
Received: October 27, 2024. Revised: November 29, 2024. 733

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

Hybrid Strategies for CVRP Initial Solution: Leveraging Weighted Score

Insertion with Grid Search and Multiple Insertion with Iterative Tournament

Abbas G. Hafedh
1
* Hamid M. Hasan

1

1Control and Systems Engineering Department, University of Technology, Baghdad, Iraq

* Corresponding author’s Email: cse.22.09@grad.uotechnology.edu.iq

Abstract: This paper presents two novel strategies for solving the Capacitated Vehicle Routing Problem (CVRP):

Weighted Score Insertion with Grid Search (WSI-GS) and Multiple Insertion with Iterative Tournament Selection (MI-

ITS). The novelty of WSI-GS lies in its weighted demand-distance heuristic which uses balancing customer demand

and proximity to the depot for node insertion, refined by systematic parameter optimization using a grid search. MI-

ITS novelty is integration of iterative tournament selection to enhance solution diversity by a balance between

exploration and exploitation in node insertion. This improves adaptability to various problem settings. Despite

improved savings-based algorithms like Clarke-Wright and Parker-Holmes often showing superior overall

performance, proposed methods outperformed in several Augerat benchmark instances, reaching optimal or better-

than optimal (WSI-GS: P-n22-k2; MI-ITS: B-n50-k7, B-n52-k7, P-n19-k2, P-n20-k2, P-n21-k2, and P-n22-k2). The

complementary characteristics of WSI-GS and MI-ITS position them as viable candidates for future hybrid
frameworks, providing improved robustness and exploration in CVRP solutions.

Keywords: Cheapest insertion, Demand-distance balance, Grid search, Single and multiple start route, Thread

parallelization, Iterative improvement, Tournament selection, Heuristics rules insertion.

1. Introduction

There are many variants of Vehicle Routing

Problems (VRP) according to the constraints

considered, and CVRP (Capacitated VRP) is deemed
the core of these variants because it handles the base

presumed constraint which is the vehicle capacity

employed for distribution from/to the depot(s)

to/from a customer(s) [1]. So, there are many studies
have poured light on this literature in recent years [2].

The aim of CVRP is to identify the best paths for

delivery or collection routes across all the nodes of
the problem being solved while taking care of

homogeneous vehicles capacity to be assigned for

each path. Because of its wide search space, CVRP is
considered Non-polynomial-hard optimization

problem [1]. So, its complexity arises as the number

of nodes is increased, therefore there is no known

single algorithm can be employed to solve all
problems [3, 4]. There is a focus on CVRP literature

as main part of operation researches nowadays

especially as emerging of new technologies in image

processing [5, 6] and IoT technologies [7-9] to utilize
these techniques to strength CVRP problems.

There are six methods categories used to solve

CVRPs [10]. Because of exact algorithms complexity
and computation intensity, many heuristics methods

have been developed to solve CVRPs [11]. The most

important category is heuristics (pure and hybrid)
because of its simplicity, and consistency in such way

it can be considered as an entry to other method

categories by generating initial solutions. Among

heuristic category methods, constructive heuristics
(like saving, nearest neighbour, cheapest insertion,

and sweep algorithms) which build routes

sequentially or in parallel way to extend routes by
greedily adding unrouted customers approve their

efficiency for rapid feasible initial solution

generation in addition to be considered preferable
choice for projects that require fast, high-quality

solutions with little computational overhead because

its balance with solution quality [12].

Received: October 27, 2024. Revised: November 29, 2024. 734

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

This study bases on Multiple Start Route
Cheapest Insertion Heuristic (MSR-CIH) [13]

concept to optimize it with grid search and iterative

tournament selection. This paper’s primary

contributions can be summarized as follows:
1 Leveraging MSR-CIH with grid-search

optimization to ensure balance between two

heuristics metrics (demand and distance).
2 Hybridizing MSR-CIH with iterative

tournament selection to cover most of the

search space by enhancement in exploration
and exploitation.

3 Compare the performance of the developed

techniques with recent heuristics algorithms.

4 Analysis the complexity of developed
algorithms to highlight the parts that is needed

to be reviewed to optimize the results and

computation time.
The rest of this paper is presented as follows. First,

formulation and related works of CVRPs are

demonstrated in section 2. Then, detailing the of
proposed techniques in section 3 followed by

performance and analysis of the results in section 4.

At section 5, the conclusion and room for

improvements are presented.

2. Formulating and related work

2.1 CVRP formulating

Despite that CVRP formulation has been widely

addressed in previous works [14][10], we revisit

formulation to ensure readability and consistency
across the paper.

Objective Functions:
The minimization of total cost (overall paths

distance, transportation time or any other interesting

factors according to the customers’ requirements)

while ensuring visiting all customers (Eq. (1)).

Constraints:

CVRP are subjected to the following constraints:
1. Each customer is served only once by one

vehicle (Eq. (2)).

2. Each vehicle can leave or visit only one
customer at time (Eq. (3-a) and Eq. (3-b)

respectively). This ensures all routes start

from and end at the depot.

3. All vehicles leave the customers after visiting
them except the depot (Eq. (4)). This ensure

no vehicle stay away from the depot.

Table 1. Notation list

Symbol Description

The indices and sets

𝑛 Customers Number

p Vehicles number

𝑉 Node set, where 𝑣0 is the depot and {𝑣1, 𝑣2. . . , 𝑛} are the customers

𝑖, 𝑗 Subscripts of the customers, 𝑖, 𝑗 = 1,2, . . . , 𝑛

𝑘 Subscript of the vehicle 𝑘 = 1,2, . . , 𝑝; 𝑝 number of vehicles

𝐴 𝐴 = {(𝑣𝑖 , 𝑣𝑗): 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉}; is arcs (paths) set linking nodes i and j

Parameters

𝐷𝑖 Customer i demand

𝑑𝑖𝑗 Distance between customers ,i j

Q
 Capacity of the vehicles

Decision Variable

𝑥𝑖𝑗𝑘

Decision binary value: 𝑥𝑖𝑗𝑘 = {
1 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑎𝑟𝑐 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗 𝑑𝑟𝑖𝑣𝑒𝑛 𝑏𝑦 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑥𝑖𝑗𝑘 ∈ {0,1} ∀𝑘 ∈ {1, . . . , 𝑝}, 𝑖, 𝑗 ∈ {1,...,𝑛}

Note: There is no travel from a node to itself

𝑥𝑖𝑖𝑘 = 0 ∀𝑘 ∈ {1, . . . , 𝑝},∀𝑖 ∈ {1,...,𝑛}

𝑦𝑖𝑘 Decision binary variable: 𝑦𝑖𝑘 = {
1 𝑖𝑓 vehicle 𝑘 visits customer 𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑦𝑖𝑘 ∈ {0,1} ∀𝑘 ∈ {1, . . . , 𝑝}, 𝑖 ∈ {1,…,𝑛}

Received: October 27, 2024. Revised: November 29, 2024. 735

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

(a) (b)

Figure. 1 Cheapest Insertion Example: (a) before

insertion and (b) after insertion

4. The vehicles load shall not exceed the vehicle

capacity (Eq. (5)).

5. The depot has demand equals to zero.
Table 1 list the notations used to solve CVRP

according to the above definition.

So, the minimization of objective function can be
expressed by the following equation:

𝑀𝑖𝑛 ∑ ∑ ∑ 𝑑𝑖𝑗𝑘𝑥𝑖𝑗𝑘
𝑛
𝑗=0

𝑛
𝑖=0

𝑝
𝑘=1 (1)

Subject to the following constraints:

∑ 𝑦𝑖𝑘
𝑝
𝑘=1 = 1 ∀ 𝑖 ∈ {1, . . , 𝑛} (2)

∑ 𝑥𝑖0𝑘

𝑛
𝑖=1 = 1 ∀𝑘 ∈ {1 … 𝑝} (3-a)

∑ 𝑥0𝑗𝑘

𝑛
𝑗=1 = 1 ∀𝑘 𝑖𝑛 {1, … , 𝑝} (3-b)

∑ 𝑥𝑖𝑗𝑘

𝑛
𝑖=1 = ∑ 𝑥𝑗𝑖𝑘

𝑛
𝑖=1 . ∀𝑗 {1, . . 𝑛}; 𝑘 ∈

{1, . . 𝑝} (4)

∑ Di𝑦𝑖𝑘

𝑛
𝑖=1 ≤ 𝑄 ∀𝑘 ∈ {1, … , 𝑝} (5)

2.2 Related work

The (Cheapest Insertion Heuristic) CIH is
constructed initially by a subtour composed from a

single customer connected to depot, then iteratively

inserting other customers in the route in the position

that cause least cost increase until no more customers
can be added due to the capacity violation. This

process is repeated until all customers are included in

the feasible solution routes [15]. For example,
consider Fig. 1 in which there is two-way-arc

between two nodes (i, and j) (a) and a need to insert

the k node in this arc, then Eq. (6) is used to calculate
the cost increase resulting from such insertion [15]:

𝑐𝑜𝑠𝑡_𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 𝑐𝑖𝑘 + 𝑐𝑘𝑗 − 𝑐𝑖𝑗 (6)

Where 𝑐𝑥𝑦 is the Euclidean distance between any

node 𝑥 and node 𝑦.

