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Abstract: The Land Use Land Cover (LULC) classification in aerial images involves analysing and extracting data to 

accurately classify various land cover types including urban areas, forests and agricultural fields. However, high 

dimensional feature space makes this task challenging, which leads to reduced classification performance. Therefore, 

Personal local search memory-based Woodpecker Mating Algorithm and Bidirectional Long Short-Term Memory 

with Parametric Flatten-T Swish (PWMA-BiLSTM with PFTS) are proposed in this research for LULC classification. 

The PWMA efficiently integrates global search capabilities with personal local search memory to enhance the 

exploration of the feature set. The BiLSTM captures complex and temporal patterns within the selected features 

through its bidirectional processing ability, which allows the capture of contextual data in LULC classification. The 

performance measures like accuracy, sensitivity, precision, f1-score, specificity and computational time are used to 

evaluate the performance of PWMA-BiLSTM with PFTS. The PWMA-BiLSTM with PFTS achieves an accuracy of 

99.95% and 99.87% for Aerial Image (AID) and UC Merced (UCM) datasets, which outperforms Fully Convolutional 

Network (FCN). 

Keywords: Bidirectional long short-term memory, Land use land cover, Parametric flatten-T swish, Personal local 

search memory, Woodpecker mating algorithm. 

 

 

1. Introduction 

Landscape changes provide significant 

information about the effects of various land use 

patterns and types on the environment. The aerial 

image monitoring used to examine affected 

landscapes is very helpful [1, 2]. In the Land Use 

Land Cover (LULC) classification, labels designate 

physical land type and how the region is utilised [3]. 

The remote sensing images are analyzed using 

various spatial, temporal and spectral solutions, in 

which the accuracy is primarily affected by spatial 

resolution [4]. The rapid increase in number of 

remote sensing images and highly complex spatial 

patterns and geometric structures are significant to 

understanding semantic content [5, 6]. Land use 

identification denotes to classifying lands based on its 

use and purpose, which ensures land is utilised with 

local region regulations and other land use strategies 

[7-9]. The land use types include commercial, 

industrial, residential, recreational and agricultural 

[10]. Application areas such as environmental 

pollution monitoring, LULC mapping and precise 

agriculture require images with high spatial and 

spectral resolution for rapid analysis and higher 

accuracy [11]. 
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The recent researches in this LULC classification 

are attained through higher-resolution aerial images 

of land surface by drones, satellites and other devices 

[12]. However, the present image processing 

techniques are developed for medium-resolution 

sensors and a smaller number of bands, which makes 

them inadequate for handling higher spectral-

resolution images [13, 14]. This issue reduces the 

effectiveness of conventional techniques according to 

the analysis of spectral features [15]. To solve this 

issue and obtain better classification accuracy, 

complementary information such as texture data is 

significant to model spatial pixel characteristics and 

is required to integrate the process of higher-

resolution images [16]. The existing LULC 

classification has less convergence speed, thereby 

leading to less detection performance because it does 

not learn optimum solutions. Moreover, it is a 

challenging task because of the high dimensional 

feature space, which reduces the classification 

performance. The major contribution of this research 

is as below: 

• The PWMA enhances the feature selection in 

LULC classification by balancing local 

exploitation and global exploration. Moreover, 

it can identify patterns and is robust to 

irrelevant and noisy features which leads to 

reliable feature selection. 

• The BiLSTM captures complex and temporal 

patterns present in the selected features and it 

has an ability of bidirectional processing 

thereby capturing contextual data in LULC for 

differentiating classes. 

• The PFTS enhances the non-linear, smooth 

transformation by tunable parameters thereby 

leading to better generalization and quick 

convergence in LULC classification. Using 

BiLSTM with PFTS reduces the computation 

time when maintaining higher classification 

performance.  

This research paper is prepared as follows: 

Section 2 analyses the literature and Section 3 

describes the proposed methodology. Section 4 

illustrates result evaluation and the conclusion of this 

research is given in Section 5.  

2. Literature review 

Recently, Deep Learning (DL) techniques were 

extensively applied for LULC classification because 

of their efficiency which was reviewed to understand 

the performance.   

Hilal [17] developed a Deep Transfer Learning -

based Fusion model for Environmental Remote-

Sensing Image Classification (DTLF-ERSIC). The 

DTLF-ERSIC includes entropy-based fusion 

methods such as Discrete Local Binary Pattern 

(DLBP), Residual Network (ResNet50), and 

EfficientNet models. Furthermore, it integrates 

numerous feature vectors to obtain enhanced 

classification performance. However, it was unable 

to achieve effective feature fusion due to the presence 

of highly correlated features. 

Ghadi [18] suggested an FCN for scene 

classification. The fuzzy c-means segmentation 

method was applied to classify different objects and 

it was labelled by Markov Random Field (MRF). 

