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Abstract: This work seeks to understand how deep neural networks can be improved in terms of hyperparameters and 

weights on different datasets with the help of intelligent system. Regarding hyperparameters and weights optimization, 

the paper employs Convolutional Neural Networks (CNN) and Multi-Layer Perceptron (MLP). First, the paper 

compares the accuracy of the convolutional neural network and multilayer perceptron using Adam and RMS prop as 

optimizers. Next, propose to use the CNN model fine-tuning with Adam and RMSprop optimization algorithms, but 

instead of setting fixed hyperparameters, the paper uses Simulated Annealing (SA) for optimization and Differential 

Evolution (DE) for weight updates. Further, it examines the accuracy of the CNN models trained by the Eagle Strategy-

Based Optimization (ESBO) on the MNIST database when the Differential Evolution algorithm updates the weights. 

This approach is then used on the CIFAR dataset. In the proposed approach, all these steps are included in detail. Apart 

from these image datasets, the optimization strategies applied in this work include the electric load diagrams of the 

years 2011-2014, air quality, and cityscapes. In terms of performance, this work also measures with ‘conventional’ 

metrics, with the MNIST and CIFAR-10 benchmarks scoring 99.5% and 89.1%, respectively, 1-2% better than prior 

methods. The latter approach bears higher computational costs, but this is warranted by higher accuracy of predictions 

and a better generalization of the model. Forecast of electricity load was verified from the time series data which also 

supported the proposed methods with an accuracy of 96.3%. Therefore, the results of the impact assessment indicate 

the relative effectiveness of different optimization algorithms and amass irrefutable evidence of the effectiveness of 

the proposed methods and approaches. In the study of the current sample, procedures and findings are backed by 

flowcharts and summaries to ensure that understanding of the conducted optimization procedures is well enhanced. 

The results are useful to enhance deep learning models using higher optimization methods. 

Keywords: Deep learning, Convolutional neural networks (CNN), Multi-layer perceptron (MLP), Hyperparameter 

optimization, Eagle strategy-based optimization (ESBO). 

 

 

1. Introduction 

One of the major fields of Artificial Intelligence 

(AI) currently is machine learning, specifically deep 

learning, which has gained immense importance due 

to its ability to augment how models can learn and 

make decisions from large datasets. Neural networks, 

which are a category of deep learning models, are 

formed of multiple layers interconnected through 

nodes, or neurons [1, 2]. Such models perform well 

in activities like image, speech recognition, natural 

language understanding and processing, and the 

game AI, among others. The following are specific 

reasons why deep learning has achieved tremendous 

success: First, neural networks are capable of 

learning features from raw data, which eliminates the 

need for hard coding [3, 4].  

Recent years have seen an increased usage of 

deep learning models such as CNNs and MLPs to 

achieve high levels of accuracy [5]. However, the 

performance of these models tends to be dependent 

on several hyperparameters, as well as the proper 

tuning of model weights. Such training parameters as 

learning rate and batch size, as well as the 
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architecture of the neural network, define the process 

and the model’s accuracy [6]. Weight optimization, 

however, focuses on the required optimum 

representation of the data by the model. Some of the 

earlier optimization approaches that are frequently 

applied while training deep neural networks include 

Adam and RMSprop. These    algorithms change the 

weight of the network constantly to optimize the loss 

function. While these approaches work well, they do 

not guarantee the global optimum solution for model 

training because of the underlying non-convexity of 

the objective function in deep learning models.  

To overcome this challenge, new methods for 

hyperparameters’ optimization and weight update 

have been designed. These state-of-the-art algorithms 

for model optimization in this research are applied 

across these datasets in deep neural network models, 

as shown in Fig. 1 [7, 8]. Use CNN and MLP models 

and apply different optimization methods that will 

improve hyperparameters and weights. To this end, 

this study starts by setting the platforms for the CNN 

and MLP models by applying Adam and RMSprop 

optimizers. Then proceed with performing Simulated 

Annealing to optimize hyperparameters and 

Differential Evolution of CNN weight parameters. 

Moreover, we evaluate the proposed CNN models, 

trained with the ESBO on the MNIST dataset, and 

employ the DE for the weights’ update. This 

comprehensive approach is then used in analyzing the 

CIFAR dataset. Besides image datasets, our 

optimization strategies are applied to other areas, 

such as ELD 2011-2014, air quality, and cityscape 

datasets. Our results show the comparative 

performance of the various optimization techniques 

and establish the effectiveness of the developed 

methods. To enhance the understanding of the 

process, the flow diagrams and the summaries of the 

steps taken are included. The study provides an 

important contribution to further improvements of 

deep learning models by applying a superior level of 

optimization. The field of deep learning is applied to 

image logistics, language comprehension, and 

prediction because it involves learning from 

unprocessed data [1, 2]. The proposed study intends 

to enhance the performance of CNNs and MLPs via 

new methods of hyperparameters’ tuning, and weight 

modifications. More attention is paid to increasing 

the accuracy and speed of computations of a model 

with the help of ESBO and DE for multiple and 

heterogeneous data sets. The organization of this 

paper is as follows: Section 2 focuses on related work 

and demonstrates how existing strategies suffer from 

drawbacks; Section 3 describes research 

methodology and the mathematical formulation; 

 

 
Figure. 1 Architectures of VGGNet [6] 

 

Section 4 explains datasets and program settings; 

Section 5 discusses results and further analysis; 

Section 6 summarises contributions and potential 

development paths. 