CIH has some drawbacks in spite of its
effectiveness and simplicity. One of the main

limitations is its greediness which may lead to

suboptimal solutions particularly in complex

instances with irregular customers geographic
distribution, wide-varied demands and complex

constraints. The heuristic result will depend mainly

on the sequence of nodes insertion into the routes.
Second matter, selection of starting routes has

significant impact on the final solution. So, requires

careful consideration [13]. Furthermore, despite CIH
has good efficiency in small to middle-sized

problems, its efficiency declines as the problem size

increases because heuristic does not explore the

whole solution space structure beyond the direct
neighbourhood of current route then falling in

potential local optima especially in large and

complex instances [16].
Several improvements and modifications to CIH

have been developed in the literature to address the

above limitations to make it useful tool for solving
complex and large-scale VRPs. One approach

involved randomness in insertion process. This to

introduce some stochasticity which enhances

exploration particularly in complex instances [17].
Hybridizing CIH efficient initial solution generation

with metaheuristic optimization algorithms gives

significant improvement in terms of travelled
distance, and number of vehicles used by utilizing

advanced search capabilities of such algorithms

especially in large-scale problems [18, 1]. Several

techniques proposed dynamically adapted versions

of insertion criteria based on the problem instances

characteristics such as current route status, customers

demand distribution and vehicle capacity to be
responsive to complex environments [1]. Another

improvement is involving machine learning

supervised learning techniques to control the
insertion process by training models on historical

CVRPs [19]. Furthermore, integrating

reinforcement learning to improve CIH

performance by learning from responses delivered
during the optimization process thereby adapting its

insertion policy based on previous decisions. In

advanced iterations, CIH becomes more effective at
determining most promising regions that avoid local

optima [20] A significant improvement is using of

parallel-processing techniques so multiple insertion
processes occur simultaneously to accelerate CIH

and drastically reduce computation time of extensive

exploration of the solution space [16].

In addition to previously discussed improvements,
several other enhancements have been proposed to

override CIH limitations and extend its capability in

solving complex CVRP scenarios:

Received: October 27, 2024. Revised: November 29, 2024. 736

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

Table 2. Improvements techniques

Modification Insight Strengths Weaknesses

Hybrid with

Metaheuristics [13, 18]

Combines CIH with global

search techniques.

Enhancing the search space

exploration and escaping local

optima.

Increase computational

complexity and require careful

tuning for parameters.

Adaptive CIH [15]

Dynamically adjust insertion

criteria based on problem

characteristics.

Improve robustness and raise

flexibility.

Different scenarios require

different adaption strategies

thereby suitable strategy
selection complexity

Learning-based CIH

[17]

Using ML techniques to guide

the insertion process based on

historical data

Learns from past data to

improve decision making.

Requires large datasets and

extensive training with

potential overfitting risk.

Parallel Processing

[18]

Simultaneous insertion process

utilizing parallel computing

techniques.

Reduce computation

dramatically, modify CIH

viable for complex problems.

Implementation complexity

and potential synchronization

issues.

Clustering techniques

[21]

Pre-processing by grouping

customers.
Reduce problem complexity

Effectiveness depends on the

clustering algorithm.

Multi-objective

Optimization [15, 19]

Balance multiple objectives

during insertion.

Solutions meet diverse real-

world requirements

Balancing complexity and

tuning weights appropriately.

Iterative Refinement

[16]

Refine solution through

multiple runs, improve route

each time.

Allows progressive

improvement of solution

Time-consuming and may

require iterations to achieve

significant improvements.

Randomized Insertion

[17]

Introduce randomness to

explore a wider search space

Enhance diversity and reduce

the risk of getting stuck in local

optima.

Potential inconsistent results

so require multiple runs to

ensure robustness.

Table 3. Summary of Single and Multiple Start Route Categories

 SSR-CIH MSR-CIH

Initialize Establishes a route with a singular starting node.

Initiates several routes by picking various starting

nodes based on parameters such as index, distance,

demand, randomness, weighted score, and

proximity [13].

Starting Node

flexibility
Restricted to the selection of a single node.

Exhibits greater flexibility by initiating several

routes [13].

Risk of Inefficient
routes

Increased risk resulting from restricted
exploration of node combinations.

Reduced risk resulting from the diversity of initial

nodes and selection methodologies, facilitating
enhanced exploration of possible routes [15, 16].

Complexity Reduced computational complexity. Increased computational complexity [13].

Large instance

performance

May exhibit suboptimal performance due to the

exploration of a limited number of node

combinations.

More suitable for larger instances, as exploration

and results in more equitable routes [13].

Bias Susceptible to bias.
Mitigates bias by examining various criteria for

selecting initial nodes [13].

Clustering Techniques:

Grouping customers into smaller, more

manageable units before applying CIH can

dramatically improve heuristic performance.
Clustering itself depends on various criteria such as

customers distribution or customers’ demands to

simplify and strengthen the insertion process [21].

Multi-objective optimization:

In reality CVRP application, the objective
function is not solely minimizing the distance, but to

balance multiple objectives such as balancing vehicle

loads or environmental impact. So multi-objective

extension of CIH involves these additional criteria

into the insertion process to meet the requirements of
the problem by assigning dynamic weights during the

insertion process [19].

Iterative Refinement:

Where the heuristic is applied multiple times,

make adjustments to the insertion process or by re-
evaluating the insertion order each time. This

Received: October 27, 2024. Revised: November 29, 2024. 737

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

approach iteratively improves the solution quality
[16].

Table 2 summarizes these

improvements(modifications). Among these

improvements, hybridization with metaheuristics
algorithms gained attention of most scholars in

CVRP literature in recent two decades [2, 11]

because of the promising results. Because of new
emerging of new novel metaheuristic algorithms,

there is a tendency to adapt such algorithms in

solving CVRP complex problems because of the
modern techniques employed in their phases such as

guided searches and arithmetic crossover [22],

splitting the swarm into two equal-sized groups to

vary the search process and intensify sub-swarms
[23] or employing three references in exploring

search space [24] after considering converting some

of their functionalities to be compatible with
permutation-based problems like VRP.

3. Methodology

Traditional sequential insertion iteratively adds
nodes to increasing routes based on short-sight

metrics like least cost increase. This greedy strategy

provides fast and simple solutions, but it is often
caught in local optima because it lacks the global

perspective to evaluate the early choice influence on

solution quality. Furthermore, the heuristic nature of
starting with a certain node based on their index,

demand, or distance from the depot introduce a bias

in the construction of the solution which significantly

affects the resulting routes and lead to suboptimal
solution, while other may produce more efficient

solutions. To overcome these limitations, this paper

introduced two MSR-CIH techniques. The key
differences between single start route CIH (SSR-

CIH) and MSR-CIH are summarized in Table 3.

3.1 Weighted sequential insertion with grid search

optimization (WSI-GS)

WSI-GS is motivated by the principles of seed
customer selection [16], highlighting the significance

of judiciously choosing initial nodes to direct the

insertion process. Additionally, the algorithm utilizes
the advantages of multiple starting routes [16].

This technique is proposed to overcome the bias

resulting from choosing starting nodes based on

arbitrary metric such as proximity to depot, demand
or customer index, so it depends mainly on assigning

certain weights parameters for both demand and

distance then calculating score as shown in Eq. (7).
This calculation introduces a degree of balance

optimization by reduce the travel distance while

maximize vehicle capacity utilization. By letting

users control weights, WSI-GS is more versatile than
purely demand- or distance-based techniques.

𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑑𝑤 ∗ 𝐷𝑖 + 𝑑𝑖𝑠t_w ∗ 𝑑0𝑖 (7)

∀𝑖 ∈ {1, … 𝑛}; 𝑑𝑤 : demand weight;

𝑑𝑖𝑠𝑡_𝑤:distance weight; 𝐷𝑖 : customer 𝑖 demand;

𝑑0𝑖: distance between the depot and customer 𝑖.

The general scheme of WSI-GS is shown in

Appendix B, Algorithm 1.

3.1.1. WSI-GS implementation main steps

WSI-GS key steps can be summarized as follows:

1- Setting Up Grid Search:
o Take the Cartesian product of all distance and

demand weight Options.

o Test weight settings with all combinations.
2- Choosing Start Node Scores:

o For Every weight combination: Given distance

and demand weights, calculate a weighted score
for all nodes; Initialize several start routes with

the highest weighted nodes.

3- Build Routes with Insertions:

o Initialize a route for each start node.
o Insert remaining nodes into routes sequentially,

choosing the lowest cost increase while

respecting vehicle capacity.
4- Calculate the best solution:

o Comparing the cost of the obtained solution for

each weight’s combination.

3.1.2. WSI-GS complexity analysis

Outer While Loop:
WSI loops around all nodes until all customers

are visited, taking O(n) time.

First Node selection (Weighted Score

Calculation):

WSI calculates the weighted-score for all

unvisited nodes during route initialization. Each route
initialization takes O(n).

Node Insertion (Cheapest Insertion):

o To find the best node position in a route, the

approach checks up to n positions and estimates

insertion costs using the distance matrix. Then,

inserting each node takes O(n2).
So, the complexity for the sequential insertion

phase is O(n3) in the worst case.

GS complexity:

o GS explores different combinations of distance

and demand weights. Because there are 𝑤_𝑑

Received: October 27, 2024. Revised: November 29, 2024. 738

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

options for distance_weight and 𝑤_𝑑𝑒𝑚
options for demand_weights, then the algorithm

runs O(𝑤_𝑑 × 𝑤_𝑑𝑒𝑚) times of WSI.

Since WSI has a complexity of O(n3), then the
overall complexity for WSI-GS technique will be

O(𝑤_𝑑 × 𝑤_𝑑𝑒𝑚 × 𝑛3). So, the complexity depends

on the amount of weights options.

