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Abstract: Breast cancer identification stands as a pivotal field in medical research and technology, highly focused on 

early identification and diagnosis of abnormalities within breast tissue. Early detection significantly enhances 

treatment outcomes and improves patient survival rates. By recognizing the critical significance of breast cancer 

identification, an innovative model known as Fractal Deep Spiking Neural Network (FDSRN) has been introduced. In 

this model, the mammogram images are initially chosen as input for the pre-processed phase. The preprocessing of 

mammogram images is accomplished by utilizing a wiener filter. After pre-processing, cancer region segmentation is 

implemented by utilizing U-NeXt. Then, image augmentation, such as random erasing, shifting and rotation is 

performed. After accomplishing image augmentation, feature extraction is applied to extract features like Gradient 

Binary Patterns (GBP), Binary Robust Independent Elementary Features (BRIEF) and Gray level co-occurrence matrix 

(GLCM). Lastly, breast cancer identification is conducted by utilizing developed FDSRN, which is the incorporation 

of FractalNet and Deep Spiking Neural Network (DSNN). The FDSRN employed for breast cancer detection has 

shown outstanding performance, achieving an accuracy of 90.205%, sensitivity of 90.710%, and specificity of 

90.943%. The MIAS and DDSM datasets are used for the experimentation. 

Keywords: Breast cancer detection, Mammogram images, FractalNet, Deep spiking neural network (DSNN), U-NeXt. 

 

 

1. Introduction  

Cancer manifests as a genetic disorder, which 

characterized by the acceleration of mutations that 

support the collection of cells exhibiting 

progressively aggressive traits. While the mainstream 

of these mutations is specific to each cancer cell, 

approximately 1% of cancer cases emerge from 

identifiable hereditary cancer syndromes, where a 

particular genetic mutation is present in all cells of 

the body. Despite their rare characteristics, these 

inherited syndromes hold significant biological 

importance [1]. Among the myriad forms of cancer, 

it stands as a leading cause of morbidity and mortality 

in women globally [2]. The term “cancer” 

encompasses over a hundred variations of the disease 

[3]. Presently, cancer ranks as a primary cause of 

death worldwide, indicating a substantial rise in 

mortality rates, largely due to the aging population. 

This escalating cancer paves the way for early 

detection, precise tumor characterization to guide 

treatment decisions, and the development of effective 

preventative measures. Targeted therapies aimed at 

halting the progression of pre-cancerous cells toward 

malignancy offer promising avenues to address the 

formidable challenges associated with late-stage 

cancer treatment. Tumors exhibit significant 
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diversity in cellular characteristics, proliferation rates, 

genetic mutations, and responses to treatment. 

Understanding the molecular and cellular 

mechanisms underlying this tumor heterogeneity 

remains a crucial focus in cancer biology. Central 

questions revolve around whether distinct cancer 

subtypes originate from unique cellular sources, the 

contribution of genetic mutations to tumor behavior, 

and the relationship between the cell of origin and 

cancer stem cells [4]. Additionally, exploring the 

influence of the tumor microenvironment on tumor 

heterogeneity is an emerging area of interest in cancer 

research. 

Breast cancer stands as the leading cause of 

cancer-related deaths among women globally [5]. It 

is the most prevalent malignancy affecting women, 

with a quarter of cases exhibiting a latent and 

insidious nature, characterized by slow growth and 

early metastasis [6]. Predominantly a 

postmenopausal disease, over three-quarters of breast 

tumors are hormone-responsive, with their 

progression influenced by a combination of hormonal, 

environmental, and genetic factors [7]. In 2018, the 

International Agency for Research on Cancer (IARC) 

of the World Health Organization (WHO) declared 

17.1 million cases of breast cancer worldwide, and 

this number will double by 2025. Despite this being 

primarily a disease affecting women, breast cancer is 

the second deadliest malignancy, following lung 

cancer [5]. Breast tissue comprises connective tissue, 

ducts, and lobules, with cancer spreading via blood 

and lymphatic vessels. Metastasis involves the 

diffusion of cancer cells from their initial location to 

other areas of the body. Initially confined to the ducts 

or lobules, breast cancer often presents with no 

symptoms and has a low probability of spreading. 

However, over time, these tumors may progress, 

infiltrating surrounding breast tissue and potentially 

spreading to nearby lymph nodes or distant organs. 

The primary cause of death from breast cancer in 

women is widespread metastases. Early detection 

through routine screening significantly improves 

treatment outcomes and increases the likelihood of 

survival [8]. Additionally, advances in targeted 

therapies tailored to specific breast cancer subtypes 

have revolutionized treatment approaches, offering 

more personalized and effective interventions. 

Furthermore, ongoing research into immunotherapy 

and combination treatments holds promise for 

enhancing treatment responses and prolonging 

survival rates in breast cancer patients. 

Early recognition of cancer is crucial for 

successful treatment, stimulating the development of 

imaging techniques aimed at enhancing the timely 

identification of breast cancer. Ultrasonography (US), 

magnetic resonance imaging (MRI), and 

Mammography are the imaging methods utilized for 

the detection purpose. Among these, mammography 

stands out for its relative affordability, simplicity, 

speed, and widespread use in screening for early 

breast cancer detection. By capturing images of the 

breast, mammography can detect subtle changes that 

may escape manual examination. Utilizing reduced-

energy X-rays, mammography generates images that 

aid in identifying the presence or absence of breast 

cancer [9]. It serves as a primary tool for identifying 

four major signs of breast cancer: Mass, Micro 

calcification, Architectural distortion, and Bilateral 

asymmetry [10]. However, manual analysis of 

mammogram images is prone to errors. Automating 

the detection and categorization of 

microcalcifications using a Computer-Aided 

Diagnosis (CAD) system could significantly improve 

accuracy [11]. Deep learning (DL) methods or 

techniques are being extensively utilized in medical 

imaging to create automated CAD systems. DL is 

renowned for its effectiveness in detecting and 

categorizing medical images, enabling direct 

extraction of significant hierarchical features ranging 

from low to high levels from mammogram images. 

