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Abstract: This paper presents two novel strategies for solving the Capacitated Vehicle Routing Problem (CVRP): 

Weighted Score Insertion with Grid Search (WSI-GS) and Multiple Insertion with Iterative Tournament Selection (MI-

ITS). The novelty of WSI-GS lies in its weighted demand-distance heuristic which uses balancing customer demand 

and proximity to the depot for node insertion, refined by systematic parameter optimization using a grid search. MI-

ITS novelty is integration of iterative tournament selection to enhance solution diversity by a balance between 

exploration and exploitation in node insertion. This improves adaptability to various problem settings. Despite 

improved savings-based algorithms like Clarke-Wright and Parker-Holmes often showing superior overall 

performance, proposed methods outperformed in several Augerat benchmark instances, reaching optimal or better-

than optimal (WSI-GS: P-n22-k2; MI-ITS: B-n50-k7, B-n52-k7, P-n19-k2, P-n20-k2, P-n21-k2, and P-n22-k2). The 

complementary characteristics of WSI-GS and MI-ITS position them as viable candidates for future hybrid 
frameworks, providing improved robustness and exploration in CVRP solutions. 

Keywords: Cheapest insertion, Demand-distance balance, Grid search, Single and multiple start route, Thread 

parallelization, Iterative improvement, Tournament selection, Heuristics rules insertion. 

 

 

1. Introduction 

There are many variants of Vehicle Routing 

Problems (VRP) according to the constraints 

considered, and CVRP (Capacitated VRP) is deemed 
the core of these variants because it handles the base 

presumed constraint which is the vehicle capacity 

employed for distribution from/to the depot(s) 

to/from a customer(s) [1]. So, there are many studies 
have poured light on this literature in recent years [2]. 

The aim of CVRP is to identify the best paths for 

delivery or collection routes across all the nodes of 
the problem being solved while taking care of 

homogeneous vehicles capacity to be assigned for 

each path. Because of its wide search space, CVRP is 
considered Non-polynomial-hard optimization 

problem [1]. So, its complexity arises as the number 

of nodes is increased, therefore there is no known 

single algorithm can be employed to solve all 
problems [3, 4]. There is a focus on CVRP literature 

as main part of operation researches nowadays 

especially as emerging of new technologies in image 

processing [5, 6] and IoT technologies [7-9] to utilize 
these techniques to strength CVRP problems.  

There are six methods categories used to solve 

CVRPs [10]. Because of exact algorithms complexity 
and computation intensity, many heuristics methods 

have been developed to solve CVRPs [11]. The most 

important category is heuristics (pure and hybrid) 
because of its simplicity, and consistency in such way 

it can be considered as an entry to other method 

categories by generating initial solutions. Among 

heuristic category methods, constructive heuristics 
(like saving, nearest neighbour, cheapest insertion, 

and sweep algorithms) which build routes 

sequentially or in parallel way to extend routes by 
greedily adding unrouted customers approve their 

efficiency for rapid feasible initial solution 

generation in addition to be considered preferable 
choice for projects that require fast, high-quality 

solutions with little computational overhead because 

its balance with solution quality [12]. 
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This study bases on Multiple Start Route 
Cheapest Insertion Heuristic (MSR-CIH) [13] 

concept to optimize it with grid search and iterative 

tournament selection. This paper’s primary 

contributions can be summarized as follows: 
1 Leveraging MSR-CIH with grid-search 

optimization to ensure balance between two 

heuristics metrics (demand and distance). 
2 Hybridizing MSR-CIH with iterative 

tournament selection to cover most of the 

search space by enhancement in exploration 
and exploitation. 

3 Compare the performance of the developed 

techniques with recent heuristics algorithms. 

4 Analysis the complexity of developed 
algorithms to highlight the parts that is needed 

to be reviewed to optimize the results and 

computation time. 
The rest of this paper is presented as follows. First, 

formulation and related works of CVRPs are 

demonstrated in section 2. Then, detailing the of 
proposed techniques in section 3 followed by 

performance and analysis of the results in section 4. 

At section 5, the conclusion and room for 

improvements are presented. 

2. Formulating and related work 

2.1 CVRP formulating 

Despite that CVRP formulation has been widely 

addressed in previous works [14][10], we revisit 

formulation to ensure readability and consistency 
across the paper. 

 

Objective Functions: 
The minimization of total cost (overall paths 

distance, transportation time or any other interesting 

factors according to the customers’ requirements) 

while ensuring visiting all customers (Eq. (1)). 
 

Constraints: 

CVRP are subjected to the following constraints: 
1. Each customer is served only once by one 

vehicle (Eq. (2)). 

2. Each vehicle can leave or visit only one 
customer at time (Eq. (3-a) and Eq. (3-b) 

respectively). This ensures all routes start 

from and end at the depot. 

3. All vehicles leave the customers after visiting 
them except the depot (Eq. (4)). This ensure 

no vehicle stay away from the depot. 

 
 

Table 1. Notation list 

Symbol Description 

The indices and sets 

𝑛 Customers Number 

p  Vehicles number 

𝑉 Node set, where 𝑣0 is the depot and {𝑣1, 𝑣2. . . , 𝑛} are the customers 

𝑖, 𝑗 Subscripts of the customers, 𝑖, 𝑗 = 1,2, . . . , 𝑛 

𝑘 Subscript of the vehicle 𝑘 = 1,2, . . , 𝑝;  𝑝 number of vehicles 

𝐴 𝐴 = {(𝑣𝑖 , 𝑣𝑗): 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉}; is arcs (paths) set linking nodes   i and j  

Parameters 

𝐷𝑖 Customer i  demand 

𝑑𝑖𝑗  Distance between customers ,i j  

Q
 Capacity of the vehicles 

Decision Variable 

𝑥𝑖𝑗𝑘 

Decision binary value: 𝑥𝑖𝑗𝑘 = {
1  𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑎𝑟𝑐 𝑓𝑟𝑜𝑚  𝑖 𝑡𝑜 𝑗 𝑑𝑟𝑖𝑣𝑒𝑛 𝑏𝑦 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where  𝑥𝑖𝑗𝑘  ∈  {0,1}       ∀𝑘 ∈  {1, . . . , 𝑝}, 𝑖, 𝑗 ∈ {1,...,𝑛} 

Note: There is no travel from a node to itself 

𝑥𝑖𝑖𝑘  =  0    ∀𝑘 ∈ {1, . . . , 𝑝},∀𝑖 ∈ {1,...,𝑛}   

𝑦𝑖𝑘 Decision binary variable: 𝑦𝑖𝑘 = {
1  𝑖𝑓 vehicle 𝑘 visits customer 𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where  𝑦𝑖𝑘 ∈  {0,1}       ∀𝑘 ∈  {1, . . . , 𝑝}, 𝑖 ∈ {1,…,𝑛} 
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(a) (b) 

Figure. 1 Cheapest Insertion Example: (a) before 

insertion and (b) after insertion 

 

4. The vehicles load shall not exceed the vehicle 

capacity (Eq. (5)). 

5. The depot has demand equals to zero. 
Table 1 list the notations used to solve CVRP 

according to the above definition. 

So, the minimization of objective function can be 
expressed by the following equation: 

 

𝑀𝑖𝑛 ∑ ∑ ∑ 𝑑𝑖𝑗𝑘𝑥𝑖𝑗𝑘
𝑛
𝑗=0

𝑛
𝑖=0

𝑝
𝑘=1                              (1) 

 

Subject to the following constraints: 

 

∑ 𝑦𝑖𝑘
𝑝
𝑘=1 = 1  ∀ 𝑖 ∈ {1, . . , 𝑛}    (2) 

 
∑ 𝑥𝑖0𝑘

𝑛
𝑖=1 = 1 ∀𝑘 ∈ {1 … 𝑝}             (3-a) 

 
∑ 𝑥0𝑗𝑘

𝑛
𝑗=1 = 1 ∀𝑘 𝑖𝑛 {1, … , 𝑝}            (3-b) 

 
∑ 𝑥𝑖𝑗𝑘

𝑛
𝑖=1 =  ∑ 𝑥𝑗𝑖𝑘

𝑛
𝑖=1 .  ∀𝑗 {1, . . 𝑛};  𝑘 ∈

{1, . . 𝑝}        (4) 

 
∑ Di𝑦𝑖𝑘

𝑛
𝑖=1 ≤ 𝑄 ∀𝑘 ∈ {1, … , 𝑝}   (5) 

 

2.2 Related work 

The (Cheapest Insertion Heuristic) CIH is 
constructed initially by a subtour composed from a 

single customer connected to depot, then iteratively 

inserting other customers in the route in the position 

that cause least cost increase until no more customers 
can be added due to the capacity violation. This 

process is repeated until all customers are included in 

the feasible solution routes [15]. For example, 
consider Fig. 1 in which there is two-way-arc 

between two nodes (i, and j) (a) and a need to insert 

the k node in this arc, then Eq. (6) is used to calculate 
the cost increase resulting from such insertion [15]: 

 

𝑐𝑜𝑠𝑡_𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 𝑐𝑖𝑘 + 𝑐𝑘𝑗 − 𝑐𝑖𝑗    (6) 

 

Where 𝑐𝑥𝑦  is the Euclidean distance between any 

node 𝑥 and node 𝑦. 

