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Abstract: Kinship recognition based on facial appearance is a challenging task with its unique complexity. Analyzing 

facial dynamics allows to assess the degree of similarity between individuals in the context of kinship. Although 

significant research has been done on basic microexpressions, there is currently a surge of interest in recognizing 

combined facial expressions of emotions in the field of image processing. The main focus of this study is to recognize 

kinship through a microexpression approach by proposing a hybrid model of Siamese Sequential Classification 

Network (SSCN) and vision transformer as a feature extractor instead of traditional convolution. This model combines 

the advantages of SSCN and Vision Transformer (ViT) models, the authors call it SSCNetViT, not only can capture 

global context information and present stronger learning ability, but also introduce SSCN inductive bias to improve 

generalization performance. The model is tested on independently collected datasets from the local Indonesian dataset 

(LaIndo) and the Families in the Wild (FIW) dataset. The results show that the L32 backbone achieves the highest 

average accuracy of 90.07%, with the peak performance in the BB class (99.5%) and the lowest in the FD class (84.0%). 

In comparison, the B16 and B32 backbones yield lower average accuracies of 88.0% and 83.3%, respectively, 

highlighting the effectiveness of the approach for kinship verification. Thus, our proposed SSCNetViT model with 

B16 quadratic feature fusion and multiplicative fusion strategies achieves the best performance and achieves better 

accuracy that outperforms previous state-of-the-art (SOTA) studies. 

Keywords: Vision transformers, Siamese sequential classification network, Feature fusion, Kinship recognition, 

Micro-expressions.  

 

 

1. Introduction 

Artificial intelligence is advancing rapidly, 

particularly with the internet’s influence to find 

datasets. In the fields of computer vision and 

biometrics, there is significant focus on facial image 

analysis and modelling. One area of research that 

draws attention is kinship verification, which 

involves identifying family relationships through 

facial image analysis [1]. Currently, kinship 

recognition relies heavily on identifying similarities 

in specific facial features, such as nose shape, lip 

curvature, or eye structure [2, 3]. Kinship 

relationships can be determined by comparing these 

facial characteristics between two input images. 

Additionally, facial expressions captured in the 

images are also used for kinship detection [4]. Face 

expression is crucial in human communication and 

can be classified based on intensity, duration, and 

significance into micro-expressions and macro-

expressions [5, 6]. In kinship verification, many 

advanced automatic methods have been developed, 

some of which demonstrate superior performance 

compared to human capabilities [7, 8]. Previous 

research  has  primarily  focused  on  utilizing   facial  
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Table 1. Previous Research Problem Correlated to Our 

Research 

Research Problems Our Contribution 

Robinson 

et al. [31] 

Large-scale 

kinship datasets 

• Developed a deep 

learning architecture 

named the Deep 

Siamese Fusion 

Network 

(SSCNetViT) 

specifically for 

kinship recognition 

to enhance 

classification 

accuracy in familial 

relationships. 

 

• Employed a 

Vision Transformer 

(ViT) as the core 

feature extractor in 

place of 

conventional 

convolutional neural 

networks (CNNs). 

ViT’s capability to 

capture global 

dependencies in 

images through self-

attention 

mechanisms makes 

it particularly 

effective in handling 

the complexity of 

facial micro-

expressions. 

 

• Focused the 

research on 

analyzing micro-

expressions, subtle 

and involuntary 

facial movements, 

from Indonesian 

faces. This focus 

aims to improve the 

model’s accuracy in 

detecting kinship by 

recognizing these 

nuanced 

expressions, which 

are often overlooked 

in traditional facial 

recognition 

methods. 

 

• Collected an 

independent dataset 

of Indonesian 

micro-expression  

Othmani 

et al. [15] 

The incorporation 

of 

microexpressions 

in determining 

kinship classes has 

not been explored 

Yu et al.  

[16] 

Yan et al. 

[6] 

Yan et al. 

[6] 

Microexpressions 

not used for 

kinship 

classification; 

imbalance in 

sample sizes across 

kinship classes 

Huang et 

al. [17] 

Lower accuracy 

(55%-59%) 

compared to FIW 

dataset; sample 

imbalance across 

different kinship 

classes 

Li et al. 

[18] 

Huang et 

al. [8] 

Bisogni 

and 

Narducci 

[19]  

Misclassification 

issues: mothers as 

fathers (31.25%), 

fathers as mothers 

(25%), daughters 

as sons (25%), 

sons as daughters 

(43.75%) 

Dosovitsk

iy et al. 

[21] 

CNNs are not 

necessary for 

image 

classification; ViT 

outperforms CNNs 

while requiring 

fewer 

computational 

resources 

Phan et al. 

[22] 

Face identification 

struggles with out-

of-distribution 

data, slow 

inference times, 

and lacks 

interpretability in 

decision-making. 
Liao et al. 