DL techniques can additionally assist in interpreting 

mammogram images by offering quantitative 

measurements of tumor characteristics, such as size, 

shape, and texture. This makes DL the most reliable 

method in medical imaging for breast cancer 

diagnosis [5]. Some of the DL techniques commonly 

used for breast cancer recognition using 

mammogram images are Recurrent Neural Networks 

(RNNs), Transfer Learning, Ensemble Learning, 

Generative Adversarial Networks (GANs) and 

Convolutional Neural Networks (CNNs). 

An effective model named FDSRN for breast 

cancer recognition by employing mammogram 

images is developed in this paper. The process begins 

the process with the pre-processing of input 

mammogram images utilizing the Wiener filter. Then, 

cancer region segmentation is implemented on the 

processed image using U-NeXt. After that, image 

augmentation, such as rotation, random erasing and 

shifting is performed. After performing image 

augmentation, the feature extraction process is 

accomplished to extract features like BRIEF, GBP 

and GLCM. At last, breast cancer is detected using 

devised FDSRN, which is the integrated form of 

DSNN and FractalNet. 

The significant contribution of this paper is 

presented below. 

• An effective model called FDSRN is devised for 

performing breast cancer recognition using 

mammogram images.  
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• The devised FDSRN is developed by integrating 

FractalNet and DSNN. 

This paper contains various sections and the 

content involved in the section is arranged as follows: 

Sections 2 and 3 describe the recent work analyses 

with respect to this area and detailed description of 

devised FDSRN, respectively. Section 4 enumerates 

the results and evaluation and section 5 enumerates 

the future implementation and conclusion of this 

work.  

2. Motivation  

Breast cancer detection helps in identifying 

individuals at higher risk, enabling personalized 

preventive measures and lifestyle modifications. This 

proactive approach not only enhances individual 

health but also reduces the burden on healthcare 

systems by curbing the need for extensive treatments 

for advanced-stage cancer. By analyzing the 

traditional methods and importance of breast cancer 

detection, an innovative method named FDSRN is 

devised for breast cancer recognition by utilizing 

mammogram images. 

2.1 Literature survey 

Al-Fahaidy, F.A., et al. [2] devised Machine 

Learning (ML) for recognizing breast cancer by 

utilizing mammogram images. This approach 

improved the diagnostic performance by enhancing 

reliability through the extraction of features from 

digital mammograms. However, this model was 

unsuccessful in expanding the size of the 

Mammographic Image Analysis Society (MIAS) 

dataset using augmentation. Avcı, H. and Karakaya, 

J., [9] introduced ML to detect breast cancer. 

Although this model proved effective in identifying 

breast lesions and differentiating between benign and 

malignant cases, it failed to utilize the data in light of 

breast cancer type and phenotype information. 

Rahman, H., et al. [5] proposed a Deep Convolutional 

Neural Network (DCNN) for identifying breast 

cancer. This method achieved efficiency in detecting 

and classifying malignant breast masses, producing 

satisfactory results and reducing computation time. 

However, it struggled with early-stage cancer 

detection due to a lack of diverse datasets covering 

various age intervals in breast cancer research. 

Ibrokhimov, B. and Kang, J.Y., [12] developed a 

breast cancer detection model named Two-stage deep 

learning (DL) method. Even though the model 

achieved near-optimal recognition precision on 

labelled test data, it was unable to develop improved 

standalone classifiers through experimentation with 

different network architectures. 

Dehghan Rouzi, M., et al. [13] developed a 

Consensus-adaptive weighting (CAW) method to 

perform breast cancer identification. Although the 

model possesses the timely diagnosis and potential 

for increased precision, it was unsuccessful in 

interpreting the Digital Database for Screening 

Mammography (DDSM) datasets and INbreast. 

Elkorany, A.S. and Elsharkawy, Z.F. [8], devised a 

hybrid technique comprising CNNs, Term Variance 

(TV), and Multiclass Support Vector Machine 

(MSVM). The model mitigated distortion if the 

network becomes deeper and more complex. 

However, it only achieved a low-performance rate. 

Nagalakshmi, T., [14] proposed Ensemble-Net for 

recognizing breast cancer. Although the developed 

model achieved better precision compared to existing 

categorization and classical segmentation models, it 

was unable to focus on extracting additional features 

for breast tumor categorization. Almalki, Y.E., [15] 

designed the three-step method for detecting breast 

cancer. This method achieved the computerized 

breast cancer identification diagnostic performance. 

However, it failed to extend the module into a mobile 

application for remote access, linking patients 

directly with radiologists.  

2.2 Major challenges 

The traditional method utilized to perform breast 

cancer recognition by using mammogram images 

faces several challenges and issues. They are listed 

below. 

• The ML model designed in [2] for breast cancer 

identification and diagnosis from mammography 

images achieved higher accuracy. However, it 

failed to utilize a larger size dataset for the 

experimentation. 

• The model proposed in [5] successfully detected 

and classified mammograms, providing more 

precise results and improved visual outcomes. 

However, it failed to integrate other networks, 

such as DCNN networks like AlexNet and the 

VGG architecture, for early-stage cancer 

detection. 

• In [12], a two-stage DL method was developed 

for breast cancer recognition. While the model 

improved its accuracy, it struggled to manage 

misclassified intra-class scores. 

