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Abstract: Theft of electricity is an increasingly common problem that has a detrimental effect on utility providers as 

well as power consumers. It affects consumers’ high energy costs, creates electric risks, and affects the electric utility 

industry’s capacity to grow economically. The biggest issue facing smart grids is the theft of electricity. In order to 

monitor loads and regulate energy usage, smart meters (SMs) are installed at the end of customers’ residences and are 

used to periodically transmit fine-grained power consumption measurements to the supplier. Due to nonlinear 

correlations and missing values, existing theft detection techniques have difficulty processing large electrical usage 

information. An integrated system for coordinating the examination of electrical demand data is also absent. To address 

these limitations in this research we propose a new electricity theft detection framework to further enhance the system 

reliability and fault tolerance. Initially, we utilize the quantum key distribution (QKD) with the rolling optimization 

strategy (ROS) to reduce the computational overhead and efficiently minimize the fluctuations. After that extreme 

gradient boosting (EGB) and coati optimization algorithm (COA) are employed for classification. Finally, we proposed 

privacy functionality trade-off strategies for smart meters to improve the consumer trust and confidence in the smart 

grid system. Thus, the proposed new electricity theft detection framework to further enhance the system reliability and 

fault tolerance method’s simulation in Matlab-R2023a\Simulink demonstrates superior performance compared to 

existing techniques. The approaches in this study to overcome the issues faced in previous technologies are tested 

using different metrics of authentication rate at 98(%), accuracy at 99 (%), detection rate at 98.6 (%), precision at 

(97%), recall at (98.6%), at F1-score (95.15%), and AUC at (0.3123). 

Keywords: Smart grid, Electricity theft detection, Quantum key distribution, Rolling optimization strategy, Extreme 

gradient boosting, Coati optimization algorithm. 

 

 

1. Introduction  

Nowadays, practically everyone has access to and 

is impacted by electricity, making it an essential 

element of human life. Considering how widely it is 

used worldwide, there are several serious problems 

that need to be addressed, such as electrical loss [1, 

2]. In order to increase the electricity grid’s 

dependability, efficiency, and resilience, the smart 

grid vision incorporates sensing, computing, and 

communication into its functioning. The smart grid’s 

advanced metering infrastructure (AMI) is a crucial 

component. Smart meters (SMs) are installed at the 

customers’ locations in AMI in order to monitor and 

provide the system operator (SO) with precise 

measurements of their power use. In order to control 

the supply of power in real-time, these readings are 

utilized to estimate the future load or energy demand. 

In order to balance the supply and demand of energy, 

they are also used to support dynamic billing, in 

which the price of power varies throughout the day to 

incentivize customers to cut back on usage during 

peak hours [3, 4].  

By incorporating novel sensing, communication, 

and control strategies, smart grids improve the long-

term viability, dependability, and effectiveness of 

electrical infrastructure. They also enable renewable 
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energy sources and modernize demand response 

programs. However revolutionary benefits have new 

difficulties specifically in the realms of fraud 

detection and security [5, 6]. “Non-Technical Losses” 

(NTL) and “Technical Losses” (TL) are the two 

categories into which losses of electricity in power 

systems are separated [7]. NTLs are seen as a key 

difficulty in the smart grid and may significantly 

affect the extent to which power systems operate and 

are managed. Additionally, it raises costs, which has 

an impact on the utilities’ financial performance [8,9]. 

Energy theft, out of all NTLs, has always been a 

major problem for utilities globally since it 

contributes significantly to total losses. The 

intentional or unauthorized consumption of electrical 

power through a variety of methods is referred to as 

energy theft [10, 11].  

The quantity of energy used that is not paid to 

customers is known as electricity theft. Energy theft 

can be caused by a variety of circumstances, 

including high power prices and unfavourable 

economic conditions. Through physical or 

cyberattacks, malicious persons can readily corrupt 

smart meters in the neighbourhood. As a result, there 

has long been a broad understanding that AMI 

installations require a fraud detection approach [12, 

13]. The smart grid’s theft problem can potentially 

have a big impact on society and the economy. 

Customers’ right to privacy can also be damaged 

when sensitive customer data is stolen or altered 

during the transit of important data across the many 

smart grid networks [14-16]. Other techniques have 

been presented in [17, 18] to overcome the issue of 

smart grid security. 

Energy providers have historically used rule-

based algorithms, physical inspections, and recurring 

audits to find cases of energy theft. Nevertheless, 

these techniques are often laborious, costly, and 

unproductive in detecting complex fraudulent 

activity. Furthermore, the sheer amount and velocity 

of data created by smart meters, detectors, and other 

network components make it harder and harder to 

identify and counteract fraudulent conduct using 

conventional methods as smart grids become more 

sophisticated and linked. 

In this paper, we utilize the QKD with a rolling 

optimization strategy (ROS) to reduce the 

computational overhead and efficiently minimize the 

fluctuations. After that Extreme gradient boosting 

(EGB) and coati optimization algorithm (COA) are 

employed for classification, and then to improve 

consumer trust and confidentiality in the system the 

monitoring activities within the smart grid must 

maintain the balance between functionality and 

privacy by using smart meters provides with privacy 

functionality trade-off strategies. 

Even though many researchers have done 

electricity theft and fraud detection in the grid there 

are still a lot of unresolved problems is existing. The 

primary problems are mentioned below: 

Inaccurate Classification: In the existing 

research their model performance leads to the 

misclassification of electricity detection.  

Lack of False Alarms: The previous research 

lacks data on the infrequent occurrence of theft in 

detecting energy theft (ETD) that reduces the 

classification accuracy and leads the false alarms.  

Privacy intrusion in granularity of data: In the 

existing method they have challenges in data that lead 

the privacy intrusion and raise the ethical and 

regulatory concerns regarding consumer data 

protection.  

In this paper, we develop a robust electricity theft 

and fraud detection system for the smart grid using 

machine learning techniques. The salient features of 

the proposed work are, 

• To implement and analyze the robust techniques 

to minimize the sensitivity of the system 

fluctuation in input data that enhance the 

detection accuracy.  

• To optimize the information sharing protocols to 

reduce the computational overhead associated 

with data transmission and processing that ensure 

the efficient operation of the detection system.  

• To integrate the techniques to handle the 

infrequent instances of theft in electricity theft 

detection, reducing the false alarms and 

enhancing the overall classification accuracy.  

