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Abstract: This paper presents two novel strategies for solving the Capacitated Vehicle Routing Problem (CVRP):
Weighted Score Insertion with Grid Search (WSI-GS) and Multiple Insertion with Iterative Tournament Selection (Ml-
ITS). The novelty of WSI-GS lies in its weighted demand-distance heuristic which uses balancing customer demand
and proximity to the depot for node insertion, refined by systematic parameter optimization using a grid search. MI-
ITS novelty is integration of iterative tournament selection to enhance solution diversity by a balance between
exploration and exploitation in node insertion. This improves adaptability to various problem settings. Despite
improved savings-based algorithms like Clarke-Wright and Parker-Holmes often showing superior overall
performance, proposed methods outperformed in several Augerat benchmark instances, reaching optimal or better-
than optimal (WSI-GS: P-n22-k2; MI-ITS: B-n50-k7, B-n52-k7, P-n19-k2, P-n20-k2, P-n21-k2, and P-n22-k2). The
complementary characteristics of WSI-GS and MI-ITS position them as viable candidates for future hybrid
frameworks, providing improved robustness and exploration in CVRP solutions.
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1. Introduction

There are many variants of Vehicle Routing
Problems (VRP) according to the constraints
considered, and CVRP (Capacitated VRP) is deemed
the core of these variants because it handles the base
presumed constraint which is the vehicle capacity
employed for distribution from/to the depot(s)
to/from a customer(s) [1]. So, there are many studies
have poured light on this literature in recent years [2].
The aim of CVRP is to identify the best paths for
delivery or collection routes across all the nodes of
the problem being solved while taking care of
homogeneous vehicles capacity to be assigned for
each path. Because of its wide search space, CVRP is
considered  Non-polynomial-hard  optimization
problem [1]. So, its complexity arises as the number
of nodes is increased, therefore there is no known
single algorithm can be employed to solve all
problems [3, 4]. There is a focus on CVRP literature
as main part of operation researches nowadays
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especially as emerging of new technologies in image
processing [5, 6] and loT technologies [7-9] to utilize
these techniques to strength CVRP problems.

There are six methods categories used to solve
CVRPs [10]. Because of exact algorithms complexity
and computation intensity, many heuristics methods
have been developed to solve CVRPs [11]. The most
important category is heuristics (pure and hybrid)
because of its simplicity, and consistency in such way
it can be considered as an entry to other method
categories by generating initial solutions. Among
heuristic category methods, constructive heuristics
(like saving, nearest neighbour, cheapest insertion,
and sweep algorithms) which build routes
sequentially or in parallel way to extend routes by
greedily adding unrouted customers approve their
efficiency for rapid feasible initial solution
generation in addition to be considered preferable
choice for projects that require fast, high-quality
solutions with little computational overhead because
its balance with solution quality [12].
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This study bases on Multiple Start Route
Cheapest Insertion Heuristic (MSR-CIH) [13]
concept to optimize it with grid search and iterative
tournament  selection. This paper’s primary
contributions can be summarized as follows:

1 Leveraging MSR-CIH with grid-search
optimization to ensure balance between two
heuristics metrics (demand and distance).

2 Hybridizing MSR-CIH with iterative
tournament selection to cover most of the
search space by enhancement in exploration
and exploitation.

3 Compare the performance of the developed
techniques with recent heuristics algorithms.

4 Analysis the complexity of developed
algorithms to highlight the parts that is needed
to be reviewed to optimize the results and
computation time.

The rest of this paper is presented as follows. First,
formulation and related works of CVRPs are
demonstrated in section 2. Then, detailing the of
proposed techniques in section 3 followed by
performance and analysis of the results in section 4.
At section 5, the conclusion and room for
improvements are presented.
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2. Formulating and related work
2.1 CVRP formulating

Despite that CVRP formulation has been widely
addressed in previous works [14][10], we revisit
formulation to ensure readability and consistency
across the paper.

Objective Functions:

The minimization of total cost (overall paths
distance, transportation time or any other interesting
factors according to the customers’ requirements)
while ensuring visiting all customers (Eq. (1)).

Constraints:

CVRP are subjected to the following constraints:

1. Each customer is served only once by one
vehicle (Eq. (2)).
Each vehicle can leave or visit only one
customer at time (Eq. (3-a) and Eq. (3-b)
respectively). This ensures all routes start
from and end at the depot.

3. All vehicles leave the customers after visiting
them except the depot (Eq. (4)). This ensure
no vehicle stay away from the depot.

Table 1. Notation list

Symbol ‘ Description

The indices and sets

n Customers Number
p Vehicles number
%4 Node set, where v, is the depot and {v,, v,..., n} are the customers
i,j Subscripts of the customers, i,j = 1,2,...,n
k Subscript of the vehicle k = 1,2,..,p; p number of vehicles
A A ={(v;,v)):v;,v; € V}; isarcs (paths) set linking nodes i and j
Parameters
D; Customer | demand
dy; Distance between customers I, |

Q Capacity of the vehicles

Decision Variable

Decision binary value: x;j;, = {
Xijk where x;;, € {0,1}

xiik = 0 vk € {1,,p},Vl € {1,,”}

1 if thereis anarc from i to j driven by vehicle k

vk € {1,...,p},i,j €{1,..,n}
Note: There is no travel from a node to itself

0 otherwise

Vik Decision binary variable: y;;, = {

where y;;, € {0,1}

1 if vehicle k visits customer i

0 otherwise
vke {1,...,p},i €{1,...,n}
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Figure. 1 Cheapest Insertion Example: (a) before
insertion and (b) after insertion

4. The vehicles load shall not exceed the vehicle
capacity (Eq. (5)).
5. The depot has demand equals to zero.
Table 1 list the notations used to solve CVRP
according to the above definition.
So, the minimization of objective function can be
expressed by the following equation:

Min %% _i o 2o dijieXiji M)

Subject to the following constraints:

Y ywu=1Vie{l,..,n} @)
Yy Xior = 1 Vk € {1...p} (3-2)
Y1 %o = 1Vk in{1, ..., p} (3-b)
Yiz1Xijk = Xi=1 Xjik- Vi{l,.n} k €

{L..n} (4)
2it1 Dy < QVk €{1,..,p} (5)

2.2 Related work

The (Cheapest Insertion Heuristic) CIH is
constructed initially by a subtour composed from a
single customer connected to depot, then iteratively
inserting other customers in the route in the position
that cause least cost increase until no more customers
can be added due to the capacity violation. This
process is repeated until all customers are included in
the feasible solution routes [15]. For example,
consider Fig. 1 in which there is two-way-arc
between two nodes (i, and j) (a) and a need to insert
the k node in this arc, then Eq. (6) is used to calculate
the cost increase resulting from such insertion [15]:

cost_increase = Cy + Cyj — Cjj (6)

Where cy,, is the Euclidean distance between any
node x and node y.
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CIH has some drawbacks in spite of its
effectiveness and simplicity. One of the main
limitations is its greediness which may lead to
suboptimal solutions particularly in  complex
instances with irregular customers geographic
distribution, wide-varied demands and complex
constraints. The heuristic result will depend mainly
on the sequence of nodes insertion into the routes.
Second matter, selection of starting routes has
significant impact on the final solution. So, requires
careful consideration [13]. Furthermore, despite CIH
has good efficiency in small to middle-sized
problems, its efficiency declines as the problem size
increases because heuristic does not explore the
whole solution space structure beyond the direct
neighbourhood of current route then falling in
potential local optima especially in large and
complex instances [16].

Several improvements and modifications to CIH
have been developed in the literature to address the
above limitations to make it useful tool for solving
complex and large-scale VRPs. One approach
involved randomness in insertion process. This to
introduce some stochasticity which enhances
exploration particularly in complex instances [17].
Hybridizing CIH efficient initial solution generation
with metaheuristic optimization algorithms gives
significant improvement in terms of travelled
distance, and number of vehicles used by utilizing
advanced search capabilities of such algorithms
especially in large-scale problems [18, 1]. Several
techniques proposed dynamically adapted versions
of insertion criteria based on the problem instances
characteristics such as current route status, customers
demand distribution and vehicle capacity to be
responsive to complex environments [1]. Another
improvement is involving machine learning
supervised learning techniques to control the
insertion process by training models on historical
CVRPs [19]. Furthermore, integrating
reinforcement learning to improve CIH
performance by learning from responses delivered
during the optimization process thereby adapting its
insertion policy based on previous decisions. In
advanced iterations, CIH becomes more effective at
determining most promising regions that avoid local
optima [20] A significant improvement is using of
parallel-processing techniques so multiple insertion
processes occur simultaneously to accelerate CIH
and drastically reduce computation time of extensive
exploration of the solution space [16].