CIH has some drawbacks in spite of its 
effectiveness and simplicity. One of the main 

limitations is its greediness which may lead to 

suboptimal solutions particularly in complex 

instances with irregular customers geographic 
distribution, wide-varied demands and complex 

constraints. The heuristic result will depend mainly 

on the sequence of nodes insertion into the routes. 
Second matter, selection of starting routes has 

significant impact on the final solution. So, requires 

careful consideration [13]. Furthermore, despite CIH 
has good efficiency in small to middle-sized 

problems, its efficiency declines as the problem size 

increases because heuristic does not explore the 

whole solution space structure beyond the direct 
neighbourhood of current route then falling in 

potential local optima especially in large and 

complex instances [16]. 
Several improvements and modifications to CIH 

have been developed in the literature to address the 

above limitations to make it useful tool for solving 
complex and large-scale VRPs. One approach 

involved randomness in insertion process. This to 

introduce some stochasticity which enhances 

exploration particularly in complex instances [17]. 
Hybridizing CIH efficient initial solution generation 

with metaheuristic optimization algorithms gives 

significant improvement in terms of travelled 
distance, and number of vehicles used by utilizing 

advanced search capabilities of such algorithms 

especially in large-scale problems [18, 1]. Several 

techniques proposed dynamically adapted versions 

of insertion criteria based on the problem instances 

characteristics such as current route status, customers 

demand distribution and vehicle capacity to be 
responsive to complex environments [1]. Another 

improvement is involving machine learning 

supervised learning techniques to control the 
insertion process by training models on historical 

CVRPs [19]. Furthermore, integrating 

reinforcement learning to improve CIH 

performance by learning from responses delivered 
during the optimization process thereby adapting its 

insertion policy based on previous decisions. In 

advanced iterations, CIH becomes more effective at 
determining most promising regions that avoid local 

optima [20] A significant improvement is using of 

parallel-processing techniques so multiple insertion 
processes occur simultaneously to accelerate CIH 

and drastically reduce computation time of extensive 

exploration of the solution space [16].  

In addition to previously discussed improvements, 
several other enhancements have been proposed to 

override CIH limitations and extend its capability in 

solving complex CVRP scenarios:  
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Table 2. Improvements techniques 

Modification Insight Strengths Weaknesses 

Hybrid with 

Metaheuristics [13, 18] 

Combines CIH with global 

search techniques. 

Enhancing the search space 

exploration and escaping local 

optima. 

Increase computational 

complexity and require careful 

tuning for parameters. 

Adaptive CIH [15] 

Dynamically adjust insertion 

criteria based on problem 

characteristics. 

Improve robustness and raise 

flexibility. 

Different scenarios require 

different adaption strategies 

thereby suitable strategy 
selection complexity 

Learning-based CIH 

[17] 

Using ML techniques to guide 

the insertion process based on 

historical data 

Learns from past data to 

improve decision making. 

Requires large datasets and 

extensive training with 

potential overfitting risk. 

Parallel Processing 

[18] 

Simultaneous insertion process 

utilizing parallel computing 

techniques. 

Reduce computation 

dramatically, modify CIH 

viable for complex problems. 

Implementation complexity 

and potential synchronization 

issues. 

Clustering techniques 

[21] 

Pre-processing by grouping 

customers. 
Reduce problem complexity 

Effectiveness depends on the 

clustering algorithm. 

Multi-objective 

Optimization [15, 19] 

Balance multiple objectives 

during insertion. 

Solutions meet diverse real-

world requirements 

Balancing complexity and 

tuning weights appropriately. 

Iterative Refinement 

[16] 

Refine solution through 

multiple runs, improve route 

each time. 

Allows progressive 

improvement of solution 

Time-consuming and may 

require iterations to achieve 

significant improvements. 

Randomized Insertion 

[17] 

Introduce randomness to 

explore a wider search space 

Enhance diversity and reduce 

the risk of getting stuck in local 

optima. 

Potential inconsistent results 

so require multiple runs to 

ensure robustness. 

 

 
Table 3. Summary of Single and Multiple Start Route Categories 

 SSR-CIH MSR-CIH 

Initialize Establishes a route with a singular starting node. 

Initiates several routes by picking various starting 

nodes based on parameters such as index, distance, 

demand, randomness, weighted score, and 

proximity [13]. 

Starting Node 

flexibility 
Restricted to the selection of a single node. 

Exhibits greater flexibility by initiating several 

routes [13]. 

Risk of Inefficient 
routes 

Increased risk resulting from restricted 
exploration of node combinations. 

Reduced risk resulting from the diversity of initial 

nodes and selection methodologies, facilitating 
enhanced exploration of possible routes [15, 16]. 

Complexity Reduced computational complexity. Increased computational complexity [13]. 

Large instance 

performance 

May exhibit suboptimal performance due to the 

exploration of a limited number of node 

combinations. 

More suitable for larger instances, as exploration 

and results in more equitable routes [13]. 

Bias Susceptible to bias. 
Mitigates bias by examining various criteria for 

selecting initial nodes [13]. 

 

 

Clustering Techniques:  

Grouping customers into smaller, more 

manageable units before applying CIH can 

dramatically improve heuristic performance. 
Clustering itself depends on various criteria such as 

customers distribution or customers’ demands to 

simplify and strengthen the insertion process [21].  
 

Multi-objective optimization:  

In reality CVRP application, the objective 
function is not solely minimizing the distance, but to 

balance multiple objectives such as balancing vehicle 

loads or environmental impact. So multi-objective 

extension of CIH involves these additional criteria 

into the insertion process to meet the requirements of 
the problem by assigning dynamic weights during the 

insertion process [19]. 

 
Iterative Refinement:  

Where the heuristic is applied multiple times, 

make adjustments to the insertion process or by re-
evaluating the insertion order each time. This 
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approach iteratively improves the solution quality 
[16]. 

Table 2 summarizes these 

improvements(modifications). Among these 

improvements, hybridization with metaheuristics 
algorithms gained attention of most scholars in 

CVRP literature in recent two decades [2, 11] 

because of the promising results. Because of new 
emerging of new novel metaheuristic algorithms, 

there is a tendency to adapt such algorithms in 

solving CVRP complex problems because of the 
modern techniques employed in their phases such as 

guided searches and arithmetic crossover [22], 

splitting the swarm into two equal-sized groups to 

vary the search process and intensify sub-swarms 
[23] or employing three references in exploring 

search space [24] after considering converting some 

of their functionalities to be compatible with 
permutation-based problems like VRP. 

3. Methodology 

Traditional sequential insertion iteratively adds 
nodes to increasing routes based on short-sight 

metrics like least cost increase. This greedy strategy 

provides fast and simple solutions, but it is often 
caught in local optima because it lacks the global 

perspective to evaluate the early choice influence on 

solution quality. Furthermore, the heuristic nature of 
starting with a certain node based on their index, 

demand, or distance from the depot introduce a bias 

in the construction of the solution which significantly 

affects the resulting routes and lead to suboptimal 
solution, while other may produce more efficient 

solutions. To overcome these limitations, this paper 

introduced two MSR-CIH techniques. The key 
differences between single start route CIH (SSR-

CIH) and MSR-CIH are summarized in Table 3. 

3.1 Weighted sequential insertion with grid search 

optimization (WSI-GS) 

WSI-GS is motivated by the principles of seed 
customer selection [16], highlighting the significance 

of judiciously choosing initial nodes to direct the 

insertion process. Additionally, the algorithm utilizes 
the advantages of multiple starting routes [16]. 

This technique is proposed to overcome the bias 

resulting from choosing starting nodes based on 

arbitrary metric such as proximity to depot, demand 
or customer index, so it depends mainly on assigning 

certain weights parameters for both demand and 

distance then calculating score as shown in Eq. (7). 
This calculation introduces a degree of balance 

optimization by reduce the travel distance while 

maximize vehicle capacity utilization. By letting 

users control weights, WSI-GS is more versatile than 
purely demand- or distance-based techniques. 