• To design a balance between the granularity of 

electricity consumption and data for detection 

purposes while respecting consumer privacy to 

improve data security and user trust. 

The highlights of the research work are illustrated 

as (1) The QKD-ROS is used to secure 

communication, reduce computational overhead, and 

minimize fluctuations within the smart grid. (2) 

EGB-COA is employed for high-accuracy 

classification of electricity theft with the generative 

adversarial network (GAN) to reduce false alarms 

and improve detection accuracy. (3) Smart meters 

with privacy functionality trade-off strategies balance 

effective monitoring with privacy intrusion 

prevention, ensuring consumer trust and 

confidentiality in the smart grid system. 

The remaining part of this research is organized 

as follows: Section 2 provides an explanation of the 

survey of current works, which includes research 

gaps. Section 3 outlines the primary problem with the 
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existing approaches. Section 4 presents the research 

methodology for the recommended technique 

together with the relevant diagrams, mathematical 

representation, and pseudocode. In Section 5, the 

experimental results are explained and the suggested 

and current methodologies are compared. The 

proposed work conclusion is presented in Section 6.  

2. Literature survey  

This section deals with the survey of literature on 

electricity theft and fraud detection in smart grid. 

This section additionally consists of the research gap 

of these previous methods.  

Authors in [19] provide a hybrid deep learning 

model that takes into account the aforementioned 

issues in order to identify power thieves in smart 

grids with high accuracy. First, techniques for pre-

processing are used to clean up the smart meter data. 

Subsequently, the feature extraction approach tackles 

the problem of dimensionality, much like AlexNet. A 

genuine dataset of Chinese intelligent meters is used 

in simulations to assess the efficacy of the suggested 

approach. A number of benchmark models are also 

used in order to do a comparison study. However, in 

their research, their proposed methods have 

challenges in long training time and computational 

complexity. The author of [20] presents an “ensemble 

model based on “convolutional neural network and 

extreme gradient boosting” (CNN-EGB) model”. 

The CNN model in this framework receives input 

from both 1-D and 2-D power usage data. The 

proposed model outperformed the current approaches 

in detecting power theft, with a success rate of 92%. 

The model’s capacity to identify theft is restricted as 

it was learning on a “small number of datasets” 

without the inclusion of further non-sequential 

parameters. “Low-sampled data” is also given, which 

affects the suggested model’s efficiency while 

providing more precise information on energy theft. 

We will thus take into account high-sampling data as 

well as other non-sequential data for the trustworthy 

identification of energy thieves in years to come. 

The resilience of power theft detectors against 

evasion assaults is examined in research [21]. By 

inserting adversarial samples, these assaults deceive 

the power theft detectors and lower the reported 

reading levels. We provide powerful evasion 

techniques that generate adversarial models 

repeatedly based on an electrical measurement and its 

nearby interpretations, fooling the benchmark 

detectors. Utilizing “white, gray, and black-box” 

environments, depending on the malicious awareness 

of the indicator’s characteristics, we investigate the 

effects of evasion assaults. Furthermore, in their 

research, their detection performance is not stable due 

to the white box environment. The study of [22] goal 

is to create a model for machine learning (ML) with 

the understanding that the six information balancing 

techniques “Adaptive Synthetic Sampling” 

(ADASYN), SVM-”Synthetic Minority over 

Sampling”, “Random over Sampler”, 

“SMOTEENN”, and “SMOTE Tomek Links” are 

used to address the issue of data imbalance. The two 

steps make up the intended model. Their proposed 

work theft detection affects the privacy of customers.  

In the author of [23], a new ETD technique is 

used to identify power theft occurring in SGs. The 

methods included in the suggested methodology 

include “logit boosting (LogitBoost), BiLSTM, k-

nearest neighbor oversampling (KNNOR), and 

recursive feature elimination (RFE)”. Moreover, a 

“BiLSTM-LogitBoost stacking ensemble model” is 

created by combining 3 “BiLSTM networks with a 

LogitBoost model”. The approach presented for ETD 

consists of four main stages: data preparation, 

choosing features, data balance, and categorized 

electricity theft. The research [24] thus suggests a 

technique that may be used to identify energy theft 

with greater accuracy while using fewer 

characteristics. The most effective way to choose the 

characteristics that are more important for detecting 

power theft is determined by analyzing several 

extractions of features and selection approaches. 

Selection of features and extraction techniques 

including Principal Component Analysis, mutual 

data, and low volatility filtering are used in a variety 

of investigations. A variety of classifiers based on 

ML are used. However, their proposed method 

becomes annotated which needs to improve the 

classification task.  

In order to balance the dataset, research [25] 

presents a new technique that initially used a “time 

series generative adversarial network” to create 

synthetic data for consumers who had stolen power. 

After that, the characteristics of the consumers were 

extracted using a “hybrid multi-time-scale neural 

network-based model”, and detection was 

accomplished by using a “CatBoost classifier”. 

However, in their research, the proposed work leads 

an excessive learning time, increasing computation 

costs, and complications in the ideal decision method. 

The paper suggests a “deep reinforcement learning” 

(DRL) method as a possible remedy for the issue of 

electricity theft. As an environment, real dataset 

samples are used, and incentives are given according 

to how well training detects faults. Specifically, four 

distinct situations are described for the suggested 

technique. Initially, a “deep Q network” (DQN) and 

a “double deep Q network” (DDQN) with various 
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deep neural network designs are used to build a 

global detection model. Secondly, a customized 

detection model for new customers is generated by 

using the global detector in order to get high detection 

accuracy and prevent zero-day violence. Third, the 

third scenario takes into account altering the current 

clients’ consumption patterns [26].  

3. Problem statement  

In this section, the explicit works that already 

exist and the solutions that correspond to them are 

presented in sequential order. In addition, this study 

also offers responses for the specific problems. The 

specific research works and issues are:  

Article [27] proposes a multi-layer perceptron 

(MLP) method using gated recurrent units (GRU). 

The suggested hybrid system makes use of data from 

the Chinese national grid corporation (CNGC) for 

analysis and solving of power theft. First, prepare the 

data in the suggested hybrid system. Next, use the k-

means synthetic minority oversampling technique 

(SMOTE) to balance the data. Finally, apply a GTU 

model and the MLP framework to the obtained 

purified data. In conclusion, assess the suggested 

system’s achievement using various performance 

metrics, including visual evaluation and statistical 

analysis. Three distinct ratios are used for preparing 

and evaluating the dataset in order to confirm the 

reliability of our suggested hybrid method. 