In addition to previously discussed improvements,
several other enhancements have been proposed to
override CIH limitations and extend its capability in
solving complex CVVRP scenarios:
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Modification

Insight

Strengths

Weaknesses

Hybrid with
Metaheuristics [13, 18]

Combines CIH with global
search techniques.

Enhancing the search space
exploration and escaping local
optima.

Increase computational
complexity and require careful
tuning for parameters.

Adaptive CIH [15]

Dynamically adjust insertion
criteria  based on problem
characteristics.

Improve robustness and raise
flexibility.

Different scenarios require
different adaption strategies
thereby  suitable  strategy

selection complexity

Using ML techniques to guide

Requires large datasets and

techniques.

viable for complex problems.

Learning-based CIH he i . based Learns from past data to . L ith
[17] t_e m_sertlon process based on improve decision making extens_lve t_ra!nlng_ wit
historical data ' potential overfitting risk.
.| Simultaneous insertion process | Reduce computation | Implementation ~ complexity
Parallel Processing| ... . - . . . e
[18] utilizing parallel computing |dramatically, modify CIH|and potential synchronization

issues.

Clustering techniques
[21]

Pre-processing by grouping
customers.

Reduce problem complexity

Effectiveness depends on the
clustering algorithm.

Multi-objective
Optimization [15, 19]

Balance multiple objectives
during insertion.

Solutions meet diverse real-
world requirements

Balancing complexity and
tuning weights appropriately.

Refine  solution  through

Time-consuming and may

Iterative  Refinement . . Allows progressive e . .
multiple runs, improve route|: : require iterations to achieve
[16] . improvement of solution S .
each time. significant improvements.
. . Enhance diversity and reduce | Potential inconsistent results
Randomized Insertion|Introduce  randomness to - - . . .
. the risk of getting stuck in local | so require multiple runs to
[17] explore a wider search space .
optima. ensure robustness.
Table 3. Summary of Single and Multiple Start Route Categories
SSR-CIH MSR-CIH
Initiates several routes by picking various starting
- . . . . nodes based on parameters such as index, distance,
Initialize Establishes a route with a singular starting node. .
demand, randomness, weighted score, and
proximity [13].
Star_tlr_lg Node Restricted to the selection of a single node. Exhibits greater flexibility by initiating several
flexibility routes [13].
Risk of Inefficient | Increased  risk  resulting  from  restricted Egg:;e:ngsgﬁz iﬂ:gggg&mﬁg'Y:;S'tf);;figg:,al
routes exploration of node combinations. . 1010gIES, 9
enhanced exploration of possible routes [15, 16].
Complexity Reduced computational complexity. Increased computational complexity [13].
Large instance May exh'b't subopt|m.a|.performance due to the More suitable for larger instances, as exploration
exploration of a limited number of node - .
performance - and results in more equitable routes [13].
combinations.
Bias Susceptible to bias. Mltlggtes_b_la}s by examining various criteria for
selecting initial nodes [13].

Clustering Techniques:

Grouping customers into smaller, more
manageable units before applying CIH can
dramatically improve heuristic  performance.

Clustering itself depends on various criteria such as
customers distribution or customers’ demands to
simplify and strengthen the insertion process [21].

Multi-objective optimization:
In reality CVRP application, the objective
function is not solely minimizing the distance, but to
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balance multiple objectives such as balancing vehicle
loads or environmental impact. So multi-objective
extension of CIH involves these additional criteria
into the insertion process to meet the requirements of
the problem by assigning dynamic weights during the
insertion process [19].

Iterative Refinement:

Where the heuristic is applied multiple times,
make adjustments to the insertion process or by re-
evaluating the insertion order each time. This
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approach iteratively improves the solution quality
[16].

Table 2 summarizes these
improvements(modifications). Among these
improvements, hybridization with metaheuristics
algorithms gained attention of most scholars in
CVRP literature in recent two decades [2, 11]
because of the promising results. Because of new
emerging of new novel metaheuristic algorithms,
there is a tendency to adapt such algorithms in
solving CVRP complex problems because of the
modern techniques employed in their phases such as
guided searches and arithmetic crossover [22],
splitting the swarm into two equal-sized groups to
vary the search process and intensify sub-swarms
[23] or employing three references in exploring
search space [24] after considering converting some
of their functionalities to be compatible with
permutation-based problems like VRP.

3. Methodology

Traditional sequential insertion iteratively adds
nodes to increasing routes based on short-sight
metrics like least cost increase. This greedy strategy
provides fast and simple solutions, but it is often
caught in local optima because it lacks the global
perspective to evaluate the early choice influence on
solution quality. Furthermore, the heuristic nature of
starting with a certain node based on their index,
demand, or distance from the depot introduce a bias
in the construction of the solution which significantly
affects the resulting routes and lead to suboptimal
solution, while other may produce more efficient
solutions. To overcome these limitations, this paper
introduced two MSR-CIH techniques. The key
differences between single start route CIH (SSR-
CIH) and MSR-CIH are summarized in Table 3.

3.1 Weighted sequential insertion with grid search
optimization (WSI-GS)

WSI-GS is motivated by the principles of seed
customer selection [16], highlighting the significance
of judiciously choosing initial nodes to direct the
insertion process. Additionally, the algorithm utilizes
the advantages of multiple starting routes [16].

This technique is proposed to overcome the bias
resulting from choosing starting nodes based on
arbitrary metric such as proximity to depot, demand
or customer index, so it depends mainly on assigning
certain weights parameters for both demand and
distance then calculating score as shown in Eqg. (7).
This calculation introduces a degree of balance
optimization by reduce the travel distance while
maximize vehicle capacity utilization. By letting
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users control weights, WSI-GS is more versatile than
purely demand- or distance-based techniques.

score; = dw * D; + dist_w * d; (7

Vi € {1,...n};dw demand weight;
dist_w:distance weight; D;: customer i demand;
d,;: distance between the depot and customer i.

The general scheme of WSI-GS is shown in
Appendix B, Algorithm 1.

3.1.1. WSI-GS implementation main steps

WSI-GS key steps can be summarized as follows:
Setting Up Grid Search:
oTake the Cartesian product of all distance and
demand weight Options.
o Test weight settings with all combinations.
2- Choosing Start Node Scores:
oFor Every weight combination: Given distance
and demand weights, calculate a weighted score
for all nodes; Initialize several start routes with
the highest weighted nodes.
3- Build Routes with Insertions:
oInitialize a route for each start node.
olnsert remaining nodes into routes sequentially,
choosing the lowest cost increase while
respecting vehicle capacity.
4- Calculate the best solution:
oComparing the cost of the obtained solution for
each weight’s combination.

1

3.1.2. WSI-GS complexity analysis

Outer While Loop:

WSI loops around all nodes until all customers
are visited, taking O(n) time.
First Node selection Score
Calculation):

WSI calculates the weighted-score for all
unvisited nodes during route initialization. Each route

initialization takes O(n).

(Weighted

Node Insertion (Cheapest Insertion):
oTo find the best node position in a route, the
approach checks up to n positions and estimates
insertion costs using the distance matrix. Then,
inserting each node takes O(n?).
So, the complexity for the sequential insertion
phase is O(n®) in the worst case.

GS complexity:
oGS explores different combinations of distance
and demand weights. Because there are w_d
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options for distance_weight and w_dem Since WSI has a complexity of O(n®), then the
overall complexity for WSI-GS technique will be

options for demand_weights, then the algorithm
runs O(w_d x w_dem) times of WSI. O(w_d x w_dem x n3). So, the complexity depends
on the amount of weights options.

| Start I

h 4

Fead start_node, depot,
demands, capacity, dm,
num_vwehicles,max_iteration

h 4

choose start_node and its
consecutive nodes

oes reach max_iteration?

Mo

¥

Initialize Routes and visited

|

. " Idenitify candidate nodes and
CaIF:L;[_atefcost ol thte_rl:esut!tlng best cost increase for each
solution for current iteration candidate node
X

Mo

] Does handle
?
Is there unvisted nodes? >€—ys all candidate nodes 7

‘{is '10
1- Exfract samples from
candidate nodes

1- Identify the unvisted
2- Fallback inserion them 2- Determine best node
according tournament

!

1-Insert best node in best
position in best route

2- update candidate nodes and

visited

L

Return the best solution
across all iterations

Figure. 2 Worker Method Flow Chart for MI-ITS
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3.2 Multiple insertion with iterative tournament
selection (MI-ITS)

MI-ITS is based on importance of iterative
refinement in developing progressively optimized
routes and multiple start routes concept [14, 13]. It
prioritizes diversity, as highlighted by [15, 16] which
improves global search capabilities and maintains a
balanced exploration-exploitation trade-off essential
for addressing complex vehicle routing problems.