Figure. 2 Worker Method Flow Chart for MI-ITS

Received: October 27, 2024. Revised: November 29, 2024. 739

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

3.2 Multiple insertion with iterative tournament

selection (MI-ITS)

MI-ITS is based on importance of iterative

refinement in developing progressively optimized

routes and multiple start routes concept [14, 13]. It

prioritizes diversity, as highlighted by [15, 16] which
improves global search capabilities and maintains a

balanced exploration-exploitation trade-off essential

for addressing complex vehicle routing problems.
Three approaches comprise MI-ITS. The main

(calling) method calls the worker (core) method with

the start node parameter, worker calls the tournament
selection method with candidate nodes. MI-ITS main

purpose is to reduce the potential bias that may be

resulted from starting with certain nodes by looping

through all nodes as starting node and passes that start
node to worker method and evaluates the resulted

routes cost then chooses the lowest cost solution. The

core innovation of this algorithm is leveraging
multiple start route strategy with two enhancement

techniques: tournament and iteration. The

tournament introduces stochastic element that

enhances exploration thus avoiding local optima
which is a common problem in deterministic

insertion algorithms that follow purely greedy

insertion approaches, and exploitation (improving
known good solutions) while iteration improves the

finding better routes chance over time.

Fig. 2 shows worker method implementation. The
MI-ITS pseudo code is in Appendix B, Algorithm 2.

3.2.1. MI-ITS implementation main steps

MI-ITS key steps can be summarized as follows:

1- Iterative selection for start nodes:

Repeat for each start node to call the worker

function. Each start node starts several routes with
successive nodes. So, the start_node will be the

starting node for first vehicle (𝑘 = 1), while Eq.

(8) will calculate the consecutive nodes.

𝐶𝑘 = {
𝑆 + 𝑘 − 𝑛 + 1 if (𝑆 + 𝑘) ≥ 𝑛
(𝑆 + 𝑘) 𝑚𝑜𝑑 𝑛, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8)

∀𝑘 ∈ {2 … 𝑝} ; 𝐶𝑘 : start node for vehicle 𝑘 ; 𝑆 :

starting node; 𝑛: number of customers; 𝑝: vehicles

number.
2- Tournament Selection process:

Evaluate candidate nodes and choose the best

using k-tournament selection per iteration. Place
the chosen node with minimal cost increase.

3- Solution selection for each iteration:

Record each iteration’s cost and solution. After
iterations, choose the optimal solution with fewest

routes and lowest cost.

4- Return the best solution:

Return all-iteration best solution.

3.2.2. MI-ITS complexity analysis

Outer Loop:

Algorithm run for 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 iterations.

Each iteration reinitializes the routes and does node

insertion using tournament selection. So, the

complexity of the outer loop is O(𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛).

Tournament Selection:
The method estimates the cost of adding each

unvisited node to all routes and placements. So,

tournament evaluates each node 𝑛 times. The sample

usually has fewer candidates than 𝑛 , therefore the

tournament runs O(𝑘).

Node Insertion:

The worker complexity is O(𝑘 × 𝑛2 ×
max _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) for each insertion since it calculates

the cost increase of putting a node at all feasible

positions in all routes.

Total complexity:

The worker is called n times Thus, the total

complexity will be O(𝑘 × 𝑛3 × max _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛).

4. Experimental analysis

This section introduces the numerical results of
experimenting of the proposed methods on 74

Augerat instances- whose key traits are in Table 4-

existing in the literature [25]. Because of high

efficiency of saving method in constructing initial
solutions as demonstrated by article [13] in related

work section, the proposed strategies are compared

with two state-of-art methods -(Improved Clarke-
Wright (ICW) and Improved Parker-Holmes (IPH))-

[10] to verify their effectiveness. Most important

features of PC used in experimental application:
Intel(R) Core (TM) i7 x64-based CPU; Physical

Memory (RAM):16.0 GB; Programming language:

Python. All instances depots are symmetric, centered,

or non-centered. Eq. (9) calculates the ratio of total
demands to vehicle capacity.

𝑅𝐷𝐶 = ∑ 𝐷𝑖 /(𝑄 ∗ 𝑃)𝑖∈𝑛 (9)

Where 𝑅𝐷𝐶 :Ratio of demands to capacity; 𝑄 :

Vehicle capacity; 𝑃 : Number of vehicles; 𝐷𝑖 :

customer 𝑖𝑡ℎ demand; 𝑛: customers number.

Received: October 27, 2024. Revised: November 29, 2024. 740

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

Table 4. Main Attributes of Augerat Benchmark Instances

 Set

Feature
Set (A) Set B Set P

Locations and demand

[25]

Randomly generated

customer locations and

demands

More realistic scenarios such

as where customers are

located in certain urban or

business areas with more
realistic demands

Some instances are adapted

from datasets with different

vehicle capacities and

demands.

Variety of problem sizes

[25]
Range from small to medium Medium sizes

Range widely in size, thereby

covering wide CVRP

spectrum.

Clustering nature of

customer location [25]

Nodes are uniformly or non-

uniformly dispersed

Customers are geography

clustered

Mix of clustered and non-

clustered customers

Table 5. Comparison of Techniques in Multiple Start Route Insertion

 MSR-Farthest MSR-Highest

Demand

MSR-Random MSR-Nearest MSR-WSI-GS

Initiating Node

Selection

Gives precedence
to nodes that are

most distant.

Based on nodes
demand

Randomly select
nodes to start

routes

Prioritizes the
closest nodes to the

depot for route

initiation.

Weighs distance
and demand, then

using grid search.

Exploration

Prioritizes distant

nodes initially,

potentially lead to

neglecting load

balancing at the

outset.

Focuses on high-

demand nodes,

may overlook

proximity.

Randomness

enhances

exploration but

may result in

suboptimal route

formation.

Emphasizes

proximity, yet may

result in an

ineffective demand

equilibrium.

quittable strategy

takes into account

both distance and

demand,

optimizing each

element.

Bias

Lead to suboptimal

routes if the distant

nodes have higher

demands

Could lead to less

efficient routes

because high

demand takes
precedence over

distance.

While it minimizes

bias, random

selection can result

in varying
solutions.

It may promote

shorter distances

while missing a

more important
demand

distribution

Minimize bias due

to balanced

selection.

Complexity

Moderately

complex.

Moderately

complex.

Lower complexity

because of

randomness.

Minimal

complexity, as it

depends on

proximity for node

selection.

Increased

complexity due to

grid search

optimization.

Large

instances

performance

Appropriate for

scenarios where

remote nodes

substantially

influence routing

expenses.

Exhibits optimal

performance when

demand is a pivotal

element in route

balancing.

Inconsistent

performance

Most appropriate

for situations when

closeness to the

depot is of

paramount

importance.

Perform well

consistently,

especially in large

instances with

high-varied

demand and
distance nodes.

Route

optimization

Concentrates on

remote nodes,

potentially

lowering total

route length.

Regulates load

demand, although

may increase cost.

Random

performance yields

inconsistent

efficiency.

prefers shorter

starting routes but

may result in an

uneven load

distribution.

offers the ideal

ratio of reducing

distance to

balancing demand.

Eqs. (10) and (11) calculate the problem standard

deviation (square root of variance).

𝜎 = √
1

𝑛
∑ (𝐷𝑖 − 𝜇)2𝑛

𝑖=1 (10)

𝜇 =
1

𝑛
∑ 𝐷𝑖𝑛

𝑖=1 (11)

Where 𝜎: Problem standard deviation; n: customers

number; 𝜇: demand mean; 𝐷𝑖:𝑖𝑡ℎ Customer demand;

Received: October 27, 2024. Revised: November 29, 2024. 741

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

Recalling that there are two categories of
insertion procedures in terms of start routes: single

start route (SSR) and multiple start route (MSR)

categories[13].

At the outset of a SSR algorithm, a single route is
initialized, with a single node selected using a

predetermined heuristic rule (such as its index or

closeness to the depot, for example). Each route in a
MSR algorithm starts with a different node according

to a variety of criteria, such as:

o the distance from the depot (nearest or farthest)
o prioritizing nodes based on customer demand

o choosing start nodes randomly

o Weighted score insertion: by combing both nodes

proximity and demand.
Furthermore, by utilizing parallelization scheme,

parallel improved insertion- with consecutive nodes

(PII-CN) which is used to send multiple start nodes
as argument in parallel threads to the worker method

which by turn initialize multiple start routes by

choosing consecutive nodes to the passed start node
as shown in step 2 of the section 3.1.1. This

implementation is used to avoid bias by starting with

a certain node.

Table 5 summarize the main differences between
some MSR adapted variants [16, 13].

Euclidean distances—rounded integer node

distances—are used in optimal solutions for the three
primary CVRP datasets [26]. Appendix A Table 1

demonstrates the solutions obtained and optimal

value for all benchmark instances. The gap between

an algorithm’s solution and the literature’s optimal
solution measures its performance[13]. So, solution

percentage gap (or solution quality) is calculated

according to Eq. (12) below.

𝑔𝑎𝑝 =
(𝑠𝑜𝑙𝑜𝑏𝑡−𝑠𝑜𝑙𝑜𝑝𝑡)

𝑠𝑜𝑙𝑜𝑝𝑡
× 100% (12)

Where 𝑠𝑜𝑙𝑜𝑏𝑡 is obtained solution for a certain

instance; 𝑠𝑜𝑙𝑜𝑝𝑡 the best-known solution.

Appendix A Tables 2 calculates the solution

quality for all implementations. The overall

performance of a particular algorithm within a dataset
can be determined by the mean percentage gap for

that algorithm over all instances as shown in Eq. (13).