Then, CNN features were extracted and integrated to 

classify objects. Lastly, it was transformed to FCN 

for scene classification with triplet relationships. The 

FCN effectively captures structured data and ensures 

generated sample quality. However, it has less 

convergence speed which leads to less detection 

performance because it unable to learn optimal 

solutions. 

Hilal [19] introduced Fuzzy Cognitive Maps with 

Bird Swarm algorithm-based Remote Sensing Image 

Classification (FCMBS-RSIC). The FCM was used 

to allocate accurate class labels and classifier 

performance was enhanced through Bird Swarm 

Algorithm (BSA). The preprocessing was used to 

transform the sentinel image into the appropriate 

form and the RetinaNet model was applied to produce 

features. The FCMBS-RSIC has high classification 

accuracy. However, it has less classification accuracy 

because of gradient issues. 

Li [20] presented a remote sensing scene 

classification through contrastive vision-language 

supervision known as RS-CLIP. The Rs-CLIP was 

able to learn semantic visual representation. The 

curriculum learning strategy was applied to produce 

labels automatically and enhance the zero-shot 

remote sensing classification with numerous stages.  

However, the overfitting issue occurred due to not 

considering feature selection thereby reducing 

classification performance. 

Noppitak and Surinta [21] implemented an 

Ensemble Convolution Neural Network (CNN) for 

land use classification. The dropCyclic was applied 

to minimize learning rate and discover local optima 

in a following cycle. The dropcyclic utilized three 

CNN architectures as backbone such as VGG16, 

VGG19 and MobileNetV2. However, it has higher 

dimensional features thereby reducing classification 

performance.  

Ningbo Guo [22] suggested a dual-model 

architecture with multilevel feature fusion named as 

XE-Net for land use classification. The high, low and 

middle level features are extracted through 

EfficientNEt-V2 and Xception by transfer learning 
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model. The triple-level features are extracted by dual 

models based on similar level. The XE-Net improves 

the three-scale features which enhances the 

discriminative features. Lastly, the discriminative 

features are given as input to XE-Net to differentiate 

various lands and achieve high accuracy. However, 

the relevant features are not selected through feature 

selection therefore the model performance is reduced.  

From the above analysis, the existing techniques 

have drawbacks such as gradient issues, and higher 

dimensional features thereby reducing classification 

performance. Moreover, it has an inability for feature 

fusion due to highly correlated features. It has less 

convergence speed because it unable to learn optimal 

solutions. The overfitting issue occurred due to not 

considering feature selection thereby reducing 

classification performance. To overcome this 

problem, the PWMA-BiLSTM with PFTS is 

proposed for LULC classification. The PWMA can 

search patterns and is robust to irrelevant and noisy 

features which leads to reliable feature selection. The 

BiLSTM captures complex and temporal patterns 

present in the selected features which leads to 

informative presentation in LULC for differentiating 

classes. 

3. Proposed method 

The PWMA-BiLSTM with PFTS is proposed in 

this research for LULC classification. The Histogram 

of Oriented Gradient (HOG), Local Ternary Pattern 

(LTP) and Convolutional Neural Network (CNN) 

based feature extractions are used to extract gradient, 

texture and hierarchical features from AID and UCM 

datasets. Then, the PWMA is used for feature 

selection which selects relevant features and is 

classified by BiLSTM with PFTS method. Fig. 1 

shows an overall process of the proposed PWMA-

BiLSTM with PFTS in LULC classification.  

3.1 Dataset 

The datasets used in this research are AID and 

UCM which are explained in the following 

subsections with the number of classes, number of 

images, image sizes and its spatial resolutions.  

AID dataset: The AID dataset [23] is gathered 

from Google Earth imagery and it has 30 classes and 

10000 images in which every class has 200-400 

images. The image size is 600×600 and its spatial 

resolution is 0.5-8m. Fig. 2 shows the sample images. 

UCM dataset: The UCM dataset [24] is gathered 

from the University of California at Merced lab and 

it has 21 classes in that each class has 100 images 

totally of 2100 images. The image size is 256×256 

and its spatial resolution is 0.3m. Fig. 3 shows the 

sample images.   

 

 

 
Figure. 1 Overall process of proposed approach in LULC classification 

 

 
Figure. 2 Sample dataset images 

 

 
Figure. 3 Sample dataset images 
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Figure. 4 Sample dataset images 

 

 
Figure. 5 Sample dataset images 

 

 

RESISE45 dataset: The RESISE45 dataset [18] 

contains 31,500 scene images of 45 classes. Every 

class includes 700 images in which every class has 

minimum 2 and maximum 10 objects. Fig. 4 shows 

the sample images.  

EcoCropsAID dataset: The EcoCropsAID 

dataset [21] is collected from Google Earth 

application through resolution of 30-0.2 meters. The 

images are stored with 600×600 pixels in RGB 

format. It has 5,400 images of 5 classes. Fig. 5 shows 

the sample images.  