[23] 

Face anti-spoofing 

models struggle 

with generalization 

across domains, 

face challenges in 

identifying attack 

samples, and often 

require large, 

resource 

 

macro-expressions to determine kinship between 

individuals, involving the segmentation of input 

images into different parts that effectively represent 

human facial expressions [9]. Previous research has 

mainly focused on utilizing facial macro expressions 

to ascertain kinship between individuals. This 

involves dividing the input image into different parts 

that effectively represent human facial expressions. 

Despite advancements in kinship verification, 

utilization of micro-expression in images to identify 

kinship relationships remains underexplored. 

Numerous automated methods for kinship 

recognition have been developed, some surpassing 

human accuracy [10,11]. Prior studies have mainly 

focused on using facial micro-expressions to 

determine kinship by dividing the input images into 

distinct areas representing human expressions [12]. 

However, the specific application of micro-

expressions to identify familial relationships in 

images has not been adequately addressed. This study 

aims to fill this gap by collecting image data centered 

on micro-expression features to detect familial ties 

and enhance facial biometric analysis. 

Originally developed for natural language 

processing, transformers have proven effective in 

visual tasks like image recognition [13,14], object 

detection [3], semantic segmentation [5], and image 

generation [5]. The self-attention mechanism 

effectively identifies important features within 

images, positioning transformers as a strong 

alternative to convolutional neural networks (CNNs). 

Table 1 details the LaIndo dataset and related 

Hybrid CNN-ViT models. Derived from video 

recordings of individuals with defined kinship ties, 

the dataset emphasizes the untapped potential of 

micro-expressions in kinship recognition. This study 

introduces a hybrid model that combines CNNs' 

inductive bias with ViTs' global attention, advancing 

microexpression-based kinship recognition. 

This study presents SSCNetViT, a deep learning 

model developed to recognize kinship by analyzing 

microexpressions specifically in Indonesian facial 

images. Given that the FIW dataset predominantly 

features individuals from Western backgrounds, 

Indonesian facial data was incorporated to improve  

diversity and enhance the model’s performance 

evaluation. The model integrates a Vision 

Transformer (ViT) with a Deep Fusion Siamese 

Network to boost accuracy in kinship recognition 

[13]. Previous approaches typically relied on 

Convolutional Neural Networks (CNNs) to 

efficiently extract features from images [14]. In 

contrast, Vision Transformers (ViT) enhance 

classification by reducing data dimensionality. The 

extracted features undergo processing in a feature 
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fusion module, which merges them to identify 

kinship relationships. Various operations, including 

multiplication, feature distance, and squared 

subtraction, were performed prior to feature 

integration. To evaluate the classifier’s effectiveness 

in combining ViT and feature fusion, both LaIndo 

datasets and the FIW dataset were employed. The 

main contributions of this study are: 

1. A novel approach is proposed for developing 

an effective method for fusion of multiple 

siamese network features for face 

recognition. The selected dataset has 

imbalance issues that create bias during 

model training. Currently, there are no 

existing studies in this area, making this study 

unique and valuable in its examination of the 

relationship between micro-expressions and 

kinship. 

2. We design a novel framework, Hybrid CNN 

and ViT then we named it CNNetViT which 

aims to address the challenges of computer-

based kinship recognition and other biometric 

techniques which effectively overcomes the 

challenges in kinship recognition and 

produces excellent results. 

3. A comprehensive model that modifies the 

classifier model by combining multiple 

features yields better accuracy and precision 

than other feature extractors of the proposed 

feature fusion is refined using transfer 

learning method. 

The paper is structured as follows: Section 2 

provides details about the materials and methods 

used; Section 3 describes the experiments conducted; 

Section 4 presents the results obtained and discusses 

their implications; and Section 5 summarizes the 

findings and outlines future research directions. 

2. Materials and methods 

We propose a deep relational network model that 

uses a micro-expression transformation step to 

preprocess two facial images before comparing them 

for  kinship.  The  images  are  adjusted  to  the  same  

 

 
Figure. 1 LaIndo face images dataset depicting various 

kinship relationships that were independently 

 
Table 1. Distribution Of Each Kinship Class 

Kinship Local 

Dataset 

FIW 

Dataset 

Mother-Daughter (MD) 155 736 

Mother-Son (MS) 85 716 

Father-Daughter (FD) 60 712 

Father-Son (FS) 110 721 

Sister-Sister (SS) 95 1029 

Brother-Brother (BB) 70 991 

Sister-Brother (SiBs) 60 1588 

 

 
Figure. 2 The overview of the model architecture for kinship recognition 
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micro-expression state, and then a Siamese network 

with ViTs extracts their features. The Euclidean 

distance between these features is calculated, 

followed by a feature fusion process, which improves 

accuracy and speed in kinship classification [13, 24]. 

SSCNetViT specifically utilizes microexpressions as 

inputs to identify relationships between images, 

focusing on kinship. The model expands its focus to 

include various microexpressions, not just basic ones 

like smiling, helping to capture subtle kinship 

features. A time-distributed method processes 10 

image frames simultaneously using a ViT pre-trained 

on ImageNet [25]. Transfer learning with ImageNet-

pretrained weights was used to speed up feature 

extraction and improve kinship recognition between 

image pairs [26]. 

