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Abstract: Drowsiness classification faces major technical challenges in accurately capturing long-term temporal 

patterns while coping with disturbances such as inconsistent lighting and head motion. Traditional approaches based 

on Eye Aspect Ratio (EAR) analysis or facial landmarks are often susceptible to environmental noise and require 

complex data preprocessing, which reduces their reliability in real-world conditions. This study proposes a deep 

learning-based framework that combines ResNet50 and Time Series Transformer (TST) to improve the performance 

of drowsiness classification. ResNet50 is used to detect eye conditions and generate binary blink patterns, and TST 

captures the temporal dependencies in these blink patterns. By extracting statistical features such as mean, variance, 

and blink duration, this approach simplifies the data preprocessing process and improves the model’s robustness to 

environmental disturbances. The experimental results demonstrate that the proposed framework achieves 97% 

accuracy with comparable precision, recall, and F1 score, outperforming conventional methods in modeling temporal 

patterns and dealing with technical disturbances. The proposed method exhibits high computational efficiency and 

provides a practical and reliable solution for real-time drowsiness classification. 
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1. Introduction  

The WHO’s Global Status Report on Road Safety 

2023 states that 1.19 million deaths occurred due to 

road traffic accidents in 2021, corresponding to a rate 

of 15 deaths per 100,000 people [1]. Motorcyclists 

and private car drivers account for approximately 

25% of the most severe accidents, with driver 

negligence being a primary cause. Often, drivers lose 

concentration or experience fatigue, leading to 

microsleep, a brief period of unconsciousness lasting 

up to 15 seconds [2]. Microsleep occurs when 

individuals struggle to stay awake, often without 

realizing it [3, 4]. In driving conditions, microsleep 

can lead to accidents, resulting in fatalities. This 

underscores the importance of research into early 

drowsiness detection to provide timely warnings to 

drivers. 

Numerous studies have been conducted on early 

driver warning systems for drowsiness, employing 

both invasive and non-invasive techniques. In general, 

there are three main approaches to detecting 

drowsiness: monitoring steering patterns during 

driving [5], assessing physiological conditions [6], 

and analyzing driver behavior [7]. 

First, the driving steering pattern is observed by 

monitoring the driver's actions while driving [8]. 

Several sensors are installed on the vehicle, including 

those for speed, acceleration, engine speed, and 

steering speed, as well as other sensors connected to 

the Electronic Control Unit (ECU). The sensor data 

are processed to classify the driving style and assess 

the consistency of driving patterns. Consistency in 

speed, acceleration, and steering rotation is used to 

determine whether the driver’s concentration is 

impaired or reduced [8]. Second, the physical and 

psychological condition of the driver is monitored. 
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This method involves measuring biological signals 

from the driver, typically using EEG 

(Electroencephalography) sensors [3-5, 9, 10], ECG  

(Electrocardiography) [11], EOG  

(Electrooculography) [9, 12], and EMG  

(Electromyography) [13, 14]. However, both of these 

methods have limitations in application due to the 

potential for significant signal noise caused by the 

driver’s movements. Additionally, such techniques 

may affect driver comfort.  

The third approach is a non-invasive method that 

relies on visual data collected via camera sensors. 

This method extracts facial features, such as the eyes, 

nose, mouth, and facial expressions, from the facial 

image data. Eye features are used to monitor blink 

patterns [15, 16], while mouth features capture 

yawning patterns. Overall facial features are analyzed 

to detect changes in expression [17]. 

Several non-invasive approaches are employed 

for facial image processing to extract these facial 

features. Image classification, object detection, and 

segmentation techniques often use deep learning 

models based on Convolutional Neural Network  

(CNN). In addition to traditional statistical methods 

such as Principal Component Analysis (PCA) and 

Support Vector Machines (SVM), deep learning 

models have been explored for drowsiness detection. 

For instance, S. Park et al. [10] compared different 

architectures for alarm detection applications. They 

utilized three networks: the AlexNet architecture, 

which includes five CNN layers and three Fully 

Connected (FC) layers [11], for face detection; the 

Visual Geometry Group (VGG)-FaceNet architecture 

with 16 layers for facial feature extraction; and the 

FlowImageNet network for behavioral analysis in 

detecting drowsiness. 

Although various approaches have been proposed, 

such as driving pattern analysis, physiological signals, 

and facial landmark pattern processing for detecting 

drowsiness [18], major 

challenges remain in capturing long-term temporal 

patterns and overcoming disturbances such as 

inconsistent lighting and head motion. This study 

proposes a framework that combines ResNet50 and 

TST models to overcome the limitations of previous 

drowsiness detection methods. ResNet50 is used to 

accurately classify eye conditions from Near-Infrared 

(NIR) images and generate binary blink patterns, 

while TST is used to capture the temporal 

dependencies in these blink patterns. The Time 

Series Transformer (TST) is a neural network 

architecture designed to process and analyze 

sequential data, specifically time series. This 

combination ensures robustness to noise and 

environmental variations, such as changing lighting 

and head motion. By generating binary blink patterns 

and extracting their statistical features, such as the 

distribution and duration of eye opening and closing, 

this framework simplifies the data preprocessing 

process without compromising classification 

performance. The contributions of this study are as 

follows: 

1. The proposed framework uses the statistical 

features of the duration and distribution of eye blinks 

and uses ResNet50 to generate binary blink patterns 

and a Time Series Transformer (TST) to classify 

sleepiness into three categories. 

2. This approach minimizes reliance on the 

accuracy of facial and eye landmarks, which has been 

a focus in prior studies using EAR spatial patterns [19, 

20].  

3. The use of low-resolution 8-bit NIR video data 

(512 × 424) for training and testing presents 

challenges for TST to achieve accurate classification 

results. 

The rest of this paper is organized as follows: 

Section 2 presents a related work review on 

drowsiness detection. Section 3 describes the 

methodology, including data preprocessing, feature 

extraction, and model architecture. Section 4 presents 

the experimental results and compares the proposed 

framework to existing methods.  Finally, Section 5 

presents the conclusions of this study and directions 

for future research. 