Three approaches comprise MI-ITS. The main
(calling) method calls the worker (core) method with
the start node parameter, worker calls the tournament
selection method with candidate nodes. MI-ITS main
purpose is to reduce the potential bias that may be
resulted from starting with certain nodes by looping
through all nodes as starting node and passes that start
node to worker method and evaluates the resulted
routes cost then chooses the lowest cost solution. The
core innovation of this algorithm is leveraging
multiple start route strategy with two enhancement
techniques:  tournament and iteration. The
tournament introduces stochastic element that
enhances exploration thus avoiding local optima
which is a common problem in deterministic
insertion algorithms that follow purely greedy
insertion approaches, and exploitation (improving
known good solutions) while iteration improves the
finding better routes chance over time.

Fig. 2 shows worker method implementation. The
MI-ITS pseudo code is in Appendix B, Algorithm 2.

3.2.1. MI-ITS implementation main steps

MI-ITS key steps can be summarized as follows:
1- Iterative selection for start nodes:

Repeat for each start node to call the worker

function. Each start node starts several routes with

successive nodes. So, the start_node will be the

starting node for first vehicle (k = 1), while Eq.

(8) will calculate the consecutive nodes.

S+k—-—n+1if(S+k)=n

Cr = {(5 + k) mod n, Otherwise ®)
Vk € {2..p}; Cy: start node for vehicle k; S:
starting node; n: number of customers; p: vehicles
number.

2- Tournament Selection process:
Evaluate candidate nodes and choose the best
using k-tournament selection per iteration. Place
the chosen node with minimal cost increase.

3- Solution selection for each iteration:
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Record each iteration’s cost and solution. After
iterations, choose the optimal solution with fewest
routes and lowest cost.

4- Return the best solution:
Return all-iteration best solution.

3.2.2. MI-ITS complexity analysis

Outer Loop:

Algorithm run for max_iteration iterations.
Each iteration reinitializes the routes and does node
insertion using tournament selection. So, the
complexity of the outer loop is O(max_iteration).

Tournament Selection:

The method estimates the cost of adding each
unvisited node to all routes and placements. So,
tournament evaluates each node n times. The sample
usually has fewer candidates than n, therefore the
tournament runs O(k).

Node Insertion:

The worker complexity is O( k xn?x
max _iteration) for each insertion since it calculates
the cost increase of putting a node at all feasible
positions in all routes.

Total complexity:
The worker is called n times Thus, the total
complexity will be O(k x n3 X max _iteration).

4. Experimental analysis

This section introduces the numerical results of
experimenting of the proposed methods on 74
Augerat instances- whose key traits are in Table 4-
existing in the literature [25]. Because of high
efficiency of saving method in constructing initial
solutions as demonstrated by article [13] in related
work section, the proposed strategies are compared
with two state-of-art methods -(Improved Clarke-
Wright (ICW) and Improved Parker-Holmes (IPH))-
[10] to verify their effectiveness. Most important
features of PC used in experimental application:
Intel(R) Core (TM) i7 x64-based CPU; Physical
Memory (RAM):16.0 GB; Programming language:
Python. All instances depots are symmetric, centered,
or non-centered. Eq. (9) calculates the ratio of total
demands to vehicle capacity.

RDC = Yien D; /(Q * P) )
Where RDC :Ratio of demands to capacity; Q :

Vehicle capacity; P : Number of vehicles; D; :
customer ith demand; n: customers number.
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Set
t (A tB tP
Feature Set (A) Se Se
More realistic scenarios such .
. Randomly generated |as where customers are Some. Instances are e_tdapted
Locations and demand . . . from datasets with different
customer locations  and |located in certain urban or . ..
[25] . . vehicle capacities and
demands business areas with more demands

realistic demands

Variety of problem sizes

Range widely in size, thereby

[25] Range from small to medium | Medium sizes covering wide CVRP
spectrum.

Clustering nature of Nodes are uniformly or non- | Customers are geography|Mix of clustered and non-

customer location [25] | uniformly dispersed clustered clustered customers

Table 5. Comparison of Techniques in Multiple Start Route Insertion

MSR-Farthest MSR-Highest MSR-Random MSR-Nearest MSR-WSI-GS
Demand
Gives precedence |Based on nodes|Randomly select|Prioritizes the| Weighs  distance
Initiating Node [to nodes that are|demand nodes to start|closest nodestothe|and demand, then
Selection most distant. routes depot for route|using grid search.
initiation.
Prioritizes distant|Focuses on high-|Randomness Emphasizes quittable strategy
nodes initially, | demand nodes, | enhances proximity, yet may | takes into account
E . potentially lead to|may overlook | exploration but | result in an|both distance and
xploration . I . .
neglecting load | proximity. may result in|ineffective demand|demand,
balancing at the suboptimal  route | equilibrium. optimizing  each
outset. formation. element.
Lead to suboptimal | Could lead to less|While it minimizes|It may promote | Minimize bias due
routes if the distant | efficient routes | bias, random | shorter  distances | to balanced
Bias nodes have higher|because high | selection can result|while missing a|selection.
demands demand takes|in varying | more important
precedence  over |solutions. demand
distance. distribution
Moderately Moderately Lower complexity | Minimal Increased
complex. complex. because of | complexity, as it|complexity due to
Complexity randomness. depends on|grid search
proximity for node | optimization.
selection.
Appropriate  for | Exhibits  optimal | Inconsistent Most appropriate | Perform well
scenarios  where | performance when | performance for situations when | consistently,
Large remote nodes | demand is a pivotal closeness to the|especially in large
instances substantially element in route depot is of | instances with
performance |influence routing|balancing. paramount high-varied
expenses. importance. demand and
distance nodes.
Concentrates  on | Regulates load | Random prefers shorter|offers the ideal
Route remote nodes, | demand, although | performance yields | starting routes but|ratio of reducing
S potentially may increase cost. |inconsistent may result in an|distance to
optimization | X - .
owering total efficiency. uneven load | balancing demand.
route length. distribution.
Egs. (10) and (11) calculate the problem standard
deviation (square root of variance). ©= % n  Di (11)

0 = [AEL0; - w2
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(10)

Where o: Problem standard deviation; n: customers
number; u: demand mean; D;:ith Customer demand;
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Recalling that there are two categories of
insertion procedures in terms of start routes: single
start route (SSR) and multiple start route (MSR)
categories[13].

At the outset of a SSR algorithm, a single route is
initialized, with a single node selected using a
predetermined heuristic rule (such as its index or
closeness to the depot, for example). Each route in a
MSR algorithm starts with a different node according
to a variety of criteria, such as:

o the distance from the depot (nearest or farthest)
prioritizing nodes based on customer demand
choosing start nodes randomly

Weighted score insertion: by combing both nodes
proximity and demand.

Furthermore, by utilizing parallelization scheme,
parallel improved insertion- with consecutive nodes
(PI-CN) which is used to send multiple start nodes
as argument in parallel threads to the worker method
which by turn initialize multiple start routes by
choosing consecutive nodes to the passed start node
as shown in step 2 of the section 3.1.1. This
implementation is used to avoid bias by starting with
a certain node.

Table 5 summarize the main differences between

some MSR adapted variants [16, 13].
Euclidean  distances—rounded  integer  node
distances—are used in optimal solutions for the three
primary CVRP datasets [26]. Appendix A Table 1
demonstrates the solutions obtained and optimal
value for all benchmark instances. The gap between
an algorithm’s solution and the literature’s optimal
solution measures its performance[13]. So, solution
percentage gap (or solution quality) is calculated
according to Eq. (12) below.

O O O

solopt

Where sol,,; is obtained solution for a certain
instance; sol,,, the best-known solution.

Appendix A Tables 2 calculates the solution
guality for all implementations. The overall
performance of a particular algorithm within a dataset
can be determined by the mean percentage gap for
that algorithm over all instances as shown in Eq. (13).

Zinse{set} 9daPins (13)

meanset = set_num

Vset € {A, B, P}; ins is instance within a set; gap;ns
algorithm gap for ins;set_num: number of instances
in a certain set.

Table 6 calculates the mean percentage gap for all
implementations on all sets.
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Table 6. All Implementations’ Mean Percentage gap (%)

on all sets

Implementation SetA | SetB | SetP
SSR 36.37 | 37.77 | 24.78
MSR-Farthest 46.42 | 60.28 | 27.39
MSR-Highest Demand | 27.33 | 27.47 | 21.43
MSR-WSI-GS 20.35 | 17.1 13.99
MSR-Random 29.21 | 28.96 | 21.59
MSR-Nearest 35.88 | 44.67 | 21.21
PI1I-CN 15.38 | 11.37 | 9.263
MI-ITS(k=3) 11.37 | 5.943 | 6.967
MI-ITS(k=5) 11.8 | 6.3044 | 6.815
ICW 341 | 2.68 4.397
IPH 2.76 | 2.61 2.49

On Set A, MSR methods outperform SSR because
of elimination of start node bias. A significant feature
that improves WSI-GS performance is the cartesian
product of demand and distance weights strengths.
WSI-GS. The algorithm has the lowest mean gap
across MSR variations at 20.35% because it adapts
better to non-clustered, dispersed locales. SSR and
MSR-Farthest struggle without clustering or spatial
trends. The 36.37% gap reveals SSR’s greedy, rigid
nature which struggles with diversified input. MI-ITS
(k=3 and k=5) outperforms P1I-CN with 11.37% and
11.8% mean gaps. Due to lack of clustering, dynamic
and randomized datasets benefit from iterative node
insertion search.