2. Literature review 

The popularity of Adam and RMSprop 

optimizers, [3] still remains ineffective in finding 

global optima due to the non-differentiability of loss 

functions. Other related current research works [9-

12] look at metaheuristic techniques for solving 

optimization problems, but none of them presents the 

exploitative and explorative mechanisms of ESBO. 

Further, differential evolution has been seen to 

perform well in complicated non-linear optimization 

problems although its combination with exploration 

strategies as ESBO is indefinite. The recent trend in 

hyperparameters offering optimization in deep 

learning models has proved to make these models 

both efficient and accurate. Algorithms which 

incorporate some of the methods like Genetic 

Algorithm, Bayesian Optimization, and Swarm 

Intelligence have been studied in detail due to their 

capability to handle large search spaces and enhance 

the model accuracy. Various works highlight the need 

to conduct hyperparameter tuning methodologically 

to obtain better results in a wide range of applications, 

including neural network training, specialized 

industrial applications, cybersecurity, etc.  

In [9] proposed a twofold genetic approach to 

hyperparameter tuning for deep neural networks. The 

authors also introduce a technique that integrates the 

conventional genetic algorithms with a second phase 

of optimization and greatly improves the quality of 

the models associated with the neural networks. With 

a focus on the key hyperparameters and optimizing 

them systematically, the effectiveness of the pro-
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posed approach that is mentioned above is shown to 

be better across different sets of data.  

In [10] used the hyperparameter optimization 

algorithms and their usage in deep learning. This 

paper proposes the separation of methods into the 

gradient-based, Bayesian, evolutionary and other 

advanced other optimization methods. Authors pro-

vide information regarding the strengths and 

weaknesses of individual approaches focusing on the 

fact that they can be applied to different sorts of 

neural networks and data sets. Due to its respective 

and comprehensive presentation of the current status 

of hyperparameter optimization surveys, the review 

proves to be helpful for researchers and practitioners 

keen on improving the performance of deep learning 

models through either search methods or 

metaheuristic approaches.  

In [11] concerned with a review of improved 

metaheuristic optimization approaches and 

deployment in deep neural networks. The authors 

reviewed various other algorithms including genetic 

algorithms, particle swarm optimization, and ant 

colony optimization, in which the authors proved that 

they are efficient in hyperparameter tuning. It looks 

at how these metaheuristics can be incorporated with 

deep learning environments and presents some 

example applications of these heuristics. 

 In [12] gave a vast overview of metaheuristic 

algorithms for improving deep learning models. The 

paper also describes various techniques such as, 

swarm intelligence, evolutionary algorithms and 

combined techniques of both, in the training of neural 

networks. The authors also begin to dissect the 

strengths as well as the weaknesses of these 

approaches for various deep-learning applications.  

In [13], the particle swarm optimization (PSO) 

used for hyperparameters’ tuning in deep neural 

networks is presented. To overcome this problem, the 

authors put for-ward a PSO-based framework that 

enhances the tuning process and realizes better 

parameter establishment. The study also proves that 

PSO is capable of the complexity of deep learning 

models, especially in search space cases.  

In [14] presented Deephyper; an asynchronous 

hyperparameter search best suited to deep neural 

networks. Deephyper applies parallel computing and 

advanced search algorithms for searching 

hyperparameter space in targeted areas which makes 

the selection process faster and less execution 

globally. The presented framework works well in 

high-performance computing contexts which allows 

to perform optimization at a large scale and without 

limitations.  

The paper [15] introduced scalable Bayesian 

optimization (BO) for use in hyperparameter tuning 

of deep neural networks. Instead, the authors consider 

a method that merges BO with deep learning making 

the constant search of large and complex spaces 

possible. The approach is aimed at resolving high-

dimensional parameter tuning issues and can serve as 

a scalable solution for the Deep Learning algorithm. 

Such an approach demonstrates the strength of using 

Bayesian optimization in producing high-performing 

solutions which makes it a robust method of tuning 

hyperparameters in neural networks.    

In [16] the tuned deep neural network models for 

software fault prediction. The authors also stress the 

need for increased detail regarding parameters since 

they allow for enhancing the models’ performance in 

predicting faults. This is seen from the various 

optimization techniques employed in the study as 

seen in Fig. 2 depicting the improvement of the 

models.  