2.1. Dataset 

This research utilized not only the publicly 

available FIW dataset [16] but also incorporated an 

inclusion of this LaIndo dataset aimed to improve its 

quality and relevance. The LaIndo dataset was 

collected through video recordings and capturing 

micro-expressions    of    individuals    with    defined  

 

 
Figure. 3 The model architecture illustrates one of seven 

feature fusion examples, in which two input features and 

an additional input are combined through multiplication 

and concatenation 

kinship relationships, ensuring to minimize errors in 

facial expression recognition and kinship 

recognition. 

Table 2 presents LaIndo dataset featuring family 

images representing various kinship relationships, 

including mother-daughter (MD), mother-son (MS), 

father-daughter (FD), father-son (FS), brother-

brother (BB), sister-sister (SS), and sister-brother 

(SiBs). This diverse dataset allows for analysis of 

kinship recognition methods across different familial 

connections. It also addresses the kinship class 

imbalance, particularly in the SiBs and BB categories, 

seen in both the LaIndo and FIW datasets. Fig. 1 

depicts the LaIndo dataset, which encompasses facial 

images of individuals of Indonesian descent. 

Furthermore, the LaIndo dataset includes 

microexpressions, which are a crucial aspect of this 

study. Images were normalized for size and format, 

then randomized to reduce bias. The dataset was split 

into training and validation sets, with the validation 

set for performance assessment and parameter tuning. 

2.2. Proposed framework 

2.2.1. Vision transformer with transfer learning 

The feature extraction process utilised a transfer 

learning algorithm based on the pretrained Vision 

Transformer (ViT) model, trained on the ImageNet 

dataset. ViT, a deep learning model designed for 

image classification, employs the Transformer 

architecture. It partitions an image into fixed-size 

patches, embeds each patch, adds positional 

embeddings, and inputs the resulting sequence of 

vectors into a standard Transformer encoder. The 

encoder consists of multiple blocks with three key 

components: Layer Normalisation, a Multi-head 

Attention Network (MSP), and a Feedforward 

Network. ViT is extensively applied in image 

recognition tasks such as object segmentation, image 

classification, and action recognition. It is also 

utilised in generative modeling and multimodal 

applications, including visual grounding, visual 

question answering, and visual reasoning [27, 21]. 

Within ViT, images are transformed into embedded 

representations derived from input image patches. 

 

𝑧0 = [𝑥𝑐𝑙𝑎𝑠𝑠; 𝑥𝑝
1𝐸; 𝑥𝑝

2𝐸; . . . ; 𝑥𝑝
𝑛𝐸] + 𝐸𝑝𝑜𝑠, 

𝐸𝜖𝑅(𝑃2⋅𝐶)×𝐷 , 𝐸𝜖𝑅(𝑁+1)×𝐷             (1) 

 

The formula uses Z₀ as the initial embedding 

vector, Xclass for data classification, and X¹ₚ for 

positional information. The embedding matrix E 

maps data to a D-dimensional feature space, with 
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EER(P²CxD) for spatial features. Epos adds 

positional embeddings to preserve order or context. 

Eq. (1) illustrates how a sequence is formed by 

concatenating the class token with the linearly 

embedded patches and adding positional 

embeddings. dataset. The essence was to classify 

kinship using a pair of input models through the SNN 

[30, 31].  

 

𝑧𝑙
′ = 𝑀𝑆𝐴(𝐿𝑀(𝑧𝑙 − 1))                     (2) 

 

Where 𝑧𝑙 − 1  (the output from the previous 

layer) is first processed by a linear transformation or 

layer normalization (𝐿𝑀) and then passed through a 

Multi-Head Self-Attention (MSA) mechanism. This 

approach allows the model to integrate information 

from all positions in the input sequence, capturing 

dependencies between elements and enhancing 

contextual understanding at each layer. 

The Eq. (2) represents the application MSA 

mechanism in one of the transformer layers. MSA 

network allows the model to attend to different parts 

of image sequences in parallel and looking for 

relationships between both sequences. 

Both equations are the main building block to 

create a vision transformer model. Images 

transformation in Eq. (1) and MSA mechanism in Eq. 

(2) extracts meaningful features from the image. 

2.2.2. Siamese neural network 

A Siamese Neural Network (SNN) is a specific 

kind of artificial neural network architecture that is 

designed to compare two inputs by processing them 

through two identical subnetworks that share weights. 

In contrast to a conventional classification task, an 

SNN is employed to ascertain the degree of similarity 

or relationship between two inputs. Each subnetwork 

within an SNN extracts pertinent features from a 

single input, utilising layers such as convolutional 

layers (in image-based tasks). The outputs of these 

subnetworks are subsequently evaluated with a 

distance measurement (e.g., Euclidean or cosine 

similarity). This enables the SNN to discern whether 

the inputs are analogous or disparate. The 

architecture of SNN can be broken down as follows: 

a) Convolution Layer 

In a siamese neural network (SNN), each input is 

passed through two identical subnetworks that share 

the same weights. These subnetworks utilize 

convolutional layers as feature extractors, 

particularly when processing image inputs, to 

automatically learn spatial hierarchies of features. 