3.2 Feature extraction 

The raw images from datasets are provided for the 

feature extraction process to extract gradient, texture 

and hierarchical features. The HOG, LTP and CNN 

based feature extractions are used in this research 

which are explained as follows. 

3.2.1. HOG 

The gradients and edges are extracted from HOG 

which are required to present structures and shapes of 

objects in LULC images. The HOG captures the 

magnitude and orientation of intensity variations in 

the image by extracting boundaries and edges 

between different objects which is useful to 

differentiate different LULC images. The HOG is 

based on gathering gradient directions by small 

spatial pixels named cells. The local 1D histogram of 

edge gradients or orientations is collected through 

HOG for every cell [25]. This procedure is performed 

by producing a local histogram of high spatial regions 

which have cells and applying results to normalize 

each cell in the block.  

3.2.2. LTP 

The texture-based features are extracted from 

LTP which captures spatial intensities in images and 

captures patterns such as smoothness and roughness 

since different land have various textual patterns. The 

LTP has a 3-scored code and texture operator 𝑠  is 

robust to noise [25] [26] which is stated in Eq. (1). 

 

𝑠(𝑥) = {

2,   𝑖𝑓  𝑥 ≥ 𝑡,   
1,    𝑖𝑓 |𝑥| < 𝑡,
0,    𝑖𝑓 𝑥 ≤ 𝑡,   

                      (1) 

 

Where, 𝑡 is a user threshold. After the threshold 

step, the lower and upper patterns are constructed and 

coded. The lower and upper pattern code 

concatenation is an LTP operator. 

3.2.3. CNN based feature extraction 

By using CNN-based models such as ResNet50, 

the hierarchical deep features are extracted and it is 

capable of learning intricate patterns. The ResNet50 

utilizes residual blocks to solve the gradient 

degradation and disappearance challenges in CNN 

[17]. The residual block in ResNet stimulates the 

residuals with input and output of its residual blocks. 

The residual function equation is stated in Eq. (2). 

 

𝑦 = 𝐹(𝑥, 𝑊) + 𝑥     (2) 

 

Where, 𝑥, 𝑊  and 𝑦  are residual block input, 

weight and output. The ResNet includes different 

residual blocks in which convolutional kernel size of 

convolution layer is different. The features from 

HOG, LTP and CNN are concatenated by using Eq. 

(3). 

 

𝑥 = {𝐻𝑂𝐺, 𝐿𝑇𝑃, 𝐶𝑁𝑁}    (3) 

3.3 Feature selection 

The extracted features are provided to PWMA-

based feature selection for selecting features thereby 

enhancing the classification performance. The 

extracted features have high dimensional features 

that reduce the model complexity thereby reducing 

classification performance. Therefore, the feature 

selection is significant which reduces the high 

dimensional features by selecting relevant features 

and enhancing the classification performance. The 

WMA is simulated by the mating behavior of 

woodpeckers and its major metaphor is the drumming 

sound of male woodpeckers to attract the female 

woodpeckers. The WMA has dual groups such as 
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male and female woodpeckers. The male is the best 

location explored through them whereas the female is 

a major search factor. Female woodpeckers are 

attracted by drumming sounds caused by males. The 

attraction level is based on received sound quality 

that is directly proportional to sound intensity. This 

sound quality is stated in Eq. (4), 

 

𝐼 =
𝑃𝑆

4𝜋𝑟2       (4) 

 

Where, 𝑃𝑆  is a sound wave energy at sound 

source and 𝑟 is a Euclidean distance hearer to sound 

source. In traditional WMA, the search agent updates 

their location according to its male woodpecker’s 

location and population of best males. In proposed 

algorithm, a piece of local memory is concentrated 

for the best personal experience storage of each 

woodpecker. This personal memory is applied to 

update the location of its respective woodpecker as 

given in Eq. (5). 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + [𝑟1 ×

𝛿𝑖
𝑡×(𝛼𝑔𝑝𝑜𝑝×(𝑥𝑔𝑝𝑜𝑝

𝑡 −𝑥𝑖
𝑡)+𝛼𝑚𝑗×(𝑥𝑚𝑗

𝑡 −𝑥𝑖
𝑡))

2
+  𝑟2 × (𝛿𝑖

𝑡 ×

(𝑥𝑝𝑝𝑜𝑝
𝑡 − 𝑥𝑖

𝑡))]              (5) 

 

Where, 𝑥𝑖
𝑡  and 𝛿𝑖

𝑡  are present position and 

random vector of woodpecker 𝑖 in 𝑡th iteration, 𝑟1 is 

a random number from normal distribution within a 

range of [0, 1]. 𝑥𝑔𝑝𝑜𝑝
𝑡  is a best member position of 

population, 𝑥𝑚𝑗
𝑡  is a 𝑗th male woodpecker, 𝑥𝑝𝑝𝑜𝑝

𝑡  is a 

location of memory. By using personal local search 

memory abilities, it enforces the accurate 

approximation of global search optimum. In WMA, 

every female updates their location as affected 

through drumming from best population member and 

male one has shortest distance from it. The self-tuned 

value at the iteration cycle is stated in Eq. (6), 

parameter 𝛼 (𝛼𝑔𝑝𝑜𝑝, 𝛼𝑚𝑗)  are attained through Eq. 