 

𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑑𝑤 ∗ 𝐷𝑖 + 𝑑𝑖𝑠t_w ∗ 𝑑0𝑖   (7) 

 

∀𝑖 ∈ {1, … 𝑛}; 𝑑𝑤 : demand weight; 

𝑑𝑖𝑠𝑡_𝑤:distance weight; 𝐷𝑖 : customer 𝑖 demand; 

𝑑0𝑖: distance between the depot and customer 𝑖.  
 

The general scheme of WSI-GS is shown in 

Appendix B, Algorithm 1. 

3.1.1. WSI-GS implementation main steps 

WSI-GS key steps can be summarized as follows: 

1- Setting Up Grid Search:  
o Take the Cartesian product of all distance and 

demand weight Options.  

o Test weight settings with all combinations. 
2- Choosing Start Node Scores: 

o For Every weight combination: Given distance 

and demand weights, calculate a weighted score 
for all nodes; Initialize several start routes with 

the highest weighted nodes. 

3- Build Routes with Insertions: 

o Initialize a route for each start node. 
o Insert remaining nodes into routes sequentially, 

choosing the lowest cost increase while 

respecting vehicle capacity. 
4- Calculate the best solution:  

o Comparing the cost of the obtained solution for 

each weight’s combination. 

3.1.2. WSI-GS complexity analysis 

Outer While Loop: 
WSI loops around all nodes until all customers 

are visited, taking O(n) time. 

 

First Node selection (Weighted Score 

Calculation): 

WSI calculates the weighted-score for all 

unvisited nodes during route initialization. Each route 
initialization takes O(n). 

 

Node Insertion (Cheapest Insertion):  

o To find the best node position in a route, the 

approach checks up to n positions and estimates 

insertion costs using the distance matrix. Then, 

inserting each node takes O(n2). 
So, the complexity for the sequential insertion 

phase is O(n3) in the worst case. 

 
GS complexity: 

o GS explores different combinations of distance 

and demand weights. Because there are 𝑤_𝑑 
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options for distance_weight and 𝑤_𝑑𝑒𝑚 
options for demand_weights, then the algorithm 

runs O(𝑤_𝑑 × 𝑤_𝑑𝑒𝑚) times of WSI. 

Since WSI has a complexity of O(n3), then the 
overall complexity for WSI-GS technique will be 

O(𝑤_𝑑 × 𝑤_𝑑𝑒𝑚 × 𝑛3). So, the complexity depends 

on the amount of weights options.  

 

 
Figure. 2 Worker Method Flow Chart for MI-ITS 
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3.2 Multiple insertion with iterative tournament 

selection (MI-ITS) 

MI-ITS is based on importance of iterative 

refinement in developing progressively optimized 

routes and multiple start routes concept [14, 13]. It 

prioritizes diversity, as highlighted by [15, 16] which 
improves global search capabilities and maintains a 

balanced exploration-exploitation trade-off essential 

for addressing complex vehicle routing problems. 
Three approaches comprise MI-ITS. The main 

(calling) method calls the worker (core) method with 

the start node parameter, worker calls the tournament 
selection method with candidate nodes. MI-ITS main 

purpose is to reduce the potential bias that may be 

resulted from starting with certain nodes by looping 

through all nodes as starting node and passes that start 
node to worker method and evaluates the resulted 

routes cost then chooses the lowest cost solution. The 

core innovation of this algorithm is leveraging 
multiple start route strategy with two enhancement 

techniques: tournament and iteration. The 

tournament introduces stochastic element that 

enhances exploration thus avoiding local optima 
which is a common problem in deterministic 

insertion algorithms that follow purely greedy 

insertion approaches, and exploitation (improving 
known good solutions) while iteration improves the 

finding better routes chance over time.  

Fig. 2 shows worker method implementation. The 
MI-ITS pseudo code is in Appendix B, Algorithm 2. 

3.2.1. MI-ITS implementation main steps 

MI-ITS key steps can be summarized as follows: 

1- Iterative selection for start nodes: 

Repeat for each start node to call the worker 

function. Each start node starts several routes with 
successive nodes. So, the start_node will be the 

starting node for first vehicle (𝑘 = 1), while Eq. 

(8) will calculate the consecutive nodes. 
 

𝐶𝑘 =  {
𝑆 + 𝑘 − 𝑛 + 1 if (𝑆 + 𝑘) ≥ 𝑛
(𝑆 + 𝑘) 𝑚𝑜𝑑  𝑛, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                  (8) 

 

∀𝑘 ∈ {2 … 𝑝} ; 𝐶𝑘 : start node for vehicle 𝑘 ; 𝑆 : 

starting node; 𝑛: number of customers; 𝑝: vehicles 

number. 
2- Tournament Selection process: 

Evaluate candidate nodes and choose the best 

using k-tournament selection per iteration. Place 
the chosen node with minimal cost increase. 

3- Solution selection for each iteration: 

Record each iteration’s cost and solution. After 
iterations, choose the optimal solution with fewest 

routes and lowest cost. 

4- Return the best solution: 

Return all-iteration best solution. 

3.2.2. MI-ITS complexity analysis 

Outer Loop:  

Algorithm run for 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  iterations. 

Each iteration reinitializes the routes and does node 

insertion using tournament selection. So, the 

complexity of the outer loop is O(𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛). 

 

Tournament Selection:  
The method estimates the cost of adding each 

unvisited node to all routes and placements. So, 

tournament evaluates each node 𝑛 times. The sample 

usually has fewer candidates than 𝑛 , therefore the 

tournament runs O(𝑘). 

 

Node Insertion:  

The worker complexity is O( 𝑘 × 𝑛2 ×
max _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) for each insertion since it calculates 

the cost increase of putting a node at all feasible 

positions in all routes. 
 

Total complexity: 

The worker is called n times Thus, the total 

complexity will be O(𝑘 × 𝑛3 × max _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛). 

4. Experimental analysis 

This section introduces the numerical results of 
experimenting of the proposed methods on 74 

Augerat instances- whose key traits are in Table 4- 

existing in the literature [25]. Because of high 

efficiency of saving method in constructing initial 
solutions as demonstrated by article [13] in related 

work section, the proposed strategies are compared 

with two state-of-art methods -(Improved Clarke-
Wright (ICW) and Improved Parker-Holmes (IPH))- 

[10] to verify their effectiveness. Most important 

features of PC used in experimental application: 
Intel(R) Core (TM) i7 x64-based CPU; Physical 

Memory (RAM):16.0 GB; Programming language: 

Python. All instances depots are symmetric, centered, 

or non-centered. Eq. (9) calculates the ratio of total 
demands to vehicle capacity. 

 

𝑅𝐷𝐶 = ∑ 𝐷𝑖  /(𝑄 ∗ 𝑃)𝑖∈𝑛                                   (9) 
 

Where 𝑅𝐷𝐶 :Ratio of demands to capacity; 𝑄 : 

Vehicle capacity; 𝑃 : Number of vehicles; 𝐷𝑖 : 

customer 𝑖𝑡ℎ demand; 𝑛: customers number. 
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Table 4. Main Attributes of Augerat Benchmark Instances 

  Set 

Feature 
Set (A) Set B Set P 

Locations and demand 

[25] 

Randomly generated 

customer locations and 

demands 

More realistic scenarios such 

as where customers are 

located in certain urban or 

business areas with more 
realistic demands 

Some instances are adapted 

from datasets with different 

vehicle capacities and 

demands. 

Variety of problem sizes 

[25] 
Range from small to medium Medium sizes 

Range widely in size, thereby 

covering wide CVRP 

spectrum. 

Clustering nature of 

customer location [25] 

Nodes are uniformly or non-

uniformly dispersed 

Customers are geography 

clustered 

Mix of clustered and non-

clustered customers 

 

 
Table 5. Comparison of Techniques in Multiple Start Route Insertion 

 MSR-Farthest MSR-Highest 

Demand 

MSR-Random MSR-Nearest MSR-WSI-GS 

Initiating Node 

Selection 

Gives precedence 
to nodes that are 

most distant. 

Based on nodes 
demand 

Randomly select 
nodes to start 

routes 

Prioritizes the 
closest nodes to the 

depot for route 

initiation. 

Weighs distance 
and demand, then 

using grid search. 

Exploration 

Prioritizes distant 

nodes initially, 

potentially lead to 

neglecting load 

balancing at the 

outset. 

Focuses on high-

demand nodes, 

may overlook 

proximity. 