With fewer nodes than Set A but larger demands,
Set B requires precise starting positions, therefore the
weighted score and highest demand algorithms
prioritize starting nodes by demand and distance. Its
adaptive grid search approach helps WSI-GS achieve
17.1% mean gap. Geographically restricted clusters
benefit from weight scoring that balances distance
and demand. MI-ITS (k=3 and k=5) exceeds PII-CN
(11.37% gap) with mean gaps of 5.943% and 6.304%.
and achieves optimal solution in instances (B-n50-k7,
and B-n52-k7). In clustered contexts, precise node
insertion enhances solution quality, making iterative
tournament selection useful. Due to its leaning
toward geographically adjacent nodes, MSR-nearest
performs poorest on Set B (44.67% mean gap) in
complicated, clustered layouts.

Set P, merits by the following attributes: Diverse
demands, complex depot location, capacity constraint
tightness and random nodes selection. So, WSI-GS
handles mixed scenarios well with a 13.99% mean
gap and achieves better than optimal solution in
instance (P-n22-k2). Its grid search optimization
balances clustered and non-clustered nodes. With
mean gaps of 6.967% and 6.815%, MI-ITS (k=3 and
k=5) likewise perform well and achieves better than
optimal solution on instances (P-n19-k2, P-n20-k2,
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P-n21-k2 and P-n22-k2). lterations manages Set P
instances’ heterogeneity. MSR Random find better
than optimal solution in instance P-n21-k2 but the
main issue with randomization is inconsistency.
PII-CN outperforms all MSR variations
(including WSI-GS) and SSR, with mean gaps of
15.38% on Set A, 11.37% on Set B, and 9.263% on
Set P. Because start node bias is eliminated. MI-ITS
perform better than P11-CN because of start node bias
elimination in addition to iterative tournament
selection mechanism which leads to robust
performance. PII-CN uses parallelization to test
many starting nodes at once and select the optimal
solution. While MI-ITS prioritizes tournament
selection for iterative node insertion. This method
uses controlled randomization to find more
promising solutions. Increasing tournament size (k)
influences exploration-exploitation balance. A bigger
tournament size (k = 5) lowers unpredictability and
emphasizes near-greedy solutions, whereas a smaller
size (k = 3) stimulates exploration but may miss
locally optimal solutions. However, because of
iterative and tournament, we avoid using thread
pooling in MI-ITS because it may cause thread
management  overhead and  synchronization
difficulties, reducing computing efficiency.
Improved savings algorithms perform best
overall, with mean gaps of 2.49% to 4.397% across
all sets. They prove their initial solution generating
dominance and academic literature benchmark status.
WSI-GS and MI-ITS perform well on all datasets
with  considerable  strengths  particularly in
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complicated structures or randomized inputs,

sometimes providing optimal or better-than-optimal

solutions as shown in Figs. 3 to 5. They improve

CVRP initial solution generation with creative

methods, although ICW and IPH outperform them.

They can be deemed as scholarly contributions

because of the following principal rationales
1. Insertion algorithms are more adaptable:
olnsertion-based techniques like MI-ITS enable
dynamic route construction, improving
adaptability  to  non-uniform  demand
distributions, especially in complex instances
like Set P.

oMI-ITS enables deeper exploration and better-
than-optimal solutions when the savings-based
heuristic fails to locate the global optimum.

oWSI-GS mitigates node selection bias: WSI-GS
uses weighted scoring functions optimized with
grid search to avoid bias in starting routes with
any node. It balances proximity and demand
better than standard insertion methods,
producing competitive results and sometimes
outperforming ideal solutions.

2. Further exploration than Greedy Saving: These
techniques provide alternate approaches for
initializing and constructing routes that mitigate
the bias associated with savings-based heuristics.
This illustrates their promise for further
investigation and enhancement for some cases.

3. Hybridization Opportunities: Mixing these
techniques with savings-based methods combines
their strengths—flexibility and efficiency.

Percentage Gap for Each Algorithm vs Instance
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—
o
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Figure. 3 Elite Implementations gap on Set A
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5. Conclusion, limitations and room for
improvement

5.1 Conclusion

This paper presents two novel algorithms, WSI-
GS and MI-ITS, as innovative methods to tackle the
challenges associated with generating high-quality
initial solutions and remain relevant in contexts that
require variety and flexibility. Both strategies fall
under the category of multiple start routes MSR,

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025

o

designed to address the constraints of conventional
insertion algorithms.

The WSI-GS aimed at enhancing the route
initialization process by utilizing a weighted score
mechanism. The algorithm is driven by the principles
of seed customer selection, highlighting the
significance of meticulously choosing initial nodes to
direct the insertion process. Through the integration
of distance and demand priorities into a weighted
score, along with the application of grid search
optimization, WSI-GS adeptly harmonizes these
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elements to produce high-quality initial solutions.
Additionally, it utilizes the advantages of various
starting routes as other MSR variants. It improves the
examination of possible routes while reducing biases
of SSR techniques, leading to a more thorough and
fair analysis of the solution space. WSI-GS
implementation shows superiority over several
variants of MSR in addition to traditional SSR
implementation.

The MI-ITS presents a methodical framework
aimed at improving solution quality via Iterative
tournament selection, which provides multiple
benefits. This method enhances node selection by
evaluating a varied array of candidate nodes during
each iteration, thereby reducing the likelihood of
early convergence to less optimal solutions. It
improves the exploration phase by iteratively
selecting nodes through a tournament mechanism,
effectively balancing the exploration- exploitation
trade-off. This approach is essential for addressing
complex vehicle routing problems, as it ensures a
more solution space comprehensive coverage during
the search process. The variation in node selection
enhances the quality of the routes constructed and
raises the probability of identifying near-optimal or
globally optimal solutions. Furthermore, MI-ITS
utilizes the principle of multiple start routes by
starting routes from various starting nodes. MI-ITS
implementation shows superiority as compared to
other several MSR variants including WSI-GS. It
also outperforms PII-CN algorithm which merits
with start node bias elimination.

The numerical analysis indicates both techniques
do not consistently surpass ICW and IPH; however,
both methods exhibit considerable potential,
especially in scenarios necessitating dynamic,
flexible, and high-quality initial solutions. MI-ITS
shown exceptional efficacy in managing non-
uniformly dispersed nodes and demand fluctuations,
whereas WSI-GS  provided consistent and
dependable solutions with reduced computational
expenses. The findings demonstrate the scholarly
value of both strategies in cases where savings
algorithms may not perform optimally.

MI-ITS performs best of the two methods. The
following situations favor it:

1. Cases where Demand Variability is High:
MI-ITS excels in managing network demand
imbalances by considering multiple starting nodes
and dynamically inserting customers based on
tournament choices.

2. Uneven Node Distributions:

Savings-based algorithms may struggle when

nodes are geographically dispersed and route

merging is difficult. MI-ITS’s iterative
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tournament selection can balance geographical
proximity and demand limits to find optimal
insertion places. benefit: Tournament selection
iteratively  considers local improvements,
avoiding greedy errors in savings algorithms.

3. Diversification in complex routing networks:

By initializes numerous routes using different
starting nodes and then selects candidates. MSR
and tournament selection increase the likelihood
of finding near to or better than optimal solutions
by extensive exploration.

4. When high computational resources available:
The tournament-based selection can increase
computational load, yet MI-ITS performs well
with enough power. So, leveraging it with
parallelization can improve solution quality.

5. Situations Needing Dynamic Route Construction:
MI-ITS builds routes repeatedly, considering each
node’s insertion dynamically, unlike methods that
build entire route based on available heuristic rule.
This flexible strategy improves adaptability and
accommodates last-minute maodifications or
constraint.

6. Prioritizing Solution Quality over Speed:

MI-ITS iteratively explores various candidate
nodes to find high-quality solutions at the cost of
computing performance. This makes it excellent
for situations when superior solutions are crucial.
This is benefiting logistics applications where
even little changes results in large cost reductions.

7. Large-Scale Problems with numerous vehicles:
Multiple vehicle deployments work well with MI-
ITS because it assigns distinct start nodes to
initialize routes. Tournament-based insertion
maximizes vehicle use without overloading roads.
So, better performance can be ensured by the
ability to provide balance between vehicles
numbers and workload, when traditional savings
algorithms may face capacity restrictions.