• The model’s capacity to detect even the smallest 

patterns in electricity usage is limited because it 

can only be developed with “high-frequency data 

on electricity consumption”. As a result, there are 

more instances of misclassification, and its 

accuracy was also decreased. 

Authors of [28] suggest a new method for 

detecting energy theft in electric power systems using 

big data that is based on blurring autoencoder and 

metaheuristic approaches. While the latter is used for 

obtaining high variance characteristics from power 

usage data, both of them are used to identify notable 

features. First, eleven new features are combined 

based on the user’s use of the past, using electrical 

and statistical data. Then, to identify a subset of ideal 

characteristics, the artificially generated features are 

fed into metaheuristic algorithms. The best features 

are ultimately fed as information into the demising 

autoencoder in order to gather features with a high 

variance. How successfully autoencoder and 

metaheuristic techniques select and extract features is 

measured using a support vector machine (SVM). 

The overfitting, preservation, and computing costs of 

ML classifiers are decreased by the suggested 

solution.  

• However, in their research, it lacks of infrequent 

availability of theft in ETD that decreases the 

classification accuracy and false alarms.  

For the purpose of ETD, a unique extreme 

gradient boosting (XGBoost) based model is 

suggested. This model analyzes the power 

consumption patterns of the users. Six distinct 

artificially generated theft assaults were used in order 

to eliminate the imbalance in the realm “power 

consumption dataset” and guarantee a fair 

dissemination of theft and non-theft data instances. 

Additionally, the use of the XGBoost algorithm for 

classification produced excellent accuracy rates and 

a low incidence of false positives, particularly in 

identifying purposeful cases of energy theft [29]. The 

suggested model uses power consumption data and 

other characteristics as input features to identify 

electricity theft that is unique to the areas. 

• However, customers’ privacy will be violated 

due to the great granularity of electricity 

consumption data. 

Research Solution: By using QKD keys, the 

computational cost associated with smart grid 

communication authentication is decreased. Smart 

grid sensitivity instability is reduced with the 

application of ROS approach. To decrease variability 

and reduce computational cost, QKD-ROS 

integration is utilized. When classifying electricity 

detection, EGB is employed to increase classification 

accuracy. Through the use of COA, classification 

performance is enhanced, maximizing accuracy. To 

reduce false alarms and increase classification 

accuracy, a GAN is employed. Customers can avoid 

privacy invasion by using a smart meter that uses a 

privacy-functionality trade-off strategy. 

4. Proposed method  

A The research goal is to develop a robust 

electricity theft and fraud detection system for the 

smart grid using machine learning techniques. Fig. 1 

depicts the whole structure of the suggested approach. 

The key aspects of the proposed model are 

• Secure smart grid fluctuation 

• Electricity theft and Fraud detection  

• Monitoring 

4.1 Secure smart grid fluctuation 

To overcome the fluctuations and prevent 

unauthorized access. The QKD keys are employed to 

improve the authentication security while minimizing 

computational overhead. The security measures are 

accompanied by ROS to design to minimize the  
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Figure. 1 Overall architecture of the proposed work 

 

 

sensitive fluctuation within the smart grid further 

improving the stability and reliability. 

4.1.1. Quantum key distribution 

For every pair of nodes connected by QKD 

connections, we believe that paired secret keys are 

constantly created. Decentralized QKD provides a 

powerful solution to enhance the security of 

communications in smart grids by providing a secure 

value exchange and authentication mechanism. QKD 

is a technology that uses the principles of quantum 

mechanics to securely distribute encryption keys 

between parties. QKD’s security is based on quantum 

physics principles such as the Heisenberg 

Uncertainty Principle and quantum entanglement to 

ensure that any eavesdropping attempts are testable. 

4.1.2. Rolling optimization strategy 

Initially, a methodical description of the energy 

trigger mechanism for 𝑠𝑐 is provided. Subsequently, 

the microgrid operation optimization concept is 

completely introduced. Ultimately, a thorough four-

part description of a unique ROS algorithm is 

provided. 

Energy trigger mechanism for 𝒔𝒄: In a typical 

microgrid (𝔐𝔊), three uncertainties are taken into 

account: load demand (ℒ𝑑), wind turbine (𝒲𝓉), and 

photovoltaic cell (𝒫𝕧) output. Eq. (1), which defines 

the low-frequency component of the conventional net 

load 𝔉𝑛𝑒𝑡
𝒯 , must be anticipated prior to initiating 

dispatch optimization. 

 

{

𝔉ℒ𝑑

𝒯 = 𝔉𝐶ℒ𝑑

𝒯 + 𝔉𝒬
𝒯

𝔉𝑛𝑒𝑡
𝒯 = 𝔉𝐶ℒ𝑑

𝒯 − (𝔉𝒫𝕧
𝒯 + 𝔉𝒲𝓉

𝒯 ) =

𝔉𝑛𝑒𝑡,𝔭
𝒯 − 𝔉𝑛𝑒𝑡,ℰ

𝒯

                       (1) 

 

𝔉𝑛𝑒𝑡,𝔭
𝒯  represents the customer nominal load 

(CNL)’s point prediction result, while 𝔉𝑛𝑒𝑡,ℰ
𝒯  is the 

power error brought on by computation discretization 

and forecast mistake. The prediction intervals 

approach is used to anticipate a spectrum of 

uncertainties, whereas point prediction is often used 

to predict the stable value of the CNL. The range of 

uncertainties is often predicted using the prediction 

intervals approach, whereas the stable value of the 

CNL is typically predicted using point prediction. 

The normalized root-mean-square width and the 

coverage probability are used to assess how well 

prediction intervals work. The coverage probability 

for a particular time is 𝔉(𝐿𝒯 ≤  𝔉𝑛𝑒𝑡
𝒦 ≤ 𝑈𝒯) , 

indicating that the forecast range (between the lower 

bound 𝐿𝒯  and upper bound 𝑈𝒯 ) covers the target 

values. This work focuses on optimization strategy 

research due to space constraints.  