Randomness 

enhances 

exploration but 

may result in 

suboptimal route 

formation. 

Emphasizes 

proximity, yet may 

result in an 

ineffective demand 

equilibrium. 

quittable strategy 

takes into account 

both distance and 

demand, 

optimizing each 

element. 

Bias 

Lead to suboptimal 

routes if the distant 

nodes have higher 

demands 

Could lead to less 

efficient routes 

because high 

demand takes 
precedence over 

distance. 

While it minimizes 

bias, random 

selection can result 

in varying 
solutions. 

It may promote 

shorter distances 

while missing a 

more important 
demand 

distribution 

Minimize bias due 

to balanced 

selection. 

Complexity 

Moderately 

complex. 

Moderately 

complex. 

Lower complexity 

because of 

randomness. 

Minimal 

complexity, as it 

depends on 

proximity for node 

selection. 

Increased 

complexity due to 

grid search 

optimization. 

Large 

instances 

performance 

Appropriate for 

scenarios where 

remote nodes 

substantially 

influence routing 

expenses. 

Exhibits optimal 

performance when 

demand is a pivotal 

element in route 

balancing. 

Inconsistent 

performance 

Most appropriate 

for situations when 

closeness to the 

depot is of 

paramount 

importance. 

Perform well 

consistently, 

especially in large 

instances with 

high-varied 

demand and 
distance nodes. 

Route 

optimization 

Concentrates on 

remote nodes, 

potentially 

lowering total 

route length. 

Regulates load 

demand, although 

may increase cost. 

 

Random 

performance yields 

inconsistent 

efficiency. 

prefers shorter 

starting routes but 

may result in an 

uneven load 

distribution. 

offers the ideal 

ratio of reducing 

distance to 

balancing demand. 

 

 
Eqs. (10) and (11) calculate the problem standard 

deviation (square root of variance). 

 

𝜎 = √
1

𝑛
∑ (𝐷𝑖 − 𝜇)2𝑛

𝑖=1                                      (10) 

 

𝜇 =
1

𝑛
∑ 𝐷𝑖𝑛

𝑖=1                                                       (11) 

 

Where 𝜎: Problem standard deviation; n: customers 

number; 𝜇: demand mean; 𝐷𝑖:𝑖𝑡ℎ Customer demand; 
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Recalling that there are two categories of 
insertion procedures in terms of start routes: single 

start route (SSR) and multiple start route (MSR) 

categories[13]. 

At the outset of a SSR algorithm, a single route is 
initialized, with a single node selected using a 

predetermined heuristic rule (such as its index or 

closeness to the depot, for example). Each route in a 
MSR algorithm starts with a different node according 

to a variety of criteria, such as: 

o the distance from the depot (nearest or farthest)  
o prioritizing nodes based on customer demand 

o choosing start nodes randomly 

o Weighted score insertion: by combing both nodes 

proximity and demand.  
Furthermore, by utilizing parallelization scheme, 

parallel improved insertion- with consecutive nodes 

(PII-CN) which is used to send multiple start nodes 
as argument in parallel threads to the worker method 

which by turn initialize multiple start routes by 

choosing consecutive nodes to the passed start node 
as shown in step 2 of the section 3.1.1. This 

implementation is used to avoid bias by starting with 

a certain node. 

Table 5 summarize the main differences between 
some MSR adapted variants [16, 13]. 

Euclidean distances—rounded integer node 

distances—are used in optimal solutions for the three 
primary CVRP datasets [26]. Appendix A Table 1 

demonstrates the solutions obtained and optimal 

value for all benchmark instances. The gap between 

an algorithm’s solution and the literature’s optimal 
solution measures its performance[13]. So, solution 

percentage gap (or solution quality) is calculated 

according to Eq. (12) below. 
 

𝑔𝑎𝑝 =
(𝑠𝑜𝑙𝑜𝑏𝑡−𝑠𝑜𝑙𝑜𝑝𝑡)

𝑠𝑜𝑙𝑜𝑝𝑡
× 100%                            (12) 

 

Where 𝑠𝑜𝑙𝑜𝑏𝑡  is obtained solution for a certain 

instance; 𝑠𝑜𝑙𝑜𝑝𝑡 the best-known solution. 

Appendix A Tables 2 calculates the solution 

quality for all implementations. The overall 

performance of a particular algorithm within a dataset 
can be determined by the mean percentage gap for 

that algorithm over all instances as shown in Eq. (13). 

 

𝑚𝑒𝑎𝑛𝑠𝑒𝑡 =
∑ 𝑔𝑎𝑝𝑖𝑛𝑠𝑖𝑛𝑠∈{𝑠𝑒𝑡} 

𝑠𝑒𝑡_𝑛𝑢𝑚
                               (13) 

 

∀𝑠𝑒𝑡 ∈ {𝐴, 𝐵, 𝑃}; 𝑖𝑛𝑠 is instance within a set; 𝑔𝑎𝑝𝑖𝑛𝑠 

algorithm gap for 𝑖𝑛𝑠;𝑠𝑒𝑡_𝑛𝑢𝑚: number of instances 

in a certain set.   
Table 6 calculates the mean percentage gap for all 

implementations on all sets. 

Table 6. All Implementations’ Mean Percentage gap (%) 

on all sets 

Implementation Set A Set B Set P 

SSR 36.37 37.77 24.78 

MSR-Farthest 46.42 60.28 27.39 

MSR-Highest Demand 27.33 27.47 21.43 

MSR-WSI-GS 20.35 17.1 13.99 

MSR-Random 29.21 28.96 21.59 

MSR-Nearest 35.88 44.67 21.21 

PII-CN 15.38 11.37 9.263 

MI-ITS(k=3) 11.37 5.943 6.967 

MI-ITS(k=5) 11.8 6.3044 6.815 

ICW 3.41 2.68 4.397 

IPH 2.76 2.61 2.49 

 
On Set A, MSR methods outperform SSR because 

of elimination of start node bias. A significant feature 

that improves WSI-GS performance is the  cartesian 
product of demand and distance weights strengths. 

WSI-GS. The algorithm has the lowest mean gap 

across MSR variations at 20.35% because it adapts 
better to non-clustered, dispersed locales. SSR and 

MSR-Farthest struggle without clustering or spatial 

trends. The 36.37% gap reveals SSR’s greedy, rigid 

nature which struggles with diversified input. MI-ITS 
(k=3 and k=5) outperforms PII-CN with 11.37% and 

11.8% mean gaps. Due to lack of clustering, dynamic 

and randomized datasets benefit from iterative node 
insertion search. 

With fewer nodes than Set A but larger demands, 

Set B requires precise starting positions, therefore the 

weighted score and highest demand algorithms 
prioritize starting nodes by demand and distance. Its 

adaptive grid search approach helps WSI-GS achieve 

17.1% mean gap. Geographically restricted clusters 
benefit from weight scoring that balances distance 

and demand. MI-ITS (k=3 and k=5) exceeds PII-CN 

(11.37% gap) with mean gaps of 5.943% and 6.304%. 
and achieves optimal solution in instances (B-n50-k7, 

and B-n52-k7). In clustered contexts, precise node 

insertion enhances solution quality, making iterative 

tournament selection useful. Due to its leaning 
toward geographically adjacent nodes, MSR-nearest 

performs poorest on Set B (44.67% mean gap) in 

complicated, clustered layouts. 
Set P, merits by the following attributes: Diverse 

demands, complex depot location, capacity constraint 

tightness and random nodes selection. So, WSI-GS 
handles mixed scenarios well with a 13.99% mean 

gap and achieves better than optimal solution in 

instance (P-n22-k2). Its grid search optimization 

balances clustered and non-clustered nodes. With 
mean gaps of 6.967% and 6.815%, MI-ITS (k=3 and 

k=5) likewise perform well and achieves better than 

optimal solution on instances (P-n19-k2, P-n20-k2, 
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P-n21-k2 and P-n22-k2). Iterations manages Set P 
instances’ heterogeneity. MSR Random find better 

than optimal solution in instance P-n21-k2 but the 

main issue with randomization is inconsistency.  

PII-CN outperforms all MSR variations 
(including WSI-GS) and SSR, with mean gaps of 

15.38% on Set A, 11.37% on Set B, and 9.263% on 

Set P. Because start node bias is eliminated. MI-ITS 
perform better than PII-CN because of start node bias 

elimination in addition to iterative tournament 

selection mechanism which leads to robust 
performance. PII-CN uses parallelization to test 

many starting nodes at once and select the optimal 

solution. While MI-ITS prioritizes tournament 

selection for iterative node insertion. This method 
uses controlled randomization to find more 

promising solutions. Increasing tournament size (k) 

influences exploration-exploitation balance. A bigger 
tournament size (k = 5) lowers unpredictability and 

emphasizes near-greedy solutions, whereas a smaller 

size (k = 3) stimulates exploration but may miss 
locally optimal solutions. However, because of 

iterative and tournament, we avoid using thread 

pooling in MI-ITS because it may cause thread 

management overhead and synchronization 
difficulties, reducing computing efficiency. 