Despite its elevated computational expense, the

parallelization feature offsets this drawback, giving

MI-ITS an excellent contender for extensive,

complicated VRP instances where the attainment of

superior solutions is essential. These algorithms have
promising VRP potential advancement, according to
our findings.

5.2 Limitations

Despite the encouraging outcomes, both MI-ITS
and WSI-GS are constrained by specific limitations:
1. Computation overhead:

By iterative tournament selection, especially
for large situations.
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2. WSI-GS parameter tuning sensitivity:
Relying on carefully selected grid search
weights, which may limit its scalability.
3. Performance shortage in certain instances:
Both proposals outperform savings-based
techniques in some cases. This highlights the bias
caused by node initialization processes.
4. Absence of Parallelization in MI-ITS:
Without parallelization, MI-ITS is limited.
The iterative tournament selection process makes
it difficult to parallelize without reducing
algorithm efficiency for large Problems instances.

5.3 Future work and room for improvements

1. Considering MI-ITS effective parallelization:
With  maintain its iterative selection
characteristics [19]. This may entail hybrid
parallel models or asynchronous processing
methods to address iterations challenges.
2. Dynamic parameter modification:
Adaptive methods to adjust tournament size
dynamically [26] within MI-ITS could reduce

computational overhead while maintaining
solution quality.
3. Improving scalability:
Exploring methods to diminish the

computational complexity of both MI-ITS and
WSI-GS may enhance the scalability for bigger
instances.

4. Hybrid methodologies:

Combining MI-ITS and WSI-GS with
savings-based algorithms may produce hybrid
methodologies that optimize the balance between
exploration and exploitation.  Furthermore,
utilizing metaheuristic approaches such as
Simulated Annealing, Tabu Search or other state-
of-the-art swarm intelligence algorithms [27, 28]
can enhance the algorithms’ capacity to avoid
local optima [2].

5. Enhanced weight optimization in WSI-GS:

Refining the scoring system by employing
machine learning or adaptive optimization has the
potential performance improvement [29, 30].

6. Evaluating on more extensive and practical
scenarios:

Further investigation should prioritize
comprehensive evaluations on larger and real-
world datasets, including urban logistics and e-
commerce delivery networks, to determine the
practical applicability of these algorithms.
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Appendix A
Table 1. All implementations Results on All sets
© )
P I R = | & _
g | E S0 Bl gz L|¢L :
§ ¢ |E|8 58| |8 2| B8 K
- = - P o [ [ =
-5 2|5 | DB 2 s | s 8
£ £
1] An32-k5 | 2067 | 1127 | 1205 | 1049 | 939 | 929 | 1073 | 910 | 857 | 868 | 831 | 786 | 784
2 | An33-k6 | 1847 | 983 | 1020 | 915 | 717 | 833 |1014 | 710 | 697 | 698 | 682 | 682 | 661
3| An33-k6 | 1516 | 1161 | 1179 | 1089 | 787 | 893 | 898 | 807 | 784 | 788 | 760 | 736 | 742
4| A-n34-k5 | 1905 | 1047 | 914 | 851 | 886 | 1020 | 959 | 812 | 782 | 788 | 793 | 793 | 778
5| A-n36-k5 | 1981 | 1073 | 1075 | 1110 | 947 | 1049 | 1160 | 878 | 853 | 842 | 824 | 814 | 799
6 | A-n37-k6 | 1578 | 1045 | 889 | 716 | 796 | 750 | 878 | 783 | 715| 720 | 690 | 690 | 669
7| A-n37-k6 | 2036 | 1247 | 1314 | 1171 | 1163 | 1219 | 1199 | 1138 | 1094 | 1073 | 984 | 981 | 949
8 | A-n38-k6 | 2232 | 1051 | 1254 | 867 | 946 | 1127 | 982 | 862 | 814 | 848 | 778 | 757 | 730
9 | A-n39-k5 | 2311 | 1078 | 1142 | 1003 | 1011 | 1057 | 1113 | 969 | 919 | 897 | 893 | 878 | 822
10 | A-n39-k6 | 2366 | 1133 | 1213 | 949 | 1025 | 1201 | 1309 | 999 | 910 | 891 | 860 | 856 | 831
11 | A-n44-k6 | 2583 | 1249 | 1381 | 1060 | 1075 | 1181 | 1183 | 1065 | 1065 | 1048 | 991 | 991 | 937
12 | A-n45-k6 | 2793 | 1315 | 1517 | 1147 | 1297 | 1250 | 1434 | 1129 | 1101 | 1106 | 963 | 963 | 944
13 | A-n45-k7 | 2633 | 1443 | 1470 | 1523 | 1323 | 1462 | 1460 | 1370 | 1290 | 1292 | 1185 | 1185 | 1146
14 | A-nd6-k7 | 2671 | 1283 | 1413 | 1213 | 1077 | 1141 | 1320 | 1031 | 974 | 1002 | 914 | 914 | 914
15 | A-n48-k7 | 2861 | 1406 | 1582 | 1534 | 1287 | 1386 | 1496 | 1192 | 1168 | 1183 | 1092 | 1092 | 1073
16 | A-nb3-k7 | 3167 | 1488 | 1626 | 1467 | 1136 | 1208 | 1300 | 1165 | 1057 | 1114 | 1072 | 1063 | 1010
17 | A-nb4-k7 | 3463 | 1503 | 1699 | 1472 | 1387 | 1590 | 1453 | 1319 | 1321 | 1326 | 1195 | 1195 | 1167
18 | A-nb5-k9 | 2928 | 1393 | 1559 | 1353 | 1379 | 1256 | 1265 | 1272 | 1245 | 1215 | 1087 | 1087 | 1073
19 | A-n60-k9 | 3741 | 1738 | 1961 | 1647 | 1731 | 1707 | 2082 | 1603 | 1516 | 1546 | 1393 | 1393 | 1354
20 | A-n61-k9 | 3294 | 1473 | 1655 | 1299 | 1373 | 1484 | 1403 | 1216 | 1159 | 1171 | 1037 | 1037 | 1034
21 | A-n62-k8 | 3450 | 1664 | 1889 | 1660 | 1575 | 1649 | 1793 | 1495 | 1442 | 1471 | 1337 | 1337 | 1288
22 | A-n63-k10 | 3673 | 1763 | 2024 | 1733 | 1522 | 1746 | 1729 | 1523 | 1474 | 1513 | 1332 | 1332 | 1314
23 | A-n63-k9 | 4125 | 2026 | 2349 | 2093 | 1903 | 2104 | 2253 | 1829 | 1903 | 1929 | 1656 | 1656 | 1616
24 | A-n64-k9 | 3628 | 1687 | 1862 | 1898 | 1662 | 1747 | 1936 | 1680 | 1621 | 1599 | 1462 | 1455 | 1401
25 | A-n65-k9 | 3646 | 1605 | 1706 | 1477 | 1538 | 1575 | 1593 | 1387 | 1417 | 1370 | 1244 | 1244 | 1174
26 | A-n69-k9 | 4162 | 1638 | 1612 | 1386 | 1328 | 1507 | 1624 | 1299 | 1291 | 1305 | 1211 | 1211 | 1159
27 | A-n80-k10 | 5133 | 2316 | 2608 | 2223 | 2107 | 2308 | 2290 | 2129 | 2089 | 2080 | 1788 | 1781 | 1763
28 | B-n31-k5 | 1438 | 818 | 1100 | 756 | 758 | 930 | 868 | 700 | 680 | 679 | 675 | 674 | 672
29 | B-n34-k5 | 1814 | 1001 | 1130 | 842 | 841 | 800 | 1003 | 804 | 790 | 789 | 800 | 800 | 788
30 | B-n35-k5 | 2672 | 1209 | 1273 | 1265 | 1006 | 1094 | 1311 | 974 | 977 | 980 | 969 | 968 | 955
31 | B-n38-k6 | 2058 | 1124 | 1184 | 1045 | 913 | 957 | 1038 | 885 | 832 | 858 | 819 | 818 | 805
32 | B-n39-k5 1849 | 1012 | 1125 | 738 | 737 | 672 | 1123 | 623 | 550 | 557 | 555 | 555 | 549
33 | B-n41-k6é | 2472 | 1074 | 1278 | 1019 | 928 | 1001 | 1176 | 901 | 860 | 855 | 870 | 869 | 829
34 | B-n43-k6 | 2218 | 985 | 991 | 873 | 858 | 900 | 1068 | 799 | 754 | 756 | 749 | 749 | 742
35 | B-n44-k7 2502 | 1145 | 1436 | 1174 | 1112 | 1111 | 1231 | 1025 | 997 | 1002 | 970 | 970 | 909
36 | B-n45-k5 | 2594 | 1136 | 1097 | 965 | 906 | 1146 | 1056 | 828 | 813 | 831 | 754 | 754 | 751
37 | B-n45-k6 | 1773 | 992 | 1094 | 966 | 856 | 1011 | 958 | 829 | 784 | 806 | 708 | 708 | 678
38 | B-n50-k7 2746 | 1067 | 1398 | 1033 | 819 | 982 | 1143 | 766 | 741 | 752 | 729 | 729 | 741
39 | B-n50-k8 | 2778 | 1704 | 1776 | 1621 | 1545 | 1727 | 1553 | 1512 | 1428 | 1440 | 1327 | 1327 | 1312
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Table 1. All implementations Results on All sets