(7). 

 

𝛿𝑖
𝑡 = 𝑟3 × 𝑇𝑎𝑛𝑠𝑖𝑔 (1 −

𝑡

𝑡𝑚𝑎𝑥
)   (6) 

 

𝛼 =
1

1+𝑆𝐼𝑗
𝑖      (7) 

 

Where, 𝑟3  is a random number from normal 

distribution within a range of [0, 3] , 𝑇𝑎𝑛𝑠𝑖𝑔  is a 

tangent sigmoid function, 𝑡 and 𝑡𝑚𝑎𝑥 are number of 

present and maximum iterations. If 𝛿 > 1 , search 

factor diverges from target point that leads 

exploration. If 𝛿 ≤ 1 , female woodpecker 

convergence to male thereby leading exploitation. 

The 𝛼 is an attractiveness of 𝑗th male to 𝑖th female 

woodpecker, 𝑆𝐼𝑗
𝑖 is a sound intensity target which is 

heard by female. Moreover, 𝛼  is a female 

woodpecker step size which denotes particularly how 

adjacent it reaches its respective male woodpecker. In 

WMA, the Running Away (RA) function is taken as 

stochastic movement factors once drumming sounds 

are overloaded and woodpecker is attracted. This 

function comprises dual operators such as Random 

RA (RRA) and Gpop RA (GRA). Every woodpecker 

in each generation is directly proportional to its 

respective 𝛼 score based on Eq. (8) and the 𝐻𝛼 value 

is estimated in the initial iteration by Eq. (9). 

 

𝑅𝐴 = {
𝑅𝑅𝐴              𝑖𝑓 𝛼 ≥ 𝐻𝛼
𝐺𝑅𝐴              𝑒𝑙𝑠𝑒           

   (8) 

 

𝐻𝛼 = 0.8 ×
∑ 𝛼𝑔𝑝𝑜𝑝

𝑖𝑛−1
1

𝑁−1
    (9) 

 

Where, 𝑁 is a woodpeckers population size, 𝐻𝛼 

is a highest level of 𝛼 . The RRA is generally 

stochastic moves among search space which is 

concentrated on exploration directly and 

implemented by Eq. (10). 

 

𝑥𝑅𝑅𝐴
𝑖 = 𝑙𝑏 − (𝑙𝑏 − 𝑢𝑏) × 𝑟4              (10) 

 

Where, 𝑥𝑅𝑅𝐴
𝑖  is a new element position attained 

from RRA on 𝑖th woodpecker, 𝑙𝑏 and 𝑢𝑏 are lower 

and upper bound variables, 𝑟4  is a random number 

from normal distribution within a range of [0, 1]. The 

GRA operator leads stochastic changes in a few 

variables which is regarding female woodpeckers 

according to best male and location of random other 

woodpecker. The GRA operation is implemented by 

Eq. (11). 

 

𝑥𝐺𝑅𝐴
𝑖 = 𝑥𝑖

𝑡 + 𝐺𝑅𝐴𝑏𝑖𝑡 × {(𝑥𝑔𝑝𝑜𝑝
𝑡 − 𝑥𝑟) × 𝑅} (11) 

 

Where, 𝑥𝐺𝑅𝐴
𝑖  is a new element location attained 

from GRA on 𝑖 th woodpecker, 𝑥𝑖
𝑡  is a random 

woodpecker location, 𝐺𝑅𝐴𝑏𝑖𝑡  is a binary vector, 

𝑥𝑔𝑝𝑜𝑝
𝑡  is a location of best woodpecker over the 

population, 𝑥𝑟 is a random woodpecker location, 𝑅 is 

a random numbers from random distribution within a 

range of [−1, 1] . Fig. 6 denotes the flowchart of 

PWMA. 
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Figure. 6 Flowchart of PWMA 

 

 

 The maximum accuracy is considered as fitness 

function in this research. Based on this fitness 

function, the PWMA selects the best features and the 

fitness formula is stated in Eq. (12). 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑥(𝑖)) = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑥(𝑖)) (12) 

 

Where, 𝑥(𝑖)  is a random feature subset and 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑥(𝑖))  is an accuracy of 

random feature subset. The maximum number of 

iterations is 100 and fitness is calculated for every 

iteration and best fitness is selected.  

3.4 Classification 

The unidirectional LSTM keeps and recollects 

contextual past data and it removes contextual future 

data. However, the BiLSTM addresses the issue 

through using dual independent LSTM such as 

forward and backwards. The BiLSTM captures 

intricate and temporal patterns present in the selected 

features which leads to informative presentation 

when compared to LSTM and RNN. It has an ability 

of bidirectional processing thereby capturing 

contextual data in LULC for differentiating classes. 