Improved savings algorithms perform best 

overall, with mean gaps of 2.49% to 4.397% across 
all sets. They prove their initial solution generating 

dominance and academic literature benchmark status. 

WSI-GS and MI-ITS perform well on all datasets 

with considerable strengths particularly in 

complicated structures or randomized inputs, 
sometimes providing optimal or better-than-optimal 

solutions as shown in Figs. 3 to 5. They improve 

CVRP initial solution generation with creative 

methods, although ICW and IPH outperform them. 
They can be deemed as scholarly contributions 

because of the following principal rationales 

1. Insertion algorithms are more adaptable: 
o Insertion-based techniques like MI-ITS enable 

dynamic route construction, improving 

adaptability to non-uniform demand 
distributions, especially in complex instances 

like Set P. 

o MI-ITS enables deeper exploration and better-

than-optimal solutions when the savings-based 
heuristic fails to locate the global optimum. 

o WSI-GS mitigates node selection bias: WSI-GS 

uses weighted scoring functions optimized with 
grid search to avoid bias in starting routes with 

any node. It balances proximity and demand 

better than standard insertion methods, 
producing competitive results and sometimes 

outperforming ideal solutions. 

2. Further exploration than Greedy Saving: These 

techniques provide alternate approaches for 
initializing and constructing routes that mitigate 

the bias associated with savings-based heuristics. 

This illustrates their promise for further 
investigation and enhancement for some cases. 

3. Hybridization Opportunities: Mixing these 

techniques with savings-based methods combines 

their strengths—flexibility and efficiency. 
 

 

 
Figure. 3 Elite Implementations gap on Set A 
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Figure. 4 Elite Implementations gap on Set B 

 
 

 
Figure. 5 Elite Implementations gap on Set P 

 

5. Conclusion, limitations and room for 

improvement 

5.1 Conclusion 

This paper presents two novel algorithms, WSI-

GS and MI-ITS, as innovative methods to tackle the 

challenges associated with generating high-quality 
initial solutions and remain relevant in contexts that 

require variety and flexibility. Both strategies fall 

under the category of multiple start routes MSR, 

designed to address the constraints of conventional 

insertion algorithms. 

The WSI-GS aimed at enhancing the route 
initialization process by utilizing a weighted score 

mechanism. The algorithm is driven by the principles 

of seed customer selection, highlighting the 
significance of meticulously choosing initial nodes to 

direct the insertion process. Through the integration 

of distance and demand priorities into a weighted 

score, along with the application of grid search 
optimization, WSI-GS adeptly harmonizes these 



Received:  October 27, 2024.     Revised: November 29, 2024.                                                                                        744 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.52 

 

elements to produce high-quality initial solutions. 
Additionally, it utilizes the advantages of various 

starting routes as other MSR variants. It improves the 

examination of possible routes while reducing biases 

of SSR techniques, leading to a more thorough and 
fair analysis of the solution space. WSI-GS 

implementation shows superiority over several 

variants of MSR in addition to traditional SSR 
implementation. 

The MI-ITS presents a methodical framework 

aimed at improving solution quality via Iterative 
tournament selection, which provides multiple 

benefits. This method enhances node selection by 

evaluating a varied array of candidate nodes during 

each iteration, thereby reducing the likelihood of 
early convergence to less optimal solutions. It 

improves the exploration phase by iteratively 

selecting nodes through a tournament mechanism, 
effectively balancing the exploration- exploitation 

trade-off. This approach is essential for addressing 

complex vehicle routing problems, as it ensures a 
more solution space comprehensive coverage during 

the search process. The variation in node selection 

enhances the quality of the routes constructed and 

raises the probability of identifying near-optimal or 
globally optimal solutions. Furthermore, MI-ITS 

utilizes the principle of multiple start routes by 

starting routes from various starting nodes. MI-ITS 
implementation shows superiority as compared to 

other several MSR variants including WSI-GS. It 

also outperforms PII-CN algorithm which merits 

with start node bias elimination. 
The numerical analysis indicates both techniques 

do not consistently surpass ICW and IPH; however, 

both methods exhibit considerable potential, 
especially in scenarios necessitating dynamic, 

flexible, and high-quality initial solutions. MI-ITS 

shown exceptional efficacy in managing non-
uniformly dispersed nodes and demand fluctuations, 

whereas WSI-GS provided consistent and 

dependable solutions with reduced computational 

expenses. The findings demonstrate the scholarly 
value of both strategies in cases where savings 

algorithms may not perform optimally.  

MI-ITS performs best of the two methods. The 
following situations favor it:  

1. Cases where Demand Variability is High: 

MI-ITS excels in managing network demand 
imbalances by considering multiple starting nodes 

and dynamically inserting customers based on 

tournament choices. 

2. Uneven Node Distributions: 
Savings-based algorithms may struggle when 

nodes are geographically dispersed and route 

merging is difficult. MI-ITS’s iterative 

tournament selection can balance geographical 
proximity and demand limits to find optimal 

insertion places. benefit: Tournament selection 

iteratively considers local improvements, 

avoiding greedy errors in savings algorithms. 
3. Diversification in complex routing networks: 

By initializes numerous routes using different 

starting nodes and then selects candidates. MSR 
and tournament selection increase the likelihood 

of finding near to or better than optimal solutions 

by extensive exploration. 
4. When high computational resources available: 

The tournament-based selection can increase 

computational load, yet MI-ITS performs well 

with enough power. So, leveraging it with 
parallelization can improve solution quality. 

5. Situations Needing Dynamic Route Construction: 

MI-ITS builds routes repeatedly, considering each 
node’s insertion dynamically, unlike methods that 

build entire route based on available heuristic rule. 

This flexible strategy improves adaptability and 
accommodates last-minute modifications or 

constraint. 

6. Prioritizing Solution Quality over Speed: 

MI-ITS iteratively explores various candidate 
nodes to find high-quality solutions at the cost of 

computing performance. This makes it excellent 

for situations when superior solutions are crucial. 
This is benefiting logistics applications where 

even little changes results in large cost reductions. 

7. Large-Scale Problems with numerous vehicles: 

Multiple vehicle deployments work well with MI-
ITS because it assigns distinct start nodes to 

initialize routes. Tournament-based insertion 

maximizes vehicle use without overloading roads. 
So, better performance can be ensured by the 

ability to provide balance between vehicles 

numbers and workload, when traditional savings 
algorithms may face capacity restrictions. 

Despite its elevated computational expense, the 

parallelization feature offsets this drawback, giving 

MI-ITS an excellent contender for extensive, 
complicated VRP instances where the attainment of 

superior solutions is essential. These algorithms have 

promising VRP potential advancement, according to 
our findings. 

5.2 Limitations 

Despite the encouraging outcomes, both MI-ITS 

and WSI-GS are constrained by specific limitations: 

1. Computation overhead:  
By iterative tournament selection, especially 

for large situations.  



Received:  October 27, 2024.     Revised: November 29, 2024.                                                                                        745 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.52 

 

2. WSI-GS parameter tuning sensitivity:  
Relying on carefully selected grid search 

weights, which may limit its scalability. 

3. Performance shortage in certain instances:  

Both proposals outperform savings-based 
techniques in some cases. This highlights the bias 

caused by node initialization processes. 

4. Absence of Parallelization in MI-ITS:  
Without parallelization, MI-ITS is limited. 

The iterative tournament selection process makes 

it difficult to parallelize without reducing 
algorithm efficiency for large Problems instances. 

5.3 Future work and room for improvements 

1. Considering MI-ITS effective parallelization: 

With maintain its iterative selection 

characteristics [19]. This may entail hybrid 
parallel models or asynchronous processing 

methods to address iterations challenges. 

2. Dynamic parameter modification: 
Adaptive methods to adjust tournament size 

dynamically [26] within MI-ITS could reduce 

computational overhead while maintaining 

solution quality. 
3. Improving scalability: 

Exploring methods to diminish the 

computational complexity of both MI-ITS and 
WSI-GS may enhance the scalability for bigger 

instances. 