40 | B-n51-k7 | 3003 | 1391 | 1462 | 1237 | 1143 | 1160 | 1311 | 1163 | 1099 | 1109 | 1110 | 1109 | 1032

41 | B-n52-k7 | 2941 | 1075 | 1217 | 1025 | 913 | 813 | 1229 | 772 | 758 | 747 | 746 | 746 | 747

42 | B-n56-k7 | 2807 | 947 | 1421 | 1103 | 784 | 909 | 1124 | 868 | 746 | 750 | 711 | 704 | 707

43 | B-n57-k7 | 4198 | 1606 | 1872 | 1655 | 1334 | 1344 | 1846 | 1297 | 1235 | 1227 | 1224 | 1224 | 1153

44 | B-n57-k9 | 3468 | 1922 | 2174 | 1910 | 1818 | 2012 | 1978 | 1748 | 1664 | 1655 | 1628 | 1628 | 1598

45 | B-n63-k10 | 4076 | 2243 | 2385 | 1818 | 1751 | 2073 | 2058 | 1658 | 1603 | 1598 | 1572 | 1572 | 1496

46 | B-n64-k9 | 2889 | 1197 | 1653 | 1060 | 1015 | 1232 | 1368 | 1000 | 936 | 931 | 898 | 898 | 861

47 | B-n66-k9 | 3278 | 1652 | 1894 | 1578 | 1502 | 1636 | 1847 | 1434 | 1476 | 1474 | 1403 | 1402 | 1316

48 | B-n67-k10 | 3468 | 1564 | 1932 | 1239 | 1292 | 1692 | 1694 | 1208 | 1127 | 1084 | 1072 | 1071 | 1032

49 | B-n68-k9 | 4108 | 1741 | 1969 | 1574 | 1465 | 1532 | 1691 | 1461 | 1383 | 1399 | 1296 | 1296 | 1272

50 | B-n78-k10 | 4265 | 1642 | 2144 | 1557 | 1624 | 1925 | 1900 | 1466 | 1355 | 1363 | 1230 | 1230 | 1221

51 | P-n101-k4 | 2107 | 935 | 796 | 896 | 800 | 858 | 854 | 767 | 702 | 707 | 700 | 698 | 681

52 | P-n16-k8 634 | 461 | 550 | 453 | 471 | 535 | 466 | 453 | 453 | 453 | 475 | 474 | 450

53 | P-n19-k2 496 | 229 | 248 | 217 | 231 | 216 | 248 | 217 | 206 | 206 | 232 | 215 | 212

54 | P-n20-k2 490 | 253 | 257 | 230 | 241 | 239 | 263 | 214 | 211 | 211 | 227 | 217 | 216

55 | P-n21-k2 466 | 253 | 259 | 278 | 215| 208 | 250 | 208 | 208 | 208 | 230 | 220 | 211

56 | P-n22-k2 488 | 255 | 282 | 272 | 212 | 268 | 251 | 212 | 212 | 212 | 232 | 227 | 216

57 | P-n22-k8 757 | 636 | 780 | 651 | 727 | 703 | 720 | 685 | 655 | 666 | 585 | 585 | 603

58 | P-n23-k8 721 | 728 | 628 | 587 | 571 | 629 | 625 | 588 | 571 | 568 | 531 | 531 | 529

59 | P-n40-k5 | 1097 | 601 | 555 | 585 | 538 | 601 | 559 | 491 | 472 | 476 | 493 | 487 | 458

60 | P-n45-k5 | 1293 | 754 | 580 | 666 | 575 | 635 | 607 | 518 | 521 | 528 | 546 | 519 | 510

61 | P-n50-k10 | 1450 | 954 | 948 | 853 | 837 | 846 | 881 | 777 | 788 | 804 | 719 | 719 | 696

62 | P-n50-k7 | 1362 | 670 | 713 | 627 | 629 | 658 | 698 | 612 | 587 | 591 | 579 | 559 | 554

63 | P-n50-k8 | 1339 | 747 | 821 | 770 | 762 | 813 | 752 | 727 | 700 | 698 | 647 | 639 | 631

64 | P-n51-k10 | 1469 | 922 | 925 | 961 | 893 | 971 | 877 | 887 | 863 | 845 | 767 | 767 | 741

65 | P-n55-k10 | 1561 | 833 | 930 | 863 | 783 | 895 | 853 | 765 | 760 | 745 | 714 | 703 | 694

66 | P-n55-k15 | 1617 | 1226 | 1294 | 1258 | 1089 | 1181 | 1109 | 1086 | 1064 | 1061 | 968 | 968 | 989

67 | P-n55-k7 | 1446 | 727 | 734 | 687 | 662 | 642 | 679 | 618 | 592 | 595 | 602 | 579 | 568

68 | P-n55-k8 | 1391 | 740 | 741 | 699 | 642 | 770 | 678 | 633 | 608 | 608 | 595 | 576 | 588

69 | P-n60-k10 | 1741 | 884 | 1047 | 950 | 883 | 939 | 923 | 830 | 864 | 856 | 760 | 760 | 744

70 | P-n60-k15 | 1870 | 1237 | 1428 | 1137 | 1158 | 1192 | 1219 | 1115 | 1106 | 1108 | 992 | 990 | 968

71 | P-n65-k10 | 1866 | 995 | 1054 | 1031 | 898 | 954 | 973 | 900 | 906 | 884 | 810 | 810 | 792

72 | P-n70-k10 | 1983 | 1037 | 1068 | 1056 | 979 | 1066 | 1018 | 937 | 960 | 966 | 866 | 849 | 827

73 | P-n76-k4 | 1988 | 781 | 754 | 761 | 725| 748 | 850 | 659 | 653 | 621 | 664 | 647 | 593

74 | P-n76-k5 | 2070 | 889 | 806 | 803 | 741 | 812 | 807 | 746 | 676 | 689 | 682 | 682 | 627

Table 2. Percentage gap for all implementations on all sets
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1| A-n32-k5 | 163.65 | 43.75 | 53.7| 33.8|19.77|18.49 | 36.86 | 16.07 | 9.31 | 10.71 | 5.99 | 0.26
2 | A-n33-k5 | 179.43 | 48.71 | 54.31 | 38.43 | 8.47 | 26.02 | 534 | 7.41| 5.45 5.6 | 3.18 | 3.18

