 𝑡 . The 

parameter 𝜃𝑡+1  indicates the weights and biases of 

the BEOC-ANN that are adjusted after each iteration 

based on the gradients. The learning rate 𝛼 with the 
value of 0.001 is applied, controlling the size of steps 

to update the weights. A dynamic and adaptive 

learning rate helps the model converge faster, 
avoiding large oscillations during training with the 

imbalanced gene expression data.  

3.9  Loss function  

 Binary cross-entropy is used to evaluate how well 

the model-predicted probabilities match the accurate  
binary labels PT or RT to classify the cancer types 

accurately. 
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Table 3. List of Notations 

  

The loss calculates the actual label and the 

predicted probability variation. Minimizing this loss 
function during training helps the model accurate 

classifications. 
 

    ℒ = −[𝑦 ∗ 𝑙𝑜𝑔⁡(𝑝) + (1 − 𝑦) ∗ 𝑙𝑜𝑔(1 − 𝑝)]             (8) 

 

where ℒ in Eq. (8) represents the loss function, 

and 𝑦⁡indicates the accurate label where 0 for PT and 

1 for RT, 𝑝 represents the predicted probability of the 
sample being RT.  

The RNA-Seq gene expression data-based 

BEOC-ANN algorithm employs a neural network 

architecture PT and RT classification. It includes 112  
input neurons, 32 neurons in the hidden layer, and a 

sigmoid output function. To avoid overfitting, the 

BEOC-ANN employs dropout and to compensate for 
the disparity between the PT and RT data, it uses 

dynamic class weighting. The model shows promise 

in RT case detection when trained with Adam 

optimization and tested with binary cross-entropy 

loss. Although the model is scalable and deals with 
class imbalance, it has limitations, such as a short 

dataset and an overemphasis on 112 genes. 

4. Results and discussion 

Through the experimental phase, various 

combinations of dropout rates at values of 0.3, 0.5, 

and 0.7 with the regularization values 0.001 and 0.01, 
as well as class weights, are tested to optimize the 

model's performance. Learning curves are monitored 

during training to detect signs of overfitting or 
underfitting, and hyperparameter tuning is performed. 

This analysis is crucial for evaluating the 

effectiveness of classification tasks. 

Fig.3 illustrates the learning curves for a BEOC-
ANN model trained over ten epochs, with training 

 

Notation Description Notation Description 

𝑲𝒊𝒋 
normalized count for gene 𝑖 in 

sample 𝑗 
𝜽𝒕 current weights of the model at step 𝑡 

𝒌𝒊𝒋 raw count of gene samples 𝜽𝒕+𝟏 
weights and biases of the BEOC-ANN that are adjusted 

after each iteration 

𝒔𝒋 size factor for sample 𝑗 𝒎𝒕 gradients 

𝒇𝒊 
gene-specific normalization 

factor accounting for variability 

in gene expression levels 

𝒗𝒕 variance 

𝑵𝑹𝑻 no. of recurrent tumour samples 𝝐 Added term to prevent division by zero 

𝑵𝑷𝑻 no. of primary tumour samples 𝓛 loss function 

𝑵𝒕𝒐𝒕𝒂𝒍 combined samples from 𝑁𝑅𝑇 

and 𝑁𝑃𝑇 
𝒚 accurate label where 0 for PT and 1 for RT 

𝜷 dynamic scaling factor 𝒑 predicted probability of the sample being RT 

�̂� 
predicted probability that a 

sample belongs to the RT class 
𝑻𝑷 

true positives represent the no. of RT samples accurately 

classified as RT 

𝒛 output of the final layer 
𝑭𝑷 false negatives indicate the no. of RT samples mistakenly 

classified as PT 

𝑾 weight vector 
     

𝒂𝒄𝒄(%) 
accuracy 

𝝈(𝒛) sigmoid function 𝑻𝑵 true negatives that correctly forecast PT samples 

𝒙 Input 
𝑭𝑵 false negatives in which RT samples are incorrectly 

predicted as PT 
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Figure. 3 Learning Curves for Loss Vs. Epochs 

 

and validation aiding in the analysis of model 

convergence loss and generalization capabilities.  
For this binary classification model, recall 

accurately analyses the actual minority classes RT 

samples correctly identified by the model. Recall 
focuses on identifying the positive class RT derived 

using an Eq. (9). It is instrumental in class imbalances 

where identifying all positive instances is critical. 
 