The convolutional layer functions by applying 

convolutional filters, also referred to as kernels, to the 

input data, which may be, for example, images. These 

filters traverse the input, performing an element-wise 

multiplication between the filter and the portion of 

the input it covers, thereby producing a feature map. 

The output of the convolutional layer for each 

subnetwork can be conceptualized as a transformed 

representation of the input image, with a particular 

emphasis on specific features such as edges, textures, 

or patterns. In an SNN, the convolutional layers in 

both subnetworks utilize the same set of weights to 

ensure that the feature extraction process is consistent 

across both inputs. The weight-sharing mechanism is 

of critical importance, as it enables the network to 

effectively compare the features of the two inputs and 

ensures that the same type of feature extraction 

occurs in both cases. The operation performed in a 

convolutional layer can be mathematically expressed 

as: 

 

𝑂𝑢𝑡𝑝𝑢𝑡 =
𝑛+2𝑝−𝑡

𝑑
+ 1                         (3) 

 
Where n is the size of the input feature map, p is 

the padding applied to the input, t is the size of the 

convolutional filter, d is the stride, which controls 

how the filter moves across the input. 

b) Dropout Layer 

The dropout layer performs a similar function to 

that observed in Convolutional Neural Network 

(CNN), whereby it prevents overfitting by randomly 

dropping (setting to zero) some of the neuron 

activations during training. In a Siamese Neural 

Network (SNN), dropout layers are applied to both 

subnetworks with the objective of improving 

generalization. The process of dropout is expressed 

as: 

 

𝑂𝑢𝑡𝑝𝑢𝑡𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 𝐼𝑛𝑝𝑢𝑡⨀𝑀𝑎𝑠𝑘          (4) 

 

Where Output is the output of the dropout layer 

after applying dropout, Input is the input tensor to the 

dropout layer, represents element-wise multiplication, 

and Mask is a binary mask that randomly sets certain 

elements of the input tensor to 0 during training. 

c) Concatenate Layer 

The Concatenate Layer in an SNN is used to 

merge different input tensors or feature maps into a 

single tensor. This is particularly important when 

combining the outputs of different operations, such as 

element-wise differences (subtraction) and 

multiplications (similarity measures) between the 

two input feature vectors in SNN. 

d)  Dense Layer 

A dense layer (also called a fully connected layer) 

plays a crucial role in learning non-linear 
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relationships between the extracted features after the 

convolutional or other feature extraction layers. A 

dense layer takes the output from the previous layers 

(whether it's a convolutional, subtraction or 

concatenation output) and fully connects every 

neuron in that layer to every neuron in the previous 

layer. This connection allows the network to capture 

complex relationships and dependencies between 

features, even if they are spatially distant or abstract. 

The mathematical operation for a dense layer is 

shown as: 

 

𝑂𝑢𝑡𝑝𝑢𝑡𝐹𝐶 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 

(∑ 𝐼𝑛𝑝𝑢𝑡𝑖 × 𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑖 + 𝐵𝑖𝑎𝑠𝑒𝑠𝑛
𝑖=1 )        (5) 

 

Where Output is the output of the fully connected 

layer, Input is the input feature to the layer, Weights 

are the learnable parameters that connect each input 

to the neurons in the dense layer, Biases are the 

learnable offset terms for each neuron, and activation 

is the activation function applied element-wise to the 

output. 

2.2.3. SSCNetViT 

Fig. 4 shows the flowchart of the SSCNetViT 

framework is as follows: 

1. Read FIW-LaIndo dataset. 

2. Perform data preparation: Data cleaning and 

data normalization. 

3. Split data into training and validation. 

4. Train data using SSCNetViT. 

5. Classification performance results are 

evaluated using Confusion Matrix. 

6. Result of accuracy value. 

The proposed SSCNetViT model classifies two 

images to determine their familial relationship using 

a ViT pre-trained model as a feature extractor for 

discriminative features. The output is a feature vector 

representing microexpression images. Features from 

both images are extracted by an SNN model and 

analyzed in the classification model. Two facial 

images (Input A and B) are fed into identical ViT 

backbones, generating 768-dimensional feature 

vectors. The Euclidean distance is then used to 

compute the feature distance between the kinship. 

 

𝑑 = √∑ (𝐴𝑖 − 𝐵𝑖)2𝑛
𝑖=1                        (6) 

 

pair:   

Which d is the Euclidean distance, thus A and B 

are two different input location in the latent space of 

features. 

 

 

 
Figure. 4 SSCNetViT Framework Flowchart 
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The vectors undergo element-wise addition, 

multiplication, and squared differences, with seven 

combinations of these operations (Fig. 2) fused into a 

single 2304-dimensional vector. This is processed 

through fully connected (FC) layers with dropout, 

reducing the dimensionality to 512, 32, and 

ultimately a 32-dimensional vector for classifying 

kinship relationships like Mother-Daughter and 

Father-Son. The model compares microexpressions 

in the input images to determine kinship. The 

variations ViT B16, B-32, L-16, and L-32 represent 

different ViT configurations for image processing 

using a transformer-based architecture. 