A-n33-k6 | 104.31 | 56.47 | 58.89 | 46.77 | 6.06 | 20.35 | 21.02 | 8.76 | 5.66 6.2 | 2.43 -
A-n34-k5 | 144.86 | 34.58 | 17.48 | 9.38 | 13.88 | 31.11 | 23.26 | 437 | 051 | 1.29 /193 |1.93
A-n36-k5 | 147.93 | 34.29 | 34.54 | 38.92 | 18.52 | 31.29 | 45.18 | 9.89 | 6.76 | 5.38 |3.13|1.88
A-n37-k5 | 13587 | 56.2 | 32.88 | 7.03 | 18.98 | 12.11 | 31.24 | 17.04 | 6.88 | 7.62 | 3.14 | 3.14
A-n37-k6 | 11454 | 31.4 | 38.46 | 23.39 | 22.55 | 28.45 | 26.34 | 19.92 | 15.28 | 13.07 | 3.69 | 3.37
A-n38-k5 | 205.75 | 43.97 | 71.78 | 18.77 | 29.59 | 54.38 | 34.52 | 18.08 | 11.51 | 16.16 | 6.58 | 3.7
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9 [ A-n39-k5 | 181.14 [ 31.14 [ 38.93 | 22.02 [ 22.99 [ 28.59 | 35.4 [ 17.88 [ 11.8] 9.12 [ 8.64 [ 6.81
10 [ A-n39-k6 | 184.72 [ 36.34 | 45.97 | 14.2 [ 23.35 | 44.52 | 57.52 | 20.22 | 9.51 | 7.22 | 3.49 | 3.01
11 [ A-n44-k6 | 175.67 | 33.3|47.39 | 13.13 [ 14.73 | 26.04 | 26.25 | 13.66 | 13.66 | 11.85 | 5.76 | 5.76
12 [ A-n45-k6 | 195.87 | 39.3 | 60.7 | 21.5[37.39[32.42 | 51.91 | 19.6 | 16.63 | 17.16 | 2.01 | 2.01
13 | A-n45-k7 | 129.76 [ 25.92 | 28.27 | 32.9 [ 15.45 | 27.57 | 27.4 | 19.55 [ 12,57 | 12.74 | 3.4| 3.4
14 | A-nd6-k7 | 192.23 [ 40.37 | 54.6 | 32.71 [ 17.83 [ 24.84 | 44.42 | 128 | 6.56 | 9.63 [N
15 | A-n48-k7 | 166.64 | 31.03 | 47.44 | 42.96 | 19.94 [ 29.17 | 39.42 | 11.09 | 8.85 | 10.25 | 1.7 | 1.77
16 | A-n53-k7 | 213.56 | 47.33 | 60.99 | 45.25 | 12.48 | 19.6 | 28.71 | 15.35 | 4.65| 10.3 | 6.14 | 5.25
17 | A-n54-k7 | 196.74 [ 28.79 | 45.59 | 26.14 | 18.85 | 36.25 | 24.51 | 13.02 | 13.2|13.62 | 2.4 | 2.4
18 | A-n55-k9 | 172.88 [ 29.82 | 45.29 | 26.1 | 28.52 | 17.05 | 17.89 | 18.55 [ 16.03 | 13.23 | 1.3 | 1.3
19 [ A-n60-k9 | 176.29 | 28.36 | 44.83 | 21.64 | 27.84 | 26.07 | 53.77 | 18.39 [ 11.96 | 14.18 | 2.88 | 2.88
20 | A-n61-k9 | 218.57 | 42.46 | 60.06 | 25.63 | 32.79 | 43.52 | 35.69 | 17.6 | 12.09 | 13.25 [ 0.29 | 0.29
21 | A-n62-k8 | 167.86 | 29.19 | 46.66 | 28.88 | 22.28 | 28.03 | 39.21 | 16.07 | 11.96 | 14.21 | 3.8 3.8
22 | A-n63-k10 | 179.53 [ 34.17 | 54.03 | 31.89 | 15.83 | 32.88 | 31.58 | 15.91 | 12.18 | 15.14 [ 1.37 | 1.37
23 | A-n63-k9 | 155.26 | 25.37 | 45.36 | 29.52 [ 17.76 | 30.2 | 39.42 [ 13.18 | 17.76 | 19.37 | 2.48 | 2.48
24 | A-n64-k9 | 158.96 | 20.41 | 32.91 | 35.47 [ 18.63 | 24.7 [ 38.19 [ 19.91 | 15.7 | 14.13 [ 4.35 [ 3.85
25 | A-n65-k9 | 210.56 | 36.71 | 45.32 | 25.81 [ 31.01 | 34.16 | 35.69 | 18.14 | 20.7 | 16.7 | 5.96 | 5.96
26 | A-n69-k9 | 259.1 [ 41.33 | 39.09 | 19.59 [ 14.58 | 30.03 | 40.12 [ 12.08 | 11.39 | 12.6 | 4.49 | 4.49
27 | A-n80-k10 | 191.15 | 31.37 | 47.93 | 26.09 [ 19.51 | 30.91 | 29.89 | 20.76 | 18.49 | 17.98 | 1.42 | 1.02
28 | B-n31-k5 | 113.99 [ 21.73 | 63.69 | 125 12.8|38.39 [29.17 | 4.17| 1.19| 1.04[0.45] 03
29 | B-n34-k5 | 130.2[27.03| 434 6.85] 6.73| 1.52 [ 27.28| 2.03| 0.25| 0.13[ 152152
30 | B-n35-k5 | 179.79 | 26.6 | 33.3[32.46 | 5.34|14.55 [37.28 | 1.99| 23| 2.62[1.47 136
31 | B-n38-k6 | 155.65 | 39.63 | 47.08 | 29.81 [ 13.42 | 18.88 | 28.94 | 9.94 | 3.35 | 6.58 | 1.74 | 1.61
32 | B-n39-k5 | 236.79 | 84.34 | 104.9 | 34.43 [ 34.24 | 22.4[104.6 [ 13.48 | 0.18 | 1.46 [ 1.09 | 1.09
33 | B-n41-k6 | 198.19 | 29.55 | 54.16 | 22.92 [ 11.94 | 20.75 | 41.86 | 8.69 | 3.74 | 3.14 [ 4.95 [ 4.83
34 | B-n43-k6 | 198.92 | 32.75 | 33.56 | 17.65 | 15.63 | 21.29 | 43.94 | 7.68 | 1.62 | 1.89 | 0.94 | 0.94
35 | B-n44-k7 | 175.25 | 25.96 | 57.98 | 29.15 | 22.33 | 22.22 | 35.42 [ 12.76 | 9.68 | 10.23 | 6.71 | 6.71
36 | B-n45-k5 | 245.41 | 51.26 | 46.07 | 28.5 | 20.64 | 52.6 | 40.61 | 10.25 | 8.26 | 10.65 | 0.4 | 0.4
37 | B-n45-k6 | 1615 | 46.31 | 61.36 | 42.48 | 26.25 | 49.12 | 41.3 [ 22.27 | 15.63 | 18.88 | 4.42 | 4.42
38 | B-n50-k7 | 270.58 | 43.99 | 88.66 | 39.41 | 10.53 | 32.52 | 54.25 3.37
39 | B-n50-k8 | 111.74 | 29.88 | 35.37 | 23.55 | 17.76 | 31.63 | 18.37 | 15.24 | 8.84 | 9.76 | 1.14 | 1.14
40 | B-n51-k7 [ 190.99 | 34.79 | 41.67 | 19.86 | 10.76 | 12.4 | 27.03 [ 12.69 | 6.49 | 7.46 | 7.56 | 7.46
41 | B-n52-k7 | 293.71 | 43.91 | 62.92 | 37.22 | 22.22 | 8.84 | 64.52 | 3.35 1.47_.
42 | B-n56-k7 | 297.03 [ 33.95 | 101 | 56.01 | 10.89 | 28.57 | 58.98 | 22.77 | 5.52 | 6.08 | 0.57
43 | B-n57-k7 | 264.09 | 39.29 | 62.36 | 43.54 | 15.7 | 1657 | 60.1[12.49 | 7.11| 6.42 | 6.16 | 6.16
44 | B-n57-k9 | 117.02 [ 20.28 | 36.05 | 19.52 | 13.77 | 25.91 [ 23.78 | 9.39 | 4.13| 3.57 | 1.88 | 1.88
45 | B-n63-k10 | 172.46 | 49.93 | 59.43 | 21.52 | 17.05 | 38.57 | 37.57 [ 10.83 | 7.15| 6.82 | 5.08 | 5.08
46 | B-n64-k9 | 235.54 [ 39.02 | 91.99 | 23.11 | 17.89 | 43.09 [ 58.89 [ 16.14 | 8.71| 813 | 43| 43
47 | B-n66-k9 | 149.09 | 25.53 | 43.92 | 19.91 | 14.13 | 24.32 | 40.35 | 8.97 [ 12.16 | 12.01 | 6.61 | 6.53
48 | B-n67-k10 | 236.05 | 51.55 | 87.21 | 20.06 | 25.19 | 63.95 | 64.15 [ 17.05 | 9.21 | 5.04 | 3.88 | 3.78
49 | B-n68-k9 [ 222.96 | 36.87 | 54.8 | 23.74 | 15.17 | 20.44 | 32.94 [ 14.86 | 8.73 | 9.98 | 1.89 | 1.89
50 | B-n78-k10 | 249.3 | 34.48 | 75.59 | 27.52 | 33.01 | 57.66 | 55.61 | 20.07 | 10.97 | 11.63 | 0.74 | 0.74
51 | P-n101-k4 | 209.4 | 37.3 | 16.89 | 31.57 | 17.47 [ 25.99 | 25.4 [ 1263 | 3.08| 3.82 | 2.79| 25
52 | P-n16-k8 | 40.89 | 2.44 [ 22.22| 0.67 | 4.67[18.89 | 3.56| 0.67 | 0.67 | 0.67 | 5.56 | 5.33
53 | P-n19-k2 | 133.96 | 8.02 [ 16.98 | 2.36 | 8.96 | 1.89 [16.98 | 2.36 9.43 | 1.42
54 | P-n20-k2 | 126.85 | 17.13 | 18.98 | 6.48 | 11.57 | 10.65 | 21.76 5.09 | 0.46
55 | P-n21-k2 | 120.85 | 19.91 | 22.75 [ 31.75 | 1.9 9427
56 | P-n22-k2 | 125.93 | 18.06 | 30.56 | 25.93 24.07 | 16.2 7.41 | 5.09
57 | P-n22-k8 | 25.54 | 5.47|29.35| 7.96 | 20.56 | 16.58 | 19.4 | 13.6| 8.62 | 10.45
58 | P-n23-k8 | 36.29 | 37.62 | 18.71 | 10.96 | 7.94 | 18.9[18.15[11.15| 7.94| 7.37 | 0.38 [ 0.38
59 | P-n40-k5 | 139.52 | 31.22 | 21.18 | 27.73 | 17.47 [ 31.22 [ 22.05| 7.21| 3.06 | 3.93 | 7.64 | 6.33
60 | P-n45-k5 | 153.53 | 47.84 | 13.73 | 30.59 | 12.75 | 24.51 [ 19.02 | 157 | 2.16 | 3.53 | 7.06 | 1.76
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Table 2. Percentage gap for all implementations on all sets
61 | P-n50-k10 | 108.33 | 37.07 | 36.21 | 22.56 | 20.26 | 21.55 | 26.58 | 11.64 | 13.22 | 1552 | 3.3 | 3.3
62 | P-n50-k7 | 145.85 | 20.94 | 28.7 | 13.18 | 13.54 | 18.77 | 25.99 | 1047 | 596 | 6.68 | 451 | 0.9
63 | P-n50-k8 112.2 | 18.38 | 30.11 | 22.03 | 20.76 | 28.84 | 19.18 | 15.21 | 10.94 | 10.62 | 2.54 | 1.27
64 | P-n51-k10 | 98.25 | 24.43 | 24.83 | 29.69 | 20.51 | 31.04 | 18.35 | 19.7 | 16.46 | 14.04 | 3.51 | 3.51
65 | P-n55-k10 | 124.93 | 20.03 | 34.01 | 24.35 | 12.82 | 28.96 | 22.91 | 10.23 | 951 | 735|288 | 1.3