3. Proposed FDSRN for breast cancer 

detection  

Breast cancer ranks higher among the most 

prevalent cancers worldwide, significantly impacting 

women's health and potentially leading to mortality. 
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Recent research reveals alarming statistics, indicating 

that approximately one in every eight women in the 

USA and one in every ten women in Europe are 

infected by breast cancer. Therefore, the critical issue 

lies in devising a rapid and efficient diagnostic 

approach. By addressing these challenges, a potent 

model named FDSRN is devised for performing the 

recognition of breast cancer. Initially, the input 

mammogram image is acquired from the database 

[16] and it is forwarded to the preprocessing phase in 

order to eliminate the noises present in the image 

using the Wiener filter [17]. Then, cancer region 

segmentation is performed using U-NeXt [18]. After 

that, image augmentation is executed and it consists 

of rotation, shifting and random erasing. Then, 

feature extraction takes place to extract the features 

like BRIEF [19], GBP [20] and GLCM [21]. At last, 

breast cancer identification is accomplished by using 

FDSRN, where the layers are modified. FDSRN is 

the combination of FractalNet [22] and DSNN [23]. 

The block diagram of the devised FDSRN method for 

detecting breast cancer using mammogram images is 

illustrated in Fig. 1. 

The notation list of this article is provided in 

Table 1. 

3.1 Image acquisition 

The mammogram images acquired from the 

designed dataset [16] are chosen for whole 

processing and it is mathematically expressed as, 

 

𝑆 = {𝑆1, 𝑆2, … , 𝑆𝛼, … 𝑆𝛽}                                     (1) 

 

Here,𝑆𝛼is utilized as input to perform the whole 

breast cancer detection process. 

3.2 Pre-processing using wiener filter 

Pre-processing aims to improve mammogram 

image quality by preparing them for further 

processing. This is achieved by minimizing or 

removing unnecessary and irrelevant elements in the 

background of the images. The input mammogram 

image is preprocessed using a wiener filter [17]. This 

process facilitates the most accurate estimation of the 

initial image by ensuring a minimal Mean Square 

Error (MSE) between the original and the estimated 

image. Besides, the Wiener filter effectively handles 

both noise and degradation functions. In the 

degradation model, the mathematical representation 

of the discrepancy is mathematically presented as,  

 

 

 

Figure. 1 Block diagram of proposed FDSRN for breast cancer detection using mammogram images 



Received:  October 22, 2020.     Revised: December 4, 2024.                                                                                          943 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.67 

 

Table 1. Notation list 

Notation Definition 

𝑆 Input mammogram dataset 

𝛽 Number of images 

𝑆𝛼 𝛼𝑡ℎnumber of input mammogram image 

𝑚(𝑠𝛼) Discrepancy between the input image 𝑠𝛼  and estimated image 𝑠𝛼
∗ 

𝑃𝛼 Pre-processed image 

𝑊𝑡𝑐 Transpose convolution operation 

𝐹 Output obtained from the feature map 

∗ Transpose convolution 

𝑠𝑐  Parameter of the 𝑐𝑡ℎfilter 

𝑁𝑠𝑐𝑎𝑙𝑒(𝑓𝑐, 𝑠𝑐) Multiplication of each channel between scalar 𝑠𝑐  and the feature map 𝑓𝑐 
𝐶𝛼 Output of U-NeXt 

𝑆𝑎1 Outcome of random erasing 

𝑆𝑎2 new pixel position after performing the rotation process 

𝜔 angle 

𝑆𝑎3 output of shifting 

𝐴𝛼 combination
 
of

 
overall

 
augmentation

 
technique 

𝜏 test 

𝑚 Patch size 

𝑝(𝑔𝑑 , ℎ𝑑) selected location pairs on a set of binary tests 

𝑝 dimensional bit string 

𝑦 function involved in GBP 

𝑇 gradients with integer 

(𝑘, 𝑙) position of the pixel 

𝑇𝐹 textual feature image 

𝐸1 BRIEF feature 

𝐸2 GBP feature 

𝑒1 output of area 

𝑒2 convex area output 

𝑒3 Equivalent diameter 

𝐻 and 𝐼 small diameter and large diameter of an oval 

𝑒4 outcome of the eccentricity feature 

𝑒6 outcome of the solidity feature 

𝑖(𝑡, 𝑢) element present in GLCM matrix 

𝑔𝑛 count of different gray scale 

𝑒7 contrast feature 

𝑒8 homogeneity feature 

𝐹𝛼 feature vector 

𝐷3 spiking residual layer output 

𝐷2 fractal-spiking residual layer output 

𝐷1 FractalNet model output 

𝐴 FC layer 

⋅ concatenation 

𝑟 total number of feature vector 

𝐺 weight of the input 

𝑈1, 𝑈2, 𝑜1and 𝑜2 weight and bias of two convolutional layer 

𝐵 input from ReLU layer 

𝐷𝛼  input for spiking residual model 

𝑊𝛿  true positive cancer instances 

𝑊𝜔 true negative cancer instances 

𝑉𝜔 false negative cancer instances 

𝑉𝛿  false positive cancer instances 

 

𝑚(𝑠𝛼) = 𝑠𝛼 − 𝑠𝛼
∗                                                   (2) 

 

The pre-processed image obtained through this 

phase is represented as 𝑃𝛼. 
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3.3 Cancer region segmentation using U-NeXt 

Cancer region segmentation refers to the process 

of identifying and delineating areas within images 

that contain cancerous tissues or tumors. This 

segmentation is crucial in medical analysis and 

healing planning, as it helps clinicians to concentrate 

and quantify the progression of cancerous cells. Here, 

U-NeXt [18] is utilized to carry out cancer region 

segmentation. U-NeXt helps to capture subtle details 

and variations in medical images, making it better 

suited for accurately delineating cancerous regions. 

Additionally, U-NeXt optimizes the flow of 

information within the network, potentially leading to 

faster convergence during training and more efficient 

inference during segmentation tasks. 