4.2 Electricity theft and fraud detection 

Once the grid is secure, the attention shifts to 

detecting electricity theft and fraud. EGB-COA is 

employed for classification. EGB is used to classify 

the instance of electricity theft with high accuracy 

while COA optimizes the classification performance 

that enhances the overall accuracy. 

4.2.1. Extreme grading boosting 

A potent technique for effectively training 

machine learning models is XGBoost. By combining 

predictions from several weak models, its ensemble 

learning approach creates a stronger and more 

accurate forecast. Additionally, as XGBoost natively 

supports machine learning, it is feasible to train 

algorithms on big datasets in an acceptable amount of 

time. Large dataset management is one of its strong 

points, and it routinely produces excellent results in 

tasks like regression and classification, setting the 
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standard for cutting-edge outcomes. In algorithm 1, 

XGBoost pseudo code is displayed. XGBoost’s 

general goal function combines standardization terms 

with a loss effect for every sample of training and tree 

within the groups: 

 

∑ [𝑙𝑜𝑠𝑠𝑓(𝑧𝔞, 𝑧�̂�) + ∑ Ω(𝑄𝐽)
𝐽
𝐽=1 ]𝑂

𝔞=1                      (2) 

 

Where 𝑂 is the number of training examples. For 

the 𝔞𝑡ℎ  training sample, 𝑧𝔞  and  𝑧�̂�  indicate the real 

label and predicted value, respectively. The 

ensemble’s tree count is denoted by 𝐽. The tree is 

represented by 𝑄𝐽 , and the “loss function” 𝑙𝑜𝑠𝑠𝑓 

measures the distinctions among them 𝑧𝔞 and 𝑧�̂�. The 

term of normalization is 𝐽𝑡ℎ  tree is Ω , while the 

number of classes is denoted by (𝒸𝑙𝑠). 

 

𝑙𝑜𝑠𝑠𝑓(𝑧𝔞, 𝑧�̂�) = − ∑ 𝑧𝔞𝔟 log (
𝑒𝑧𝔞�̂�

∑ 𝑒
𝑧𝔞�̂�𝒸𝑙𝑠

𝐽=1

)𝒸𝑙𝑠
𝔟=1         (3) 

 

We employ the SoftMax activation function for 

multi-class classification. Each tree’s structure has a 

definition of regularization that includes penalties for 

the square of the leaf weights and the number of 

terminated nodes. 

 

ΩTree(𝑄𝐽) =  

𝛼ℜ +
1

2
𝛼 ∑ 𝕎𝔟

2 + 𝛽 ∑ |𝕎𝔟|ℜ
𝔟=1

ℜ
𝔟=1                      (4) 

 

In the above tree, ℜ represents the total number 

of terminal nodes. A terminal node’s weight is 

represented by 𝕎𝔟 . The minimal infant weight, or 

minimum increase needed to create a second division, 

is 𝛼. The regularization term that regulates the total 

complexity is called 𝛽. The parameter that governs 

𝑙𝑜𝑠𝑠𝑓 regularization on leaf weights is called 𝛼. The 

leaf weights’ absolute value is penalized in the 

regularization term as follows: 

 

Ω𝐿𝑒𝑎𝑓(𝑄𝐽) = η ∑ |𝕎𝔟|ℜ
𝔟=1                                   (5) 

 

The shrinkage parameter η regulates how much 

each tree contributes. For every training sample, the 

“Gradient” (𝔾𝔞) and “Hessian” (ℋ𝔞) with regard to 

the anticipated standards are calculated throughout 

the optimization process:   

 

𝔾𝔞 =
𝑑

𝑑𝑧�̂�
[𝑙𝑜𝑠𝑠𝑓(𝑧𝔞, 𝑧�̂�) + ∑ Ω(𝑄𝐽)

𝐽
𝐽=1 ]              (6) 

 

ℋ𝔞 =
𝑑2

𝑑�̂�𝔞
2 [𝑙𝑜𝑠𝑠𝑓(𝑧𝔞, 𝑧�̂�) + ∑ Ω(𝑄𝐽)

𝐽
𝐽=1 ]             (7) 

 

The rule that updates the terminal nodes’ weights 

(𝕎𝔟) after every boosting round. 

 

𝕎𝔟 = −
𝔾𝔞

ℋ𝔞+𝛽
                                                        (8) 

 

All trees contribute in proportion to the learning 

rate. The subsequent boosting round’s update rule for 

the anticipated values is as follows:  

 

𝑧�̂�
(𝐵𝑅+1) = 𝑧�̂�

(𝐵𝑅) + η𝑄𝐽(𝑞𝔞)                             (9) 

 

The boosting round is denoted by 𝐵𝑅, and 𝑄𝐽(𝑞𝔞) 

is the predicted tree for the 𝐽𝑡ℎ sample. The approach 

aims to obtain high percentages of real favorable and 

true adverse outcomes while maintaining low 

percentages of results that are not real.  

 

Algorithm 1: Extreme Grading Boosting  

Input: (𝑞𝔞, 𝑧𝔞) 

1. η: Rate of learning  

2. 𝑙𝑜𝑠𝑠𝑓(𝑧𝔞, 𝑧�̂�) : An alternative loss function 

3. 𝛽 : Coefficient of Regularization 

4. For 𝔞 = 1 to N do 

5.   𝔾𝔞 =
𝑑

𝑑𝑧�̂�
[𝑙𝑜𝑠𝑠𝑓(𝑧𝔞, 𝑧�̂�) + ∑ Ω(𝑄𝐽)

𝐽
𝐽=1 ] 

6.   ℋ𝔞 =
𝑑2

𝑑�̂�𝔞
2 [𝑙𝑜𝑠𝑠𝑓(𝑧𝔞, 𝑧�̂�) + ∑ Ω(𝑄𝐽)

𝐽
𝐽=1 ] 

7. Leaf weight 𝕎𝔟 = −
𝔾𝔞

ℋ𝔞+𝛽
 

8. 𝑧�̂�
(𝐵𝑅+1) = 𝑧�̂�

(𝐵𝑅) + η𝑄𝐽(𝑞𝔞) 

9. End for  

10. For the 𝔞𝑡ℎ sample, the predicted 𝐽𝑡ℎ tree is 

𝑄𝐽(𝑞𝔞). 