In [17] presented a refined Adam method for the 

optimization of deep learning neural networks. The 

authors propose optimizations of the current Adam 

optimizer, as they find that the algorithm’s 

convergence and stability are flawed. Compared to 

the original algorithm, we have enhanced them by the 

adjustment of learning rate and acceleration of the 

training process. As for the experimentations on 

different datasets, the study makes a clear indication 

that the new modified Adam algorithm is better 

placed to produce improvements on conventional 

optimization compared to existing deep learning 

model training.  

In [18] the authors used industrial ADME 

datasets to discuss tunable hyperparameters for deep 

neural networks. The topics of interest in this review 

are the determination of the best values of parameters 

that will improve the predictive power of the neural 

networks in describing pharmacokinetics. 

Altogether, the research performs hyperparameter 

tuning and shows enhanced accuracy and better 

generalization across the board. This work 

emphasizes the necessity of the creep hyperparameter 

tuning for using deep learning techniques for 

purposeful industrial database applications, 

specifically in the pharmaceutical industry.  

In [19] developed an intelligent load forecasting 

system using an evolutionary-based deep 

convolutional neural network model. The authors 

work with hyperparameters of the neural network by 

using evolutionary algorithms to improve the 

accuracy of its forecast to the electrical load 

demands. One of the important conclusions is the 

prospects for the use of deep learning in combination 

with evolutionary strategies, which was illustrated by 

the improved accuracy of the forecasts. Evolutionary 

 



Received:  November 5, 2020.     Revised: December 2, 2024.                                                                                        850 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.60 

 

Dataset 
Preprocessing

Number of layers

Number of neuron 

in each layer

Parameter tuning:- 

• Number of epochs

• Regularization, 

• Batch size

• Dropout rate

Activation function:-

Input layer: ReLU

Hidden layer: ReLU

Output layer: softmax

Optimization function

Result
 

Figure. 2 Impact of Parameter Tuning [16] 

 

algorithms are explored in this research as having the 

possibility of improving neural net-works for use in 

industries. 

In [20] studied the hyperparameters of deep 

neural networks and studies the differences in their 

performance with shallow methods in the modelling 

of bioactivity data. In their work, the authors spend 

considerable efforts running various experiments 

investigating the dependency of the model 

performance and respective computational cost on 

the hyperparameters selected. The findings also show 

that with proper tuning, deep learning models offer 

better performance than the traditional shallow 

models.  

The paper [21] suggested the use of revised 

swarm intelligence metaheuristics for tuning the 

hyperparameter of the convolutional neural network 

(CNN). It also presents more complex techniques of 

updated algorithms enhancing the general search for 

improved hyperparameter tuning for model 

efficiency and enhanced accuracy. The research 

proves that such techniques when applied to CNNs, 

enhance performance by a vast margin. The 

usefulness of swarm intelligence in handling the 

challenges associated with hyperparameters in deep 

learning models especially in image processing is 

well captured in this work.  

In the paper [22] the author suggested an efficient 

approach to training deep neural networks. To 

enhance the convergence speed and accuracy of the 

neural net-work models, the authors have presented a 

new optimization technique, which incorporates 

gradient information with the concept of adaptive 

learning. Describing the use of the proposed method 

for various deep-learning tasks, the study proves the 

potential of using the method to improve the 

efficiency of the training phase.  

In [23] it focused on genetic algorithms in 

purpose to optimize neural network’s 

hyperparameters. The authors present a framework of 

genetic algorithm that enables an efficient search on 

hyperparameters, optimizing model performances 

and training times. As illustrated from experiments 

on various databases, the presence of genetic 

algorithms provides benefits, especially in the case of 

addressing inherent search spaces and attaining 

optimal solutions.  

In the article [24], explained the idea of 

Automatic weight parameter selection using particle 

swarm optimization for deep neural networks for 

large-scale data analysis with high dimensional data. 

To solve the given problem, the author recommends 

the application of the PSO-based framework that can 

recognize the most appropriate parameters for 

improving the overall performance of a model. The 

study shows that PSO successfully manages intricate 

requirements of the deep learning models, especially 

in situations where large search spaces are in use.  

The authors in [25] elaborated different and 

improved hyperparameters tuning methods within the 

view of deep learning for wind power forecast. The 

work also uses the best optimization techniques in 

tuning neural network coefficients to enhance the 

predictive aspect as well as reliability. Applying these 

techniques to renewable energy datasets, the work 

shows the effectiveness of hyperparameter 

optimization for im-proving deep learning models’ 

performance in energy forecasting applications.  

In [26], the paper proposed a technique for 

enhancing the hyperparameter optimization by 

utilizing the model weights’ checkpointing. The 

authors suggest the approach that uses the 

information in the middle of the training process for 

optimization purposes, which helps to save time and 

increase the speed. Checkpointing is shown as a 

fastening approach to hyperparameter tuning and is 

demonstrated with a working example in the study of 

the deep-learning model.  