3.3.1. Architecture of U-NeXt 

The U-NeXt contains an attention up-sampling 

block and a Skip Spatial Pyramid Pooling (SSPP) 

block. The input fed through U-NeXt is 𝑃𝛼. 

 

A) Skip spatial pyramid pooling block 

The pyramid pooling block [18] excels in 

gathering feature information across various scales, 

enhancing pixel-level detail for more effective 

segmentation. By aggregating context information 

from diverse regions, it boosts the model's capacity to 

capture global features. This integration of multi-

scale context improves the network's ability to 

comprehend the broader context of the image, thus 

improving segmentation accuracy. 

 

B) Attention up-sampling block 

The mechanism involved in attention up-

sampling [18] is similar to human selective visual 

attention mechanisms. Its objective is to highlight 

crucial facts relevant to the present task objectives 

from a vast array of accessible data. The attention up-

sampling block primarily centers on assessing the 

significance of each feature channel as it undergoes 

the up-sampling process. It achieves this without 

introducing additional spatial dimensions by 

leveraging network loss. Subsequently, the 

mechanism enhances pertinent features while 

diminishing the influence of less relevant ones, 

thereby optimizing the network's performance for the 

task. The expressions involved in attention up-

sampling block are,  

 

𝑊𝑡𝑐: 𝑃𝛼 → 𝐹,                                                            (3) 

 

The number of channels involved in feature maps 

remains unchanged and it is expressed as, 

Figure. 2 Architecture of U-NeXt  

 

 

𝑓𝑐 = 𝑠𝑐
𝐹 ∗ 𝑃𝛼 = ∑ (𝑠𝑐

𝑗)
𝐹
∗ 𝑤𝑗𝐶

𝑗=1                          (4) 

 

𝑠𝑐 = [𝑠𝑐
1, 𝑠𝑐

2, … , 𝑠𝑐
𝐶]and 𝑃𝛼 = [𝑤1, 𝑤2, … , 𝑤𝐶], 

the output denotes 𝐹 = [𝑓1, 𝑓2, … , 𝑓𝑐] . The final 

output 𝑆𝑐obtained by this layer is presented as, 

 

𝐶𝛼 = 𝑁𝑠𝑐𝑎𝑙𝑒(𝑓𝑐 , 𝑠𝑐) = 𝑠𝑐 ∗ 𝑓𝑐                                  (5) 

 

𝑃𝛼is chosen as input for the segmentation process 

using U-NeXt and 𝐶𝛼 is obtained as output. Fig. 2 

represents the architecture diagram of U-NeXt. 

3.4 Image augmentation 

Image augmentation refers to the process of 

artificially enhancing the diversity of a dataset for 

training the models. Image augmentation [24] helps 

to overcome the limitations posed by a scarcity of 

data samples, especially in datasets comprised of 

images. The image augmentation methods, such as 

rotation, random erasing and shifting are utilized. 

𝐶𝛼is the input used for image augmentation. 

 

A) Random Erasing 

Random erasing [24] is a technique used in image 

augmentation. It involves randomly selecting a 

C



Received:  October 22, 2020.     Revised: December 4, 2024.                                                                                          945 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.67 

 

rectangular region within an image and replacing the 

pixel values in that region with random noise or a 

constant value. 𝑆𝑎1represents the outcome obtained 

by performing random erasing. 

 

B) Rotation 

The rotation [24] process involves rotating the 

image around an axis, either clockwise or 

counterclockwise, by angles ranging from 1 to 359 

degrees. Rotation is applied to images by 

incrementally adjusting their orientation by a 

specified angle degree. It is mathematically 

expressed as, 

 

𝑆𝑎2 = [
𝑐𝑜𝑠𝜔 − 𝑠𝑖𝑛𝜔
𝑠𝑖𝑛 𝜔 𝑐𝑜𝑠 𝜔

] ⋅ [
𝑎
𝑏
]                               (6) 

 

C) Shifting 

Shifting [24] refers to the process of moving the 

pixels of an image along a specified direction (usually 

horizontally or vertically) by a certain distance. This 

movement creates a translated version of the original 

image, simulating variations in the position or 

viewpoint of the objects within the scene. 𝑆𝑎3denotes 

the output of the shifting augmentation technique. 

The overall expression for image augmentation can 

be expressed as, 

 

𝐴𝛼 = {𝑆𝑎1, 𝑆𝑎2, 𝑆𝑎3}                                             (7) 

 

3.5 Feature extraction 

Feature extraction refers to the process of 

converting raw input images into meaningful features 

that effectively denote the underlying characteristics 

or patterns of the image. It also helps to lessen the 

dimensionality of the data while extracting the 

important information. The feature extraction 

techniques utilized in this model are BRIEF, GBP 

and GLCM 

3.5.1. BRIEF 

BRIEF [19] is a feature descriptor, which is 

significantly used in computer vision and image 

processing for tasks such as image matching, object 

recognition, and stereo vision. It operates by 

extracting binary descriptors from image patches, 

which are small regions within an image. The 

expression for BRIEF is mentioned below. 

 

𝐸1 = ∑ 2𝑑−1𝜏(𝑚; 𝑔𝑑 , ℎ𝑑)1≤𝑑≤𝑝                           (8) 

 

Here, 𝑑ranges from 1 to 𝑝. 

3.5.2. GBP 

GBP [20] is a type of textual operation, which is 

generally used in background subtraction, textual 

classification and face acknowledgement. The GBP 

method characterizes each pixel on the basis of 

relative intensity estimations of its neighboring pixels. 

It achieves estimation of neighboring pixels by 

quantifying the relative gradients in various 

directions of the pixel. It is mathematically presented 

as, 

 

𝐸2 = 𝑦(‖𝑇1(𝑘, 𝑙)‖ − ‖𝑇4(𝑘, 𝑙)‖) + ⋯+ 

∑ 𝑦(𝑇𝑚(𝑘, 𝑙))
4
𝑚=1 27−𝑚                                          (9) 

 

Here, 𝑇 ranging from 0 to 27. 