The BiLSTM has an exploding gradient issue during 

training which is solved through using the PFTS 

activation function. The forward LSTM processes the 

data in a forward direction which means from past to 

future. Whereas backward LSTM processes the data 

in reverse directions which means from future to past. 

The LSTM contains forget gate (𝑓𝑡), input gate (𝑖𝑡), 

output gate (𝑜𝑡)  and cell memory state (𝑐𝑡) . The 

input features 𝑥 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑡}, the hidden state 

is stated in Eqs. (13)-(17). 

 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)              (13) 

 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)              (14) 

 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)              (15) 

 

𝑐𝑡 = 𝑓𝑡 ⨀ 𝑐𝑡−1 + 𝑖𝑡  ⨀ 𝑃𝐹𝑇𝑆(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] +
𝑏𝑐)                  (16) 

 

ℎ𝑡 = 𝑜𝑡  ⨀ 𝑃𝐹𝑇𝑆(𝑐𝑡)              (17) 

 

Where, 𝜎 is sigmoid function. 𝑊𝑓 , 𝑊𝑖 and 𝑊𝑜 are 

weight matrix, 𝑏𝑓 , 𝑏𝑖 and 𝑏𝑜 are bias matrix of forget, 

input and output gates. The 𝑥𝑡 is an LSTM input, ℎ𝑡 

is a hidden layer vector. The major aim for using 

BiLSTM is a temporal pattern of scenes which are 

utilized among time series images. The input 

sequence is decided by BiLSTM that is stated as 𝑖 =

𝑖1, 𝑖2, … , 𝑖𝑛  from opposite to forward order 𝑓𝑡 =

(𝑓1, 𝑓2, … , 𝑓𝑛)  and backwards hidden order 𝑓𝑡 =

(𝑓1, 𝑓2, … , 𝑓𝑛). The 𝑣𝑡  is an encoder vector that is 

estimated by gathering decision forward and 

backward output 𝑣𝑡 = [𝑓𝑡, 𝑓𝑡] as Eqs. (18)-(20). 

 

𝑓𝑡 = 𝛿 (𝑊𝑓𝑖
𝑖𝑡 + 𝑊𝑓𝑓𝑓𝑡−1 + 𝑞𝑓)             (18) 

 

𝑓𝑡 = 𝛿 (𝑊𝑓𝑖
𝑖𝑡 + 𝑊𝑓𝑓𝑓𝑡−1 + 𝑞𝑓)             (19) 

 

𝑣𝑡 = 𝑊𝑣
�⃗⃗⃗�

𝑓𝑡 + 𝑊𝑣
�⃗⃗⃖�

𝑓𝑡 + 𝑞𝑣              (20) 

 

Where, the 𝛿 is a logistic sigmoid function, 𝑣 =
𝑣1, 𝑣2, … , 𝑣𝑡 , … , 𝑣𝑛  is an initial hidden layer output 

sequence.  

3.4.1. Parametric Flatten-T Swish 

The FTS is a predefined activation function and it 

does not produce advantages such as non-linear 

representation, flexibility and dynamicity ability for 

networks. Therefore, PFTS is used to overcome this 

limitation. The PFTS learns entire activation function 

and hinge point 𝑡𝑡𝑟𝑎𝑖𝑛 of function which enables to 

vertically fluctuate and determine optimal value for 

𝑡𝑡𝑟𝑎𝑖𝑛. The PFTS is stated in Eq. (21). 

 

𝑃𝐹𝑇𝑆(𝑥) = {

𝑥

1+𝑒−𝑥 + 𝑡𝑡𝑟𝑎𝑖𝑛,              𝑖𝑓 𝑥 ≥ 0

𝑡𝑡𝑟𝑎𝑖𝑛,                                  𝑖𝑓 𝑥 < 0
 (21) 
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Where, 𝑥 is an activation function input, 𝑡𝑡𝑟𝑎𝑖𝑛 is 

an adaptive parameter that enables learning from 

training. 

4. Result analysis 

The proposed PWMA-BiLSTM with PFTS is 

simulated in MATLAB of 2020a version with system 

configuration of i5 processor, windows 10 OS and 

16GB RAM. The PWMA-BiLSTM with PFTS is 

evaluated with the measure of accuracy, sensitivity, 

precision, f1-score, specificity and computational 

time. The 𝑇𝑃, 𝐹𝑃, 𝑇𝑁 and 𝐹𝑁 are true positive, false 

positive, true negative and false negative. Table 1 

shows the metrics with their mathematical 

expressions. 
 