2. Related work  

Non-invasive detection methods measure the Eye 

Aspect Ratio (EAR) and the Percentage of Eyelid 

Closure (PERCLOS) based on visible images. The 

time the eyes remain closed is measured as a 

percentage over a specific period, with P70, P80, and 

EYEMEAS (EM) being the three primary 

measurement methods. P80 is regarded as the most 

reliable indicator of fatigue [21], outperforming other 

measures, including general Eye-Tracking Signal 

(ETS) [13]. This method requires accurate detection 

of eye opening and closing, as well as measurement 

of the duration of eye closure. The challenge lies in 

ensuring the accuracy of eye detection in both open 

and closed states.  

Yang et al. [17] proposed a Video-Based Driver 

Drowsiness Detection (VBDDD) with Optimised 

Utilisation of Key Facial Features (VBFLLFA) 

method that exploits facial landmarks and local facial 

areas (eyes and mouth) to detect drowsiness. They 

uses video VBDDD, YawDD, and NTHU-DDD 

dataset. This method uses the Common Spatial 

Pattern (CSP) algorithm for spatial filtering, 

enhancing inter-class discrimination, and the Two-
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Branch Multi-Head Attention (TB-MHA) module for 

spatial and temporal feature extraction. The center 

loss with center vector distance penalty is also 

applied to improve class separation in the feature 

space. The advantages of this method include the 

optimization of spatial-temporal features and 

reduction of video data redundancy; however, it relies 

on the accuracy of facial landmark detection and 

requires high computing power, limiting real-time 

application.  

Bai et al. [22] introduced a novel approach for 

driver drowsiness detection using a two-stream 

Spatial-Temporal Graph Convolution Network (2s-

STGCN). They uses video VBDDD, YawDD, and 

NTHU-DDD dataset. This method effectively 

combines spatial and temporal features from driver 

facial videos, addressing challenges such as 

variations in lighting, obstructions, shadows, and 

head pose. Additionally, Han et al. [23] proposed a 

multimodal fatigue recognition system that uses a 

Temporal Convolutional Network (TCN) to process 

EAR sequences and ResNet3D to process eyelid 

image sequences. This combination enables effective 

spatial and temporal analysis, thereby improving 

fatigue detection accuracy. An annealing-based 

learning rate decay algorithm was applied to prevent 

the model from getting stuck in a local solution 

during training. They utilizes the University of Texas 

at Arlington Real-Life Drowsiness Dataset (UTA-

RLDD), and the ULg Multimodality Drowsiness 

Database (DROZY). However, the method discussed 

in this paper relies heavily on consistent lighting and 

precise facial and eye landmark detection. Methods 

like those in [18-20], which use graphical 

construction as a basis for analysis, are prone to 

failure when landmark detection is inaccurate or 

absent. Furthermore, blink detection based on a 

threshold EAR value is not universally applicable.  

Near-infrared imaging (NIR) is a method that 

utilizes near-infrared light, which is beyond the range 

of human vision, to examine the various properties of 

objects or systems [24]. NIR imaging can vary in 

spatial resolution and wavelength depending on the 

objective and technique. Small particles scatter 

incident light, altering the intensity of the light at 

specific wavelengths. When the particle size is very 

small (< λ/10), light follows Rayleigh scattering, 

described by the equation: 

 

𝐿𝑠 =
𝐿0

𝜆4                                                                 (1) 

 

Where Ls is the intensity of scattered light, and L0 

is the intensity of the incident light. Since the NIR 

wavelength band (700 – 1100 nm) is longer than the 

visible band (400 – 700 nm), Eq. (1) indicates that 

NIR images experience less scattering compared to 

visible images. 

 

 

 
Figure. 1 BPF Framework Proposed Method 
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3. Methodology  

In this section, we present a specialized technique 

designed to classify participant drowsiness into three 

classes, as shown in Table 1, using a framework 

called Blinking Pattern Feature (BPF). The BPF 

method utilizes video signals as visual data input and 

combines ResNet50 with a Time Series Transformer 

(TST) to classify drowsiness levels. The entire 

process is divided into facial feature extraction, eye 

feature extraction, blink pattern extraction, and 

drowsiness classification. The BPF framework for 

drowsiness classification is illustrated in Fig. 1. 

3.1 Dataset 

This study was obtained from the Open 

Repository and Bibliography (ORBi) “ULg 

Multimodality Drowsiness Database” or Drozy[25]. 

This dataset includes ECG, EOG, EMG data, and 8 

bit NIR video recordings from 14 participants under 

three conditions, classified according to [26]. We 

used 8-bit video NIR with a resolution of 512 X 424 

30 fps, with modifications to align with classification 

classes based on the Karolinska Sleepiness Scale 

(KSS) [25].  

The system distinguishes between "Alert", 

"Slightly Drowsy", and "Drowsy" states based on the 

established Karolinska Sleepiness Scale, a widely 

recognized tool for assessing drowsiness. In this 

classification scheme, individuals scoring between 1 

and 3 on the Karolinska scale are categorized as 

"Alert," representing states of wakefulness and 

attentiveness according to the scale's guidelines. 

 

 
Table 1. Relationship between the Karolinska Sleepiness 

Scale and drowsiness classification. 

Scale Karolinska Sleepiness Scale Class 

1 Extremely Alert 

1. Alert 2 Very Alert 

3 Alert 

4 Fairly Alert 

2. Slightly 

Drowsy 
5 Neither Alert nor Sleepy 

6 Some signs of sleepiness 

7 
Sleepy, but no effort to stay 

alert 

3. Drowsy 8 
Sleepy, some effort to stay 

alert 

9 
Very Sleepy, great effort to 

stay alert 

 
Figure. 2 Multi-frame Face Array 

 

 
Figure. 3 Facial Feature Detection 

 

The second classification scheme applies to 

individuals who scored between 4 and 6 on the 

Karolinska scale and were categorized as "Slightly 

Drowsy". This range typically represents varying 

levels of drowsiness or reduced alertness, as defined 

by the Karolinska scale. The third classification 

includes those who scored between 7 and 9 on the 

Karolinska scale and were classified as "Drowsy". 

These scores generally indicate that the participant is 

experiencing difficulty maintaining alertness. 

All classifications 1 to 3 for "Alert," 4 to 6 for 

"Slightly Drowsy", and 7 to 9 for "Drowsy" are 

explicitly detailed in Table 1 and serve as the 

foundational criteria for the categorization process. 

The proposed method provides a standardized, 

evidence-based approach for distinguishing between 

different states of alertness and drowsiness. 