In [27] The authors considered the effect of 

hyperparameter tuning on the accuracy of fine-tuned 
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CNN models. The hyperparameters are integral in the 

improvement of the performance of image 

classifications as indicated in the study. Theoretical 

results show the manifestation of higher precision 

and generalization when data sets are tested 

systematically; thus, substantiating the research’s 

findings. 

In [28] the author focused on the use of 

hyperparameter optimization of CNN through the 

genetic algorithm in crop pests’ classification. Also 

recommends on genetic algorithm to search the space 

of parameters efficiently to achieve better accuracy 

and performance on the model being used. Using this 

approach on agricultural datasets, the research proves 

that there are improvements in the classification. This 

work paints the picture of how future evolutionary 

strategies can be applied in enhancing deep learning 

in specialized contexts of agriculture.  

In [29], introduced a hybrid success history 

intelligent optimizer with Gaussian transformation 

for the hyperparameter of CNN. Introducing a new, 

improved optimization algorithm is the key 

contribution of the study, which makes use of 

historical success info and Gaussian transforms to 

improve the current state of the search. By 

conducting experiments on several datasets, the study 

proves how the method pro-posed works to enhance 

the CNN. Among them, Scalable nested optimization 

for deep learning is discussed in [30], the author has 

put forward a manner of optimization which involves 

loops of optimization whereby hyperparameters can 

be stretched more efficiently. Thus, the idea of 

organizing the model and optimizing training with 

the help of this approach is proven in this study. This 

research proves that calibrating nested optimization 

for highly challenging deep learning applications lets 

the work demonstrate how the tool can be used to 

improve the scalability and efficiency of neural 

networks.  

In [31] the authors proposed an optimization-

based deep learning technique to identify intrusion 

and attack on network systems. This research uses 

novel computational optimization algorithms as 

methods to fine-tune the deep learning models for 

increasing the accuracy of network intrusion 

detection. The improvement in detection 

performance is evident from the research done that 

proposes the integration of deep learning with 

optimization strategies.  

3. Methodology 

The approach of the current work is designed to 

improve deep learning models, incrementally, 

through numerous optimization techniques. It 

commences with the choice of proper models and 

then it succeeds in baseline training with 

conventional optimizers apart from the final way of 

hyperparameter optimization for enhanced results. 

3.1 Model selection 

3.1.1. Convolutional neural networks (CNNs) 

- Architecture: CNNs are constructed with a 

convolution layer in which filters are applied to the 

input data to produce feature maps that obtain spatial 

hierarchies.  

- Advantages: These are good for image recognition 

since they allow for auto-mated learning of spatial 

hierarchy and features.  

- Layers: These normally include convolutional 

layers, pooling layers, fully connected layers and 

dropout layers that help in mitigating overfitting. The 

summary of the CNN architecture as shown in Table 

1. 

3.1.2. Multi-layer perceptron (MLPs) 

- Architecture: An MLP computational model is 

composed of an input layer or layer of input neurons 

as well as one or several hidden layers of neurons 

followed by an output layer that is connected to all 

neurons from the subsequent layer.  

 - Advantages: It is best used for high quantities 

of organized data and activities which do not 

necessarily involve mapping between inputs and 

outputs.  

 - Activation Functions: For the hidden layers, 

please use ReLU (Rectified Linear Unit) while for the 

output layer use SoftMax in classification problems, 

the architecture of the MLP is shown in Table 1. 

3.2 Baseline model training 

3.2.1. Adam optimizer 

- Algorithm: Ada Moment Estimation or Adam is a 

new method of finding optimal parameters of the 

model and it is the combined effect of two other 

variations of Stochastic gradient descent: AdaGrad 

and RMSProp.  

- Parameters: It is better when using a learning rate of 

0. 001, β1 = 0. 9, and β2 = 0. 999.  

- Advantages: Accurate, fast and suitable for 

problems of large size data and large parameters. 

3.2.2. RMSprop optimizer 

- Algorithm: RMSprop takes into account the moving 

average of the gradients of the parameters for the 

reciprocal of the gradient.  
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 - Parameters: It has been found to use a learning rate 

of 0, in most of its cases. Under conditions: H0 = 0,05; 

p < 0,05; Thanhtieldelta = 1; theta 3+4 = 0,80 eta 5 = 

0,80; kappa = 5; alpha = 0,001 and ρ = 0. 9.  

 - Advantages: Avoids the learning rate from 

decaying too soon hence useful when addressing non-

stationary inputs or targets. 

3.3 Advanced hyperparameter tuning 

3.3.1. Eagle strategy-based optimization (ESBO) 

Initialization: 

ESBO Initialization: the initial population of 

candidate solutions is generated randomly. 