1) ViT B-16: This base model divides images 

into 16 patches and processes them through 

transformer layers to extract features and 

understand visual data. 

2) ViT B-32: Similar to B-16, but with 32 

patches, allowing for a more detailed 

representation of the input image. 

3) ViT L-16: A larger architecture ("Large") 

using 16 patches, capable of capturing more 

complex patterns for tasks requiring higher-

level image understanding. 

4) ViT L-32: Like L-16, but with 32 patches, 

this model captures more intricate details, 

making it suitable for tasks needing 

comprehensive visual understanding. 

Each model balances computational efficiency 

with expressive power, allowing selection based on 

task requirements. 

2.2.4. Classification performance 

To assess our model's performance, we employed 

various classification metrics to evaluate its 

effectiveness on unseen data. Among these, the 

confusion matrix was particularly important, offering 

a detailed breakdown of correct and incorrect 

predictions for each class. 

The confusion matrix is a key tool for evaluating 

classification models, especially in multi-class 

scenarios. It provides a summary of the classifier's 

performance by comparing predicted labels against 

actual labels, helping to identify areas of strength and 

improvement.  The Confusion Matrix provides the 

following information: 

a) True Positive (TP) 

Correct predictions where the model correctly 

classifies a positive sample. 

b) True Negative (TN) 

Correct predictions where the model correctly 

classifies a negative sample 

c) False Positive (FP) 

Incorrect predictions where the model incorrectly 

classifies a negative sample as positive 

d) False Negative (FN) 

Incorrect predictions where the model fails to 

classify a positive sample 

 

 
Figure. 5 The validation accuracy trends of different ViT B16 models over 50 epochs, using various feature fusion 

strategies 
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Table 2. The comparison of the performance of different backbones (B16, B32, L16, L32) with various feature fusion 

methods across several metrics 

Back 

bone 
Feature Fusion BB FD FS MD MS SiBs SS Average 

B16 x ⊕ y 0.9448 0.9171 0.8718 0.8608 0.7434 0.7221 0.5845 0.8064 

B16 

(𝑥 − 𝑦)2

⊕ (𝑥2 − 𝑦2)
⊕ (𝑥 ⋅ 𝑦)  

0.9339 0.9279 0.9194 0.9138 0.8165 0.7552 0.7062 0.8533 

B16 (𝑥 ⋅ 𝑦) ⊕ (𝑥 − 𝑦)2  0.717 0.6629 0.6623 0.6009 0.5838 0.568 0.5625 0.6225 

B16 (𝑥 ⋅ 𝑦) 0.6682 0.5826 0.5769 0.5106 0.4544 0.429 0.3415 0.509 

B16 
(𝑥2 − 𝑦2)
⊕ (𝑥 − 𝑦)2 

0.9736 0.9666 0.9661 0.9502 0.8806 0.789 0.7187 0.8921 

B16 
(𝑥2 − 𝑦2)
⊕ (𝑥 ⋅ 𝑦) 

0.9223 0.9125 0.9021 0.862 0.8201 0.7333 0.7009 0.8362 

B16 (𝑥2 − 𝑦2) 0.9595 0.9553 0.9403 0.9333 0.8771 0.7699 0.7266 0.8803 

B32 𝑥 ⊕ 𝑦 0.8726 0.8556 0.8227 0.8172 0.6584 0.6247 0.5515 0.7432 

B32 

(𝑥 − 𝑦)2

⊕ (𝑥2 − 𝑦2)
⊕ (𝑥 ⋅ 𝑦) 

1 0 0 0 0 0 0 0.1429 

B32 (𝑥 ⋅ 𝑦) ⊕ (𝑥 − 𝑦)2 1 0 0 0 0 0 0 0.1429 

B32 (𝑥 ⋅ 𝑦) 1 0 0 0 0 0 0 0.1429 

B32 
(𝑥2 − 𝑦2)
⊕ (𝑥 − 𝑦)2 

0.9568 0.9432 0.9163 0.8948 0.832 0.7319 0.73 0.8579 

B32 
(𝑥2 − 𝑦2)
⊕ (𝑥 ⋅ 𝑦) 

1 0 0 0 0 0 0 0.1429 

B32 (𝑥^2 − 𝑦^2) 0.9206 0.9199 0.8743 0.8577 0.8572 0.7618 0.6377 0.8327 

L16 𝑥 ⊕ 𝑦 0.8177 0.7644 0.6673 0.6598 0.5907 0.5867 0.5505 0.6624 

L16 

(𝑥 − 𝑦)2

⊕ (𝑥2 − 𝑦2)
⊕ (𝑥 ⋅ 𝑦) 