3.2 Facial feature extraction 

Facial feature extraction is the process of 

identifying and extracting key information from a 

face. The extracted facial features usually include 

distinct geometric and textural characteristics, such 

as the distance between the eyes, nose length, jaw 

shape, and lip structure. In this study, facial feature 

extraction focuses on isolating the eyes as the Region 

of Interest (ROI), which is the primary feature used 

for drowsiness classification.  

The video dataset is first extracted as a 

multiframe image MI(n). For face detection, the goal 

is to isolate the face area as the ROI. 
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Figure. 4 Eyes Region Of Interest 

 

This stage involves identifying facial features in a 

single image frame, as shown in Fig. 2. Face 

detection for each image I(n) was performed using 

the OpenCV library and the method proposed by 

Viola and Jones [27]. They used the Haar feature-

based cascade classifier, an effective object detection 

method, to identify the face ROI F(n). As a result, the 

full face detection data from the video can be 

represented as a matrix MF(n), shown in Fig. 3. After 

face detection, eye features are then identified. 

Eye detection: The goal of eye detection is to 

obtain the ROI for the right and left eyes, as shown in 

Fig. 4. The object detection method implemented in 

this study combines a Support Vector Machine 

(SVM) and Histogram of Oriented Gradients (HOG). 

HOG and SVM are widely used for object detection 

in the medical field, in addition to face detection and 

local facial feature detection [28]. The facial feature 

detection technique from the Dlib library originated 

from a method introduced in the paper "Histograms 

of Oriented Gradients for Human Detection" [29]. In 

this study, HOG was used as a feature descriptor for 

object detection, and it has been widely adopted for 

detecting faces and facial features [30]. The Dlib 

library was used to obtain four landmark points for 

each eye (left point lp, right point rp, top point tp, and 

bottom point bp) for both the right and left eyes.  

These points were then used to define the ROI for the 

eyes ROIE(lt,rb) (Eqs. (5) to (6)):  

 

𝑥𝑐𝑒𝑛𝑡,  𝑦𝑐𝑒𝑛𝑡 = 𝑙𝑝 +
𝑟𝑝−𝑙𝑝

2
, 𝑡𝑝 +

𝑏𝑝−𝑡𝑝

2
                 (2) 

 

𝑑𝑖𝑠𝑡 = 𝑟𝑝 − 𝑙𝑝                                                     (3) 

 

𝑜𝑓𝑠 = (1.7 ×
𝑑𝑖𝑠𝑡

2
)                                                  (4) 

 

𝑅𝑂𝐼𝐸(𝑙𝑡) = (𝑥𝑐𝑒𝑛𝑡 − 𝑜𝑓𝑠, 𝑦𝑐𝑒𝑛𝑡 − 𝑜𝑓𝑠)             (5) 

 

𝑅𝑂𝐼𝐸(𝑟𝑏) = (𝑥𝑐𝑒𝑛𝑡 + 𝑜𝑓𝑠, 𝑦𝑐𝑒𝑛𝑡 + 𝑜𝑓𝑠)             (6) 

 

dist is the distance between the right and left points 

of the eye landmark. ofs is the offset parameter used 

to determine the coordinates of the upper left eye and 

lower right eye ROI coordinates. The NIR video 

dataset was extracted into multiple frames, producing 

approximately 7,000 to 18,000 frames for a 10-

minute video at 30fps. At this stage, two ROIs for the 

right eye Er and left eye El are obtained from each 

image frame where facial features are successfully 

detected. 

3.3 Eye feature extraction 

The eye feature extraction stage is designed to 

obtain the eye blink pattern in binary format over a 

specific period T from each input video. The binary 

format uses '1' and '0' to represent when the eyes are 

detected as open or closed, respectively, in each 

frame of the facial feature F(n). The eye-blink pattern 

in binary format is represented as a binary sequence 

such as “10001111001,” which corresponds to eye 

blinks over a certain period. This allows for the 

calculation of both the blink frequency and the 

duration of each blink. The substages within this 

process include the following:   

Open/Closed Classification: This classification 

identifies eye blink patterns by determining whether 

the eyes are open or closed. The classification is 

based on the ResNet50 architecture model. ResNet50 

is a deep learning model with 50 layers, built using 

the concept of residual learning (Fig. 5)[31], which 

allows for the creation of deeper networks without 

encountering the problem of vanishing gradients. The 

model uses bottleneck blocks (Fig. 6), which reduce 

the number of parameters while maintaining 

processing capability. Each bottleneck block 

comprised three convolution layers: a 1 X 1 

convolution to reduce dimensionality, a 3 X 3 

convolution for feature extraction, and a 1 X 1 

convolution to restore dimensionality. The bottleneck 

blocks make ResNet50 more parameter-efficient, 

enabling it to process high-resolution images more 

effectively.  

 

 
Figure. 5 Residual learning: a building block Redrawn 

from [31] 
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Figure. 6 A “bottleneck” building block for ResNet-

50/101/152 Redrawn from [31] 

 

 

 
Figure. 7 Blink Detection Block Diagram Redrawn from 

[32]  
 

 

 
Figure. 8 Blinking Pattern 

 

A key feature of ResNet50 (Fig. 5) is the use of 

skip connections, or shortcut connections, in each 

residual block. In each block, the original input is 

added to the convolution output before proceeding to 

the next layer (Eq. (7)). Mathematically, this can be 

expressed as:  

 

𝐻(𝑥) = 𝐹(𝑥, 𝑊) + 𝑥                                                   (7) 

 

where F(x,W) represents the residual mapping to 

be learned as a nonlinear function representing the 

convolution operation with layer weights W, and x is 

the shortcut connection that adds the original input x 

to the result of F(x,W). This approach enables the 

model to learn the residual, or the difference between 

the input and output, which aids in training the 

network and maintaining stability while ensuring that 

important information is retained as it flows through 

the network's blocks.  

To prevent vanishing gradients, ResNet-50 

allows gradients to flow directly through the shortcut 

paths without passing through all convolution layers. 

When the image resolution or number of features 

changes between layers, 1 X 1 convolutions are used 

in the shortcut connections to ensure that the input 

and output have matching dimensions. 