 

4.2.2. Coati optimization algorithm 

The COA is used in the suggested work as an 

optimization method for effective power and energy 

management. Coatis, which are regarded as 

algorithm population members, are involved in the 

optimization process. Every coat essentially 

represents a possible solution to the problem since its 

location in the search space corresponds to values for 

the decision variable. To ensure a varied exploration 

of the solution space, the coatis beginning position in 

the search space is randomly initialized in the COA 

implementation. This methodology allows the COA 

algorithm to include parameters such as energy 

availability, energy demand, economic limitations, 

and power variations, hence addressing issues 

associated with microgrid failures and changing 

energy requirements.  
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Figure. 2 Architecture of generative adversarial network  

 

4.2.3. Coati optimization algorithm 

The attacker creates harmful data by synthesizing 

instances that closely resemble real ones using GAN. 

A type of artificial intelligence algorithm known as 

GAN is made up of two neural networks a 

discriminator and a generator that have been trained 

in tandem to produce data that is realistic. The 

attacker can guide the fault prediction model to 

identify a particular fault type or zone in this way. By 

using real data to train a GAN model, this evasion 

technique creates synthetic data that mimics actual 

smart grid data. The adversary gains a potent tool (the 

trained generator) by effectively training the GAN, 

whereby the generated data may subsequently be 

incorporated within the smart energy system. We 

incorporate an additional training layer into the 

conventional GAN training procedure since we 

recognize the significance it is to strengthen the 

discriminator’s skills. Fig. 2 depicts this procedure in 

brief.  

The discriminator is trained using real data in the 

first training phases, which follow the conventional 

protocol. Once backpropagation of the 

discriminator’s damage has occurred, the generator is 

employed to produce false information. In order to do 

this, we start by creating a random vector of hidden 

components, which the generator model then creates 

the fake inputs.  

We use the discriminator to analyze these 

samples, and then we backpropagate the loss. Initially 

apply our unique layer of training before continuing 

with the generator’s training. 

4.3 Monitoring 

To improve consumer trust and confidentiality in 

the system the monitoring activities within the smart 

grid must maintain the balance among functionality 

and privacy. This is achieved through the use of SMs 

provided with privacy functionality trade-off 

strategies. In the suggested model, the strategy’s 

functioning is depicted as follows. The distribution-

level substations (Sub) that provide families with 

power are part of the model, along with customers, 

“energy suppliers”, “network operators”, and “third 

parties”. The suggested system’s SM updates its 

measurements through a private platform, which can 

be a PC or smartphone. Instead of communicating 

directly with the energy supplier. Basic computing 

and storage capabilities are available on the private 

platform to save power usage and bill payment.  

Assume that a smart meter group 𝑠𝑚𝑎𝑟𝑡ℳ =
{𝑠𝑚𝑎𝑟𝑡ℳ1, …  𝑠𝑚𝑎𝑟𝑡ℳ𝑖, …  𝑠𝑚𝑎𝑟𝑡ℳ𝑛} (𝑖 ∈ [1, 𝑛]) 

is present in the neighborhood. Power consumption 

at interval 𝒯 (often 15 minutes), denoted as 𝐼ℙ𝑐, can 

be measured by the smart meter. 

To stop users from altering the data on power use, 

the smart meter data is encrypted. Encrypting the data 

from smart meters stops users from changing the 

information about how much power they use. All data 

communication between customers and the utility is 

regulated by the data communications company, and 

as the SM is constructed without a backdoor, neither 

energy providers nor manufacturers are able to obtain 

the data from the device unlawfully. The SM in the 

suggested system reports monthly billing (𝕄𝔅) and 

monthly energy usage (𝕄𝐸).  

The dynamic time-of-use (TOU) tariff has been 

enabled through the TOU channel. To get TOU bills 

under the conventional SM method, the SM has to 

report the energy usage at each charging station. A 

utility’s ability to gather comprehensive personal 

information about a person increases with the number 

of charging points it installs, raising the risk of 

privacy violations. The information is transmitted in 

the opposite methods using our TOU billing channel. 

 Every thirty minutes, the SM receives the TOU 

pricing from the energy supplier (ES). The SM 

couples the current TOU pricing with the energy use 

of the last 30 minutes. Bills computation. On the last 

day of every month, the total TOU bills in money are 

computed and forwarded to the ES, which 

subsequently issues invoices to the customers. 

Verification of billing accuracy. These strategies 

secured against privacy intrusion while improving 

effective monitoring thereby improving the consumer 

trust and confidence in the smart grid system. These 

strategies secured against privacy intrusion while 

improving effective monitoring thereby improving 

consumer trust and confidence in the smart grid 

system.  

 

Randomness 

Data 

Discriminator 

Generator 

Fault prediction 
Adversarial attack  
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Table 1. System specification 

Hardware 

specifications 

Hard disk 512GB 

RAM 8GB 

Processor 

Intel(R) Core™ 

i5-4200U CPU 

@ 2.30 GHz 

Software 

specifications 

Simulation tools 
Matlab-

R2023a\Simulink 

OS 
Windows 10 (64-

bit) 

 

 

5. Experimental results  

The experimental analysis of the proposed work 

is to enhance the effectiveness of the machine 

learning method to detect electricity theft and fraud 

within the smart grid environment. The study 

summary and comparative analysis are included in 

this subsection.  

5.1 Simulation setup 

The simulation environment and setup for the 

machine learning-based electricity theft and fraud 

detection in a smart grid environment are described 

in this subsection. The Simulink model, which acts as 

the implementation environment and data generator, 

is the sole foundation upon which the simulation 

scenario is built. No external datasets were imported 

or used for this project; instead, the dataset was 

produced directly from the behavior of the Simulink 

model itself. The dynamic functioning of a smart grid 

system, including, load variations, and energy 

consumption patterns, is simulated by the Simulink 

model. As a result, data reflecting the interactions and 

events inside the model might be generated in real 

time. A thorough dataset customized to the project’s 

goals was produced by simulating variables such as 

load demand, power generation from renewable 

sources, frequency stability, and electricity theft 

detection. The setup of the system is shown in Table 

1.  

5.2 Comparative analysis 

The suggested method’s efficacy is assessed by 

comparing it with other techniques that are currently 

in use across a number of important performance 

indicators. These consist of accuracy, detection rate, 

and authentication rate. Visual representations of the 

comparison study, such as graphs, clearly 

demonstrate the benefits of the suggested technique 

over the alternative.  