0.8734 0.8516 0.8149 0.723 0.6967 0.6581 0.5313 0.7356 

L16 (𝑥 ⋅ 𝑦) ⊕ (𝑥 − 𝑦)2 0.6716 0.6251 0.5592 0.5348 0.4446 0.4393 0.3699 0.5206 

L16 (𝑥 ⋅ 𝑦) 0.6654 0.5212 0.5179 0.4566 0.4351 0.2357 0.2227 0.4364 

L16 
(𝑥2 − 𝑦2)
⊕ (𝑥 − 𝑦)2 

0.9304 0.9269 0.8775 0.8694 0.8466 0.7989 0.5984 0.8354 

L16 
(𝑥2 − 𝑦2)
⊕ (𝑥 ⋅ 𝑦) 

0.8393 0.8311 0.7556 0.726 0.6839 0.6594 0.472 0.7096 

L16 (𝑥2 − 𝑦2) 0.8717 0.8679 0.8252 0.8004 0.7712 0.706 0.6405 0.7833 

L32 𝑥 ⊕ 𝑦 0.9962 0.9953 0.9725 0.9618 0.8431 0.7735 0.766 0.9012 

L32 

(𝑥 − 𝑦)2

⊕ (𝑥2 − 𝑦2)
⊕ (𝑥 ⋅ 𝑦) 

0.9916 0.9884 0.9879 0.9774 0.9205 0.7965 0.6547 0.9024 

L32 (𝑥 ⋅ 𝑦) ⊕ (𝑥 − 𝑦)2 0.9619 0.9532 0.9479 0.9333 0.8777 0.7789 0.7214 0.882 

L32 (𝑥 ⋅ 𝑦) 0.8869 0.8469 0.8083 0.8047 0.752 0.7383 0.4981 0.7622 

L32 
(𝑥2 − 𝑦2)
⊕ (𝑥 − 𝑦)2 

0.978 0.9747 0.9735 0.9734 0.8958 0.7659 0.7405 0.9003 

L32 
(𝒙𝟐 − 𝒚𝟐)
⊕ (𝒙 ⋅ 𝒚) 

0.9941 0.9937 0.9894 0.9856 0.8579 0.8319 0.6967 0.907 
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Figure. 6 The validation accuracy trends of different ViT B32 models over 50 epochs, using various feature fusion 

strategies 

 
 

Table 3. Comparison results in previous research. 

 Model Dataset Accuracy 

(%) 

Dosovitskiy, et 

al. [21] 

STLB-IP CASME2 59.51 

Robinson, et 

al. [31] 

STCLQP CASME2 56.10 

J. Coe and M. 

Atay [20] 

3D-FCNN SMIC 

CASME 

55.49 

J. Lunter [28] Deep and 

handcrafted 

feature 

FIW 71.00 

Rahmadi, et al. 

[30] 

FA-CNN RFIW’17 72.39 

A. Shadrikov 

[32] 

Vuvko FIW 78.00 

Luo, et al. [33] DeepBlueAI FIW 76.00 

Yu, et al. [16] Ustc-nelslip FIW 76.00 

Hörmann, et 

al. [34] 

Stefhoer FIW 74.00 

L32 Backbone (Best 

Proposed Method) 

FIW-

LaIndo 

90.07 

 

Using the confusion matrix, there are several 

evaluation metrics that can be calculated: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                 (7) 

 

• Precision represents a proportion of correctly 

identified positive samples out of all samples 

predicted to be positive. Precision is calculated using 

the following formula: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                        (8) 

 

• Recall refers to the proportion of correctly 

classified positive samples out of the total number of 

actual positives, with equation: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                            (9) 

 

• The F1-score is the harmonic mean of 

precision and recall, offering a balanced metric that 

considers both false positives and false negatives. It 

is especially valuable for imbalanced datasets, as it 

emphasises the lower value between precision and 

recall. The F1-score ranges from 0 to 1, with higher 

values indicating a more accurate and dependable 

model. A higher F1-score indicates that the model 

performs well in correctly identifying positive 

samples while minimizing false positives and false 

negatives: 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2×(𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
           (10) 
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3. Experimental analysis 

This section delineates the methodology 

employed to conduct the experiment and provides a 

comprehensive analysis of the results, thereby 

demonstrating the efficacy of the proposed model. 

The model incorporates different parameter 

configurations based on its feature fusion variations, 

ranging from 41.3 million to 716.2 million 

parameters. Training and evaluation were performed 

on an NVIDIA DGX HPC equipped with an H100 

GPU, offering 60 teraflops of floating-point 

processing power. This section presents a discussion 

of the datasets used, the experimental scenarios, and 

the results achieved. 