Features such as BRIEF and GBP are performed 

on 𝐶𝛼 to produce textual feature images. It is 

expressed as, 

 

𝑇𝐹 = {𝐸1, 𝐸2}                                                                 (10) 

 

3.5.3. GLCM 

The GLCM [20] encapsulates precise information 

regarding the spatial distribution of gray levels within 

an image. It derives texture properties from images 

and serves as a statistical tool in image analysis. The 

GLCM features, like convex area, area, eccentricity, 

equivalent diameter, solidity, contrast, energy and 

homogeneity are used.  

 

A) Area 

Area [25] refers to the number of pixels present 

in a region.  

 

B) Convex area 

Convex area [25] refers to the number of pixels 

present in a convex image. This property applies 

exclusively to 2-D input label matrices.  

 

C) Equivalent diameter 

Equivalent diameter [25] represents the diameter 

of a circle that has the same area as the specified 

region. 𝑒3 is mathematically denoted as, 

 

𝑒3 = √
4∗𝑎𝑟𝑒𝑎

𝜋
                                                        (11) 

 

D) Eccentricity 

Eccentricity [25] is defined as the ratio of the foci 

and major axis of the ellipse. This feature is only 

applicable for label matrices with 2-D input. The 

expression for eccentricity [26] can be presented as, 
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𝑒4 = √1 −
𝐻2

𝐼2
                                                        (12) 

 

𝑒4denotes the outcome of the eccentricity feature. 

 

E) Solidity 

Solidity [25] represents the proportion of pixels 

in the convex hull that also belong to the specified 

region. It is computed as the ratio of the region's area 

to the area of its convex. Solidity is mathematically 

denoted as, 

 

𝑒5 =
𝑒1

𝑒2
                                                                     (13) 

 

F) Energy 

Energy [27] refers to the aggregate of the GLCM 

squared components. The range of energy values lies 

between the values 0 to 1. The equation for energy is 

presented as, 

 

𝑒6 = ∑ 𝑖2(𝑡, 𝑢)𝑡,𝑢                                                        (14) 

 

G) Contrast 

Contrast [27] refers to the intensity difference 

between the pixel and its neighbors. 𝑒7 can be 

mathematically expressed as, 

 

𝑒7 = ∑ ∑ (𝑡 − 𝑢)2𝑖(𝑡, 𝑢)
𝑔𝑛
𝑢

𝑔𝑛
𝑡                             (15) 

 

H) Homogeneity 

Homogeneity [27] refers to the likeness of GLCM 

within each Region of Interest (ROI) to the 

distribution of entities within the GLCM. 

Homogeneity ranges between 0 and 1. The equation 

for homogeneity is represented as, 

 

𝑒8 = ∑
𝑖(𝑡,𝑢)

1+(𝑡,𝑢)𝑡,𝑢                                                      (16) 

 

The GLCM features, such as convex area, area, 

eccentricity, energy, solidity, homogeneity, contrast 

and equivalent diameter are applied on 𝑇𝐹to produce 

𝐹𝛼. It is mathematically presented as, 

 

𝐹𝛼 = {𝑒1, 𝑒2, 𝑒3, … , 𝑒8}                                          (17) 

 

3.6 Breast cancer detection using FDSRN 

Breast cancer detection refers to the process of 

identifying the existence of breast cancer in 

individuals. The devised FDSRN is utilized to 

perform breast cancer detection, which is a 

combination of FractalNet [22] and DSNN [23]. The 

FDSRN model is promising for breast cancer 

detection due to their ability to extract complex 

features from medical images, classify patterns with 

high accuracy, operate in real time, and potentially 

adapt to individual patient data for personalized 

diagnostics. This offers high reliability, robustness, 

and adaptability for the detection model. Fig. 3 

represents the systematic view of the proposed 

FDSRN. 

The devised FDSRN comprises three layers 

namely the FractalNet model, the Fractal-Spiking 

Residual layer and the Spiking Residual layer. 𝐵𝛼is 

fed as input into the FractalNet model, such that 𝐵𝛼 ∈
{𝑃𝛼 , 𝑆𝛼} produces an outcome𝐷1. Then, this outcome 

and extracted features 𝐹𝛼is utilized as input for the 

fractal-spiking residual layer, where fusion and 

regression processes are performed. The output 

𝐷2produced from the fractal-spiking residual layer 

and 𝑃𝛼serves as input for the spiking residual layer to 

produce output as𝐷3. 

 

 

Figure. 3 Systematic view of devised FDSRN 
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3.6.1. FractalNet model 

FractalNet [22] is a deep neural network 

architecture optimized for classification tasks, 

integrating convolutional, pooling, and Fully 

Connected (FC) layers. It begins by passing the input 

image through a FractalConvNet layer followed by 

additional pooling and convolutional layers to extract 

intricate features. These extracted features from both 

pathways are concatenated and subjected to the FC 

layer, producing the final classification outcome. 

This architecture enhances feature representation and 

classification accuracy in complex datasets. 

Moreover, FractalNet's integration of concatenated 

pathways ensures comprehensive feature fusion 

before final classification. This design not only 

enhances performance in classification tasks but also 

supports scalability and adaptability to diverse 

application domains, making FractalNet a versatile 

architecture in the realm of deep learning research 

and applications. The mathematical representation 

fractalNet 𝐷1is given by, 

 

𝐷1 = 𝐴(𝑃𝛼 ⋅ 𝐴𝛼)                                                  (18) 

 

Fig. 4 portrays the architecture of the FractalNet 

model. 