𝑚𝑒𝑎𝑛𝑠𝑒𝑡 =
∑ 𝑔𝑎𝑝𝑖𝑛𝑠𝑖𝑛𝑠∈{𝑠𝑒𝑡}

𝑠𝑒𝑡_𝑛𝑢𝑚
 (13)

∀𝑠𝑒𝑡 ∈ {𝐴, 𝐵, 𝑃}; 𝑖𝑛𝑠 is instance within a set; 𝑔𝑎𝑝𝑖𝑛𝑠

algorithm gap for 𝑖𝑛𝑠;𝑠𝑒𝑡_𝑛𝑢𝑚: number of instances

in a certain set.
Table 6 calculates the mean percentage gap for all

implementations on all sets.

Table 6. All Implementations’ Mean Percentage gap (%)

on all sets

Implementation Set A Set B Set P

SSR 36.37 37.77 24.78

MSR-Farthest 46.42 60.28 27.39

MSR-Highest Demand 27.33 27.47 21.43

MSR-WSI-GS 20.35 17.1 13.99

MSR-Random 29.21 28.96 21.59

MSR-Nearest 35.88 44.67 21.21

PII-CN 15.38 11.37 9.263

MI-ITS(k=3) 11.37 5.943 6.967

MI-ITS(k=5) 11.8 6.3044 6.815

ICW 3.41 2.68 4.397

IPH 2.76 2.61 2.49

On Set A, MSR methods outperform SSR because

of elimination of start node bias. A significant feature

that improves WSI-GS performance is the cartesian
product of demand and distance weights strengths.

WSI-GS. The algorithm has the lowest mean gap

across MSR variations at 20.35% because it adapts
better to non-clustered, dispersed locales. SSR and

MSR-Farthest struggle without clustering or spatial

trends. The 36.37% gap reveals SSR’s greedy, rigid

nature which struggles with diversified input. MI-ITS
(k=3 and k=5) outperforms PII-CN with 11.37% and

11.8% mean gaps. Due to lack of clustering, dynamic

and randomized datasets benefit from iterative node
insertion search.

With fewer nodes than Set A but larger demands,

Set B requires precise starting positions, therefore the

weighted score and highest demand algorithms
prioritize starting nodes by demand and distance. Its

adaptive grid search approach helps WSI-GS achieve

17.1% mean gap. Geographically restricted clusters
benefit from weight scoring that balances distance

and demand. MI-ITS (k=3 and k=5) exceeds PII-CN

(11.37% gap) with mean gaps of 5.943% and 6.304%.
and achieves optimal solution in instances (B-n50-k7,

and B-n52-k7). In clustered contexts, precise node

insertion enhances solution quality, making iterative

tournament selection useful. Due to its leaning
toward geographically adjacent nodes, MSR-nearest

performs poorest on Set B (44.67% mean gap) in

complicated, clustered layouts.
Set P, merits by the following attributes: Diverse

demands, complex depot location, capacity constraint

tightness and random nodes selection. So, WSI-GS
handles mixed scenarios well with a 13.99% mean

gap and achieves better than optimal solution in

instance (P-n22-k2). Its grid search optimization

balances clustered and non-clustered nodes. With
mean gaps of 6.967% and 6.815%, MI-ITS (k=3 and

k=5) likewise perform well and achieves better than

optimal solution on instances (P-n19-k2, P-n20-k2,

Received: October 27, 2024. Revised: November 29, 2024. 742

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

P-n21-k2 and P-n22-k2). Iterations manages Set P
instances’ heterogeneity. MSR Random find better

than optimal solution in instance P-n21-k2 but the

main issue with randomization is inconsistency.

PII-CN outperforms all MSR variations
(including WSI-GS) and SSR, with mean gaps of

15.38% on Set A, 11.37% on Set B, and 9.263% on

Set P. Because start node bias is eliminated. MI-ITS
perform better than PII-CN because of start node bias

elimination in addition to iterative tournament

selection mechanism which leads to robust
performance. PII-CN uses parallelization to test

many starting nodes at once and select the optimal

solution. While MI-ITS prioritizes tournament

selection for iterative node insertion. This method
uses controlled randomization to find more

promising solutions. Increasing tournament size (k)

influences exploration-exploitation balance. A bigger
tournament size (k = 5) lowers unpredictability and

emphasizes near-greedy solutions, whereas a smaller

size (k = 3) stimulates exploration but may miss
locally optimal solutions. However, because of

iterative and tournament, we avoid using thread

pooling in MI-ITS because it may cause thread

management overhead and synchronization
difficulties, reducing computing efficiency.

Improved savings algorithms perform best

overall, with mean gaps of 2.49% to 4.397% across
all sets. They prove their initial solution generating

dominance and academic literature benchmark status.

WSI-GS and MI-ITS perform well on all datasets

with considerable strengths particularly in

complicated structures or randomized inputs,
sometimes providing optimal or better-than-optimal

solutions as shown in Figs. 3 to 5. They improve

CVRP initial solution generation with creative

methods, although ICW and IPH outperform them.
They can be deemed as scholarly contributions

because of the following principal rationales

1. Insertion algorithms are more adaptable:
o Insertion-based techniques like MI-ITS enable

dynamic route construction, improving

adaptability to non-uniform demand
distributions, especially in complex instances

like Set P.

o MI-ITS enables deeper exploration and better-

than-optimal solutions when the savings-based
heuristic fails to locate the global optimum.

o WSI-GS mitigates node selection bias: WSI-GS

uses weighted scoring functions optimized with
grid search to avoid bias in starting routes with

any node. It balances proximity and demand

better than standard insertion methods,
producing competitive results and sometimes

outperforming ideal solutions.

2. Further exploration than Greedy Saving: These

techniques provide alternate approaches for
initializing and constructing routes that mitigate

the bias associated with savings-based heuristics.

This illustrates their promise for further
investigation and enhancement for some cases.

3. Hybridization Opportunities: Mixing these

techniques with savings-based methods combines

their strengths—flexibility and efficiency.

Figure. 3 Elite Implementations gap on Set A

Received: October 27, 2024. Revised: November 29, 2024. 743

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

Figure. 4 Elite Implementations gap on Set B

Figure. 5 Elite Implementations gap on Set P

5. Conclusion, limitations and room for

improvement

5.1 Conclusion

This paper presents two novel algorithms, WSI-

GS and MI-ITS, as innovative methods to tackle the

challenges associated with generating high-quality
initial solutions and remain relevant in contexts that

require variety and flexibility. Both strategies fall

under the category of multiple start routes MSR,

designed to address the constraints of conventional

insertion algorithms.

The WSI-GS aimed at enhancing the route
initialization process by utilizing a weighted score

mechanism. The algorithm is driven by the principles

of seed customer selection, highlighting the
significance of meticulously choosing initial nodes to

direct the insertion process. Through the integration

of distance and demand priorities into a weighted

score, along with the application of grid search
optimization, WSI-GS adeptly harmonizes these

Received: October 27, 2024. Revised: November 29, 2024. 744

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

elements to produce high-quality initial solutions.
Additionally, it utilizes the advantages of various

starting routes as other MSR variants. It improves the

examination of possible routes while reducing biases

of SSR techniques, leading to a more thorough and
fair analysis of the solution space. WSI-GS

implementation shows superiority over several

variants of MSR in addition to traditional SSR
implementation.

The MI-ITS presents a methodical framework

aimed at improving solution quality via Iterative
tournament selection, which provides multiple

benefits. This method enhances node selection by

evaluating a varied array of candidate nodes during

each iteration, thereby reducing the likelihood of
early convergence to less optimal solutions. It

improves the exploration phase by iteratively

selecting nodes through a tournament mechanism,
effectively balancing the exploration- exploitation

trade-off. This approach is essential for addressing

complex vehicle routing problems, as it ensures a
more solution space comprehensive coverage during

the search process. The variation in node selection

enhances the quality of the routes constructed and

raises the probability of identifying near-optimal or
globally optimal solutions. Furthermore, MI-ITS

utilizes the principle of multiple start routes by

starting routes from various starting nodes. MI-ITS
implementation shows superiority as compared to

other several MSR variants including WSI-GS. It

also outperforms PII-CN algorithm which merits

with start node bias elimination.
The numerical analysis indicates both techniques

do not consistently surpass ICW and IPH; however,

both methods exhibit considerable potential,
especially in scenarios necessitating dynamic,

flexible, and high-quality initial solutions. MI-ITS

shown exceptional efficacy in managing non-
uniformly dispersed nodes and demand fluctuations,

whereas WSI-GS provided consistent and

dependable solutions with reduced computational

expenses. The findings demonstrate the scholarly
value of both strategies in cases where savings

algorithms may not perform optimally.

MI-ITS performs best of the two methods. The
following situations favor it:

1. Cases where Demand Variability is High:

MI-ITS excels in managing network demand
imbalances by considering multiple starting nodes

and dynamically inserting customers based on

tournament choices.

2. Uneven Node Distributions:
Savings-based algorithms may struggle when

nodes are geographically dispersed and route

merging is difficult. MI-ITS’s iterative

tournament selection can balance geographical
proximity and demand limits to find optimal

insertion places. benefit: Tournament selection

iteratively considers local improvements,

avoiding greedy errors in savings algorithms.
3. Diversification in complex routing networks:

By initializes numerous routes using different

starting nodes and then selects candidates. MSR
and tournament selection increase the likelihood

of finding near to or better than optimal solutions

by extensive exploration.
4. When high computational resources available:

The tournament-based selection can increase

computational load, yet MI-ITS performs well

with enough power. So, leveraging it with
parallelization can improve solution quality.