 
Figure. 3 Time (s) vs. authentication rate (%) 

 

 
Figure. 4 Time (s) vs. accuracy (%) 

 

5.2.1. Time (s) vs. authentication rate (%) 

The graphical representation of Time (s) vs. 

Authentication accuracy (%) shows that the 

relationship between the system authentication users 

in the smart grid and similar recognition results. This 

is an important method to evaluate the effectiveness 

and security of the power theft and fraud detection 

system. Eq. (10) shows that the relationship between 

the time and authentication rate. 

 

ℜ(𝒯) = ℜ𝑚  × (1 − 𝑒−𝑘𝒯)                              (10) 

 

Where ℜ(𝒯)  is the authentication rate at time 

(𝒯), the maximum authentication rate is denoted by 

ℜ𝑚, and 𝑘 is the constant value.  

5.2.2. Time(s) vs. accuracy (%) 

The connection between the system processing 

time and classification is shown in the time vs. 

accuracy graph. Regarding smart grids, the accuracy 

of properly detected incidents of theft and non-theft 

out of all instances that were examined.  

Fig. 4 show the accuracy percentages that the 

suggested model attained at various time intervals in 

comparison to the AES and the HWOA-CSO 

techniques. suggested technique displays a sharp rise 

in accuracy, achieving 99% in less than 30 seconds, 
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demonstrating exceptional ability in promptly and 

precisely identifying occurrences. 

The result shows a consistent increase, reaching 

90% accuracy after 30 seconds, but it is still 

somewhat less effective than the suggested model. 

demonstrates a slower rate of growth than the other 

two approaches, attaining 80% accuracy after 30 

seconds. 

5.2.3. Time(s) vs. detection rate (%) 

In the context of using machine learning for 

electricity theft and fraud detection, the relationship 

between the detection time and detection rate is an 

important metric. This connection is often evaluated 

to understand the effectiveness of the fraud detection 

model over time.  

 

𝒟ℜ(𝒯) =
𝒩𝑐𝑜𝑟(𝒯)

𝒩𝑇𝑜𝑡𝑎𝑙
× 100                                  (11) 

 

In Eq. (11) 𝒟ℜ is the detection rate, 𝒩𝑐𝑜𝑟(𝒯)is 

the total number of fraud instances that have been 

successfully identified by time, and 𝒩𝑇𝑜𝑡𝑎𝑙  is the 

total number of fraud cases.  

The output of time vs detection rate is shown in 

Fig. 5. In terms of detection rate, the proposed 

method outperforms HWOA-CSO and AES 

algorithms throughout the all-time duration. Initially, 

at 5 seconds, the proposed method achieves an 80% 

detection rate, which is 6.4% higher than the HWOA-

CSO and 13.5% higher than the AES. At 30 seconds, 

the scheme shows a significant difference with a 

detection rate of 98.6%, which is 7.2% better than 

HWOA-CSO and 15.1% better than AES. This model 

shows that the scheme not only provides good initial 

performance but also shows significant improvement 

over time, making it the best way to protect against 

theft and fraud. 

5.2.4. Time(s) vs. precision (%) 

This metric indicates the accuracy of positive 

predictions by each method over the time. The 

following equation calculate this metric,  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
× 100    (12) 

 

Fig. 6 shows the precision of the proposed 

method starts at 80% at 5 seconds and steadily 

increases to 97% at 30 seconds. Also, the proposed 

method improves its ability to avoid false positives 

over time, likely due to better classification or 

decision-making at later stages. The precision of 

HWOA-CSO begins at 73% at 5 seconds and rises to 

91% by 30 seconds. While showing consistent  

 
Figure. 5 Time(s) vs. Detection rate (%) 

 

 
Figure. 6 Time(s) vs. Precision (%) 

 

improvement, the precision of HWOA-CSO lags 

behind the Proposed Method at all time intervals. 

AES starting at 66.5% at 5 seconds, it reaches 83% 

by 30 seconds. AES demonstrates the slowest 

improvement in precision over time, with a 

noticeable gap compared to the proposed method. 

5.2.5. Time(s) vs. recall (%) 

This metric measures the ability of the model to 

correctly identify all the positive samples also known 

as sensitivity or true positive rate as the following 

equation, 

 

 
Figure. 7 Time(s) vs Recall (%) 
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Figure. 8 Time(s) vs F1-score (%) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
× 100         (13) 

 

Fig. 7 shows the recall of the proposed method 

starts at 80% at 5 seconds and increases steadily to 

98.6% at 30 seconds. This indicates that the proposed 

method is highly effective in identifying true 

positives over time, showing a steady improvement 

as processing time increases. HWOA-CSO begins at 

73.6% at 5 seconds and rises to 91.4% by 30 seconds. 

While it improves consistently, it remains behind the 

proposed method throughout all time intervals, 

reflecting a less effective ability to capture all true 

positives. AES starts at 66.5% at 5 seconds and 

reaches 83.5% at 30 seconds. The AES method 

demonstrates the lowest recall performance, with a 

relatively slower rate of improvement over time 

compared to the other methods. 

5.2.6. Time(s) vs. F1-score (%) 

This metric combines precision and recall into a 

single metric to show the balance of accuracy and 

sensitivity. The F1-score is the harmonic mean of 

precision and recall, offering a single metric that 

balances both. The following equation show the 

evaluation of this metric, 

 

𝐹1 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
× 100                                 (14) 

 

Fig. 8 shows the F1-score of the proposed method 

which starts at 80% at 5 seconds and increases 

steadily to 95.15% by 30 seconds. This indicates that 

the proposed method achieves a balanced and 

consistently improving performance in terms of both 

precision and recall over time. The proposed method 

maintains the highest F1-score across all time 

intervals, highlighting its effectiveness in minimizing 

both false positives and false negatives. While 

HWOA-CSO begins at 73.30% at 5 seconds and 

reaches 88.05% at 30 seconds.  

 
Figure. 9 ROC Curves 

 

This shows steady improvement over time but 

consistently lags behind the proposed method, 

reflecting slightly lower precision and recall balance. 

AES starts at 66.50% at 5 seconds and climbs to 

80.90% by 30 seconds. The AES method 

demonstrates the slowest improvement, reflecting its 

relatively poorer performance in balancing precision 

and recall compared to the other methods. 