3.6.2. Fractal-spiking residual layer 

The Fractal-Spiking Residual layer is a 

specialized component within the FDSRN 

architecture that integrates fractal-based and spiking 

neural network principles. It facilitates the fusion of 

outputs from the FractalNet model and extracted 

features, enabling advanced regression and fusion 

processes. The expressions involved in the fractal-

spiking residual layer are presented below. 

 

𝑀 = ∑ 𝐹𝛼 ∗ 𝐺𝑟
𝑧
𝑟=1                                                  (19) 

 

By applying the Fractional Calculus (FC) concept, 

 

𝐾(𝑣 + 1) = 𝐽𝐾(𝑣) + 1
2⁄ (𝑣 − 1)                     (20) 

 

𝐷2 = 𝐽∑ 𝐹𝛼 ∗ 𝐺𝑟
𝑧
𝑟=1 + 1

2⁄ 𝐽𝐷1                         (21) 

 

𝐷2 = 𝐽∑ 𝐹𝛼 ∗ 𝐺𝑟
𝑧
𝑟=1 + 1

2⁄ 𝐽 ⋅ 𝐴(𝑃𝛼 ⋅ 𝐴𝛼)        (22)  

 

 

 

Figure. 4 Architectural diagram of FractalNet model 
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Figure. 5 Structure of spiking residual model 

 

3.6.3. Spiking residual model 

The spiking residual model [23] consists of two 

convolution layers followed by two maximum 

pooling layers and three FC layers. The Rectified 

Linear Unit (ReLU) activation functions are used in 

both FC layers and convolutional layers. The last 

layer employs the softmax loss function to produce 

the output of classification. Furthermore, the 

incorporation of maximum pooling layers after each 

convolutional block allows the model to downsample 

feature maps efficiently, capturing salient features 

while reducing computational complexity. The 

equation for the spiking residual model is presented 

below. 

 

𝐷3 = 𝑈2(𝑈1𝐵 + 𝑜1) + 𝑜2 +  

𝐽 ∑ 𝐹𝛼 ∗ 𝐺𝑟
𝑧
𝑟=1 + 1

2⁄ 𝐽 ⋅ 𝐴(𝑃𝛼 ⋅ 𝐴𝛼)                 (23) 

 

The structure of the spiking residual model is 

represented in Fig. 5. In this model, 𝐷𝛼is fed as input 

for the spiking residual model, such that 𝐷𝛼 ∈
{𝑃𝛼 , 𝐷2}. 

4. Results and discussion 

The outcome discussed by the devised FDSRN 

for breast cancer identification by employing 

mammography images is enlisted in this section. 

4.1 Experimental setup 

Breast cancer detection using the developed 

FDSRN has been successfully executed with the aid 

of Python tools. 

4.2 Dataset description 

The MIAS and Digital Database for Screening 

Mammography (DDSM) datasets [16] are used for 

the experimentation.  

MIAS dataset (Dataset-1): Here, the original 

dataset is minimized as 200-micron pixel edge and 

clipped/padded and the pixel size of each image is 

1024 × 1024.  The database comprises 322 digitized 
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mammography films, which are stored on a 2.3GB 

8mm (ExaByte) tape. Each film includes radiologist 

annotations, marking the locations of any 

abnormalities present. This dataset contains 7 

columns. The reference number of this dataset is 

provided in 1st column, the character of the 

background tissue is given in 2nd column, the 

abnormality classes are depicted in 3rd column, the 

severity is given in 4th column, the 5th and 6th columns 

represent the coordinate centre and the radius is given 

in column 7.  

DDSM dataset (Dataset-2): This database is the 

result of a collaborative effort between 

Massachusetts General Hospital, Sandia National 

Laboratories, and the University of South Florida's 

Computer Science and Engineering Department. It 

includes approximately 2,500 studies, each 

containing two images of each breast along with 

associated patient information, such as age at the time 

of the study, ACR breast density rating, subtlety 

rating for abnormalities, and ACR keyword 

descriptions of abnormalities. Additionally, it 

provides image details like scanner type and spatial 

resolution. For images with suspicious areas, pixel-

level “ground truth” data is available, indicating the 

locations and types of abnormalities. The database 

also includes software for accessing mammogram 

and ground truth images, as well as tools for 

calculating performance metrics for automated image 

analysis algorithms. 

4.3 Performance analysis 

The metrics such as accuracy, specificity and 

sensitivity are employed to evaluate the obtained 

performance of devised cancer detection model. 

4.3.1. Accuracy 

Accuracy [28] indicates the overall performance 

of the devised model while detecting breast cancer. It 

is mathematically presented as, 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑊𝛿+𝑊𝜔

𝑊𝛿+𝑊𝜔+𝑉𝛿+𝑉𝜔
                                   (24) 

 

4.3.2. Sensitivity 

Sensitivity [28] indicates the ratio of detected 

cancer cases relative to the total number of actual 

cancer cases. It can be expressed as, 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑊𝛿

𝑊𝛿+𝑉𝜔
                                          (25) 

 

 

  
(a) 

 
(b) 

  
(c) 

 
(d) 

  
(e) 

 
(f) 

  
(g) 

 
(h) 

 
(i) 

Figure. 6 Experimental result using dataset-1: (a)Input 

mammogram image, (b)Preprocessed image, 

(c)Segmented image, (d)Rotated image, (e)Random 

erased image, (f)Shifted image, (g)Rotated GBP image, 

(h)Random erased GBP image, and (i)Shifted GBP image 

 

4.3.3. Specificity 

Specificity [28] denotes the ratio of detected 

healthy cases relative to the total number of actual 

healthy cases. It can be mathematically presented as, 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑊𝜔

𝑊𝜔+𝑉𝛿
                                      (26) 
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(a) 

 
(b) 

  
(c) 

 
(d) 

  
(e) 