The ResNet architecture is widely used for object 

processing and recognition in two-dimensional data 

[32, 33]. In this study, we implement CNN ResNet-

50 to classify whether the eyes are open or closed in 

each video frame as shown in Fig. 7. The open and 

closed right and left eye datasets were trained with 

two classes: open and closed. Thus, the image data at 

frames (n – 2) and (n + 2) in Fig. 8 represent open 

eyes, while the image data at frames (n – 1), (n), and 

(n + 1) represent closed eyes.  

The classification of open and closed eyes was 

based on the open and closed eye dataset generated 

from the blink data series of the Drozy dataset. The 

sequence of eye images in the blink flow was divided 

into two classes: open and closed eyes. The dataset  

was trained using ResNet-50, and the same 

architecture model was employed for classifying 

open and closed eyes. Images of detected open eyes 

were classified as ‘0’, while closed eye images were 

classified as ‘1’.  

Open/Closed Eye Filter: Eye closure should not 

automatically be interpreted as a sign of tiredness or 

drowsiness [34]. There are various scenarios where 

eye closure occurs for different reasons. For instance, 

an eye roll may be used as part of social interaction 

and should not be misinterpreted as a sign of 

drowsiness. Similarly, eyes that appear to be grinning 

should not be mistaken for a wink. Additionally, 

spontaneous blinking can result from multiple factors 

[35], such as dry eye conditions [36], or a decline in 

physical well-being, which could be related to fatigue 

or drowsiness. It is essential to recognize that a 

typical blink involves the brief or extended closure of 
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both eyelids, whereas squinting is a deliberate action, 

often used as a specific facial expression or a form of 

communication. Therefore, the nuances of eye 

movements and conditions should be carefully 

considered, especially when using them as potential 

indicators of one's physical or emotional state. 

In this study, blink detection is based on the 

condition of the eyelids of both eyes (right eye Er(n) 

and left El(n)), which must be closed in the same 

frame image I(n), as shown in Figure . Separate 

detection of the right eye Er(n) and left eye El(n) is 

designed to ensure valid information regarding eye 

closure. The classification of closed or open eyes in a 

frame image I(n) follows the rules illustrated in Fig. 

9 and Eq. (8). An eye detected as closed is assigned 

a logic value of '1', while an open eye is assigned a 

logic value of '0'. The eye features f(n) in the frame 

image I(n) will be classified as closed if and only if 

both the right eye Er(n) and the left eye El(n) are 

detected as closed. 

 

𝑓(𝑛) = {
1, 𝑖𝑓 𝐸𝑙(𝑛) = 1 ⋀ 𝐸𝑟(𝑛) = 1

 
0, 𝑜𝑡ℎ𝑒𝑟𝑠                                    

                       (8) 

 

Open/Closed Pattern: The pattern of eye 

opening and closing, or blinking, serves as a key 

feature in assessing an individual's level of alertness. 

However, it should be noted that blinking can also 

indicate certain eye health issues. For instance, the 

frequency of blinking increases when the eyes are dry 

[36], or when an individual is experiencing fatigue or 

drowsiness. As fatigue or sleepiness increases, blink 

frequency and duration tend to rise. Therefore, 

blinking patterns are valuable indicators for gauging 

focus, fatigue, or drowsiness [37] that utilize camera 

sensors have been developed to capture the subtle 

features of eye blinks within a sequence of facial 

images. As outlined in studies [38] and [35], a single 

blink period is characterized by a specific sequence 

of eye states: transitioning from open (n – 2), to semi-

closed (n – 1), fully closed (𝑛), semi-open (n + 1), 

and back to open (n + 2), as shown in Fig. 8.  

 

 
Figure. 9 Detection of right and left eye features 

 
Figure. 10 One-period Binary Blink Pattern 

 

 
Figure. 11 Binary Blink Pattern Illustration 

 

In Fig. 8, one blink period is defined as a change 

in state from open eyes to closed eyes and then back 

to the open state, while the transition conditions 

between open and closed eyes are ignored. Referring 

to Eq. (8) regarding the binary classification of open 

and closed eyes, a blink period is detected when the 

eye state changes from '0' (open) to '1' (closed) and 

back from '1' to '0'.  

As illustrated in Fig. 10, the blink pattern for one 

period is "01110". Fig. 11 shows a binary blink 

pattern over a single time duration. From this pattern, 

it is possible to calculate the number of blinks and the 

duration of each blink in each period.  

The duration of eye closure within a single blink 

correlates with the length of the '1' logic in the binary 

data pattern, which indicates increased drowsiness. 

Over a span of 1 to 10 minutes, variations in blink 

patterns and eye closure durations serve as indicators 

of drowsiness or alertness. These patterns provide 

reference data for statistical analysis of blinks, which 

are used to train models that classify drowsiness or 

alertness. A frequent and prolonged binary blink 

pattern suggests a predominance of eye closure, 

indicating drowsiness, while a less frequent and 

shorter pattern suggests alertness. 

3.4 Blinking feature extraction 

The feature extraction stage is designed to obtain 

unique blink frequency and duration patterns within 

a single time period from the binary data series. This 

binary blink data series represents serial data for a 

single video duration, which is interpreted into a 

binary blink pattern matrix to derive the statistical 



Received:  October 20, 2024.     Revised: December 9, 2024.                                                                                         999 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.71 

 

features of blink frequency and duration. The 

interpretation results in unique pattern features of 

blink frequency and duration, which are then used as 

training and test data. Several computational stages 

are performed to extract these features: 

Windowing: To ensure data continuity and 

integrity, and to accurately analyze features related to 

eye blinking, the blinking sequences are divided into 

several segments with a consistent duration. By 

segmenting the blinking dynamics, metrics such as 

blink frequency, blink duration, and eye closure 

duration can be analyzed over specific ranges and 

steps.  

The proposed segmentation method provides a 

comprehensive view of the drowsiness scale status, 

allowing for the creation of a unique pattern matrix 

of blinking behavior. To enhance analysis accuracy, 

windowing was applied to limit the observation area 

of the input data, with unobserved areas initially set 

to ‘0’. In this study, 1800 data frames were observed 

for each window length L, corresponding to an 

observation period of 1 minute at 30 fps. This 

duration was chosen with the assumption that the 

blinking pattern features could be captured 

adequately within this time frame. A window step (ϑ) 

was applied to address data discontinuity due to 

windowing (Fig. 12). Several variations in the 

overlap step width were tested to find the optimal 

overlap value, ensuring the expected classification 

accuracy. A wider window step affects computation 

time as more iterations are performed. The binary 

eye-blink pattern in frame f(n) is shown in Fig. 13. 
 