5.2.7. ROC-AUC 

ROC-AUC stands for receiver operating 

characteristic - area under the curve. It is a 

performance metric used to evaluate the 

classification ability of a model, especially for binary 

classification tasks. The resulted values of ROC-

AUC are as follows, the proposed is 0.3123, HWOA-

CSO is 0.3280 and AES is 0.3763 provide insight into 

the performance of each method in terms of the trade-

off between true positive rate and false positive rate. 

Fig. 9 shows the ROC curve for the proposed 

method is below the diagonal reference line (y=x), 

indicating the performance across thresholds. The 

AUC value (0.3123) suggests that the model fights to 

decide between positive and negative classes 

effectively. Despite high recall and F1-score at 

specific thresholds, the curve indicates varying 

performance across the entire range of thresholds. 

5.3 Research summary 

First, we implement QKD with a ROS for secure 

authentication, aiming to reduce fluctuations within 

the microgrid. Following this, we employ EGB 

combined with the COA to be (EGB-COA) and 

GANs for accurate classification of data. Finally, we 

deploy SMs equipped with privacy functionality 

trade-off strategies to efficiently monitor and 

mitigate intrusions in the microgrids, ensuring both 

security and data privacy. Finally, we plot the graph 

for the following metrics: Time(s) vs. 
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(Authentication rate (%), vs. Accuracy (%), vs. 

Detection rate (%), vs. Precision (%), vs. Recall (%), 

vs. F1-score (%)) and ROC-AUC. 

6. Conclusion  

Our research aims to develop a robust electricity 

theft and fraud detection system using machine 

learning techniques. Traditional fraud detection 

techniques like management control and location 

verification are no longer adequate as the smart grid 

advancements. To overcome this issue, we propose 

using QKD with a continuous optimization strategy 

to reduce the overhead and reduce the efficiency 

changes. The integration of Extreme Gradient 

Boosting (EGB) and Coati Optimization Algorithm 

(COA) algorithm are used for accurate classification. 

Finally, to increase the customer’s trust in the system 

and privacy, a balance should be established between 

business and privacy in the monitoring activities in 

the smart plan using a secret trading strategy 

broadcast by smart meters. The proposed model was 

verified with the help of the simulation tool Matlab-

R2023a\Simulink. Additionally, a comparison study 

with the existing approaches was done to evaluate the 

current methodology. Numerical analysis is used to 

assess an approach’s performance. Based on this 

study, it is feasible to show that our method 

outperforms all other presently available 

methodologies across all measures and highlight how 

well the suggested smart grid power theft detection 

system works. When compared to current methods, 

the system that incorporates machine learning 

approaches performs better on several parameters. In 

particular, our findings show a high authentication 

rate (98%), accuracy (99%), detection rate (98.6%), 

precision (97%), recall (98.6%), F1-score (95.15%), 

and AUC. In the future, as smart grids develop, the 

main focus will be on improving the suggested 

detection models to handle increasingly sophisticated 

fraudulent activities. To increase accuracy, real-time 

data analytics and deep learning will be investigated. 

We’ll keep improving the privacy-preserving 

methods used in smart meters and look at the 

possibility of using blockchain technology to secure 

data. The main contributions of this paper are: 

Effective Authentication: To provide secure 

communication while reducing computing cost, 

Quantum Key Distribution (QKD) with a Rolling 

Optimization Strategy (ROS) was introduced. 

High-Accuracy Classification: Extreme 

Gradient Boosting (EGB) in conjunction with the 

Coati Optimization Algorithm (COA) for 

classification optimization, together with Generative 

Adversarial Networks (GANs) to reduce false alarms, 

allowing for the achievement of high accuracy in the 

detection of energy theft. 

Enhancement of Privacy: Smart meters with 

privacy-functionality trade-off solutions that balance 

privacy with system monitoring capabilities have 

increased consumer confidence. 

Conflicts of Interest 

The authors declare no conflict of interest. 

Author Contributions  

Ihsan H. Abdulqadder was responsible for 

gathering needed the data, conceptual and 

methodology conducting the formal analysis, 

implementation the code, validation and writing the 

first draft of the article. Israa T. Aziz handled code 

validation, editing and supervising. Visualization 

project and supervision were done by Firas M. F. 

Flaih. 

References 

[1] S. O. Tehrani, A. Shahrestani, and M. H. 

Yaghmaee, “Online electricity theft detection 

framework for large-scale smart grid data”, 

Electr. Power Syst. Res., Vol. 208, p. 107895, 

2022.  

[2] M. K. Hasan, A. A. Habib, S. Islam, M. Balfaqih, 

K. M. Alfawaz, and D. Singh, “Smart grid 

communication networks for electric vehicles 

empowering distributed energy generation: 

Constraints, challenges, and recommendations”, 

Energies, Vol. 16, No. 3, p. 1140, 2023.  

[3] M. J. Abdulaal, M. I. Ibrahem, M. M. Mahmoud, 

J. Khalid, A. J. Aljohani, A. H. Milyani, and A. 

M. Abusorrah, “Real-time detection of false 

readings in smart grid AMI using deep and 

ensemble learning”, IEEE Access, Vol. 10, pp. 

47541-47556, 2022. 

[4] E. J. Salazar, M. E. Samper, and H. D. Patiño, 

“Dynamic customer demand management: A 

reinforcement learning model based on real-

time pricing and incentives”, Renew. Energy 

Focus, Vol. 46, pp. 39-56, 2023. 

[5] M. Shaaban, U. Tariq, M. Ismail, N. A. 

Almadani, and M. Mokhtar, “Data-driven 

detection of electricity theft cyberattacks in PV 

generation”, IEEE Syst. J., Vol. 16, No. 2, pp. 

3349-3359, 2021.  

[6] H. Jain, M. Kumar, and A. M. Joshi, “Intelligent 

energy cyber-physical systems (iECPS) for 

reliable smart grid against energy theft and false 

data injection”, Electr. Eng., Vol. 104, No. 1, pp. 

331-346, 2022.  



Received:  October 7, 2024.     Revised: December 10, 2024.                                                                                        1032 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.73 

 

[7] Y. Yang, R. Song, Y. Xue, P. Zhang, Y. Xu, J. 

Kang, and H. Zhao, “A detection method for 

group fixed ratio electricity thieves based on 

correlation analysis of non-technical loss”, 

IEEE Access, Vol. 10, pp. 5608-5619, 2022.  