 

Table 1. Metrics with its mathematical expression 

Metrics Mathematical Expression 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 

Sensitivity 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100 

F1-Score 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
× 100 

Specificity 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100 

 

Table 2 presents the PWMA results for different 

feature selections with measures of accuracy, 

sensitivity, precision, f1-score and specificity. The 

different feature selection methods such as Flower 

Pollination Algorithm (FPA), Moth Search 

Algorithm (MSA) and WMA are used to evaluate the 

PWMA performance. The PWMA attains 99.95%, 

99.82%, 98.68%, 99.24% and 99.91% of accuracy, 

sensitivity, precision, f1-score and specificity for the 

AID dataset. Additionally, PWMA attains 99.87%, 

99.72%, 98.51%, 99.11% and 99.83% of accuracy, 

sensitivity, precision, f1-score and specificity for 

UCM dataset. 

In Table 3, the result of BiLSTM with PFTS for 

different classification (actual features) are presented 

along with measures of accuracy, sensitivity, 

precision, f1-score and specificity. The different 

classification methods such as RNN, LSTM and 

BiLSTM are used to evaluate the BiLSTM with PFTS 

performance. The BiLSTM with PFTS attains 

97.81%, 97.56%, 96.28%, 96.91% and 97.79% of 

accuracy, sensitivity, precision, f1-score and 

specificity for AID dataset. Additionally, BiLSTM 

with PFTS attains 97.53%, 97.47%, 96.31%, 96.88% 

and 97.46% of accuracy, sensitivity, precision, f1-

score and specificity for UCM dataset.   

 

 

Table 2. Different feature selection result  

Dataset  Performance Metrics FPA MSA WMA PWMA 

AID  Accuracy (%) 93.76 94.51 97.82 99.95 

Sensitivity (%) 93.55 94.38 97.21 99.82 

Precision (%) 92.37 93.83 96.46 98.68 

F1-Score (%) 92.95 94.10 96.83 99.24 

Specificity (%) 93.62 94.47 97.75 99.91 

UCM Accuracy (%) 93.54 94.26 97.58 99.87 

Sensitivity (%) 93.16 93.85 97.37 99.72 

Precision (%) 92.82 93.71 96.15 98.51 

F1-Score (%) 92.98 93.77 96.75 99.11 

Specificity (%) 93.47 94.37 97.61 99.83 

 

Table 3. Classification result with actual features 

Dataset  Performance Metrics RNN LSTM BiLSTM BiLSTM with PFTS 

AID  Accuracy (%) 92.59 93.76 95.64 97.81 

Sensitivity (%) 92.43 93.52 95.31 97.56 

Precision (%) 91.37 92.34 94.73 96.28 

F1-Score (%) 91.89 92.92 95.01 96.91 

Specificity (%) 92.51 93.60 95.46 97.79 

UCM Accuracy (%) 92.57 93.65 95.52 97.53 

Sensitivity (%) 92.40 93.43 95.14 97.47 

Precision (%) 91.82 92.25 94.69 96.31 

F1-Score (%) 92.10 92.83 94.91 96.88 

Specificity (%) 92.48 93.57 95.37 97.46 
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Table 4. Classification result with optimized features 

Dataset  Performance Metrics RNN LSTM BiLSTM BiLSTM with PFTS 

AID  Accuracy (%) 93.82 95.67 96.73 99.95 

Sensitivity (%) 93.46 95.29 96.38 99.82 

Precision (%) 92.39 94.37 95.19 98.68 

F1-Score (%) 92.92 94.82 95.78 99.24 

Specificity (%) 93.71 95.59 96.62 99.91 

UCM Accuracy (%) 93.62 95.48 96.51 99.87 

Sensitivity (%) 93.35 95.24 96.42 99.72 

Precision (%) 92.40 94.67 95.27 98.51 

F1-Score (%) 92.87 94.95 95.84 99.11 

Specificity (%) 93.19 95.36 96.48 99.83 

 

In Table 4, the result of BiLSTM with PFTS for 

different classification (optimized features) are 

presented along with measures of accuracy, 

sensitivity, precision, f1-score and specificity. The 

different classification methods such as RNN, LSTM 

and BiLSTM are used to evaluate the BiLSTM with 

PFTS performance. The BiLSTM with PFTS attains 

99.95%, 99.82%, 98.68%, 99.24% and 99.91% of 

accuracy, sensitivity, precision, f1-score and 

specificity for AID dataset. Additionally, BiLSTM 

with PFTS attains 99.87%, 99.72%, 98.51%, 99.11% 

and 99.83% of accuracy, sensitivity, precision, f1-

score and specificity for UCM dataset.   

In Table 5, the results of BiLSTM with PFTS for 

different classifications are presented along with a 

measure of computation time for both AID and UCM 

datasets. The different classification methods such as 

RNN, LSTM and BiLSTM are used to evaluate the 

BiLSTM with PFTS performance. The BiLSTM with 

PFTS attains less computation time of 047sec, 052sec 

for AID and UCM datasets when compared to RNN, 

LSTM and BiLSTM.  The BiLSTM with PFTS 

achieves less computation time because of effective 

gradient flow. Moreover, it has capability to process 

sequence in both forward and backward directions 

which quicken the convergence and reduced the 

overall computation time.  