 

 
Figure. 12 Window Length and Window Step Data 

Training 

 

 
Figure. 13 Blinking Pattern Window 

Blinking Frequency and Duration: Drowsiness 

classification often relies on the analysis of eye blink 

behavior, as changes in blink patterns are strong 

indicators of an individual's level of drowsiness. As 

individuals begin to feel drowsy, their blink patterns 

change—blinks become slower and longer, resulting 

in increased blink duration compared to when they 

are fully alert. Additionally, individuals experiencing 

drowsiness tend to blink more frequently, with 

greater variability in blink duration [39]. 

Blink duration and frequency features are 

obtained by identifying the indices of elements in a 

window whose value is '0' in Eq. 3. Specifically, the 

index of the first frame with a value of ‘0’ is denoted 

as f(n), and the index of the last frame with a value of 

‘0’ is denoted as f(nlast). The duration of each blink is 

calculated as the difference between these indices, 

represented as D(m) = nlast - n. If no consecutive ‘1’ 

values are found, the duration is assigned a value of 

‘1’ and stored in the duration parameter D(m) 

according to Eq. (9). The frequency of eye blinks in 

a data window is determined by the number of D 

values greater than ‘1’. Therefore, if all values in D 

within a window are '1', this indicates that no eye 

blinks occurred during that window period. 

 

𝐷(𝑚) = ∑ {

𝑤ℎ𝑖𝑙𝑒 𝑓(𝑛) = 0, 𝑛𝑙𝑎𝑠𝑡 = 𝑛 + 1,

∴ 𝐷(𝑚) = 𝑛𝑙𝑎𝑠𝑡 − 𝑛         

𝐷(𝑚) = 1                                     

𝐿−1
𝑛=0       (9) 

 

Statistical Feature: The use of statistical 

features in image-based analysis and classification 

tasks is widely applied in several fields, including 

medical case analysis such as liver cancer [40], 

Parkinson’s disease [41], and EEG signal-based 

drowsiness detection [42]. In this study, drowsiness 

features are extracted through the statistical analysis 

of blink duration and frequency within a specific 

window period, serving as the drowsiness 

classification feature. The statistical features 

calculated include: 

Mean Distance (µ) (Eq. 10): The average distance 

between frames detected during the blink period, 

normalized to the window length L. di is the blink 

duration data, a value of '1' indicates no blinks 

occurred during the data period. M is the number of 

observed data. This metric provides an overview of 

how frequently eye blinks occur in a window. 

Normalization by window size and factor 4 allows for 

comparison across windows of different sizes and 

adjusts the measurement to a consistent scale. 

 

𝜇 =
∑ 𝑑𝑖

𝑀
𝑖=1

𝑀
×

𝑐

𝐿
                                                     (10) 
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The distance variance (σ2) between blinks 

measures how much the blink intervals deviate from 

the mean (Eq. 11). Understanding the spread of blink 

intervals is crucial for assessing the consistency of the 

eye blink pattern. A high variance may indicate 

instability or significant changes in the blink pattern. 

 

𝜎2 =
∑ (𝑑𝑖−𝜇)2𝑀

𝑖=1

𝑀
×

𝑐

𝐿
                                               (11) 

 

The standard deviation (σ) of blink distance 

measures how much the intervals between blinks 

deviate from the mean distance (Eq. 12). This metric 

is essential for understanding the variability in eye 

blink patterns, which can provide insights into levels 

of drowsiness. Normalization based on window size 

and a positive integer c factor (ex: 2, 4, 8, ...) allows 

for comparison between windows of different sizes 

and ensures that measurements are adjusted to a 

specific scale. 

 

𝜎 = √
∑ (𝑑𝑖−𝜇)2𝑀

𝑖=1

𝑀
×

√𝑐

√𝐿
                                           (12) 

 

The algorithm used to reconstruct the dataset 

based on the statistical features of binary eye blink 

patterns is shown in Algorithm 1. This algorithm 

outlines the steps required to identify eye blink 

patterns, calculate statistical features such as mean, 

variance, and standard deviation of blink intervals, 

and reconstruct the dataset using these features. With 

this approach, the resulting dataset will be more 

representative of eye blink patterns, making it 

suitable for further analysis. The `ExtractFeatures` 

function extracts statistical features from time series 

data using the moving window method. The function 

accepts three parameters: `data` (time series data), 

`step` (window shift step), and `window_size` (data 

window size).  

The function begins by initializing an empty list 

`windows`. It then loops through the `data` from 

index 0 to the final index, with each iteration 

producing a window of size `window_size` from the 

`data`, shifting by `step` with each iteration. This 

process populates the `windows` list with the feature 

extraction results. In each iteration, a data window is 

extracted from indices `i` to  `1 + window_size`. 

 

Algorithm 1. Statistical Feature Extraction 

1. FUNCTION ExtractFeatures(data, step, 

window_size): 

2. INITIALIZE an empty list called ‘windows’ 

3. FOR each index ‘i’ from 0 to (length of data 

- window_size + 1) with step size: 

a. EXTRACT a window of data from 

index i to (i + window_size) 

b. FIND indices of elements in ‘window’ 

that are equal to 0 

c. COMPUTE differences between 

consecutive indices of zeros 

d. IF no differences found: 

e. SET differences to an array with a single 

element 0 

f. COMPUTE mean distance between zeros 

normalized by window size 

g. COMPUTE variance of distances 

between zeros normalized by window 

size 

h. COMPUTE standard deviation of 

distances between zeros normalized by 

window size 

i. CREATE a tuple (mean_distance, 

variance_distance, std_dev_distance) 

j. APPEND the tuple to the windows list 

4. CONVERT windows list to an array 

5. RETURN windows array 

 

Within each data window, indices of elements 

with a value of '0' are identified. The difference 

between successive indices of '0' values is then 

calculated. If a window contains no '0' values, a value 

of '1' is appended to the matrix, as shown in Fig. 14. 

A '1' indicates that no blinking state occurred in the 

data series, while other values represent blink  events 

with durations corresponding to the data values. 