5. Situations Needing Dynamic Route Construction:

MI-ITS builds routes repeatedly, considering each
node’s insertion dynamically, unlike methods that

build entire route based on available heuristic rule.

This flexible strategy improves adaptability and
accommodates last-minute modifications or

constraint.

6. Prioritizing Solution Quality over Speed:

MI-ITS iteratively explores various candidate
nodes to find high-quality solutions at the cost of

computing performance. This makes it excellent

for situations when superior solutions are crucial.
This is benefiting logistics applications where

even little changes results in large cost reductions.

7. Large-Scale Problems with numerous vehicles:

Multiple vehicle deployments work well with MI-
ITS because it assigns distinct start nodes to

initialize routes. Tournament-based insertion

maximizes vehicle use without overloading roads.
So, better performance can be ensured by the

ability to provide balance between vehicles

numbers and workload, when traditional savings
algorithms may face capacity restrictions.

Despite its elevated computational expense, the

parallelization feature offsets this drawback, giving

MI-ITS an excellent contender for extensive,
complicated VRP instances where the attainment of

superior solutions is essential. These algorithms have

promising VRP potential advancement, according to
our findings.

5.2 Limitations

Despite the encouraging outcomes, both MI-ITS

and WSI-GS are constrained by specific limitations:

1. Computation overhead:
By iterative tournament selection, especially

for large situations.

Received: October 27, 2024. Revised: November 29, 2024. 745

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

2. WSI-GS parameter tuning sensitivity:
Relying on carefully selected grid search

weights, which may limit its scalability.

3. Performance shortage in certain instances:

Both proposals outperform savings-based
techniques in some cases. This highlights the bias

caused by node initialization processes.

4. Absence of Parallelization in MI-ITS:
Without parallelization, MI-ITS is limited.

The iterative tournament selection process makes

it difficult to parallelize without reducing
algorithm efficiency for large Problems instances.

5.3 Future work and room for improvements

1. Considering MI-ITS effective parallelization:

With maintain its iterative selection

characteristics [19]. This may entail hybrid
parallel models or asynchronous processing

methods to address iterations challenges.

2. Dynamic parameter modification:
Adaptive methods to adjust tournament size

dynamically [26] within MI-ITS could reduce

computational overhead while maintaining

solution quality.
3. Improving scalability:

Exploring methods to diminish the

computational complexity of both MI-ITS and
WSI-GS may enhance the scalability for bigger

instances.

4. Hybrid methodologies:
Combining MI-ITS and WSI-GS with

savings-based algorithms may produce hybrid

methodologies that optimize the balance between

exploration and exploitation. Furthermore,
utilizing metaheuristic approaches such as

Simulated Annealing, Tabu Search or other state-

of-the-art swarm intelligence algorithms [27, 28]
can enhance the algorithms’ capacity to avoid

local optima [2].

5. Enhanced weight optimization in WSI-GS:
Refining the scoring system by employing

machine learning or adaptive optimization has the

potential performance improvement [29, 30].

6. Evaluating on more extensive and practical

scenarios:

Further investigation should prioritize

comprehensive evaluations on larger and real-
world datasets, including urban logistics and e-

commerce delivery networks, to determine the

practical applicability of these algorithms.

Conflicts of Interest

The authors declare that they have no known

competing financial interests or personal

relationships that could have appeared to influence
the work reported in this paper.

Author Contributions

Conceptualization, 2; methodology, 1; software,
1; validation, 1, and 2; formal analysis, 1;

investigation, 1; resources, 1; data curation, 1;

writing—original draft preparation, 1; writing—
review and editing, 1; visualization, 1; supervision, 2;

project administration, 2;

1: Author 1, 2: Author2

References

[1] Z. H. Ahmed, A. S. Hameed, M. L. Mutar, and

H. Haron, “An enhanced Ant Colony system
algorithm based on subpaths for solving the

capacitated vehicle routing problem”, Symmetry,

Vol. 15, No. 11, p. 2020, 2023.

[2] A. K. Garside, R. Ahmad, and M. N. Bin
Muhtazaruddin, “A recent review of solution

approaches for green vehicle routing problem

and its variants”, Operations Research
Perspectives, pp. 100303-100303, 2024,

[3] B. R. Vangipurapu and R. Govada, “A

construction heuristic for finding an initial
solution to a very large-scale capacitated vehicle

routing problem”, RAIRO - Operations

Research, Vol. 55, No. 4, pp. 2265-2283, 2021.

[4] P. Garrido and C. Castro, “A Flexible and
Adaptive Hyper-heuristic Approach for

(Dynamic) Capacitated Vehicle Routing

Problems”, Fundamenta Informaticae, Vol. 119,
No. 1, pp. 29-60, 2012.

[5] H. M. Hasan, “Image Based Vehicle Traffic

Measurement”, Engineering and Technology

Journal, Vol. 32, No. 11, pp. 2722-2733, 2014.
[6] M. A. Uthaib and M. S. Croock,

“Multiclassification of license plate based on

deep convolution neural networks”,
International Journal of Electrical and

Computer Engineering, Vol. 11, No. 6, pp.

5266-5276, 2021.
[7] A. J. Humaid, H. M. Hasan, and F. A. Raheem,

“Development of Model Predictive Controller

for Congestion Control Problem”, Iraqi Journal

of Computers, Communication, Control &
Systems Engineering, Vol. 14, No. 3, 2014.

[8] H. Ameer and H. Hasan, “Enhanced MQTT

Protocol by Smart Gateway”, Iraqi Journal of
Computer Communication Control and System

Engineering, pp. 53-67, 2020.

[9] G. Drewil and R. Al-Bahadili, “Environmental
Pollution Monitoring System Based on IoT”,

Received: October 27, 2024. Revised: November 29, 2024. 746

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

Iraqi Journal of Computer Communication
Control and System Engineering, pp. 1-10, 2022.

[10] A. G. Hafedh and H. M. Hasan, “Design and

Implementation of an Improved Parallel-

Accelerated Solution for Urban CVRP.
Baghdad as a Case Study”, International

Journal of Intelligent Engineering and Systems,

Vol. 17, No. 5, pp. 934-951, 2024, doi:
10.22266/ijies2024.1031.70.

[11] M. K. D. D. Sandaruwan, D. M. Samarathunga,

and W. B. Daundasekara, “An improved two-
phased heuristic algorithm for the capacitated

vehicle routing problem and a case study”,

Ceylon Journal of Science, Vol. 49, No. 4, p.

477, 2020.
[12] A. H. Ismail, “Domino algorithm: a novel

constructive heuristic for traveling salesman

problem”, IOP Conference Series Materials
Science and Engineering, Vol. 528, No. 1, p.

012043, 2019.

[13] S. M. Avdoshin and E. N. Beresneva,
“Constructive heuristics for Capacitated

Vehicle Routing Problem: a comparative study”,

In: Proc. of the Institute for System

Programming of the RAS, Vol. 31, No. 3, pp.
145-156, 2019.

[14] S.-Y. Tan and W.-C. Yeh, “The Vehicle

Routing Problem: State-of-the-Art
Classification and Review”, Applied Sciences,

Vol. 11, No. 21, p. 10295, 2021.

[15] M. Alssager, Z. A. Othman, and M. Ayob,

“Cheapest Insertion Constructive Heuristic
based on Two Combination Seed Customer

Criterion for the Capacitated Vehicle Routing

Problem”, International Journal on Advanced
Science Engineering and Information

Technology, Vol. 7, No. 1, p. 207, 2017.

[16] E. Yuliza, F. M. Puspita, and S. S. Supadi,
“Heuristic approach for robust counterpart open

capacitated vehicle routing problem with time

windows”, Science and Technology Indonesia,

Vol. 6, No. 2, pp. 53-57, 2021.
[17] M. I. Takano and M. S. Nagano, “Evaluating the

performance of constructive heuristics for the

blocking flow shop scheduling problem with
setup times”, International Journal of Industrial

Engineering Computations, Vol. 10, No. 1, pp.

37-50, 2019.
[18] B. Keçeci, F. Aliparmak, and I. Kara, “A

Mathematical Formulation and Heuristic

Approach for The Heterogeneous Fixed Fleet

Vehicle Routing Problem with Simultaneous
Pickup And Delivery”, Journal of Industrial

and Management Optimization, Vol. 17, No. 3,

pp. 1069-1100, 2021.

[19] X. Liu, Y.-L. Chen, L. Y. Por, and C. S. Ku, “A
Systematic Literature Review of Vehicle

Routing Problems with Time Windows”,

Sustainability, Vol. 15, No. 15, p. 12004, 2023.

[20] O. Udomkasemsub, B. Sirinaovakul, and T.
Achalakul, “PHH: Policy-Based Hyper-

Heuristic with Reinforcement Learning”, IEEE

Access, Vol. 11, pp. 52026-52049, 2023.
[21] T. D. C. Le, D. D. Nguyen, J. Oláh, and M.

Pakurár, “Clustering Algorithm for A Vehicle

Routing Problem with Time Windows”,
Transport, Vol. 37, No. 1, pp. 17-27, 2022.

[22] P. D. Kusuma and M. Kallista, “Swarm Space

Hopping Algorithm: A Swarm-based Stochastic

Optimizer Enriched with Half Space Hopping
Search”, International Journal of Intelligent

Engineering and Systems, Vol. 17, No. 2, pp.

670-682, 2024, doi:
10.22266/ijies2024.0430.54.