3.1. Performance evaluation of feature methods 

SSCNetViT is designed for similarity learning 

tasks, like kinship verification. Unlike traditional 

classifiers, SSCNetViT process paired inputs 

simultaneously, learning a distance metric to 

differentiate related from unrelated pairs. This is ideal 

for kinship verification, where two facial images are 

compared to assess familial relationships. Given two 

input images, x1 and x2, each is processed through 

identical, weight-sharing subnetworks denoted as 

f(x1) and f(x2). The resulting feature embeddings are 

compared using a distance metric, such as Euclidean 

distance or cosine similarity, to measure their 

similarity. In this context, the Euclidean distance 

between the feature vectors is mathematically 

represented in function d(x1,x2) such as: 

 

𝑑(𝑥1, 𝑥2) = ||∆𝑓||2                       (11) 

 

where ∆𝑓 = (𝑥1 − 𝑥2) = 𝑓(𝑥1) −  𝑓(𝑥2)  
denotes the L2 norm. The objective of the 

SSCNetViT network is to minimize this distance for 

image pairs that share a kinship relationship (positive 

pairs) and maximize the distance for non-kinship 

pairs (negative pairs). The training process leverages 

a contrastive loss function to achieve this goal. The 

contrastive loss encourages the network to learn 

discriminative features by penalizing dissimilar 

positive pairs and rewarding well-separated negative 

pairs. The loss function is defined as follows: 

 

𝐿(𝑊, 𝑌, 𝑥1, 𝑥2) = (1 − 𝑌)
1

2
𝑑(𝑥1, 𝑥2)2  

+𝑌
1

2
(𝑚𝑎𝑥(0, 𝑚 − 𝑑(𝑥1, 𝑥2)))2        (12) 

 

where W represents the network weights that are 

being optimized during the training process, 𝑌 acts as 

a binary label indicating whether the input (x1,x2) is a 

kinship pair or not, and everything composes into loss 

function L. In this formulation, the binary label 

𝑌 𝜖 {0,1}  is used to represent the relationship 

between input pairs. Specifically, 𝑌 = 0  indicates 

that the pair of images are similar or exhibit kinship, 

while 𝑌 = 1 denotes that the images are dissimilar or 

non-kinship pairs. 

 

 
Figure. 7 The validation accuracy trends of different ViT L16 models over 50 epochs, using various feature fusion 

strategies 
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SSCNetViT model employs a margin parameter, 

which defines the minimum distance between non-

kinship pairs to create clearer separation between 

dissimilar pairs during the training process. 

The shared network weights (𝑊) are crucial to 

process both inputs in the two branches of the 

Siamese network. By sharing these weights, the 

model ensures that the same feature extraction 

process is applied to both images, maintaining 

consistency in the extracted features. These weights 

are optimized to reduce the distance between similar 

pairs while increasing the distance between 

dissimilar pairs, guided by the contrastive loss 

function. In this experiment, a Vision Transformer 

(ViT) served as the feature extractor in the Siamese 

architecture. ViT captures global relationships in 

image data, useful for facial microexpression analysis. 

Images x1 and x2, are processed independently 

through the ViT, producing high-dimensional 

embeddings. These are compared using a distance 

function, and the combined representation is 

classified via fully connected layers. This setup, 

along with contrastive loss, proved effective for 

kinship verification by learning expressive and 

discriminative facial microexpression features. This 

enables the model to effectively discern subtle yet 

meaningful facial cues that correlate with familial 

relationships. 

3.2. Facial microexpression image dataset 

The experiment used a personal dataset alongside 

the FIW dataset with the proposed SSCNetViT model 

to classify kinship relationships. The model identified 

connections such as mother-daughter, mother-son, 

father-son, father-daughter, and sibling relationships. 

The dataset size was compared with SSCNetViT’s 

performance. For training, 90% of the data was used, 

with the remaining 10% reserved for validation. 

3.3. Comparison of proposed framework with 

other reference methods 

To evaluate the proposed framework, its 

classification accuracy was compared to several 

existing methods using various datasets. The results, 

shown in Table 4, demonstrate the superior 

performance of the FIW-LaIndo method. 

SSCNetViT's improved performance can be 

attributed to several theoretical advancements. Firstly, 

its use of Vision Transformers allows it to capture 

global relationships within facial images, which is 

essential for recognizing subtle facial cues in 

microexpression-based kinship recognition. This is a 

significant advantage over traditional CNN-based 

methods.  

 

 
Figure. 9 The validation accuracy trends of different ViT L32 models over 50 epochs, using various feature fusion 

strategies 
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Figure. 8 Confusion matrix of the best L32 feature fusion 

method 

 
Table 4. Calculation of Precision, Recall, and F1-score of 

the best model. 

Kinship Precision Recall F1-score 

MD 0.9909 0.9774 0.984 

MS 0.9937 0.9880 0.991 

FD 0.9892 0.9884 0.985 

FS 0.7940 0.9916 0.990 

SS 0.7681 0.6547 0.707 

BB 0.7940 0.7965 0.795 

SiBs 0.8195 0.9205 0.867 

 

 

Secondly, the model's enhanced feature fusion 

with the Siamese Sequential Classification Network 

(SSCN) architecture introduces a bias that improves 

generalization across kinship classes. By using 

techniques like Euclidean distance and element-wise 

operations, SSCNetViT more effectively 

differentiates familial relationships compared to 

traditional methods. Lastly, the incorporation of a 

contrastive loss function designed for discriminative 

learning further enhances the model's ability to 

distinguish between kin and non-kin pairs. learning 

further enhances the model's ability to distinguish 

between kin and non-kin pairs. 