 

 

 
Figure. 14 Illustration of the calculation of the 

`distance_between_zeros` parameter from the window 

data series array 
 

 

 
Figure. 15 Statistical features of blinking pattern 

 

[  1   1   1   1   1   …    1   1  11   1   1   1   1   1   1   1   ] 
[ 1  35   1   1   1   …    1   1   1   1  19   1   1 143   1  6 ] 
[ 1  19   1   1   1   …    1   10   1  38   1   1  84   1  12  ] 
[ 26   1   9   9   1  …    1   7   1   1   1   1   7   1   1   3   ] 
[ 1   1 143   1   6  …   24   1   5   1   1   1   1  19   1   1 ] 
[  1   1   1  31   1  …   393   1 106   1  25   1  50   1   1] 
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Figure. 16 Time Series Transformer Model. Redrawn 

from [43] 
 

The statistical features—mean distance, variance, 

and standard deviation of the distances between '0' 

elements, normalized by the window size—are 

calculated from these differences. The statistical 

feature tuples (mean, variance, and standard 

deviation) are then appended to the `windows` list, as 

shown in Fig. 15. The 1st element in each tuple is the 

mean distance, the 2nd is the variance, and the 3rd is 

the standard deviation of the blink pattern features 

within a single data series window.  

The processed windows are compiled into an 

array and returned as the function's output. In time 

series data analysis, this function supports the 

classification of driver drowsiness by identifying 

patterns in activity changes or physiological 

parameters. Machine learning models can be trained 

to detect drowsiness using the statistical features 

derived from eye blink or heart rate data. The mean, 

variance, and standard deviation of the distance 

between eye blinks are critical for identifying 

drowsiness patterns. 

3.5 Drowsiness classification model architecture 

The architectural model used for drowsiness 

classification in this study is based on the 

Transformer model (Fig. 16) introduced by Vaswani 

et al. [43]. Originally designed for natural language 

processing (NLP), the model has since been applied 

to various tasks, including medical image 

segmentation [44], hyperspectral image classification 

[45], and multivariate time series analysis [46]. 

Unlike earlier recurrent and convolutional 

architectures, the Transformer relies on an attention 

mechanism to capture the relationships between 

elements in the input sequence. The model as shown 

in Fig. 17 is an encoder-decoder structure, where the 

encoder converts the input into a continuous 

representation, and the decoder generates an output 

based on this representation. The primary mechanism 

of the Transformer is self-attention, which allows the 

model to consider the entire input sequence 

simultaneously. Both the encoder and decoder consist 

of a stack of 𝑁 identical layers. Each layer has two 

sublayers: a multi-head self-attention mechanism and 

a position-based fully connected simple feed-forward 

network. Residual connections in each sublayer are 

followed by layer normalization to address the 

vanishing gradient problem. Specifically, the output 

of each sublayer is computed as: 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 +  𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥))  

where 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥)  is the function implemented 

by the sublayer. 

Multi-Head Attention: The Transformer model 

utilizes multi-head attention, which performs several 

attention operations in parallel. Each attention head 

has its own query, key, and value projections. The 

results from all the heads are combined and projected 

back to produce the final output [43]. 

Positional Encoding and Feedforward 

Networks: Unlike RNN models, the Transformer 

does not inherently capture the sequential order of the 

input. To provide the model with information about 

the relative position of each token in the sequence, 

positional encoding is used, adding sinusoidal and 

cosinusoidal signals to the input [43].  

 

 
Figure. 17 Proposed Transformer Model 
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Table 2. Proposed Model Hyperparameter 

Hyperparameter Configuration 

Model dim 128 

Num. Head 4 

Num. layer 3 

Kernel Regularizer L2(0.02) 

Drop Out Rate 0.4 

 

In some applications of Transformer models, it is 

not always necessary to use the decoder function [46], 

[47]. In the standard Transformer architecture, the 

decoder is typically required for sequence-to-

sequence tasks, such as translation, where the model 

is expected to produce a sequence of outputs. The 

decoder processes the information generated by the 

encoder and considers the output sequence that has 

already been generated (in an auto-regressive setting). 

In this study, output sorting was not required 

because the task involved classification (producing 

class probabilities for the entire input sequence). 

Therefore, only the encoder component was 

necessary to extract features from the input sequence. 

Model improvements included the addition of a 

Dense layer with "relu" activation and a kernel 

regularizer to mitigate the potential for overfitting. 

The inclusion of 1D Global Average Pooling (GAP) 

was employed to reduce the temporal dimension of 

the time series data. After the Multi-Head Attention 

blocks and dense operations, the data still retained a 

temporal dimension (number of time steps) and 

features (dimensionality increased by `model_dim`). 

The kernel regularizer was specifically added to 

reduce overfitting in the TST model, as shown in Fig. 

17. Table 2 presents the hyperparameters proposed 

for the Transformer model to classify drowsiness 

levels. 

4. Results and discussion  

This chapter discusses the research results based 

on the methodology and model architecture. The 

testing results were compared with several models 

that were independently tested and also compared 

with research conducted by other researchers using 

the same dataset. Few researchers have used the 

Drozy video dataset due to its low image resolution. 

In independent testing, data preprocessing was 

performed using the statistical features of the blink 

pattern in the two models. The comparison models 

were Resnet50 + Long Short Term Memory Network  

(LSTM) and Resnet50 + CNN 1D. Additionally, a 

comparison was made with a study by Han et al. [23], 

which used both spatial and temporal facial features 

for fatigue identification through multiple modalities. 

Their model utilized a combination of deep learning 

and eyelid information to determine operator fatigue. 

Han et al. combined Temporal Convolutional 

Networks (TCN) and ResNet3D to preserve both the 

temporal and spatial features of the eyelid. The model 

training process was optimized using a custom cosine 

annealing learning rate decay algorithm to prevent 

local optimums.  

Testing was performed using training data with a 

windowing duration of 1,800 frames of input data, 

applied to each model. The model with the best 

results is illustrated in Fig. 18. From the model 

accuracy comparison graph, it can be observed that 

all three models (ResNet50 + TST, ResNet50 + 

LSTM, and ResNet50 + CNN 1D) show an increase 

in accuracy for both training and validation data as 

the number of epochs increases. The ResNet50 + TST 

and ResNet50 + CNN 1D models demonstrated more 

consistent performance, with stable validation 

accuracy approaching 0.97–0.98 by the end of 

training. In contrast, the ResNet50 + LSTM model 

exhibited lower and more fluctuating validation 

accuracy, particularly during the early and middle 

epochs, indicating that it was more prone to 

overfitting than the other two models.  