4. Hybrid methodologies:  
Combining MI-ITS and WSI-GS with 

savings-based algorithms may produce hybrid 

methodologies that optimize the balance between 

exploration and exploitation. Furthermore, 
utilizing metaheuristic approaches such as 

Simulated Annealing, Tabu Search or other state-

of-the-art swarm intelligence algorithms [27, 28] 
can enhance the algorithms’ capacity to avoid 

local optima [2]. 

5. Enhanced weight optimization in WSI-GS:  
Refining the scoring system by employing 

machine learning or adaptive optimization has the 

potential performance improvement [29, 30]. 

6. Evaluating on more extensive and practical 

scenarios:  

Further investigation should prioritize 

comprehensive evaluations on larger and real-
world datasets, including urban logistics and e-

commerce delivery networks, to determine the 

practical applicability of these algorithms. 
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1 A-n32-k5 2067 1127 1205 1049 939 929 1073 910 857 868 831 786 784 

2 A-n33-k5 1847 983 1020 915 717 833 1014 710 697 698 682 682 661 

3 A-n33-k6 1516 1161 1179 1089 787 893 898 807 784 788 760 736 742 

4 A-n34-k5 1905 1047 914 851 886 1020 959 812 782 788 793 793 778 

5 A-n36-k5 1981 1073 1075 1110 947 1049 1160 878 853 842 824 814 799 

6 A-n37-k5 1578 1045 889 716 796 750 878 783 715 720 690 690 669 

7 A-n37-k6 2036 1247 1314 1171 1163 1219 1199 1138 1094 1073 984 981 949 

8 A-n38-k5 2232 1051 1254 867 946 1127 982 862 814 848 778 757 730 

9 A-n39-k5 2311 1078 1142 1003 1011 1057 1113 969 919 897 893 878 822 

10 A-n39-k6 2366 1133 1213 949 1025 1201 1309 999 910 891 860 856 831 

11 A-n44-k6 2583 1249 1381 1060 1075 1181 1183 1065 1065 1048 991 991 937 

12 A-n45-k6 2793 1315 1517 1147 1297 1250 1434 1129 1101 1106 963 963 944 

13 A-n45-k7 2633 1443 1470 1523 1323 1462 1460 1370 1290 1292 1185 1185 1146 

14 A-n46-k7 2671 1283 1413 1213 1077 1141 1320 1031 974 1002 914 914 914 

15 A-n48-k7 2861 1406 1582 1534 1287 1386 1496 1192 1168 1183 1092 1092 1073 

16 A-n53-k7 3167 1488 1626 1467 1136 1208 1300 1165 1057 1114 1072 1063 1010 

17 A-n54-k7 3463 1503 1699 1472 1387 1590 1453 1319 1321 1326 1195 1195 1167 

18 A-n55-k9 2928 1393 1559 1353 1379 1256 1265 1272 1245 1215 1087 1087 1073 

19 A-n60-k9 3741 1738 1961 1647 1731 1707 2082 1603 1516 1546 1393 1393 1354 

20 A-n61-k9 3294 1473 1655 1299 1373 1484 1403 1216 1159 1171 1037 1037 1034 

21 A-n62-k8 3450 1664 1889 1660 1575 1649 1793 1495 1442 1471 1337 1337 1288 

22 A-n63-k10 3673 1763 2024 1733 1522 1746 1729 1523 1474 1513 1332 1332 1314 

23 A-n63-k9 4125 2026 2349 2093 1903 2104 2253 1829 1903 1929 1656 1656 1616 

24 A-n64-k9 3628 1687 1862 1898 1662 1747 1936 1680 1621 1599 1462 1455 1401 

25 A-n65-k9 3646 1605 1706 1477 1538 1575 1593 1387 1417 1370 1244 1244 1174 

26 A-n69-k9 4162 1638 1612 1386 1328 1507 1624 1299 1291 1305 1211 1211 1159 

27 A-n80-k10 5133 2316 2608 2223 2107 2308 2290 2129 2089 2080 1788 1781 1763 

28 B-n31-k5 1438 818 1100 756 758 930 868 700 680 679 675 674 672 

29 B-n34-k5 1814 1001 1130 842 841 800 1003 804 790 789 800 800 788 

30 B-n35-k5 2672 1209 1273 1265 1006 1094 1311 974 977 980 969 968 955 

31 B-n38-k6 2058 1124 1184 1045 913 957 1038 885 832 858 819 818 805 

32 B-n39-k5 1849 1012 1125 738 737 672 1123 623 550 557 555 555 549 

33 B-n41-k6 2472 1074 1278 1019 928 1001 1176 901 860 855 870 869 829 

34 B-n43-k6 2218 985 991 873 858 900 1068 799 754 756 749 749 742 

35 B-n44-k7 2502 1145 1436 1174 1112 1111 1231 1025 997 1002 970 970 909 

36 B-n45-k5 2594 1136 1097 965 906 1146 1056 828 813 831 754 754 751 

37 B-n45-k6 1773 992 1094 966 856 1011 958 829 784 806 708 708 678 

38 B-n50-k7 2746 1067 1398 1033 819 982 1143 766 741 752 729 729 741 

39 B-n50-k8 2778 1704 1776 1621 1545 1727 1553 1512 1428 1440 1327 1327 1312 
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40 B-n51-k7 3003 1391 1462 1237 1143 1160 1311 1163 1099 1109 1110 1109 1032 

41 B-n52-k7 2941 1075 1217 1025 913 813 1229 772 758 747 746 746 747 

42 B-n56-k7 2807 947 1421 1103 784 909 1124 868 746 750 711 704 707 

43 B-n57-k7 4198 1606 1872 1655 1334 1344 1846 1297 1235 1227 1224 1224 1153 

44 B-n57-k9 3468 1922 2174 1910 1818 2012 1978 1748 1664 1655 1628 1628 1598 

45 B-n63-k10 4076 2243 2385 1818 1751 2073 2058 1658 1603 1598 1572 1572 1496 

46 B-n64-k9 2889 1197 1653 1060 1015 1232 1368 1000 936 931 898 898 861 

47 B-n66-k9 3278 1652 1894 1578 1502 1636 1847 1434 1476 1474 1403 1402 1316 

48 B-n67-k10 3468 1564 1932 1239 1292 1692 1694 1208 1127 1084 1072 1071 1032 

49 B-n68-k9 4108 1741 1969 1574 1465 1532 1691 1461 1383 1399 1296 1296 1272 

50 B-n78-k10 4265 1642 2144 1557 1624 1925 1900 1466 1355 1363 1230 1230 1221 

51 P-n101-k4 2107 935 796 896 800 858 854 767 702 707 700 698 681 

52 P-n16-k8 634 461 550 453 471 535 466 453 453 453 475 474 450 

53 P-n19-k2 496 229 248 217 231 216 248 217 206 206 232 215 212 

54 P-n20-k2 490 253 257 230 241 239 263 214 211 211 227 217 216 

55 P-n21-k2 466 253 259 278 215 208 250 208 208 208 230 220 211 

56 P-n22-k2 488 255 282 272 212 268 251 212 212 212 232 227 216 

57 P-n22-k8 757 636 780 651 727 703 720 685 655 666 585 585 603 

58 P-n23-k8 721 728 628 587 571 629 625 588 571 568 531 531 529 

59 P-n40-k5 1097 601 555 585 538 601 559 491 472 476 493 487 458 

60 P-n45-k5 1293 754 580 666 575 635 607 518 521 528 546 519 510 

61 P-n50-k10 1450 954 948 853 837 846 881 777 788 804 719 719 696 

62 P-n50-k7 1362 670 713 627 629 658 698 612 587 591 579 559 554 

63 P-n50-k8 1339 747 821 770 762 813 752 727 700 698 647 639 631 

64 P-n51-k10 1469 922 925 961 893 971 877 887 863 845 767 767 741 

65 P-n55-k10 1561 833 930 863 783 895 853 765 760 745 714 703 694 

66 P-n55-k15 1617 1226 1294 1258 1089 1181 1109 1086 1064 1061 968 968 989 

67 P-n55-k7 1446 727 734 687 662 642 679 618 592 595 602 579 568 

68 P-n55-k8 1391 740 741 699 642 770 678 633 608 608 595 576 588 

69 P-n60-k10 1741 884 1047 950 883 939 923 830 864 856 760 760 744 

70 P-n60-k15 1870 1237 1428 1137 1158 1192 1219 1115 1106 1108 992 990 968 

71 P-n65-k10 1866 995 1054 1031 898 954 973 900 906 884 810 810 792 

72 P-n70-k10 1983 1037 1068 1056 979 1066 1018 937 960 966 866 849 827 

73 P-n76-k4 1988 781 754 761 725 748 850 659 653 621 664 647 593 

74 P-n76-k5 2070 889 806 803 741 812 807 746 676 689 682 682 627 
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1 A-n32-k5 163.65 43.75 53.7 33.8 19.77 18.49 36.86 16.07 9.31 10.71 5.99 0.26 