The confusion matrix for AID, UCM, RESISC45 

and EcoCropsAID datasets are given in figure 7, 8, 9 

and 10 respectively. 

4.1 Comparative analysis   

The proposed PWMA-BiLSTM with PFTS is 

compared with existing techniques such as DTLF- 

 
Table 5. Computation time (sec) result  

Dataset AID UCM 

RNN 073 076 

LSTM 061 064 

BiLSTM 055 059 

BiLSTM with PFTS 047 052  

 

 
Figure. 7 Confusion matrix for AID dataset 

 

 
Figure. 8 Confusion matrix for UCM dataset 

 

 
Figure. 9 Confusion matrix for RESISC45 dataset 
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Figure. 10 Confusion matrix for EcoCropsAID 

dataset 

 

 

ERSIC [17], FCN [18], FCMBS-RSIC [19], RS-

CLIP [20], DropCyclic [21] and XE-Net [22] for AID, 

UCM, RESISC45 and EcoCropsAID datasets. The 

PWMA-BiLSTM with PFTS shows better 

performance than existing techniques in terms of 

accuracy, sensitivity, precision, f1-score, specificity 

and computation time. The PWMA-BiLSTM with 

PFTS attains 99.95%, 99.82%, 98.68%, 99.24%, 

99.91% and 047sec of accuracy, sensitivity, precision, 

f1-score, specificity and computation time for the 

AID dataset as presented in table 6. Additionally, 

PWMA-BiLSTM with PFTS attains 99.87%, 99.72%, 

98.51%, 99.11%, 99.83% and 052sec of accuracy, 

sensitivity, precision, f1-score, specificity and 

computation time for UCM dataset as presented in 

table 7. The PWMA-BiLSTM with PFMS attains 

98.39%, 96.62%, 97.54% and 97.07% of accuracy, 

sensitivity, precision and f1-score for RESISC45 

dataset as presented in table 8. The PWMA-BiLSTM 

with PFMS attains 99.76% of accuracy for 

EcoCropsAID dataset as presented in table 9.  

4.2 Discussion 

The existing techniques have limitations such as 

the DTLF-ERSIC [17] suffers from less classification 

accuracy due to gradient issues. FCN [18] produces 

higher dimensional features which reduces 

classification performance. FCMBS-RSIC [19] has 

 
 

 

Table 6. Comparison of PWMA-BiLSTM with PFTS for AID dataset 

Performance 

Metrics 

 Methods 

DTLF-

ERSIC 

[17] 

FCN 

[18] 

FCMBS-

RSIC [19] 

RS-CLIP 

[20] 

DropCyclic 

[21] 

XE-Net 

[22] 

PWMA-

BiLSTM with 

PFTS 

Accuracy 

(%) 

99.8 97.73 99.31 87.52 94.58 95.78 99.95 

Sensitivity 

(%) 

97.5 91.4 99.42 NA NA NA 99.82 

Precision (%) 97.6 92.1 98.36 NA NA NA 98.68 

F1-Score (%) 97.5 91.6 NA NA NA NA 99.24 

Specificity 

(%) 

99.9 NA NA NA NA NA 99.91 

Computation 

time (sec) 

NA NA 058 NA NA NA 047 

 

Table 7. Comparison of PWMA-BiLSTM with PFTS for UCM dataset 

Performance 

Metrics 

 Methods 

DTLF-

ERSIC 

[17] 

FCN 

[18] 

FCMBS-

RSIC [19] 

RS-CLIP 

[20] 

DropCyclic 

[21] 

XE-Net 

[22] 

PWMA-

BiLSTM with 

PFTS 

Accuracy 

(%) 

99.7 98.75 99.63 95.94 97.38 99.37 99.87 

Sensitivity 

(%) 

96.7 91.3 99.67 NA NA NA 99.72 

Precision (%) 96.8 91.9 98.12 NA NA NA 98.51 

F1-Score (%) 96.7 91.6 NA NA NA NA 99.11 

Specificity 

(%) 

99.8 NA NA NA NA NA 99.83 

Computation 

time (sec) 

NA NA 064 NA NA NA 052 
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Table 8. Comparison of PWMA-BiLSTM with PFTS for RESISC45 dataset 

Performance Metrics  Methods 

FCN [18] RS-CLIP [20] XE-Net [22] PWMA-BiLSTM 

with PFTS 

Accuracy (%) 96.57 85.76 95.03 98.39 

Sensitivity (%) 93.9 NA NA 96.62 

Precision (%) 94.7 NA NA 97.54 

F1-Score (%) 94.2 NA NA 97.07 

 

 

Table 9. Comparison of PWMA-BiLSTM with PFTS for EcoCropsAID dataset 

Performance Metrics Methods 

DropCyclic [21] PWMA-BiLSTM with PFTS 

Accuracy (%) 99.12 99.76 

 

 

an inability for feature fusion due to high 

correlated features. RS-CLIP [20] has less 

convergence speed which leads less detection 

performance because it unable to learn optimal 

solutions. DropCyclic [21] has overfitting issue due 

to the lack of feature selection thereby reducing less 

classification performance. To overcome these issues, 

this research proposes a PWMA-BiLSTM with PFTS 

for LULC classification. The PWMA can search 

patterns and robust to noisy and inappropriate 

features thereby reducing optimal feature selection. 