[23] P. D. Kusuma and A. Dinimaharawati, “Swarm

Bipolar Algorithm: A Metaheuristic Based on
Polarization of Two Equal Size Sub Swarms”,

International Journal of Intelligent Engineering

and Systems, Vol. 17, No. 2, pp. 377-389, 2024,

doi: 10.22266/ijies2024.0430.31.
[24] P. D. Kusuma and A. Dinimaharawati,

“Extended Stochastic Coati Optimizer”,

International Journal of Intelligent Engineering
and Systems, Vol. 16, No. 3, pp. 482-494, 2023,

doi: 10.22266/ijies2023.0630.38.

[25] E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T.

Vidal, and A. Subramanian, “New benchmark
instances for the Capacitated Vehicle Routing

Problem”, European Journal of Operational

Research, Vol. 257, No. 3, pp. 845-858, 2016
[26] T. Pichpibul and R. Kawtummachai, “An

improved Clarke and Wright savings algorithm

for the capacitated vehicle routing problem”,
ScienceAsia, Vol. 38, No. 3, pp. 307-318, 2012.

[27] P. D. Kusuma and M. Kallista, “Migration-

Crossover Algorithm: A Swarm-based

Metaheuristic Enriched with Crossover
Technique and Unbalanced Neighbourhood

Search”, International Journal of Intelligent

Engineering and Systems, Vol. 17, No. 1, pp.
698-710, 2024, doi:

10.22266/ijies2024.0229.59.

[28] P. D. Kusuma and A. L. Prasasti, “Guided
Pelican Algorithm”, International Journal of

Intelligent Engineering and Systems, Vol. 15,

No. 6, pp. 179-190, 2022, doi:

10.22266/ijies2022.1231.18.
[29] P. Czuba and D. Pierzchała, “Machine Learning

methods for solving Vehicle Routing Problems”,

In: Proc. of the 36th International Business

Received: October 27, 2024. Revised: November 29, 2024. 747

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

Information Management Association (IBIMA),
Granada, Spain, pp. 4-5, 2020.

[30] R. Asín-Achá, O. Goldschmidt, D. S.

Hochbaum, and I. I. Huerta, “Fast Algorithms

for the Capacitated Vehicle Routing Problem
using Machine Learning Selection of

Algorithm’s Parameters”, In: Proc. of
International Joint Conference on Knowledge

Discovery, Knowledge Engineering and

Knowledge Management, IC3K - Proceedings,

Science and Technology Publications, Lda, pp.
29-39, 2022.

Appendix A

Table 1. All implementations Results on All sets

S
e
q

In
st

a
n

c
e

u
n

h
a
n

d
le

d

S
S

R

m
sr

_
fa

r
th

e
st

m
sr

_
h

ig
h

e
st

_
d

e
m

a

n
d

m
sr

_
w

ei
g
h

te
d

_
G

S

m
sr

_
r
a
n

d
o
m

m
sr

_
n

e
a
r
e
st

P
II

-C
N

M
I-

IT
S

(k
=

3
)

M
I-

IT
S

(k
=

5
)