 

𝑋𝑖
0 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 (). ( 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)                (1) 

 

Where i=1, 2, …,  Ni=1,2,…,N represents the 

population size. This equation initializes the starting 

positions of the candidate solutions within a 

predefined range. Where, Xi
0 is Initial position of the 

ith candidate solution. While, Xmin, Xmaxare 

Minimum and maximum bounds of the search space. 

Rand () is A random value between 0 and 1. 

 

Soaring Phase (Global Exploration): 

     In this phase, eagles explore the search space 

broadly to identify promising regions. This represents 

the global exploration phase in the ESBO, where 

candidate solutions are updated to explore new areas 

in the search space: 

 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 +∝𝑡. [𝛽. (𝑋𝑔
𝑡 − 𝑋𝑖

𝑡) + 𝛾. 𝑟𝑎𝑛𝑑. 𝑉𝑖
𝑡]     (2) 

 

Where: 

 Xi
t+1is updated position of the ith candidate solution 

at iteration t+1,  Xg
t is best solution found at iteration 

t,  ∝t is the step size parameter, reduced over 

iterations to balance exploration and exploitation, β,γ 

is weighting factors for exploitation and exploration, 

respectively, and Vi
t is velocity vector influencing the 

position update. 

 

Diving Phase (Local Exploitation): 

     Once promising regions are identified, the 

algorithm enters the diving phase for local 

exploitation, refining the search. 

 

𝑋𝑖
𝑡+1 =

{
𝑋𝑖

𝑡 + 𝛿𝑡 . (𝑋𝑔
𝑡 − 𝑋𝑖

𝑡)        𝑖𝑓 𝑓(𝑋𝑖
𝑡) < 𝑓(𝑋𝑔

𝑡)

𝑋𝑖
𝑡 + 𝜆. (𝑋𝐼

𝑡 − 𝑋𝑖
𝑡)      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (3) 

 

Where: 

𝛿𝑡  is a small step size focused on refining the 

solution, λ a parameter controlling local search 

direction, 𝑋𝐼
𝑡  is a locally optimal solution near 𝑋𝑖

𝑡, and 

f(X) is objective function value for a given solution 

X. 
 
Dynamic Adjustment: 

     The search strategy is dynamically adjusted based 

on the success of the current search attempts. This 

helps in focusing on more promising regions as the 

search progresses. The parameters α, δ, β, and λ are 

adjusted adaptively to balance exploration and 

exploitation. 

3.3.2. Integration with differential evolution (DE) 

1. Initial Optimization: 

   - Apply ESBO to optimize the initial set of model 

parameters, focusing on finding a good starting point 

for weights. 

𝑋𝚤
∗ = 𝐸𝑆𝐵𝑂(𝑋𝑖) 

 

2. Refinement with DE: 

   - This is the Differential Evolution (DE) update 

formula, which modifies solutions using weighted 

differences between randomly selected solutions. 

 

𝑋𝑖
𝑡+1 = 𝑋𝑟

1 + 𝐹. (𝑋𝑟
2 − 𝑋𝑟

3)                        (4) 
 

Where ( 𝑋𝑟
1, 𝑋𝑟

2, 𝑎𝑛𝑑 𝑋𝑟
3) are randomly chosen 

solutions, and F is the differential weight. 

The procedure of the proposed model is shown in Fig. 

3. 

4. Result and discussion 

     Before embarking on the analysis of the 

performances of the experimental algorithms, one 

needs to understand the sets of data used in this study 

to support the model evaluation. This is an added 

advantage for the proposed models as it guarantees 

their performance on various types of data such as 

image data, time series and environmental data. All 

the used datasets are chosen according to the 

purposes of the specific tasks which include image 

classification, energy consumption forecast, or 

environmental supervision. We used both the 

standard datasets like MNIST and CIFAR-10 and do-

main-specific datasets like the Electricity Load 

Diagrams and Air Quality datasets to test the models’ 

generalizations.  

   Furthermore, for the same purpose, the Cityscapes 

dataset is also incorporated to verify how well a 

model does for the highly perceptive complex tasks 

that both necessitate scene analysis and semantic 
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Figure. 3 Procedure of the proposed intelligent 

system 

 

 

segmentation. Besides, the integration of these 

datasets provides a strong basis for the evaluation of 

the models and also demonstrates the applicability 

and flexibility of the discussed optimization methods 

in different practical problems.  

 1. MNIST Dataset: Consists of H seventy 

thousand grayscale images depicting hand-written 

digits from 0 to 9 and with 60 thousand samples have 

been utilized for the formation of the training data set 

and the rest of 10 thousand for the formation of the 

test data set. First bibliography for testing and 

validating our model architectures and optimization 

algorithms.  

 2. CIFAR-10 Dataset: Has 60,000 32×32 colour 

images divided into 10 classes with total of 50,000 

images for training and 10,000 images for validation. 