 
(f) 

  
(g) 

 
(h) 

 
(i) 

Figure. 7 Experimental result using dataset-2: (a)Input 

mammogram image, (b)Preprocessed image, 

(c)Segmented image, (d)Rotated image, (e)Random 

erased image, (f)Shifted image, (g)Rotated GBP image, 

(h)Random erased GBP image, and (i)Shifted GBP image 

 

4.4 Experimental result 

The experimental findings of the devised FDSRN 

for breast cancer identification using mammogram 

images using dataset-1 are displayed in Fig. 6. Fig. 6 

a) indicates the mammogram image as input.  Fig. 6 

b) and Fig. 6 c) illustrate the preprocessed and 

segmented mammogram image. Fig. 6 d), Fig. 6 e) 

and Fig. 6 f) present the rotated image, random erased 

image and shifted image, respectively. Fig. 6 g), Fig. 

6 h) and Fig.  6 i) depict the rotated GBP image, 

random erased GBP image and shifted GBP image, 

respectively. 

Fig. 7 shows the experimental findings of the 

devised FDSRN using dataset-2. Fig. 7 a) indicates 

the input mammogram image.  Fig. 7 b) and Fig. 7 c) 

illustrate the preprocessed and segmented 

mammogram images. Fig. 7 d), Fig. 7 e) and Fig. 7 f) 

present the rotated image, random erased image and 

shifted image, respectively. Fig. 7 g), Fig. 7 h) and 

Fig. 7 i) depict the rotated GBP image, random erased 

GBP image and shifted GBP image, respectively. 

4.6 Comparative methods 

The traditional methods, such as SVM [2], 

ResNet-50 CNN [5], Two-stage DL [12] and 

Ensemble-Net [14] are used to assess the 

performance of the introduced FDSRN model. 

4.7 Comparative analysis 

The analysis of the designed FDSRN is 

accomplished by adjusting both the k-fold value and 

training data value. 

4.7.1. Analysis based on training data for dataset-1 

The evaluation of the developed FDSRN is 

performed by altering training data ranging from 50% 

to 90% and its assessment in regard to evaluation 

metrics is illustrated in Fig. 8. Fig. 8 a) represents the 

performance of the devised FDSRN with accuracy. 

When training data is chosen as 90%, the devised 

method achieved an accuracy of 90.490%, while 

conventional models attained the accuracy of 

79.060%, 82.417%, 84.892%, and 86.298%. Fig. 8 b) 

depicts the performance analysis with regard to 

sensitivity for training data=90%. The sensitivity 

values obtained by the prior models and introduced 

method are 79.238%, 81.512%, 85.051%, 86.063%, 

and 89.795%. Fig. 8 c) denotes the assessment of the 

introduced FDSRN scheme based on specificity. 

Here, the devised method achieved a specificity of 

90.901% that shows a performance increment of 

12.250% for SVM, 8.717% for ResNet-50 CNN, 

7.721% for Two-stage DL, and 3.030% for 

Ensemble-Net. 

4.7.2. Analysis based on k-fold for dataset-1 

The analysis of the introduced FDSRN is 

conducted by changing the k-fold value from 5 to 9, 

is presented in Fig. 9.  Fig. 9 a) displays the accuracy 

performance of the introduced FDSRN. When the k-

fold value is selected as 9, the devised FDSRN  
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(a) 

 

 
(b) 

 

 
(c) 

Figure. 8 Comparative analysis on the basis of training 

data for dataset-1: (a)Accuracy, (b)Sensitivity, and 

(c)Specificity 

 

scheme obtained an accuracy rate of 90.255% and the 

traditional models attained the accuracy as 78.039%, 

81.830%, 84.712%, and 86.427% for SVM, ResNet-

50 CNN, Two-stage DL and Ensemble-Net, 

respectively. Fig. 9 b) shows the performance of the 

devised FDSRN method in accordance with 

sensitivity. When k-fold=9, the devised model 

yielded the sensitivity of 89.952% that reveals the 

performance gain of 12.277%, 8.583%, 5.045%, and 

2.455% to that of the conventional techniques. Fig. 9  

 

 
(a) 

 
(b) 

 
(c) 

Figure. 9 Comparative analysis on the basis of k-fold for 

dataset-1: (a)Accuracy, (b)Sensitivity, and (c)Specificity 

 

c) depicts the assessment of the devised method in 

terms of specificity. When k-fold value is chosen as 

9, the introduced FDSRN method yielded the 

specificity rate of 90.774% and the prior models 

gained the specificity as 79.128%, 81.618%, 

83.759%, and 86.087%. 

4.7.3. Analysis based on training data for dataset-2 

The evaluation of the developed FDSRN is 

carried out by changing the value of training data and 

K-fold for varying metrics for dataset-2 is depicted in 

Fig. 10. Fig. 10 a) presents the assessment of the 
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FDSRN by considering accuracy as an evaluation 

metric. When the training data is considered as 90%, 

the traditional model and proposed model achieved 

accuracy of 79.796%, 81.536%, 83.472%, 85.660%, 

and 90.144%. This demonstrates the performance 

gain of 11.479%, 9.548%, 7.401%, and 4.974% 

over SVM, ResNet-50 CNN, Two-stage DL, and 

Ensemble-Net, respectively. Fig. 10 b) displays the 

evaluation of the introduced method using sensitivity. 

With training data as 90%, the sensitivity achieved by 

the existing and proposed schemes is 80.477%, 

82.783%, 84.592%, 85.224%, and 90.524%. This 

depicts the performance gain of 11.099%, 8.550%, 

6.553%, and 5.855% over other existing techniques.  