IC
W

IP
H

o
p

ti
m

a
l_

v
a
l

1 A-n32-k5 2067 1127 1205 1049 939 929 1073 910 857 868 831 786 784

2 A-n33-k5 1847 983 1020 915 717 833 1014 710 697 698 682 682 661

3 A-n33-k6 1516 1161 1179 1089 787 893 898 807 784 788 760 736 742

4 A-n34-k5 1905 1047 914 851 886 1020 959 812 782 788 793 793 778

5 A-n36-k5 1981 1073 1075 1110 947 1049 1160 878 853 842 824 814 799

6 A-n37-k5 1578 1045 889 716 796 750 878 783 715 720 690 690 669

7 A-n37-k6 2036 1247 1314 1171 1163 1219 1199 1138 1094 1073 984 981 949

8 A-n38-k5 2232 1051 1254 867 946 1127 982 862 814 848 778 757 730

9 A-n39-k5 2311 1078 1142 1003 1011 1057 1113 969 919 897 893 878 822

10 A-n39-k6 2366 1133 1213 949 1025 1201 1309 999 910 891 860 856 831

11 A-n44-k6 2583 1249 1381 1060 1075 1181 1183 1065 1065 1048 991 991 937

12 A-n45-k6 2793 1315 1517 1147 1297 1250 1434 1129 1101 1106 963 963 944

13 A-n45-k7 2633 1443 1470 1523 1323 1462 1460 1370 1290 1292 1185 1185 1146

14 A-n46-k7 2671 1283 1413 1213 1077 1141 1320 1031 974 1002 914 914 914

15 A-n48-k7 2861 1406 1582 1534 1287 1386 1496 1192 1168 1183 1092 1092 1073

16 A-n53-k7 3167 1488 1626 1467 1136 1208 1300 1165 1057 1114 1072 1063 1010

17 A-n54-k7 3463 1503 1699 1472 1387 1590 1453 1319 1321 1326 1195 1195 1167

18 A-n55-k9 2928 1393 1559 1353 1379 1256 1265 1272 1245 1215 1087 1087 1073

19 A-n60-k9 3741 1738 1961 1647 1731 1707 2082 1603 1516 1546 1393 1393 1354

20 A-n61-k9 3294 1473 1655 1299 1373 1484 1403 1216 1159 1171 1037 1037 1034

21 A-n62-k8 3450 1664 1889 1660 1575 1649 1793 1495 1442 1471 1337 1337 1288

22 A-n63-k10 3673 1763 2024 1733 1522 1746 1729 1523 1474 1513 1332 1332 1314

23 A-n63-k9 4125 2026 2349 2093 1903 2104 2253 1829 1903 1929 1656 1656 1616

24 A-n64-k9 3628 1687 1862 1898 1662 1747 1936 1680 1621 1599 1462 1455 1401

25 A-n65-k9 3646 1605 1706 1477 1538 1575 1593 1387 1417 1370 1244 1244 1174

26 A-n69-k9 4162 1638 1612 1386 1328 1507 1624 1299 1291 1305 1211 1211 1159

27 A-n80-k10 5133 2316 2608 2223 2107 2308 2290 2129 2089 2080 1788 1781 1763

28 B-n31-k5 1438 818 1100 756 758 930 868 700 680 679 675 674 672

29 B-n34-k5 1814 1001 1130 842 841 800 1003 804 790 789 800 800 788

30 B-n35-k5 2672 1209 1273 1265 1006 1094 1311 974 977 980 969 968 955

31 B-n38-k6 2058 1124 1184 1045 913 957 1038 885 832 858 819 818 805

32 B-n39-k5 1849 1012 1125 738 737 672 1123 623 550 557 555 555 549

33 B-n41-k6 2472 1074 1278 1019 928 1001 1176 901 860 855 870 869 829

34 B-n43-k6 2218 985 991 873 858 900 1068 799 754 756 749 749 742

35 B-n44-k7 2502 1145 1436 1174 1112 1111 1231 1025 997 1002 970 970 909

36 B-n45-k5 2594 1136 1097 965 906 1146 1056 828 813 831 754 754 751

37 B-n45-k6 1773 992 1094 966 856 1011 958 829 784 806 708 708 678

38 B-n50-k7 2746 1067 1398 1033 819 982 1143 766 741 752 729 729 741

39 B-n50-k8 2778 1704 1776 1621 1545 1727 1553 1512 1428 1440 1327 1327 1312

Received: October 27, 2024. Revised: November 29, 2024. 748

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

Table 1. All implementations Results on All sets

40 B-n51-k7 3003 1391 1462 1237 1143 1160 1311 1163 1099 1109 1110 1109 1032

41 B-n52-k7 2941 1075 1217 1025 913 813 1229 772 758 747 746 746 747

42 B-n56-k7 2807 947 1421 1103 784 909 1124 868 746 750 711 704 707

43 B-n57-k7 4198 1606 1872 1655 1334 1344 1846 1297 1235 1227 1224 1224 1153

44 B-n57-k9 3468 1922 2174 1910 1818 2012 1978 1748 1664 1655 1628 1628 1598

45 B-n63-k10 4076 2243 2385 1818 1751 2073 2058 1658 1603 1598 1572 1572 1496

46 B-n64-k9 2889 1197 1653 1060 1015 1232 1368 1000 936 931 898 898 861

47 B-n66-k9 3278 1652 1894 1578 1502 1636 1847 1434 1476 1474 1403 1402 1316

48 B-n67-k10 3468 1564 1932 1239 1292 1692 1694 1208 1127 1084 1072 1071 1032

49 B-n68-k9 4108 1741 1969 1574 1465 1532 1691 1461 1383 1399 1296 1296 1272

50 B-n78-k10 4265 1642 2144 1557 1624 1925 1900 1466 1355 1363 1230 1230 1221

51 P-n101-k4 2107 935 796 896 800 858 854 767 702 707 700 698 681

52 P-n16-k8 634 461 550 453 471 535 466 453 453 453 475 474 450

53 P-n19-k2 496 229 248 217 231 216 248 217 206 206 232 215 212

54 P-n20-k2 490 253 257 230 241 239 263 214 211 211 227 217 216

55 P-n21-k2 466 253 259 278 215 208 250 208 208 208 230 220 211

56 P-n22-k2 488 255 282 272 212 268 251 212 212 212 232 227 216

57 P-n22-k8 757 636 780 651 727 703 720 685 655 666 585 585 603

58 P-n23-k8 721 728 628 587 571 629 625 588 571 568 531 531 529

59 P-n40-k5 1097 601 555 585 538 601 559 491 472 476 493 487 458

60 P-n45-k5 1293 754 580 666 575 635 607 518 521 528 546 519 510

61 P-n50-k10 1450 954 948 853 837 846 881 777 788 804 719 719 696

62 P-n50-k7 1362 670 713 627 629 658 698 612 587 591 579 559 554

63 P-n50-k8 1339 747 821 770 762 813 752 727 700 698 647 639 631

64 P-n51-k10 1469 922 925 961 893 971 877 887 863 845 767 767 741

65 P-n55-k10 1561 833 930 863 783 895 853 765 760 745 714 703 694

66 P-n55-k15 1617 1226 1294 1258 1089 1181 1109 1086 1064 1061 968 968 989

67 P-n55-k7 1446 727 734 687 662 642 679 618 592 595 602 579 568

68 P-n55-k8 1391 740 741 699 642 770 678 633 608 608 595 576 588

69 P-n60-k10 1741 884 1047 950 883 939 923 830 864 856 760 760 744

70 P-n60-k15 1870 1237 1428 1137 1158 1192 1219 1115 1106 1108 992 990 968

71 P-n65-k10 1866 995 1054 1031 898 954 973 900 906 884 810 810 792

72 P-n70-k10 1983 1037 1068 1056 979 1066 1018 937 960 966 866 849 827

73 P-n76-k4 1988 781 754 761 725 748 850 659 653 621 664 647 593

74 P-n76-k5 2070 889 806 803 741 812 807 746 676 689 682 682 627

Table 2. Percentage gap for all implementations on all sets

S
e
q

In
st

a
n

c
e

u
n

h
a
n

d
le

d
_

g
a

p

S
S

R
_
g
a
p

m
sr

_
fa

r
th

e
st

_
g

a
p

m
sr

_
h

ig
h

e
st

_
d

e
m

a
n

d
_

g

a
p

m
sr

_
w

ei
g
h

te
d

_
g
r
id

_
g

a

p

m
sr

_
r
a
n

d
o
m

_
g

a
p

m
sr

_
n

e
a
r
e
st

_
g

a
p

P
II

-C
N

_
g
a

p

M
I-

IT
S

(k
=

3
)_

g
a

p

M
I-

IT
S

(k
=

5
)_

g
a

p

IC
W

_
g
a
p

IP
H

_
g
a
p

1 A-n32-k5 163.65 43.75 53.7 33.8 19.77 18.49 36.86 16.07 9.31 10.71 5.99 0.26

2 A-n33-k5 179.43 48.71 54.31 38.43 8.47 26.02 53.4 7.41 5.45 5.6 3.18 3.18

3 A-n33-k6 104.31 56.47 58.89 46.77 6.06 20.35 21.02 8.76 5.66 6.2 2.43

-

0.81

4 A-n34-k5 144.86 34.58 17.48 9.38 13.88 31.11 23.26 4.37 0.51 1.29 1.93 1.93

5 A-n36-k5 147.93 34.29 34.54 38.92 18.52 31.29 45.18 9.89 6.76 5.38 3.13 1.88

6 A-n37-k5 135.87 56.2 32.88 7.03 18.98 12.11 31.24 17.04 6.88 7.62 3.14 3.14

7 A-n37-k6 114.54 31.4 38.46 23.39 22.55 28.45 26.34 19.92 15.28 13.07 3.69 3.37

8 A-n38-k5 205.75 43.97 71.78 18.77 29.59 54.38 34.52 18.08 11.51 16.16 6.58 3.7

Received: October 27, 2024. Revised: November 29, 2024. 749

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

Table 2. Percentage gap for all implementations on all sets

9 A-n39-k5 181.14 31.14 38.93 22.02 22.99 28.59 35.4 17.88 11.8 9.12 8.64 6.81

10 A-n39-k6 184.72 36.34 45.97 14.2 23.35 44.52 57.52 20.22 9.51 7.22 3.49 3.01

11 A-n44-k6 175.67 33.3 47.39 13.13 14.73 26.04 26.25 13.66 13.66 11.85 5.76 5.76

12 A-n45-k6 195.87 39.3 60.7 21.5 37.39 32.42 51.91 19.6 16.63 17.16 2.01 2.01

13 A-n45-k7 129.76 25.92 28.27 32.9 15.45 27.57 27.4 19.55 12.57 12.74 3.4 3.4

14 A-n46-k7 192.23 40.37 54.6 32.71 17.83 24.84 44.42 12.8 6.56 9.63 0 0

15 A-n48-k7 166.64 31.03 47.44 42.96 19.94 29.17 39.42 11.09 8.85 10.25 1.77 1.77

16 A-n53-k7 213.56 47.33 60.99 45.25 12.48 19.6 28.71 15.35 4.65 10.3 6.14 5.25

17 A-n54-k7 196.74 28.79 45.59 26.14 18.85 36.25 24.51 13.02 13.2 13.62 2.4 2.4

18 A-n55-k9 172.88 29.82 45.29 26.1 28.52 17.05 17.89 18.55 16.03 13.23 1.3 1.3

19 A-n60-k9 176.29 28.36 44.83 21.64 27.84 26.07 53.77 18.39 11.96 14.18 2.88 2.88

20 A-n61-k9 218.57 42.46 60.06 25.63 32.79 43.52 35.69 17.6 12.09 13.25 0.29 0.29

21 A-n62-k8 167.86 29.19 46.66 28.88 22.28 28.03 39.21 16.07 11.96 14.21 3.8 3.8

22 A-n63-k10 179.53 34.17 54.03 31.89 15.83 32.88 31.58 15.91 12.18 15.14 1.37 1.37

23 A-n63-k9 155.26 25.37 45.36 29.52 17.76 30.2 39.42 13.18 17.76 19.37 2.48 2.48

24 A-n64-k9 158.96 20.41 32.91 35.47 18.63 24.7 38.19 19.91 15.7 14.13 4.35 3.85

25 A-n65-k9 210.56 36.71 45.32 25.81 31.01 34.16 35.69 18.14 20.7 16.7 5.96 5.96

26 A-n69-k9 259.1 41.33 39.09 19.59 14.58 30.03 40.12 12.08 11.39 12.6 4.49 4.49

27 A-n80-k10 191.15 31.37 47.93 26.09 19.51 30.91 29.89 20.76 18.49 17.98 1.42 1.02

28 B-n31-k5 113.99 21.73 63.69 12.5 12.8 38.39 29.17 4.17 1.19 1.04 0.45 0.3

29 B-n34-k5 130.2 27.03 43.4 6.85 6.73 1.52 27.28 2.03 0.25 0.13 1.52 1.52

30 B-n35-k5 179.79 26.6 33.3 32.46 5.34 14.55 37.28 1.99 2.3 2.62 1.47 1.36

31 B-n38-k6 155.65 39.63 47.08 29.81 13.42 18.88 28.94 9.94 3.35 6.58 1.74 1.61

32 B-n39-k5 236.79 84.34 104.9 34.43 34.24 22.4 104.6 13.48 0.18 1.46 1.09 1.09

33 B-n41-k6 198.19 29.55 54.16 22.92 11.94 20.75 41.86 8.69 3.74 3.14 4.95 4.83

34 B-n43-k6 198.92 32.75 33.56 17.65 15.63 21.29 43.94 7.68 1.62 1.89 0.94 0.94

35 B-n44-k7 175.25 25.96 57.98 29.15 22.33 22.22 35.42 12.76 9.68 10.23 6.71 6.71

36 B-n45-k5 245.41 51.26 46.07 28.5 20.64 52.6 40.61 10.25 8.26 10.65 0.4 0.4

37 B-n45-k6 161.5 46.31 61.36 42.48 26.25 49.12 41.3 22.27 15.63 18.88 4.42 4.42

38 B-n50-k7 270.58 43.99 88.66 39.41 10.53 32.52 54.25 3.37 0 1.48 -1.6

-

1.62

39 B-n50-k8 111.74 29.88 35.37 23.55 17.76 31.63 18.37 15.24 8.84 9.76 1.14 1.14

40 B-n51-k7 190.99 34.79 41.67 19.86 10.76 12.4 27.03 12.69 6.49 7.46 7.56 7.46

41 B-n52-k7 293.71 43.91 62.92 37.22 22.22 8.84 64.52 3.35 1.47 0 -0.1