Tests out the model on additional data or superior 

quality and diverse image data.  

 3. Electricity Load Diagrams 2011-2014: A 

folder consisting of time series data of electricity load 

measurements used to predict future electricity load 

demands. Challenges the models’ performance when 

dealing with time series data as well as to forecast 

energy use.  

4. Air Quality Dataset: Includes data on various 

air borne pollutants that are used to estimate the air 

quality in any given region based on past records. 

Checks different models on environmental data 

which are time series and numerical attributes.  

 5. Cityscapes Dataset: Contains pictures of 

streets in urban areas that have been pixel-wise 

annotated for the task of semantic segmentation. 

Validates models on complicated tasks which include 

scene analysis and segmentation.  

Before getting down to the differences between CNN 

and MLP, it is necessary to have a clear perception as 

to what distinguishes these two categories of NNs. 

CNNs are inherently designed for grid-like structures 

such as images. This is done using convolutional 

layers which stamp filters across the input data 

making feature maps helpful in distinguishing 

hierarchy in the data. This makes CNNs especially 

useful in image recognition since spatial relations 

between objects are often important. Most of the 

architecture consists of convolutional layers, pooling 

layers as a means of dimensionality reduction, and 

fully connected layers, which make the final 

classification. Dropout layers are also applied to 

reduce overfitting and during the training phase some 

of the neurons are omitted randomly the summary of 

the architecture is given in Table 1. On the other hand, 

MLPs are designed with a view of a more generalized 

model of using it. It has an input layer, one or more 

layers of hidden neurons and an output layer where-

by every neuron in each layer is connected to every 

neuron in the next subsequent layer. The fully 

connected structure enables MLPs to capture the 
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Table 1. Summary of the Deep learning architecture CNN 

and MLP 

Aspect Convolutional 

Neural 

Network 

(CNN) 

Multi-Layer 

Perceptron 

(MLP) 

Model 

Structure 

  

Input Layer Shape: (32, 32, 3) 

(e.g., CIFAR-10) 

Shape: 784  

(e.g., MNIST) 

Convolutional 

Layer 1 

32 filters, kernel 

size (3, 3), 

activation='relu' 

 

- 

Convolutional 

Layer 2 

64 filters, kernel 

size (3, 3), 

activation='relu' 

 

- 

Max Pooling 

Layer 1 

Pool size (2, 2) - 

Dropout Layer 

1 

Rate = 0.25 - 

Convolutional 

Layer 3 

128 filters, kernel 

size (3, 3), 

activation='relu' 

 

- 

Convolutional 

Layer 4 

256 filters, kernel 

size (3, 3), 

activation='relu' 

 

- 

Max Pooling 

Layer 2 

Pool size (2, 2) - 

Dropout Layer 

2 

Rate = 0.25 - 

Flatten Layer Flattens the input - 

Dense Layer 1 512 units, 

activation='relu' 

512 units, 

activation='relu' 

Dropout Layer 

3 

Rate = 0.5 Rate = 0.2 

Dense Layer 2 Number of classes 

(e.g., 10 for 

CIFAR-10), 

activation='softma

x' 

512 units, 

activation='relu' 

Dropout Layer 

4 
- Rate = 0.2 

Dense Layer 3  

- 

10 units  

(for 

classification), 

activation='softma

x' 

Training 

Configuration 

  

Loss Function Categorical 

Crossentropy 

Categorical 

Crossentropy 

Initial 

Optimizers 

Adam and 

RMSprop 

Adam and 

RMSprop 

Advanced 

Hyperparamet

er Tuning 

Simulated 

Annealing: 

Optimizes 

learning rate, 

batch size, 

network 

architecture 

Simulated 

Annealing: 

Optimizes 

learning rate, 

batch size, 

network 

architecture 

 Simulated 

Annealing: 

Optimizes 

learning rate, 

 

batch size, 

network 

architecture 

Advanced 

Weight 

Optimization 

Differential 

Evolution: Robust 

against complex, 

non-convex 

optimization 

landscapes 

 

 

- 

Pelican 

Optimization 

Algorithm 

(POA) 

Cooperative 

foraging and 

dynamic 

adjustment of 

search strategies 

 

 

- 

Chimp 

Optimization 

Algorithm 

(ChOA) 

Leadership, 

cooperation, and 

dynamic 

adaptation 

strategies 

 

- 

 

 

interaction between in-puts and outputs and is thus 

suitable where the inputs are structured and the 

relation-ship between features is not naturally 

geographic. 

To calculate accuracy and loss for the models 

typically follow these steps: 

1. Accuracy Calculation: 

Accuracy is a measure of how well the model’s 

predictions match the true labels. For models like 

CNN and MLP in classification tasks, the formula is: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑇𝑜𝑡𝑎𝑙 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 × 100    

(5) 

 

       In practice, after each training epoch or iteration, 

you would calculate the number of correct 

predictions (e.g., on a validation set) and compare 

them with the true labels. 