 

 

 
Figure. 18 Comparison of training  and validation 

accuracy for ResNet50 + LSTM, ResNet50 + CNN-1D, 

and ResNet50 + TST models. 

 

 

 
Figure. 19 Comparison of training and validation loss for 

ResNet50 + LSTM, ResNet50 + CNN-1D, and ResNet50 

+ TST models. 
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Figure. 20 Confusion Matrix of  Resnet50 + TST 

 

 
Figure. 21 Confusion Matrix of  Resnet50 + LSTM 

 

 
Figure. 22 Confusion Matrix of  Resnet50 + CNN 1D 

 

The loss graph in Fig. 19. reinforces this 

observation, showing that the ResNet50 + LSTM 

model experienced a slower reduction in loss 

compared to the ResNet50 + TST and ResNet50 + 

CNN 1D models. Both ResNet50 + TST and 

ResNet50 + CNN 1D displayed steeper loss curves, 

indicating that these models learned patterns from the 

data more effectively. This is evidenced by the loss 

values approaching zero by the end of training, 

especially for the training data. However, on the 

validation data, the ResNet50 + CNN 1D model 

demonstrated slightly more stability than the 

ResNet50 + TST, although both models still 

outperformed the ResNet50 + LSTM. The ResNet50 

+ LSTM model showed significant fluctuations 

around epoch 200, suggesting difficulties in 

maintaining good generalization on the validation 

data. 

Technically, these results demonstrate that the 

ResNet50 + TST and ResNet50 + CNN 1D 

architectures are better suited to handle the temporal 

complexity of the data while avoiding overfitting. 

Although ResNet50 + LSTM is known to perform 

well on sequence data, it struggled to identify the 

correct patterns in this dataset, affecting both the 

accuracy and loss performance on the validation data. 

Of the two best-performing models, ResNet50 + TST 

may have a slight advantage in capturing more 

complex temporal patterns, while ResNet50 + CNN 

1D offers better stability with faster training times.  

Based on the confusion matrix of the three models 

(Figs. 20-22), the ResNet50 + TST model 

demonstrated the best performance, with the fewest 

classification errors. ResNet50 + TST, utilizing the 

self-attention mechanism, effectively captured the 

long-term relationships in the statistical features of 

the eye blink pattern (mean, variance, and standard 

deviation). There were only a few misclassifications: 

2 instances of class 2 were classified as class 1, and 2 

instances of class 3 were classified as class 2. This 

highlights ResNet50 + TST's ability to accurately 

distinguish between different levels of drowsiness, 

with minimal errors, due to its strength in fully 

integrating temporal information. 

In contrast, the ResNet50 + LSTM model showed 

the poorest performance among the three, with 

substantial errors, particularly in class 2. Specifically, 

11 instances were misclassified as class 1, and 8 

instances of class 3 were classified as class 2. This 

suggests that although ResNet50 + LSTM was 

designed to handle sequential data, it struggled to 

differentiate patterns between classes that are harder 

to distinguish, such as class 2 and class 3.  

ResNet50 + 1D CNN showed relatively good 

results and was more stable than ResNet50 + LSTM, 

although there were some prediction errors in class 2. 

ResNet50 + 1D CNN was better at capturing local 

spatial patterns than ResNet50 + LSTM, but it was 

not as effective as ResNet50 + TST in capturing long-

term temporal dependencies. While ResNet50 + 1D 

CNN's performance approached that of TST, it did 

not achieve the same level of precision in 

distinguishing between classes with similar pattern 

variations.  

Based on the analysis of confusion matrix, 

accuracy, and loss, the ResNet50 + TST and 

ResNet50 + CNN 1D models demonstrate excellent 

performance in drowsiness classification compared 

to ResNet50 + LSTM. The ResNet50 + TST model 

leverages the self-attention mechanism, which excels 

in capturing long-term temporal dependencies in eye 

blink statistical features (mean, variance, and 

standard deviation). This results in stable validation 
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accuracy above 0.97 and consistently low loss, 

reflecting the model's ability to avoid overfitting and 

capture complex patterns across classes. ResNet50 + 

CNN 1D, which applies one-dimensional 

convolution, is effective in capturing local patterns 

from sequential data, achieving performance nearly 

on par with ResNet50 + TST. It exhibits high 

validation accuracy and stable loss, though it is 

slightly less capable of capturing long-term 

dependencies.  

Figs 18 and 19 shows the performance of 

ResNet50 + TST (blue and red) versus ResNet50 + 

CNN 1D (green and brown). The difference in 

training accuracy - validation accuracy and training 

loss - validation loss for ResNet50 + TST is smaller 

than that of ResNet50 + CNN 1D. This indicates that 

the ResNet50 + TST model has better generalization 

capabilities and is less prone to overfitting compared 

to ResNet50 + CNN 1D.  

In contrast, ResNet50 + LSTM exhibited 

weaknesses in capturing pattern variations between 

classes, particularly in class 2, as reflected in its 

higher classification error and large fluctuations in 

the accuracy and loss graphs. ResNet50 + LSTM 

experienced overfitting, as indicated by the increase 

in validation loss after the 200th epoch, which 

resulted in poorer generalizability to the validation 

data compared to ResNet50 + TST and ResNet50 + 

CNN 1D. Table 3 shows that the combination of 

ResNet50 + TST and ResNet50 + 1D CNN yielded 

equally strong results in terms of accuracy (0.97), 

recall (0.97), and F1-score (0.97), indicating that both 

models are highly effective in detecting drowsiness 

patterns based on the statistical features of eye blink 

patterns. However, ResNet50 + 1D CNN slightly 

outperforms ResNet50 + TST in terms of precision 

(0.98 compared to 0.97), meaning that ResNet50 + 

1D CNN is marginally better at minimizing false 

positives. In contrast, ResNet50 + LSTM 

demonstrated lower performance, with an accuracy 

of 0.93 and an F1-score of 0.92. This suggests that 

ResNet50 + LSTM is less effective in handling 

complex patterns and long-term dependencies 

compared to ResNet50 + TST and ResNet50 + 1D 

CNN, which excel at capturing temporal and spatial 

patterns, respectively.  