                       𝑅𝑒𝑐𝑎𝑙𝑙 = ⁡
𝑇𝑃

𝑇𝑃+𝐹𝑁
                             (9) 

 

Where 𝑇𝑃, true positives represent the no. of RT samples 

accurately classified as RT. 𝐹𝑃 false negatives indicate the 

no. of RT samples mistakenly classified as PT. 

The accuracy of correct classification occurs at 1 

and incorrect as 0. The 𝑎𝑐𝑐(%)  is the ratio of 

correctly classified instances, PT and RT, across total 

samples derived using Eq. (10). 

 

                      𝑎𝑐𝑐(%) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
              (10) 

 

Where 𝑇𝑃 specifies true positives correctly predicted 

RT samples. 𝑇𝑁  indicates the true negatives that 

correctly forecast PT samples. 𝐹𝑃  specifies false 

positives in which PT samples are incorrectly 

predicted as RT. 𝐹𝑁  indicates false negatives in 

which RT samples are incorrectly predicted as PT. 
Fig.4 shows that the RT class's recall over ten 

training epochs is depicted in the graph with the label 

of Recall for RT per Epoch (Versions with 10 
Epochs). The model's accuracy in identifying valid 

minority classes called RT cases is displayed in the 

graph. The X-axis represents epoch ranges with a 

maximum count of 10 epochs, while the Y-axis 
represents recall percentages for RT. The training 

results indicate that the low or fluctuating results may 

indicate problems with training, and similarly stable  

 
Figure. 4 Recall for RT with 10 Epochs 

 

 
Figure. 5 Impact of Class Weight on Model Performance 

  

 

or increasing recall shows successful learning of RT 
classes.  

Fig.5 shows how different class weights affect 

model performance measures like accuracy and RT 
recall in the heatmap. The heatmap provides an easy-

to-understand look at the effects of various class 

weights on these measures by transforming the 

performance data into a matrix and then visualizing it 
with the seaborn library. While adjusting the model's 

parameters, this graphic aids in determining the best 

class weights to strike a balance between accuracy 
and recall. It better helps understand and handle 

imbalanced datasets by adjusting class weights to 

increase model efficacy. 

Fig. 6 explores the effect of modifying class 
weights on model performance. Adjusting the class 

weight for RT makes the model more sensitive to the 

minority class, improving recall. Still, it indicates 
potential overfitting to the minority class, suggesting 

a need to modify the weights to balance recall and 
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Figure. 6 Class weight on RT Recall and accuracy 

 

 Table 4.  Model Versions performance comparisons 

Model Version Test 

Size 

Drop 

out 

Class 

Weight 

Training 

Accuracy 

Initial 10% - - 100% 

Intermediate 30% 0.5 - 100% 

Final (BEOC-ANN) 30% 0.3 70 98% 

 

 
 Figure. 7 Dropout effect on Model Accuracy  

 

 

accuracy. As class weight is fine-tuned, recall for RT 
improves, reflecting the model's increased sensitivity 

to the minority class called RT depending on dropout 

adjustment too.  
Table 4 provides an overview based on the 

model's initial, intermediate, and final (BEOC-ANN) 

stages. With a 10% sample size and no parameter 

modifications to drop out or class weights, the first 
model achieved 100% accuracy in the testing and 

training phase. Still, it failed to recognize minority 

class RT with a recall rate of 0%. The intermediate 
model kept the training accuracy at 100%. In 

comparison, testing accuracy dropped to 97%, and 

RT recall remained at 0% after increasing the test size 

to 30% and introducing a 0.5 dropout rate. 
Fig. 7 shows the impact of the dropout rate on the 

accuracy of an ANN in the ovarian cancer 

classification task. The dropout rate plot shows that a 
 

 
Figure. 8 Accuracy for Model Versions  

 

 

moderate rate of 0.5 achieves the highest accuracy, 
97%. In contrast, a higher rate at 0.7 slightly 

decreases accuracy, indicating that excessive neuron 

deactivation can hinder model performance. 
 With the same test size, a reduced dropout of 0.3, 

and a class weight setting of 70, the Final (BEOC-

ANN) model proposed an improved RT recall to 33%, 
training accuracy to 98%, and testing accuracy to 

96%. This phase of the model result shows a balance 

between dropout and class weights. This final model 

shows how to increase RT detection while improving 
accuracy and EOC's overall detection capabilities. 