66 | P-n55-k15 63.5 | 23.96 | 30.84 | 27.2 | 10.11 | 1941 | 1213 | 981 | 7.58 | 7.28
67 | P-n55-k7 154.58 | 27.99 | 29.23 | 20.95 | 16.55 | 13.03 | 19.54 88| 423 | 4.75

68 | P-n55-k8 136.56 | 25.85 | 26.02 | 18.88 | 9.18 | 30.95 | 15.31 | 7.65 3.4 3.4
69 | P-n60-k10 | 134.01 | 18.82 | 40.73 | 27.69 | 18.68 | 26.21 | 24.06 | 11.56 | 16.13 | 15.05 | 2.15 | 2.15
70 | P-n60-k15 | 93.18 | 27.79 | 47.52 | 17.46 | 19.63 | 23.14 | 25.93 | 15.19 | 14.26 | 14.46 | 2.48 | 2.27
71 | P-n65-k10 | 135.61 | 25.63 | 33.08 | 30.18 | 13.38 | 20.45 | 22.85 | 13.64 | 14.39 | 11.62 | 2.27 | 2.27
72 | P-n70-k10 | 139.78 | 25.39 | 29.14 | 27.69 | 18.38 | 289 | 23.1| 13.3 | 16.08 | 16.81 | 4.72 | 2.66
73 | P-n76-k4 | 235.24 | 31.7 | 27.15| 28.33 | 22.26 | 26.14 | 43.34 | 11.13 | 10.12 | 4.72 12 1 9.11
74 | P-n76-k5 | 230.14 | 41.79 | 28.55 | 28.07 | 18.18 | 29.51 | 28.71 | 1898 | 7.81 | 9.89 | 8.77 | 8.77

Appendix B
Common Parameter list
depot Depot’s index capacity Vehicle Maximum capacity
demands | Customers’ demand list dm Distance matrix among nodes

Algorithm 1: WSI-GS

Method: WSI

Input: (depot, demands, capacity, dm, distance_weight, demand_weight)
distance_weight: Distance from depot weight in the weighted score
demand_weight: Demand weight in the weighted score

Output:
routes: routes spanning all nodes without exceeding capacity
Algorithm
1. Variable Initialization:
o hum_customers = demands’ length; routes = empty list to store routes (solution); visited = Set {depot}
to track node visits; num_vehicles = ceil(sum(demands) / capacity)
2. Calculate weighted scores for Nodes
o For each node I in [from 1 to (hum_customers_1)]:
Score(i) = dm[depot][i] * distance_weight +demand_weight * demandsJi]
o Choose (num_vehicles) nodes with highest scores in chosen_nodes
3. Initialize Routes with Highest score Nodes
o For each node i in chosen_nodes
Add i to visited.
Create a route [depot,i,depot] and add it to routes.
4. Insert Nodes Sequentially
o While the number of visited_nodes < num_customers:
Set best_cost_increase = infinity.
Set best_node, best_position, and best_route = None.
5. Find best Node for insertion:
o For each unvisited node j (from 1 to (num_customers-1)):
For each r in routes:
If adding j to the route doesn’t exceed the vehicle capacity:
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For each (pos) possible insertion position in r:
Calculate cost_increase:
dm[pos-1][j]+dmlj][pos+1] -dm[pos-1][pos+1]
If cost_increase < best_cost_increase:
Update best_cost_increase, best_node, best_position, and best_route.
6. Insert the node or start a new route
o If best_node exists:
Insert best_node in best_position into best_route.
Append best_node to visited.
o Else:
Start a new route with unvisited node that suitable the capacity:
[depot, j,depot] for node j
Append it to routes and mark it as visited
7. Return the Final Routes:
o Return routes

Method: GS
Input: (depot, demands, capacity, dm, distance_weight_options, demand_weight_options)
distance_weight_options: Possible Weights for distance_weight
demand_weight_options: possible weights for demand_weight
Output:
Best_sol: best routes with minimum cost.
Best_weight_combination: Optimal tuple of distance and demand weights
Grid Search Optimization Method
1. Initialize results variables
o best_weight_combination = None; best_cost = Infinity; best_sol = None.
2. Perform Grid search:
o For each pair of (distance_weight, demand_weight) from the Cartesian product of
distance_weight_options and demand_weight_options:
Call WSI using (depot,demands,capacity,dm,distance_weight and demand_weight)
Store the resulting routes.
3. Evaluate routes cost:
o Calculate total_cost for the generated routes in total_cost
4. Update the best solution
o If total_cost < best_cost:
Update best_cost = total_cost
Update best_weight_combination = Tuple (distance_weight, demand_weight)
Update best_sol= routes
5. Return the best solution:
o Return best_sol

Algorithm2: MI-ITS
Method: Calling Method
Input: (depot, demands, capacity, dm, vehicles_num, max_iteration, k)
o vehicles_num: Vehicles Number
o max_iteration: Maximum iterations
o k: tournament sample size
Output:
o best_solution: lowest cost solution from returning solutions from worker method
Algorithm
1. Variable Initialization:
o solutions = empty list to store worker returning solutions.
2. Call Worker Method by attempting all nodes as first route start node
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o For each node [from 1 to (num_customers_1)]:
Call worker method (node, depot, demands, capacity, dm, vehicles_num, max_iteration, k).
o Add the returned solution to solutions.
3. Filter out invalid solutions from solutions
o Discard empty and any solution with greater than number of available vehcles
4. Return best Solution
o Select the lowest code solution from solutions
Best_solution = min(solutions, key=solution cost).

Method: Caller Method
Input: (start_node, depot, demands, capacity, dm, vehicles_num, max_iteration, k)
o start_node: start node index to be the start node for the first route in the solution
Output:
o routes: Solution
1. Variables Initialization:

o num_customers = demands’ length; routes = empty list to store routes (solution); append [depot,
start_node, depot] to routes; visited = Set {depot,start_node} to track node visits; num_vehicles =
ceil(sum(demands) / capacity); chosen_nodes: Use modulo logic to choose consecutive nodes to the
start_node according to vehicles number.

o Initialize additional routes

for node in chosen_nodes:
append [depot,node,depot] to routes list.
o Create an solutions_data as empty dictionary for solutions data.
2. Extensive investigation of the search space
o Choose different candidates nodes for each run
For each iteration in range(max_iteration):
Reset routes with solely initial nodes.
Reset visited nodes to only include depot and starting nodes.
For each node not in visited:
Determine all candidate nodes in visited
Calculate best cost increase for each candidate node
Use tournament selection to select best_node from a random sample from candidate
nodes
Insert best_node in best position in best route
best_route=None; best_position=None; best_cost_increase= infinity;
for r in routes:
for position in r positions:
calculate cheapest_insertion_cost cost_increase
if cost_increase < best_cost_increase:
best_cost_increase = cost_increase; best_position= position;
best route =r
insert best_node into r in best_position
store the iteration solution and cost in solutions_data
3. Return the best_solution from all iterations solution
o Best_solution=Min(solutions_data, key=solution cost)

Method: Tournament
Input:
o Candidates: nodes indexes with their best_cost_increase
o k: tournament size: random sample
output:
o best_node: lowest best_cost_increase node index
1. check the size of the sample
o check if the number of candidates is small
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if candidates_number < k:
set k= candidates_number
2. random selection: sample =choose k candidates
3. select best candidate
o return best_node = min(sample, k=best_cost_increase)
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