-

0.13

42 B-n56-k7 297.03 33.95 101 56.01 10.89 28.57 58.98 22.77 5.52 6.08 0.57
-

0.42

43 B-n57-k7 264.09 39.29 62.36 43.54 15.7 16.57 60.1 12.49 7.11 6.42 6.16 6.16

44 B-n57-k9 117.02 20.28 36.05 19.52 13.77 25.91 23.78 9.39 4.13 3.57 1.88 1.88

45 B-n63-k10 172.46 49.93 59.43 21.52 17.05 38.57 37.57 10.83 7.15 6.82 5.08 5.08

46 B-n64-k9 235.54 39.02 91.99 23.11 17.89 43.09 58.89 16.14 8.71 8.13 4.3 4.3

47 B-n66-k9 149.09 25.53 43.92 19.91 14.13 24.32 40.35 8.97 12.16 12.01 6.61 6.53

48 B-n67-k10 236.05 51.55 87.21 20.06 25.19 63.95 64.15 17.05 9.21 5.04 3.88 3.78

49 B-n68-k9 222.96 36.87 54.8 23.74 15.17 20.44 32.94 14.86 8.73 9.98 1.89 1.89

50 B-n78-k10 249.3 34.48 75.59 27.52 33.01 57.66 55.61 20.07 10.97 11.63 0.74 0.74

51 P-n101-k4 209.4 37.3 16.89 31.57 17.47 25.99 25.4 12.63 3.08 3.82 2.79 2.5

52 P-n16-k8 40.89 2.44 22.22 0.67 4.67 18.89 3.56 0.67 0.67 0.67 5.56 5.33

53 P-n19-k2 133.96 8.02 16.98 2.36 8.96 1.89 16.98 2.36 -2.83 -2.83 9.43 1.42

54 P-n20-k2 126.85 17.13 18.98 6.48 11.57 10.65 21.76 -0.93 -2.31 -2.31 5.09 0.46

55 P-n21-k2 120.85 19.91 22.75 31.75 1.9 -1.42 18.48 -1.42 -1.42 -1.42 9 4.27

56 P-n22-k2 125.93 18.06 30.56 25.93 -1.85 24.07 16.2 -1.85 -1.85 -1.85 7.41 5.09

57 P-n22-k8 25.54 5.47 29.35 7.96 20.56 16.58 19.4 13.6 8.62 10.45 -3

-

2.99

58 P-n23-k8 36.29 37.62 18.71 10.96 7.94 18.9 18.15 11.15 7.94 7.37 0.38 0.38

59 P-n40-k5 139.52 31.22 21.18 27.73 17.47 31.22 22.05 7.21 3.06 3.93 7.64 6.33

60 P-n45-k5 153.53 47.84 13.73 30.59 12.75 24.51 19.02 1.57 2.16 3.53 7.06 1.76

Received: October 27, 2024. Revised: November 29, 2024. 750

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

Table 2. Percentage gap for all implementations on all sets

61 P-n50-k10 108.33 37.07 36.21 22.56 20.26 21.55 26.58 11.64 13.22 15.52 3.3 3.3

62 P-n50-k7 145.85 20.94 28.7 13.18 13.54 18.77 25.99 10.47 5.96 6.68 4.51 0.9

63 P-n50-k8 112.2 18.38 30.11 22.03 20.76 28.84 19.18 15.21 10.94 10.62 2.54 1.27

64 P-n51-k10 98.25 24.43 24.83 29.69 20.51 31.04 18.35 19.7 16.46 14.04 3.51 3.51

65 P-n55-k10 124.93 20.03 34.01 24.35 12.82 28.96 22.91 10.23 9.51 7.35 2.88 1.3

66 P-n55-k15 63.5 23.96 30.84 27.2 10.11 19.41 12.13 9.81 7.58 7.28 -2.1

-

2.12

67 P-n55-k7 154.58 27.99 29.23 20.95 16.55 13.03 19.54 8.8 4.23 4.75 5.99 1.94

68 P-n55-k8 136.56 25.85 26.02 18.88 9.18 30.95 15.31 7.65 3.4 3.4 1.19

-

2.04

69 P-n60-k10 134.01 18.82 40.73 27.69 18.68 26.21 24.06 11.56 16.13 15.05 2.15 2.15

70 P-n60-k15 93.18 27.79 47.52 17.46 19.63 23.14 25.93 15.19 14.26 14.46 2.48 2.27

71 P-n65-k10 135.61 25.63 33.08 30.18 13.38 20.45 22.85 13.64 14.39 11.62 2.27 2.27

72 P-n70-k10 139.78 25.39 29.14 27.69 18.38 28.9 23.1 13.3 16.08 16.81 4.72 2.66

73 P-n76-k4 235.24 31.7 27.15 28.33 22.26 26.14 43.34 11.13 10.12 4.72 12 9.11

74 P-n76-k5 230.14 41.79 28.55 28.07 18.18 29.51 28.71 18.98 7.81 9.89 8.77 8.77

Appendix B

Common Parameter list

depot Depot’s index capacity Vehicle Maximum capacity

demands Customers’ demand list dm Distance matrix among nodes

Algorithm 1: WSI-GS

Method: WSI

Input: (depot, demands, capacity, dm, distance_weight, demand_weight)

 distance_weight: Distance from depot weight in the weighted score

 demand_weight: Demand weight in the weighted score

Output:

 routes: routes spanning all nodes without exceeding capacity

Algorithm
1. Variable Initialization:

o num_customers = demands’ length; routes = empty list to store routes (solution); visited = Set {depot}

to track node visits; num_vehicles = ceil(sum(demands) / capacity)
2. Calculate weighted scores for Nodes

o For each node I in [from 1 to (num_customers_1)]:

 Score(i) = dm[depot][i] * distance_weight +demand_weight * demands[i]

o Choose (num_vehicles) nodes with highest scores in chosen_nodes

3. Initialize Routes with Highest_score Nodes

o For each node i in chosen_nodes

 Add i to visited.
 Create a route [depot,i,depot] and add it to routes.

4. Insert Nodes Sequentially

o While the number of visited_nodes < num_customers:
Set best_cost_increase = infinity.

Set best_node, best_position, and best_route = None.

5. Find best Node for insertion:

o For each unvisited node j (from 1 to (num_customers-1)):
For each r in routes:

If adding j to the route doesn’t exceed the vehicle capacity:

Received: October 27, 2024. Revised: November 29, 2024. 751

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

For each (pos) possible insertion position in r:
Calculate cost_increase:

dm[pos-1][j]+dm[j][pos+1] -dm[pos-1][pos+1]

If cost_increase < best_cost_increase:

Update best_cost_increase, best_node, best_position, and best_route.
6. Insert the node or start a new route

o If best_node exists:

Insert best_node in best_position into best_route.
Append best_node to visited.

o Else:

Start a new route with unvisited node that suitable the capacity:
[depot, j,depot] for node j

Append it to routes and mark it as visited

7. Return the Final Routes:

o Return routes

Method: GS

Input: (depot, demands, capacity, dm, distance_weight_options, demand_weight_options)
 distance_weight_options: Possible Weights for distance_weight

 demand_weight_options: possible weights for demand_weight

Output:

 Best_sol: best routes with minimum cost.
 Best_weight_combination: Optimal tuple of distance and demand weights

Grid Search Optimization Method

1. Initialize results variables

o best_weight_combination = None; best_cost = Infinity; best_sol = None.

2. Perform Grid search:

o For each pair of (distance_weight, demand_weight) from the Cartesian product of
distance_weight_options and demand_weight_options:

Call WSI using (depot,demands,capacity,dm,distance_weight and demand_weight)

Store the resulting routes.

3. Evaluate routes cost:

o Calculate total_cost for the generated routes in total_cost

4. Update the best solution

o If total_cost < best_cost:
Update best_cost = total_cost

Update best_weight_combination = Tuple (distance_weight, demand_weight)

Update best_sol= routes
5. Return the best solution:

o Return best_sol

Algorithm2: MI-ITS

Method: Calling Method

Input: (depot, demands, capacity, dm, vehicles_num, max_iteration, k)

o vehicles_num: Vehicles Number

o max_iteration: Maximum iterations

o k: tournament sample size
Output:

o best_solution: lowest cost solution from returning solutions from worker method

Algorithm
1. Variable Initialization:

o solutions = empty list to store worker returning solutions.

2. Call Worker Method by attempting all nodes as first route start node

Received: October 27, 2024. Revised: November 29, 2024. 752

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

o For each node [from 1 to (num_customers_1)]:
Call worker method (node, depot, demands, capacity, dm, vehicles_num, max_iteration, k).

o Add the returned solution to solutions.

3. Filter out invalid solutions from solutions

o Discard empty and any solution with greater than number of available vehcles
4. Return best Solution

o Select the lowest code solution from solutions

Best_solution = min(solutions, key=solution cost).

Method: Caller Method

Input: (start_node, depot, demands, capacity, dm, vehicles_num, max_iteration, k)

o start_node: start node index to be the start node for the first route in the solution
Output:

o routes: Solution

1. Variables Initialization:

o num_customers = demands’ length; routes = empty list to store routes (solution); append [depot,
start_node, depot] to routes; visited = Set {depot,start_node} to track node visits; num_vehicles =

ceil(sum(demands) / capacity); chosen_nodes: Use modulo logic to choose consecutive nodes to the

start_node according to vehicles number.
o Initialize additional routes

for node in chosen_nodes:

append [depot,node,depot] to routes list.
o Create an solutions_data as empty dictionary for solutions data.

2. Extensive investigation of the search space

o Choose different candidates nodes for each run

For each iteration in range(max_iteration):
Reset routes with solely initial nodes.

Reset visited nodes to only include depot and starting nodes.

For each node not in visited:
Determine all candidate nodes in visited

Calculate best cost increase for each candidate node

Use tournament selection to select best_node from a random sample from candidate
nodes

Insert best_node in best position in best route

best_route=None; best_position=None; best_cost_increase= infinity;

for r in routes:
for position in r positions:

calculate cheapest_insertion_cost cost_increase

if cost_increase < best_cost_increase:
best_cost_increase = cost_increase; best_position= position;

best_route = r

insert best_node into r in best_position

store the iteration solution and cost in solutions_data
3. Return the best_solution from all iterations solution

o Best_solution=Min(solutions_data, key=solution cost)

Method: Tournament

Input:

o Candidates: nodes indexes with their best_cost_increase

o k: tournament size: random sample

output:

o best_node: lowest best_cost_increase node index

1. check the size of the sample

o check if the number of candidates is small

Received: October 27, 2024. Revised: November 29, 2024. 753

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.52

if candidates_number < k:
set k= candidates_number

2. random selection: sample =choose k candidates

3. select best candidate

o return best_node = min(sample, k=best_cost_increase)