As illustrated in Table 4, models such as STLB-

IP and STCLQP, evaluated on the CASME2 dataset, 

demonstrated accuracy rates of 59.51% and 56.10%, 

respectively. Similarly, the 3D-FCNN model, 

evaluated on the SMIC CASME dataset, 

demonstrated an accuracy rate of 55.49%. These 

results are noteworthy, but they are considerably 

lower than those obtained with our proposed method. 

Further comparisons with models tested on the 

FIW dataset, including those based on deep and 

handcrafted features, Vuvko, DeepBlueAI, and 

others, demonstrate accuracy rates between 71.00% 

and 78.00%. While these methods demonstrate 

satisfactory performance, they still fall short of the 

90.07% accuracy achieved by the proposed FIW-

LaIndo method. It is noteworthy that FA-CNN, when 

tested on the RFIW'17 dataset, achieved an accuracy 

of 72.39%, which is also considerably lower than that 

of our model. The notable enhancement in accuracy 

exhibited by the SSCNetViT model can be attributed 

to its optimized management of the FIW dataset and 

its capacity to discern more intricate patterns within 

the data. The proposed model's superior capacity for 

generalization across intricate facial verification 

tasks is clearly demonstrated by this comparative 

analysis. 

In conclusion, the proposed best method offers a 

notable enhancement in classification accuracy 

compared to existing state-of-the-art methods. Its 

elevated performance underscores the effectiveness 

of our approach in addressing the complexities 

associated with kinship verification tasks in facial 

images. 

4. Results and discussion 

racting facial microexpression features from the 

dataset using ViT, resulting in feature vectors for 

each frame. These frames are then paired based on 

kinship relations, such as pairing a daughter's frames 

with her father or mother. The paired features are 

fused and passed into the sequence-based classifier 

for kinship classification. The LaIndo dataset shows 

significant sample imbalances across kinship classes, 

similar to the FIW dataset. For instance, the MD class 

has 155 samples locally compared to 736 in FIW. 

This imbalance persists across other classes as well. 

All models were trained for 50 epochs using both 

LaIndo and FIW datasets, with results shown in Table 

2. Each model achieved over 80% accuracy, with the 

L32 backbone performing best, averaging 90.07%. It 

scored 99.5% in the BB class and 84.0% in FD. In 

comparison, B16 and B32 backbones had lower 

average accuracies of 88.0% and 83.3%, respectively. 

Table 5 shows the precision, recall and F1-score of 

the best model.   

In this experiment, the feature fusion method 

(x−y) L(x−y) outperformed other combinations 

across most kinship classes. The three models 

showed strong performance in kinship prediction, 

with the L32 backbone providing the most consistent 

and accurate results. Image 3 presents an overview of 

the facial recognition system using ViT. Features 
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from two images are extracted into a 768-

dimensional space, then undergo various 

mathematical operations for feature fusion, resulting 

in a combined 2304-dimensional vector. This vector 

is processed through dense layers with dropout for 

regularization, leading to final classifications into 

categories such as MD, MS, FD, FS, SS, BB, and 

SiBs.  

The proposed SSCNetViT leverages ViT, pre-

trained on ImageNet to extract features from an 

Indonesian face dataset incorporating 

microexpressions. It utilizes a Siamese neural 

network (SNN) to process two inputs, measure 

feature distance, and perform feature fusion before 

classifying kinship. The study evaluated four ViT 

backbones—B16, B32, L16, and L32—for kinship 

recognition, with the highest accuracies of 0.8921 

(B16), 0.8579 (B32), 0.8354 (L16), and 0.907 (L32). 

The model performs best on the MS class with an F1-

score of 0.991, while the lowest performance is on the 

SS class with an F1-score of 0.707. Overall, the 

model has outstanding performance with an average 

F1-score of 0.903.  

The L32 backbone showed the best performance 

due to its deeper architecture, superior feature 

extraction capability, and ability to handle 

imbalanced data robustly. Its smaller patch size 

captures finer details, while extensive self-attention 

mechanisms improve feature representation. With all 

backbones exceeding 85% accuracy, this ViT-based 

model outperforms previous studies, highlighting its 

effectiveness in kinship recognition using 

microexpression facial images. 

5. Conclusion 

In conclusion, this research presents a transfer 

learning of ImageNet Vision Transformers (ViT) for 

kinship recognition through facial microexpressions. 

The models achieved over 85% accuracy, with the 

L32 backbone performing best at 90.07%. This 

highlights SSCNetViT’s effectiveness in feature 

extraction with imbalanced data. The L32 model 

showed consistent accuracy improvement and low 

loss. The combination of Siamese Neural Networks 

(SNN) and ViT-based feature extraction significantly 

improved kinship classification accuracy and 

efficiency. Future research could explore other 

factors like ethnicity and additional familial traits. 
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