The BiLSTM captures temporal and intricate patterns 

in selected features thereby leading informative 

presentation. By using BiLSTM with PFTS enhances 

the non-linear, smooth transformation by tunable 

parameters thereby leading better generalization and 

quick convergence in LULC classification.  

5. Conclusion 

The PWMA-BiLSTM with PFTS is proposed in 

this research for LULC classification. The PWMA 

enhances the capability to discover optimal features 

by retaining valuable information from past searches, 

quickening the convergence speed and reducing 

redundancy thereby leading to effective classification. 

It integrates global search abilities with personal local 

search memory for enhancing the exploration of 

feature subsets. The BiLSTM captures temporal and 

complex patterns and it has the ability of bidirectional 

processing to capture contextual data in LULC for 

distinguishing various classes. The gradient, texture 

and hierarchical features are extracted by HOG, LTP 

and CNN based feature extraction techniques from 

AID and UCM datasets. The PWMA-BILSTM with 

PFTS attains the accuracy of 99.95% and 99.87% for 

AID and UCM datasets respectively. In the future, 

hybrid metaheuristic optimization will be applied for 

LULC classification to further enhance accuracy. 

Notation list 

Notation Description  

𝑠 Texture operator 

𝑡 User threshold 

𝑥, 𝑊 and 𝑦 Residual block input, weight 

and output 

𝑃𝑆 Sound wave energy at sound 

source 

𝑟 Euclidean distance 

𝑥𝑖
𝑡 Present position of woodpecker 

𝑖 in 𝑡th iteration 

𝛿𝑖
𝑡 Random vector of woodpecker 𝑖 

in 𝑡th iteration 

𝑟1 Random number from normal 

distribution within a range of 

[0, 1] 
𝑥𝑔𝑝𝑜𝑝

𝑡  Best member position of 

population 

𝑥𝑚𝑗
𝑡  𝑗th male woodpecker 

𝑥𝑝𝑝𝑜𝑝
𝑡  Memory location 

𝛼 (𝛼𝑔𝑝𝑜𝑝, 𝛼𝑚𝑗) Parameter 

𝑟3 Random number from normal 

distribution within a range of 

[0, 3] 
𝑇𝑎𝑛𝑠𝑖𝑔 Tangent sigmoid function 

𝑡 and 𝑡𝑚𝑎𝑥 Number of present and 

maximum iterations 

𝛼 Female woodpecker step size 

𝑆𝐼𝑗
𝑖 Sound intensity target 

𝑁 Woodpeckers’ population size 

𝐻𝛼 Highest level of 𝛼 

𝑥𝑅𝑅𝐴
𝑖  New element position 

𝑙𝑏 and 𝑢𝑏 Lower and upper bound 

variables 

𝑟4 Random number from normal 

distribution within a range of 

[0, 1] 

𝑥𝐺𝑅𝐴
𝑖  New element location attained 

from GRA on 𝑖th woodpecker 

𝑥𝑖
𝑡 Random woodpecker location 
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𝐺𝑅𝐴𝑏𝑖𝑡 Binary vector 

𝑥𝑔𝑝𝑜𝑝
𝑡  Location of best woodpecker 

over the population 

𝑥𝑟  Random woodpecker location 

𝑅 Random numbers from random 

distribution within a range of 

[−1, 1] 
𝑥(𝑖) Random feature subset 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑥(𝑖)) Accuracy of random feature 

subset  

𝑓𝑡 Forget gate 

𝑖𝑡 Input gate 

𝑜𝑡 Output gate 

𝑐𝑡 Memory cell state 

𝜎 Sigmoid function 

𝑊𝑓 , 𝑊𝑖 and 𝑊𝑜 Weight matrix of forget, input 

and output gates 

𝑏𝑓 , 𝑏𝑖  and 𝑏𝑜 Bias matrix of forget, input and 

output gates 

𝑥𝑡 LSTM input 

ℎ𝑡 Hidden layer vector 

𝑣𝑡 Encoder vector 

𝛿 Logistic sigmoid function 

𝑥 Activation function input 

𝑡𝑡𝑟𝑎𝑖𝑛 Adaptive parameter 

𝑇𝑃 True positive 

𝑇𝑁 True negative 

𝐹𝑃 False positive 

𝐹𝑁 False negative 
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