Figs. 18 and 19 (The accuracy and The loss 

graphs) and Figs. 20-22 (confusion matrix) provide a 

comprehensive overview of the model performances 

in drowsiness classification based on the statistical 

features of eye blink patterns. The accuracy and loss 

graphs illustrate how each model performed during 

training and validation. ResNet50 + TST and 

ResNet50 + 1D CNN demonstrated excellent and 

stable accuracy trends, particularly after 150 epochs,  

Table 3. Comparison of Classification Reports for 

Different Models 

Model Accuracy Precision Recall 
F1-

Score 

Resnet 50 

+ LSTM 

0.93 0.93 0.92 0.92 

Resnet 50 

+ 1DCNN 

0.97 0.98 0.97 0.97 

Resnet 50 

+ TST 

0.97 0.97 0.97 0.97 

 

 

maintaining near-perfect validation accuracy (around 

0.97). In contrast, ResNet50 + LSTM exhibited large 

fluctuations, especially after the 200th epoch, 

indicating that ResNet50 + LSTM struggled to 

achieve stability during training, especially when 

generalizing to validation data. 

From the loss graph in Fig. 19, it can be seen that 

ResNet50 + TST and ResNet50 + 1D CNN quickly 

achieved a low and stable loss, while ResNet50 + 

LSTM experienced fluctuations, particularly on the 

validation data. This reflects ResNet50 + LSTM's 

difficulty in adapting to complex patterns, making it 

less suitable for this classification task compared to 

the other models.  

The Accuracy graph (Fig. 18), the loss graph (Fig. 

19), and the confusion matrix (Figs. 20-22) 

also conclude that statistical feature-based data 

preprocessing provides a solid foundation for the 

model to learn drowsiness patterns; however, the 

effectiveness of each model in optimizing these 

features differs. ResNet50 + TST, with its self-

attention mechanism, excels at capturing complex 

temporal patterns, while ResNet50 + CNN 1D is also 

highly effective due to its convolutional architecture, 

which can recognize local spatial patterns. ResNet50 

+ LSTM, although expected to perform well with 

sequential data, struggles to capture long-term 

patterns, as evidenced by its lower accuracy and 

performance in the confusion matrix. Therefore, 

ResNet50 + TST and ResNet50 + CNN 1D are better 

equipped to optimize the statistical features of eye 

blinks for drowsiness classification than ResNet50 + 

LSTM. 

Table 4 compares the accuracy of different 

drowsiness detection and classification methods 

based on the type of features used. Facial landmark-

based approaches, such as VBFLLFA Transformer 

(93.10%) and 2s-STGCN (92.2%), demonstrate good 

ability to exploit spatial information from faces, but 

tend to be limited in capturing complex temporal 

patterns. The eyelid aspect ratio (EAR)-based 

methods, such as SVM, achieved 94.9% accuracy,  
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Table 4. Accuracy comparison for different models and 

dataset features 

Features Method 
Accuracy 

(%) 

Facial 

Landmark and 

local Area [17] 

VBFLLFA 

Transformer 

93.10 

Facial 

Landmark [22] 

2s-STGCN 92.2 

EAR Sequence 

[20] 

SVM 94.9 

EAR Sequence 

[23] 

1D CNN 46.25 

LSTM128 42.92 

LSTM256 43.33 

TCN 51.11 

Both Eyelid 

Image and 

EAR Sequence 

[23] 

Resnet3D 

+1DCNN 

97.36 

Resnet3D 

+TCN 

97.64 

Eyelid Image + 

Statistical 

binary blink 

(our Method) 

Resnet50 

+1DCNN 

97 

Resnet50 

+LSTM 

63 

Resnet50 +TST 97 

 

demonstrating the effectiveness of simple approaches 

for sequential data. However, deep learning methods 

such as 1D CNN (46.25%), LSTM (42.92%-43.33%), 

and TCN (51.11%), perform much less effectively, 

which reflects their limitations relative to exploiting 

EAR data. 

Multimodal approaches such as ResNet3D + 

1DCNN (97.36%) and ResNet3D + TCN (97.64%) 

achieve high accuracy due to their ability to capture 

both spatial and temporal information from the 

combination of eyelid and EAR images. However, 

this method has the disadvantage of complexity and 

dependence on two types of data (multimodality). In 

contrast, the proposed ResNet50 + TST method uses 

only one type of data (single modality) in the form of 

eyelid images and statistical binary blink features, but 

still achieves the same high accuracy of 97%. By 

using a single modality, the proposed method is not 

only architecturally simpler and computationally 

more efficient but also more robust to environmental 

variability than multimodal approaches such as 

ResNet3D + TCN. The results demonstrate the 

adnvantage of the proposed method in handling 

drowsiness detection without requiring additional 

complexity from multimodal integration. 

5. Conclusion  

The proposed ResNet50 + TST method 

demonstrates effectiveness in detecting and 

classifying drowsiness using statistical binary blink 

features derived from eye image data. Achieving an 

accuracy of 97%, the proposed method performs 

comparably to multimodal approaches, such as 

ResNet3D + TCN, but with reduced complexity 

because it relies on a single modality. The integration 

of Time Series Transformer (TST) enables efficient 

modeling of temporal dependencies, and ResNet50 

ensures reliable spatial feature extraction. These 

advantages make the proposed method more robust 

to environmental variations, such as inconsistent 

lighting and head movements, and reduce the reliance 

on high-precision facial landmarks. 

Compared to other multimodal methods, the 

ResNet50 + TST framework offers a simpler and 

more computationally efficient solution without 

sacrificing accuracy. This makes it particularly 

suitable for real-time applications in which 

computational resources are limited. Furthermore, 

the proposed method maintains high accuracy even 

when trained and tested on low-resolution data (8-bit, 

512 × 424), demonstrating its flexibility and 

adaptability. These characteristics highlight the 

potential of the proposed method for application to 

diverse scenarios and datasets that require reliable 

and efficient drowsiness detection. Overall, the 

ResNet50 + TST approach is a practical and effective 

solution for vision-based systems to detect and 

manage drowsiness in real-world environments. 
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