2 A-n33-k5 179.43 48.71 54.31 38.43 8.47 26.02 53.4 7.41 5.45 5.6 3.18 3.18 

3 A-n33-k6 104.31 56.47 58.89 46.77 6.06 20.35 21.02 8.76 5.66 6.2 2.43 

-

0.81 

4 A-n34-k5 144.86 34.58 17.48 9.38 13.88 31.11 23.26 4.37 0.51 1.29 1.93 1.93 

5 A-n36-k5 147.93 34.29 34.54 38.92 18.52 31.29 45.18 9.89 6.76 5.38 3.13 1.88 

6 A-n37-k5 135.87 56.2 32.88 7.03 18.98 12.11 31.24 17.04 6.88 7.62 3.14 3.14 

7 A-n37-k6 114.54 31.4 38.46 23.39 22.55 28.45 26.34 19.92 15.28 13.07 3.69 3.37 

8 A-n38-k5 205.75 43.97 71.78 18.77 29.59 54.38 34.52 18.08 11.51 16.16 6.58 3.7 
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9 A-n39-k5 181.14 31.14 38.93 22.02 22.99 28.59 35.4 17.88 11.8 9.12 8.64 6.81 

10 A-n39-k6 184.72 36.34 45.97 14.2 23.35 44.52 57.52 20.22 9.51 7.22 3.49 3.01 

11 A-n44-k6 175.67 33.3 47.39 13.13 14.73 26.04 26.25 13.66 13.66 11.85 5.76 5.76 

12 A-n45-k6 195.87 39.3 60.7 21.5 37.39 32.42 51.91 19.6 16.63 17.16 2.01 2.01 

13 A-n45-k7 129.76 25.92 28.27 32.9 15.45 27.57 27.4 19.55 12.57 12.74 3.4 3.4 

14 A-n46-k7 192.23 40.37 54.6 32.71 17.83 24.84 44.42 12.8 6.56 9.63 0 0 

15 A-n48-k7 166.64 31.03 47.44 42.96 19.94 29.17 39.42 11.09 8.85 10.25 1.77 1.77 

16 A-n53-k7 213.56 47.33 60.99 45.25 12.48 19.6 28.71 15.35 4.65 10.3 6.14 5.25 

17 A-n54-k7 196.74 28.79 45.59 26.14 18.85 36.25 24.51 13.02 13.2 13.62 2.4 2.4 

18 A-n55-k9 172.88 29.82 45.29 26.1 28.52 17.05 17.89 18.55 16.03 13.23 1.3 1.3 

19 A-n60-k9 176.29 28.36 44.83 21.64 27.84 26.07 53.77 18.39 11.96 14.18 2.88 2.88 

20 A-n61-k9 218.57 42.46 60.06 25.63 32.79 43.52 35.69 17.6 12.09 13.25 0.29 0.29 

21 A-n62-k8 167.86 29.19 46.66 28.88 22.28 28.03 39.21 16.07 11.96 14.21 3.8 3.8 

22 A-n63-k10 179.53 34.17 54.03 31.89 15.83 32.88 31.58 15.91 12.18 15.14 1.37 1.37 

23 A-n63-k9 155.26 25.37 45.36 29.52 17.76 30.2 39.42 13.18 17.76 19.37 2.48 2.48 

24 A-n64-k9 158.96 20.41 32.91 35.47 18.63 24.7 38.19 19.91 15.7 14.13 4.35 3.85 

25 A-n65-k9 210.56 36.71 45.32 25.81 31.01 34.16 35.69 18.14 20.7 16.7 5.96 5.96 

26 A-n69-k9 259.1 41.33 39.09 19.59 14.58 30.03 40.12 12.08 11.39 12.6 4.49 4.49 

27 A-n80-k10 191.15 31.37 47.93 26.09 19.51 30.91 29.89 20.76 18.49 17.98 1.42 1.02 

28 B-n31-k5 113.99 21.73 63.69 12.5 12.8 38.39 29.17 4.17 1.19 1.04 0.45 0.3 

29 B-n34-k5 130.2 27.03 43.4 6.85 6.73 1.52 27.28 2.03 0.25 0.13 1.52 1.52 

30 B-n35-k5 179.79 26.6 33.3 32.46 5.34 14.55 37.28 1.99 2.3 2.62 1.47 1.36 

31 B-n38-k6 155.65 39.63 47.08 29.81 13.42 18.88 28.94 9.94 3.35 6.58 1.74 1.61 

32 B-n39-k5 236.79 84.34 104.9 34.43 34.24 22.4 104.6 13.48 0.18 1.46 1.09 1.09 

33 B-n41-k6 198.19 29.55 54.16 22.92 11.94 20.75 41.86 8.69 3.74 3.14 4.95 4.83 

34 B-n43-k6 198.92 32.75 33.56 17.65 15.63 21.29 43.94 7.68 1.62 1.89 0.94 0.94 

35 B-n44-k7 175.25 25.96 57.98 29.15 22.33 22.22 35.42 12.76 9.68 10.23 6.71 6.71 

36 B-n45-k5 245.41 51.26 46.07 28.5 20.64 52.6 40.61 10.25 8.26 10.65 0.4 0.4 

37 B-n45-k6 161.5 46.31 61.36 42.48 26.25 49.12 41.3 22.27 15.63 18.88 4.42 4.42 

38 B-n50-k7 270.58 43.99 88.66 39.41 10.53 32.52 54.25 3.37 0 1.48 -1.6 

-

1.62 

39 B-n50-k8 111.74 29.88 35.37 23.55 17.76 31.63 18.37 15.24 8.84 9.76 1.14 1.14 

40 B-n51-k7 190.99 34.79 41.67 19.86 10.76 12.4 27.03 12.69 6.49 7.46 7.56 7.46 

41 B-n52-k7 293.71 43.91 62.92 37.22 22.22 8.84 64.52 3.35 1.47 0 -0.1 

-

0.13 

42 B-n56-k7 297.03 33.95 101 56.01 10.89 28.57 58.98 22.77 5.52 6.08 0.57 
-

0.42 

43 B-n57-k7 264.09 39.29 62.36 43.54 15.7 16.57 60.1 12.49 7.11 6.42 6.16 6.16 

44 B-n57-k9 117.02 20.28 36.05 19.52 13.77 25.91 23.78 9.39 4.13 3.57 1.88 1.88 

45 B-n63-k10 172.46 49.93 59.43 21.52 17.05 38.57 37.57 10.83 7.15 6.82 5.08 5.08 

46 B-n64-k9 235.54 39.02 91.99 23.11 17.89 43.09 58.89 16.14 8.71 8.13 4.3 4.3 

47 B-n66-k9 149.09 25.53 43.92 19.91 14.13 24.32 40.35 8.97 12.16 12.01 6.61 6.53 

48 B-n67-k10 236.05 51.55 87.21 20.06 25.19 63.95 64.15 17.05 9.21 5.04 3.88 3.78 

49 B-n68-k9 222.96 36.87 54.8 23.74 15.17 20.44 32.94 14.86 8.73 9.98 1.89 1.89 

50 B-n78-k10 249.3 34.48 75.59 27.52 33.01 57.66 55.61 20.07 10.97 11.63 0.74 0.74 

51 P-n101-k4 209.4 37.3 16.89 31.57 17.47 25.99 25.4 12.63 3.08 3.82 2.79 2.5 

52 P-n16-k8 40.89 2.44 22.22 0.67 4.67 18.89 3.56 0.67 0.67 0.67 5.56 5.33 

53 P-n19-k2 133.96 8.02 16.98 2.36 8.96 1.89 16.98 2.36 -2.83 -2.83 9.43 1.42 

54 P-n20-k2 126.85 17.13 18.98 6.48 11.57 10.65 21.76 -0.93 -2.31 -2.31 5.09 0.46 

55 P-n21-k2 120.85 19.91 22.75 31.75 1.9 -1.42 18.48 -1.42 -1.42 -1.42 9 4.27 

56 P-n22-k2 125.93 18.06 30.56 25.93 -1.85 24.07 16.2 -1.85 -1.85 -1.85 7.41 5.09 

57 P-n22-k8 25.54 5.47 29.35 7.96 20.56 16.58 19.4 13.6 8.62 10.45 -3 

-

2.99 

58 P-n23-k8 36.29 37.62 18.71 10.96 7.94 18.9 18.15 11.15 7.94 7.37 0.38 0.38 

59 P-n40-k5 139.52 31.22 21.18 27.73 17.47 31.22 22.05 7.21 3.06 3.93 7.64 6.33 

60 P-n45-k5 153.53 47.84 13.73 30.59 12.75 24.51 19.02 1.57 2.16 3.53 7.06 1.76 
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61 P-n50-k10 108.33 37.07 36.21 22.56 20.26 21.55 26.58 11.64 13.22 15.52 3.3 3.3 