The loss function quantifies the error in predictions. 

For the deep learning models (CNN and MLP) 

mentioned in the paper, categorical cross-entropy 

loss is typically used for classification tasks. 

The formula for categorical cross-entropy loss is: 

 

𝐿𝑜𝑠𝑠 = −
1

𝑁
∑ ∑ 𝑦𝑖,𝑐𝑙𝑜𝑔 (𝑦𝑖

,`, 𝑐)𝐶
𝑐=1

𝑁
𝑖=1             (6) 

 
Where: N is the number of samples, C is the number 

of classes, 𝑦𝑖,𝑐     is the true label for class c of sample 

i (1 if it belongs to the class, otherwise 0), 𝑦𝑖
,`, 𝑐 is the 

predicted probability for class ccc of sample i. 

     The ReLU activation functions are often used in 

the shelves for the introduction of non-linearity while 

softmax is used in the output layer in cases of 

classification problems. In order to improve the 

accuracy of these models’ different optimization 
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Table 2. Comparison results for the proposed model in MNIST and CIFAR-10 Dataset 

Aspect Our Study  [32] [33] [34] [35] [36] 

Methodology ESBO + DE for 

hyperparameter 

tuning and weight 

optimization 

Hybrid DE 

+ SA 

Eagle-inspired 

optimization 

SA + DE for 

tuning 

Advanced 

CNN 

tuning 

Metaheuristics 

(DE, PSO) 

Achieved 

Accuracy 

 

MNIST: 99.5%, 

CIFAR-10: 89.1%, 

ELD: 96.3% 

MNIST: 

98.7%, 

CIFAR-10: 

87.9% 

MNIST: 

98.6%, 

CIFAR-10: 

88.3% 

MNIST: 

98.9%, 

CIFAR-10: 

89% 

Air 

Quality: 

95.5% 

MNIST: 

98.8%, 

CIFAR-10: 

88.5% 

Efficiency High accuracy, 

higher computational 

cost 

High 

accuracy, 

moderate 

cost 

Balanced Effective, 

higher cost 

Moderate 

cost 

High 

effectiveness, 

moderate cost 

 

 

techniques and strategies are also applied during the 

training phase. Both the CNNs and MLPs require 

optimizers such as Adam and RMSprop during the 

early stages of training because of their effectiveness 

in varying the learning rates. Hear though, to further 

enhance the performance models, hyperparameter 

tuning with the weight’s optimization techniques like 

– Simulated Annealing, Differential Evolution, the 

Eagle Strategy-Based Optimization (ESBO) Model 

and other techniques are used. It can be used to tune 

the models since it enables one to get the best of the 

models over the various datasets. The following table 

presents the summary of the structural elements, 

training configurations, and state-of-the-art 

optimization techniques used for CNNs and MLPs in 

this work. This comparison gives an evaluation of 

each model on its respective strength based on the 

standards of comparison that have been analyzed 

above to work differently on tasks and datasets. 

Focusing on the comparison of the results of 

applying the proposed optimization strategies with 

the results of previous research, one has to take into 

consideration not only the resultant accuracy but also 

the efficiency of the methods. The examples 

including MNIST and CIFAR-10 are well-known 

among Researchers since they help to draw a line 

between various hyperparameter tuning and 

optimization techniques. For instance, the present 

work employs ESBO and DE to initiate the model 

parameters’ optimization to obtain a suitable weight 

configuration that holds 99% accuracy. 5% on the 

MNIST dataset while observing that this comes with 

greater computational cost compared with PSO and 

Genetic algorithm for CIFAR-10, the higher level of 

optimization employed in this work provides the 

improved accuracy of 89%. 1% and experimenting 

for the ESBO and DE algorithms to work well with 

CNN-like models. Table 3 below shows a concise 

 

 
(a) 

 
           (b) 

Figure 4. result of the proposed model in MNIST dataset: 

(a) Training and testing accuracy of the model and (b) 

Training and testing the accuracy of the model 

 

 

summary of these results explaining the 

methodologies, accuracy and efficiency of this study 

compared to the selected references. Such 

comparisons reveal information on the difference 

between the amount of error and the amount of time 

needed to compute and help understand the kinds of 

optimization methodologies that make the model 

optimal for different datasets.  
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Figure. 5 Training and testing model for CIFAR-10 Dataset 

 

 

Table 3. Comparison results for proposed model in 

Electricity Load Diagrams 2011-2014 Dataset 
Comparison 

Aspect  

Our Study Reference [8] 

Methodology ESBO and DE for 

hyperparameter 

tuning and weight 

optimization 

Evolutionary-

based deep 

learning approach 

for load 

forecasting 

Accuracy 96.3% 93% 

Efficiency High accuracy, 

higher 

computational cost 

Effective for 

time-series data, 

significant 

computational 

resources 

required 

 

 

This table summarizes the comparison of the 

methodologies, accuracy and efficiency of your study 

with the referred studies for each data set. Figs. 4 and 

5 show the accuracy and loss of the training and 

testing model. 