 

 
(a) 

 
(b) 

 
(c) 

Figure. 10 Comparative analysis on the basis of training 

data for dataset-2: (a) Accuracy, (b) Sensitivity, and (c) 

Specificity 

Fig. 10 c) presents the assessment of the devised 

FDSRN method with specificity. With 90% of 

training data, the existing method and proposed 

method achieved specificity of 80.181%, 82.507%, 

84.752%, 88.536%, and 90.891%. This reveals 

performance gains of 11.783%, 9.224%, 6.754%, and 

2.591% for SVM, ResNet-50 CNN, Two-stage DL, 

and Ensemble-Net, respectively. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure. 11 Comparative analysis on the basis of k-data for 

dataset-2: (a) Accuracy, (b) Sensitivity, and (c) 

Specificity 
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Table 2. Comparative discussion 

Variations Metrics SVM [2] ResNet-50 

CNN [5] 

Two-stage 

DL [12] 

Ensemble-Net 

[14] 

Proposed 

FDSRN  

  Dataset-1 

Training 

data=90% 

 

Accuracy (%) 79.060 82.417 84.892 86.298 90.490 

Sensitivity (%) 79.238 81.512 85.051 86.063 89.795 

Specificity (%) 79.766 82.977 83.882 88.147 90.901 

K-fold= 9 

 

Accuracy (%) 78.039 81.830 84.712 86.427 90.255 

Sensitivity (%) 78.908 82.231 85.413 87.744 89.952 

Specificity (%)  79.128 81.618 83.759 86.087 90.774 

  Dataset-2 

Training 

data=90% 

 

Accuracy (%)  79.796 81.536 83.472 85.660 90.144 

Sensitivity (%) 80.477 82.783 84.592 85.224 90.524 

Specificity (%) 80.181 82.507 84.752 88.536 90.891 

K-fold= 9 

 

Accuracy (%) 78.489 84.902 86.825 87.094 90.205 

Sensitivity (%) 77.906 82.810 86.285 88.224 90.710 

Specificity (%) 79.164 82.633 84.514 88.249 90.943 

 

4.7.4. Analysis based on k-fold for dataset-2 

Fig. 11 shows the evaluation of introduced 

FDSRN by varying the value of k-fold with respect 

to evaluation metrics. Fig. 11 a) represents the 

performance of the introduced FDSRN by 

considering accuracy as evaluation metric. For k-fold 

value=9, the classical and proposed method achieved 

accuracy of 78.489%, 84.902%, 86.825%, 87.094%, 

and 90.205%. This represents performance gain of 

12.988%, 5.878%, 3.747%, and 3.449% over SVM, 

ResNet-50 CNN, Two-stage DL, and Ensemble-Net, 

respectively. Fig. 11 b) exhibits the performance 

analysis with regard to the sensitivity. While 

assuming k-fold value as 9, the devised method 

attained sensitivity of 90.710%. This indicates the 

performance evolvement of 14.115%, 8.709%, 

4.879%, and 2.741% over SVM, ResNet-50 CNN, 

Two-stage DL, and Ensemble-Net, respectively. Fig. 

11 c) denotes the assessment of the introduced 

scheme using specificity. The proposed scheme 

achieved specificity of 90.943% for k-fold=9. This 

shows the performance gain of 12.952%, 9.138%, 

7.069%, and 2.963% over SVM, ResNet-50 CNN, 

Two-stage DL, and Ensemble-Net, respectively. 

4.8 Comparative discussion 

Table 2 portrays the discussion conducted by 

existing models such as SVM, ResNet-50 CNN, 

Two-stage DL and Ensemble-Net, as well as the 

proposed FDSRN. The FDSRN method 

demonstrated better performance compared to 

classical methods such as SVM, ResNet-50 CNN, 

Two-stage DL, and Ensemble-Net. Specifically, the 

devised model achieved impressive scores of 

90.490% for accuracy, 89.795% for sensitivity, and 

90.901% for specificity when training data=90% for 

dataset-1. In contrast, the traditional methods 

achieved accuracies of 79.060%, 82.417%, 84.892%, 

and 86.298%, which are lower than those of FDSRN. 

Thus, the results show the effectiveness of FDSRN 

which consumes minimum time and complexity 

while conducting breast cancer detection using 

mammogram images. Furthermore, while assuming 

k-fold=9 for dataset-1, the FDSRN system achieved 

even higher performance with an accuracy of 

90.205%, sensitivity of 90.710%, and specificity of 

90.943%. This highlights the robustness and superior 

capabilities of FDSRN over traditional methods by 

considering accuracy, scalability and detection 

accuracy. 

5. Conclusion  

Early detection of breast cancer significantly 

enhances treatment outcomes by identifying tumors 

when they are smaller and more localized, thus 

enabling less invasive and more effective treatment 

options. This early intervention not only enhances the 

survival rates but also reduces the need for aggressive 

therapies like chemotherapy and extensive surgeries, 

thereby enhancing the overall quality of life for 

patients. Additionally, early detection allows for the 

timely implementation of preventive measures and 

lifestyle changes that can further reduce the risk of 

cancer recurrence and promote long-term health 

outcomes. Considering the need for an effective 

model for breast cancer detection, FDSRN has been 

devised. Initially, mammogram images undergo 

preprocessing with a Wiener filter. Next, cancer 

region segmentation is conducted using U-NeXt. 

Subsequently, image augmentation techniques like 

random erasing, rotation and shifting are applied. 

After augmentation, feature extraction involves 

extracting BRIEF, GBP, and GLCM. Finally, breast 
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cancer identification utilizes FDSRN, a hybrid model 

developed by integrating DSNN and FractalNet. The 

experimental findings of the devised FDSRN shows 

exceptional performance, with an accuracy of 

90.205%, sensitivity of 90.710%, and specificity of 

90.943% for dataset-2. In the future, various transfer 

learning techniques with hybrid optimization can be 

integrated to enhance severity level of breast cancer. 
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