Fig. 8 compares the model effectiveness based on 

an initial, intermediate, and final proposed BEOC-
ANN for RT, considered a minority class, by 

graphing training accuracy and testing accuracy 

alongside recall. Overfitting is shown in the Initial 
model's inability to recognize RT situations despite 

its flawless accuracy. Although there is a slight 

decrease in accuracy, the Intermediate model can 

avoid overfitting; nonetheless, it does not have RT 
recall. The final BEOC-ANN model reduces dropout 

and improves RT recall to 33% while achieving 96% 

testing accuracy, thanks to class weight balancing. 
The system's enhanced sensitivity in recognizing 

recurrent cancers, which is vital for clinical 

applications, is reflected in this.  

The three models like the proposed BEOC-ANN, 
NB-KNN [16] and DVGR [17] are compared in this 

analysis making use of a bar chart and a Receiver 

Operating Characteristic (ROC) curve as given in Fig. 
9. The bar chart compares the model’s side by side 

based on their scores in the metrics: accuracy and 

recall. The scores are scaled between 0 and 1.0. By 
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(a) 

 

 
(b) 

Figure. 9 Performance Comparative Analysis: (a) Score 

and (b) ROC-Curve Analysis 

 

 

comparing the True Positive Rate (TPR) with the 
False Positive Rate (FPR) at different thresholds, the 

ROC curve provides a visual representation of the 

model's performance; a closer fit to the top left corner 
indicates greater classification capabilities. This 

comparative analysis taken as a whole, provide a 

thorough evaluation of the capabilities of each model. 

5. Conclusion and future scope 

The proposed BEOC-ANN model in this research 

demonstrates significant improvements in classifying 
primary and recurrent EOC using RNA sequencing 

data. The model achieved high accuracy in the 

training and testing phases by implementing DESeq 
normalization, gene filtering, and various ML 

techniques such as dropout, and class weight 

balancing. Notably, the model improved the recall 

rate for recurrent tumours to 33%, addressing the 
challenge of the imbalanced dataset in cancer 

classification. The study highlights the significance 

of ANN in handling complex, high-dimensional gene 

expression data for cancer classification. The 
improved detection of RT cases, critical for patient 

prognosis and treatment planning, represents a 

significant advancement.  

Future research could improve RT classification 
accuracy by increasing data through synthetic 

techniques like the Synthetic Minority Over-

sampling Technique (SMOTE) to generate new 
records. Merging gene expression datasets with 

imputation for missing values and integrating cancer 

type and subtype data could also enhance the model's 
performance. This approach aims to balance the 

dataset, enrich the genetic insights, and develop more 

precise prediction and classification models for EOC 

recurrence. 

Conflicts of Interest  

The writers say they have no competing interests. 

Author Contributions  

The work is done by first author Asha Abraham 

under the supervision of second author Dr. R. 
Kayalvizhi and the co-supervision of Dr. S. K. M. 

Habeeb. 

References 

[1] R. Aghayousefi,neh, S.M.H. Khatibi, S. Zununi 

Vahed, M. Bastami, S. Pirmoradi, and M. 

Teshnehlab, “A diagnostic miRNA panel to 
detect recurrence of ovarian cancer through 

artificial intelligence approaches”,  Journal of 

Cancer Research and Clinical Oncology, Vol. 
149, No. 1, pp.325-341, 2023. 

[2] S. Sambasivan, "Epithelial ovarian cancer", 

Cancer Treatment and Research 

Communications, Vol. 33, pp. 100629, 2022. 
[3] https://main.icmr.nic.in/sites/default/files/guidel

ines/Ovarian_Cancer.pdf 

[4] A.K. Dwivedi, "Artificial neural network model 
for effective cancer classification using 

microarray gene expression data", Neural 

Computing and Applications, Vol. 29, pp. 1545-

1554, 2018. 
[5] I.V.  Rodriguez, T. Ghezelayagh, K.P. 

Pennington, and B.M. Norquist, "Prevention of 

Ovarian Cancer: Where are We Now and Where 
are We Going?", Current Oncology Reports, pp.  

1-12, 2024. 

[6] P.K. Illa, S.T. Kumar, and F.S.A. Hussainy, 
"Deep Learning Methods for Lung Cancer 

Nodule Classification: A Survey", J. Mobile 

Multimedia, Vol. 18, No. 2, pp. 421-450. 



Received:  October 3, 2024.     Revised: November 25, 2024.                                                                                          659 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.46 

 

[7] S. Sindhu, D. Hemavathi, K. Sornalakshmi, G. 
Sujatha, and S. Srividhya, "A Comprehensive 

Study on the Application of Machine Learning 

Algorithms in the Prognosis of Ovarian 

Cancer", The Open Biomedical Engineering 
Journal, Vol. 17, No. 1, 2023. 