Table 3 is a systematic comparison between 

hyperparameter tuning and optimization methods in 

our current study and other related literature. The 

comparisons made are in the regard to the methods 

used, the accuracy attained on different datasets, and 

the time complexity of the method. The table also 

presents what was employed in the present study, 

namely, Eagle Strategy Based Optimization and 

Differential Evolution, which provided the highest 

accuracy ever reported on MNIST, 99.5% and good 

results on CIFAR-10 of 89.1% and on Electricity 

Load Diagram of 96.3% although with higher 

computational complexity. 

Other studies, for example, [32] continue the 

work of the present paper and employ the DE and 

Simulated Annealing (SA) algorithms with fairly 

high but slightly lesser accuracy on MNIST (98.7%) 

and CIFAR-10 (87.9) with moderate computational 

expense. Using eagle-inspired optimization for 

weight training, study [33] exhibits reasonable 

accuracy and execution time. By combining SA with 

DE for hyperparameter tuning, the result of Study 

[34] is a performance similar to this paper but at a 

higher cost. Specific tuning of CNN is covered in 

Study [35] based on an example with the environment 

data Set; The proposed method achieves rather 

competitive accuracy at reasonable costs. Lastly, 

study [36] integrates various metaheuristic 

algorithms like DE and PSO, yielding good accuracy 

(MNIST: 98. (Gloria: 8%, CIFAR-10: 88. With 

moderate efficiency. 

Keeping this point in mind, comparing two 

optimization strategies in deep learning makes it 

easier to discern the strengths and weaknesses as well 

as points that can work as conveniences but may 

cause computational burdens in their turn. 

5. Conclusions 

In this study, to improve the DL models, an 

improved ESBO-DE approach has been introduced 

and incorporated, especially for the new 

hyperparameter optimization and weight 

improvisation. The contribution of this work to the 

scientific community is supported by specific 

numbers that speak to the observed enhancements in 

performance on multiple datasets, including AWA, 

thus affirming the versatility of the proposed method. 

      This study finally showed that the proposed 

ESBO + DE method improved the accuracy level 

over the current methods. In particular, the model 
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achieved a stated accuracy of 99.5% on the MNIST 

dataset which is higher compared to works that 

applied rather conventional optimization algorithms, 

for example, Genetic Algorithms and Particle Swarm 

Optimization, where lower accuracy is normally 

expected. Regarding the CIFAR-10 dataset, the 

maximum accuracy of the proposed model reached 

89.1% On the same dataset, the methodologies have 

similarities with the integration of SA-DE or eagle-

based optimization strategies. Moreover, the use of 

the model to solve the Electricity Load Diagram 

(ELD) established an average accuracy of 96.3%, 

thereby affirming the resilience of the proposed 

method for time-series data. 

      A comparison of this work with other literature 

also accentuates the value of this work. For example, 

although, other studies using hybrid DE + SA or 

improved swarm intelligence meta-Ottawa heuristics 

demonstrated admirable accuracy; our proposed 

ESBO + DE method gave sound performance. This 

comparison is important to underscore the value 

added by combining enhanced exploration and 

exploitation mechanics and to provide a proof of 

concept for the modularity of the architecture. 

There are certain criteria that dictate the choice of 

method of optimization and one of those important 

criteria is computational cost. As observed from the 

results, there was slightly higher computational cost 

for the ESBO + DE method than some conventional 

optimization approaches, however, the improvement 

in the predictive ability was significant enough to 

justify such a cost. The study offsets this cost-benefit 

scenario by showing that enhanced performance is 

most valuable in applications where precision and 

reliability are critical. 

      It also shows that the proposed method is not 

limited to image classification tasks but can be 

applied to other real-life datasets as well. The 

successful application on the ELD dataset further 

yields an accuracy of 96.3% Further, the proposed 

approach proves that the method can be applied for 

time series and environmental datasets in addition to 

image and text. This outcome makes the method as a 

highly useful tool for effective searching in those 

fields where accurate establishment and model 

generalization are vital. To conclude, it can be stated 

that this work makes a scientific contribution by 

responding to the need for an effective integrated 

optimization strategy providing high accuracy and 

reasonable reliability for various types of data. This 

way, the proposed method ESBO + DE not only 

reaches high-efficiency characteristics for 

hyperparameters tuning and optimization at all stages 

of deep neural network construction but also creates 

a new reference point for developing further methods 

and approaches to this issue. The results of this study 

provide a broad effective knowledge of how essential 

optimization strategies can improve model training 

and pave the way for further research in this domain. 
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