62 P-n50-k7 145.85 20.94 28.7 13.18 13.54 18.77 25.99 10.47 5.96 6.68 4.51 0.9 

63 P-n50-k8 112.2 18.38 30.11 22.03 20.76 28.84 19.18 15.21 10.94 10.62 2.54 1.27 

64 P-n51-k10 98.25 24.43 24.83 29.69 20.51 31.04 18.35 19.7 16.46 14.04 3.51 3.51 

65 P-n55-k10 124.93 20.03 34.01 24.35 12.82 28.96 22.91 10.23 9.51 7.35 2.88 1.3 

66 P-n55-k15 63.5 23.96 30.84 27.2 10.11 19.41 12.13 9.81 7.58 7.28 -2.1 

-

2.12 

67 P-n55-k7 154.58 27.99 29.23 20.95 16.55 13.03 19.54 8.8 4.23 4.75 5.99 1.94 

68 P-n55-k8 136.56 25.85 26.02 18.88 9.18 30.95 15.31 7.65 3.4 3.4 1.19 

-

2.04 

69 P-n60-k10 134.01 18.82 40.73 27.69 18.68 26.21 24.06 11.56 16.13 15.05 2.15 2.15 

70 P-n60-k15 93.18 27.79 47.52 17.46 19.63 23.14 25.93 15.19 14.26 14.46 2.48 2.27 

71 P-n65-k10 135.61 25.63 33.08 30.18 13.38 20.45 22.85 13.64 14.39 11.62 2.27 2.27 

72 P-n70-k10 139.78 25.39 29.14 27.69 18.38 28.9 23.1 13.3 16.08 16.81 4.72 2.66 

73 P-n76-k4 235.24 31.7 27.15 28.33 22.26 26.14 43.34 11.13 10.12 4.72 12 9.11 

74 P-n76-k5 230.14 41.79 28.55 28.07 18.18 29.51 28.71 18.98 7.81 9.89 8.77 8.77 

 
 

 

Appendix B 

Common Parameter list 

depot Depot’s index capacity Vehicle Maximum capacity 

demands Customers’ demand list dm Distance matrix among nodes 

 

 

Algorithm 1: WSI-GS 

Method: WSI 

Input: (depot, demands, capacity, dm, distance_weight, demand_weight) 

    distance_weight: Distance from depot weight in the weighted score 

    demand_weight: Demand weight in the weighted score 
 

Output: 

    routes: routes spanning all nodes without exceeding capacity 

Algorithm 
1. Variable Initialization: 

o num_customers = demands’ length; routes = empty list to store routes (solution); visited = Set {depot} 

to track node visits; num_vehicles = ceil(sum(demands) / capacity) 
2. Calculate weighted scores for Nodes 

o For each node I in [from 1 to (num_customers_1)]: 

 Score(i) = dm[depot][i] * distance_weight +demand_weight * demands[i] 

o Choose (num_vehicles) nodes with highest scores in chosen_nodes 

3. Initialize Routes with Highest_score Nodes 

o For each node i in chosen_nodes 

 Add i to visited. 
 Create a route [depot,i,depot] and add it to routes. 

4. Insert Nodes Sequentially 

o While the number of visited_nodes < num_customers: 
Set best_cost_increase = infinity. 

Set best_node, best_position, and best_route = None. 

5. Find best Node for insertion: 

o For each unvisited node j (from 1 to (num_customers-1)): 
For each r in routes: 

If adding j to the route doesn’t exceed the vehicle capacity: 
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For each (pos) possible insertion position in r: 
Calculate cost_increase: 

dm[pos-1][j]+dm[j][pos+1] -dm[pos-1][pos+1] 

If cost_increase < best_cost_increase: 

Update best_cost_increase, best_node, best_position, and best_route. 
6. Insert the node or start a new route 

o If best_node exists: 

Insert best_node in best_position into best_route. 
Append best_node to visited. 

o Else: 

Start a new route with unvisited node that suitable the capacity: 
[depot, j,depot] for node j 

Append it to routes and mark it as visited 

7. Return the Final Routes: 

o Return routes 

 

Method: GS 

Input: (depot, demands, capacity, dm, distance_weight_options, demand_weight_options) 
    distance_weight_options: Possible Weights for distance_weight 

    demand_weight_options: possible weights for demand_weight 

Output: 

    Best_sol: best routes with minimum cost. 
    Best_weight_combination: Optimal tuple of distance and demand weights 

Grid Search Optimization Method 

1. Initialize results variables 

o best_weight_combination = None; best_cost = Infinity; best_sol = None. 

2. Perform Grid search: 

o For each pair of (distance_weight, demand_weight) from the Cartesian product of 
distance_weight_options and demand_weight_options: 

Call WSI using (depot,demands,capacity,dm,distance_weight and demand_weight) 

Store the resulting routes. 

3. Evaluate routes cost: 

o Calculate total_cost for the generated routes in total_cost 

4. Update the best solution 

o If total_cost < best_cost: 
Update best_cost = total_cost 

Update best_weight_combination = Tuple (distance_weight, demand_weight) 

Update best_sol= routes 
5. Return the best solution: 

o Return best_sol 

 
 
Algorithm2: MI-ITS 

Method: Calling Method 

Input: (depot, demands, capacity, dm, vehicles_num, max_iteration, k) 

o vehicles_num: Vehicles Number 

o max_iteration: Maximum iterations 

o k: tournament sample size 
Output: 

o  best_solution: lowest cost solution from returning solutions from worker method 

Algorithm 
1. Variable Initialization: 

o solutions =  empty list to store worker returning solutions. 

2. Call Worker Method by attempting all nodes as first route start node 
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o For each node [from 1 to (num_customers_1)]: 
Call worker method (node, depot, demands, capacity, dm, vehicles_num, max_iteration, k). 

o Add the returned solution to solutions. 

3. Filter out invalid solutions from solutions 

o Discard empty and any solution with greater than number of available vehcles 
4. Return best Solution 

o Select the lowest code solution from solutions 

Best_solution = min(solutions, key=solution cost). 
  

Method: Caller Method 

Input: (start_node, depot, demands, capacity, dm, vehicles_num, max_iteration, k) 

o start_node: start node index to be the start node for the first route in the solution 
Output: 

o  routes: Solution 

1. Variables Initialization: 

o num_customers = demands’ length; routes = empty list to store routes (solution); append [depot, 
start_node, depot] to routes; visited = Set {depot,start_node} to track node visits; num_vehicles = 

ceil(sum(demands) / capacity); chosen_nodes: Use modulo logic to choose consecutive nodes to the 

start_node according to vehicles number. 
o Initialize additional routes  

for node in chosen_nodes: 

append [depot,node,depot] to routes list. 
o Create an solutions_data as empty dictionary for solutions data. 

2. Extensive investigation of the search space 

o Choose different candidates nodes for each run 

For each iteration in range(max_iteration): 
Reset routes with solely initial nodes. 

Reset visited nodes to only include depot and starting nodes. 

For each node not in visited: 
Determine all candidate nodes in visited 

Calculate best cost increase for each candidate node 

Use tournament selection to select best_node from a random sample from candidate 
nodes 

Insert best_node in best position in best route 

best_route=None; best_position=None; best_cost_increase= infinity; 

for r in routes: 
for position in r positions: 

calculate cheapest_insertion_cost cost_increase 

if cost_increase < best_cost_increase: 
best_cost_increase = cost_increase; best_position= position; 

best_route = r 

insert best_node into r in best_position 

store the iteration solution and cost in solutions_data 
3. Return the best_solution from all iterations solution 

o Best_solution=Min(solutions_data, key=solution cost) 

 

Method: Tournament 

Input: 

o Candidates: nodes indexes with their best_cost_increase 

o k: tournament size: random sample 

output: 

o best_node: lowest best_cost_increase node index 

1. check the size of the sample 

o check if the number of candidates is small 
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if candidates_number < k: 
set k= candidates_number 

2. random selection: sample =choose k candidates  

3. select best candidate 

o return best_node = min(sample, k=best_cost_increase) 
 