[8] R.M. Wadapurkar, A. Sivaram, and R. Vyas, 

"RNA-Seq analysis of clinical samples from 
TCGA reveal molecular signatures for ovarian 

cancer", Cancer Investigation, Vol. 41, No. 4, 

pp.  394-404, 2023. 
[9] L. A. Corchete, E. A. Rojas, D.A. López, J.D.L. 

C. Norma, C. Gutiérrez, and F. J. Burguillo, 

"Systematic comparison and assessment of 

RNA-seq procedures for gene expression 
quantitative analysis", Scientific Reports, Vol. 

10, No. 1, pp. 19737, 2020.  

[10] A. Negi, A. Shukla, A. Jaiswar, J.Shrinet, and R. 
S. Jasrotia, "Applications and challenges of 

microarray and RNA-sequencing”,    

Bioinformatics,  pp. 91-103, 2022.  
[11]  A. Alluri, J. Juneja, C. Khongsai, A. Mishra, 

and R. K. Gutti, “Identification of Mirs 

Regulating Oncogenes and Tumour Suppressor 

Genes in Aml: A Bioinformatic 
Approach”, SSRN 4914109, 2024. 

[12]  P. R. Bushel, S. S. Ferguson, S. C. Ramaiahgari, 

R. S. Paules, and S. S. Auerbach, "Comparison 
of Normalization Methods for Analysis of 

TempO-Seq Targeted RNA Sequencing 

Data", Frontiers in Genetics, Vol. 11, pp. 943, 

2020. 
[13] N. Gour and P. Khanna, "Ocular diseases 

classification using a lightweight CNN and class 

weight balancing on OCT images", Multimedia 
Tools and Applications, Vol. 81, pp. 41765-

41780, 2022. 

[14] M. Wen and E. B. Tadmor, "Uncertainty 
quantification in molecular simulations with 

dropout neural network potentials", npj 

computational materials, Vol. 6, No. 1, pp. 124, 

2020.  
[15] F. Alharbi and A. Vakanski, "Machine learning 

methods for cancer classification using gene 

expression data: A review", Bioengineering, 
Vol. 10, No. 2, pp. 173, 2023. 

[16] B.H. Kim, K. Yu, and P.C. Lee. “Cancer 

classification of single-cell gene expression data 
by neural network,” Bioinformatics, Vol. 36,No. 

5, pp. 1360-1366, 2020.  

[17] Q.  Rong, W. Wu, Z. Lu, and S. Liao, "Decision-

level fusion classification of ovarian CT benign 
and malignant tumors based on radiomics and 

deep learning of dual views", IEEE Access, 2024. 

[18] P. H. Nagarajan and N. Tajunisha, "Automatic 
Classification of Ovarian Cancer Types from CT 

Images Using Deep Semi-Supervised 

Generative Learning and Convolutional Neural 

Network", Revue d'Intelligence Artificielle, Vol. 
35, No. 4, 2021. 

[19] Y. Zhao, Z. Pan, S. Namburi, A. Pattison, A.  

Posner, S. Balachander, A.C. Paisie, et al, "CUP-
AI-Dx: A tool for inferring cancer tissue of 

origin and molecular subtype using RNA gene-

expression data and artificial intelligence", 
EBioMedicine, Vol. 61, 2020. 

[20] A. Laios, A. Katsenou, Y.S.Tan, R. Johnson, M. 

Otify, A. Kaufmann, et al, "Feature selection is 

critical for 2-year prognosis in advanced stage 
high grade serous ovarian cancer by using 

machine learning", Cancer Control, Vol. 28, pp. 

10732748211044678, 2021. 
[21] C. Yan, K. Li, F. Meng, L. Chen, J. Zhao, Z. 

Zhang, D. Xu, J. Sun, and M. Zhou, "Integrated 

immunogenomic analysis of single-cell and bulk 
tissue transcriptome profiling unravels a 

macrophage activation paradigm associated with 

immunologically and clinically distinct 

behaviors in ovarian cancer", Journal of 
Advanced Research, Vol. 44, pp. 149-160, 2023. 

[22] https://portal.gdc.cancer.gov/analysis_page?app

=Downloads. 
[23] J. Lever, E. Y. Zhao, J. Grewal, M. R. Jones, and 

S. J. Jones, “CancerMine: a literature-mined 

resource for drivers, oncogenes and tumor 

suppressors in cancer”, Nature methods, 
Vol.  16, No. 6, pp. 505-507, 2019. 

https://portal.gdc.cancer.gov/analysis_page?app=Downloads
https://portal.gdc.cancer.gov/analysis_page?app=Downloads