[8] R. K. Ahir and B. Chakraborty, “Pattern-based 

and context-aware electricity theft detection in 

smart grid”, Sustain. Energy Grids Netw., Vol. 

32, p. 100833, 2022.  

[9] I. T. Aziz, I. H. Abdulqadder, S. M. Alturfi, R. 

M. Imran, and F. M. Flaih, “A secured and 

authenticated state estimation approach to 

protect measurements in smart grids”, In: Proc. 

of Int. Conf. Innov. Intell. Informat., Comput. 

Technol., pp. 1-5, 2020.  

[10] S. K. Gunturi and D. Sarkar, “Ensemble 

machine learning models for the detection of 

energy theft”, Electr. Power Syst. Res., Vol. 192, 

p. 106904, 2021. 

[11] E. Stracqualursi, A. Rosato, G. Di Lorenzo, M. 

Panella, and R. Araneo, “Systematic review of 

energy theft practices and autonomous detection 

through artificial intelligence methods”, Renew. 

Sustain. Energy Rev., Vol. 184, p. 113544, 2023. 

[12] L. Cui, L. Guo, L. Gao, B. Cai, Y. Qu, Y. Zhou, 

and S. Yu, “A covert electricity-theft 

cyberattack against machine learning-based 

detection models”, IEEE Trans. Ind. Informat., 

Vol. 18, No. 11, pp. 7824-7833, 2021. 

[13] M. Emadaleslami, M. R. Haghifam, and M. 

Zangiabadi, “A two-stage approach to 

electricity theft detection in AMI using deep 

learning”, Int. J. Electr. Power Energy Syst., Vol. 

150, p. 109088, 2023.  

[14] R. Sharma, A. M. Joshi, C. Sahu, and S. J. 

Nanda, “Detection of false data injection in 

smart grid using PCA-based unsupervised 

learning”, Electr. Eng., Vol. 105, No. 4, pp. 

2383-2396, 2023. 

[15] P. Massaferro, J. M. Di Martino, and A. 

Fernández, “Fraud detection on power grids 

while transitioning to smart meters by 

leveraging multi-resolution consumption data”, 

IEEE Trans. Smart Grid, Vol. 13, No. 3, pp. 

2381-2389, 2022. 

[16]  Chaithra, L. G. Malleshappa, and J. 

Sreenivasaiah, “Classification of web pages 

using the machine learning algorithms with web 

page recommendations”, Int. J. Intell. Eng. Syst., 

Vol. 15, No. 4, 2022, doi: 

10.22266/ijies2022.0831.57. 

[17] I. O. Lopes, D. Zou, I. H. Abdulqadder, S. Akbar, 

Z. Li, F. Ruambo, and W. Pereira, “Network 

intrusion detection based on the temporal 

convolutional model”, Comput. Secur., Vol. 135, 

p. 103465, 2023. 

[18] I. H. Abdulqadder, I. T. Aziz, and D. Zou, “DT-

Block: Adaptive vertical federated 

reinforcement learning scheme for secure and 

efficient communication in 6G”, Comput. Netw., 

Vol. 254, p. 110841, 2024.  

[19] N. Khan, M. Amir Raza, D. Ara, S. Mirsaeidi, A. 

Ali, G. Abbas, and M. Bouzguenda, “A deep 

learning technique AlexNet to detect electricity 

theft in smart grids”, Front. Energy Res., Vol. 11, 

p. 1287413, 2023.  

[20] A. Nawaz, T. Ali, G. Mustafa, S. U. Rehman, 

and M. R. Rashid, “A novel technique for 

detecting electricity theft in secure smart grids 

using CNN and XG-boost”, Intell. Syst. Appl., 

Vol. 17, p. 200168, 2023.  

[21] A. Takiddin, M. Ismail, and E. Serpedin, 

“Robust data-driven detection of electricity theft 

adversarial evasion attacks in smart grids”, 

IEEE Trans. Smart Grid, Vol. 14, No. 1, pp. 663-

676, 2022.  

[22] A. Banga, R. Ahuja, and S. C. Sharma, 

“Accurate detection of electricity theft using 

classification algorithms and Internet of Things 

in smart grid”, Arab. J. Sci. Eng., Vol. 47, No. 8, 

pp. 9583-9599, 2022.  

[23] N. Javaid, A. Almogren, M. Adil, M. U. Javed, 

and M. Zuair, “RFE-based feature selection and 

KNNOR-based data balancing for electricity 

theft detection using BiLSTM-LogitBoost 

stacking ensemble model”, IEEE Access, Vol. 

10, pp. 112948-112963, 2022.  

[24] R. Nayak and C. D. Jaidhar, “Employing feature 

extraction, feature selection, and machine 

learning to classify electricity consumption as 

normal or electricity theft”, SN Comput. Sci., 

Vol. 4, No. 5, p. 483, 2023.  

[25] Y. Sun, X. Sun, T. Hu, and L. Zhu, “Smart grid 

theft detection based on hybrid multi-time scale 

neural network”, Appl. Sci., Vol. 13, No. 9, p. 

5710, 2023.  

[26] A. T. El-Toukhy et al., “Electricity theft 

detection using deep reinforcement learning in 

smart power grids”, IEEE Access, Vol. 11, pp. 

59558-59574, 2023.  

[27] H. Iftikhar et al., “Electricity theft detection in 

smart grid using machine learning”, Front. 

Energy Res., Vol. 12, p. 1383090, 2024.  

[28] F. Shehzad, N. Javaid, S. Aslam, and M. U. 

Javed, “Electricity theft detection using big data 

and genetic algorithm in electric power 

systems”, Electr. Power Syst. Res., Vol. 209, p. 

107975, 2022.  



Received:  October 7, 2024.     Revised: December 10, 2024.                                                                                        1033 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.73 

 

[29] A. I. Kawoosa, D. Prashar, M. Faheem, N. Jha, 

and A. A. Khan, “Using machine learning 

ensemble method for detection of energy theft 

in smart meters”, IET Gener. Transm. Distrib., 

Vol. 17, No. 21, pp. 4794-4809, 2023.  

[30] A. Muzumdar, C. Modi, and C. Vyjayanthi, 

“Designing a blockchain-enabled privacy-

preserving energy theft detection system for 

smart grid neighborhood area network”, Electr. 

Power Syst. Res., Vol. 207, p. 107884, 2022. 


