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Abstract: In the domain of intelligent surveillance for public safety, rapid anomaly detection in crowded environments 

is essential. This study presents an approach to crowd behaviour analysis by measuring crowd energy changes. Image 

pixels are modeled as particles, and optical flow techniques are used to extract velocity vectors and directions. To 

mitigate the noise, occlusions, and lighting challenges of optical flow, the system incorporates pixel motion estimation 

across frames, improving temporal coherence for smoother motion. Image grey entropy and Otsu’s segmentation are 

employed to separate foreground from background, enabling detailed energy distribution analysis. Abnormal crowd 

activity is detected by observing sudden changes in motion intensity. Evaluation on the UMN dataset shows that the 

proposed method achieves an accuracy of 96.87% in anomaly detection, outperforming other conventional techniques. 

These results highlight the improved accuracy and efficiency of the method in detecting anomalous crowd behaviour 

in complex environments. 
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1. Introduction  

Recent advances in computer vision have 

improved the detection, tracking, and interpretation 

of crowd behaviour in surveillance footage. This 

capability is vital for identifying panic and escape 

behaviours during riots, chaotic incidents, natural 

disasters, and violent events. A significant challenge 

in intelligent video surveillance is developing an 

autonomous system that can detect anomalies in 

complex, crowded scenes. 

Analysing crowd behaviour involves two main 

approaches: methods inspired by physical principles 

and machine learning techniques. Machine learning 

methods process and analyse data to extract crowd 

features. For example, A. Al-Dhamari et al. [1] 

proposed abnormal behaviour detection using sparse 

representations through sequential generalization of 

k-means. In contrast, physically inspired methods 

treat crowds as complex systems [2]. There are two 

primary strategies for simulating crowd dynamics. 

The microscopic approach treats the crowd as a 

collection of individuals, tracking each person’s 

movements to infer overall behaviour [3]. This 

approach is particularly useful for smaller groups but 

becomes challenging in dense crowds due to 

occlusions. The macroscopic approach, on the other 

hand, views the crowd as a single entity, interpreting 

each pixel in an image as a particle and modelling 

these particles' collective characteristics [4]. Various 

global analysis techniques have been developed 

based on this perspective. The primary contributions 

of the proposed system are as follows: 

• The approach leverages optical flow, 

specifically incorporating pixel motion 

estimation between frames, to address 

limitations like sensitivity to environmental 

factors. By smoothing motion estimates and 

improving temporal coherence, the method 

achieves robust detection even in noisy or 

occluded environments. 

• Using image grey entropy and Otsu’s 

segmentation, the system effectively 

separates foreground from background, 

allowing for precise energy distribution 

analysis that is critical for tracking movement 
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Figure. 1 The framework of anomaly crowd behavior detection system based on energy level distribution descriptors 

 

 

across frames. 

• For each segmented region, the system 

calculates energy level distribution, 

extracting four key descriptors—uniformity, 

entropy, contrast, and homogeneity—to 

characterize motion patterns within the scene. 

These descriptors offer a comprehensive basis 

for assessing normal versus abnormal activity. 

• Thresholds for these descriptors are derived 

from observed normal behaviour, and any 

instance where all descriptors exceed their 

thresholds is flagged as abnormal, potentially 

indicating crowd disturbances or unusual 

behaviour. 

The remainder of this paper is structured as 

follows: Section 2 describes related works, Section 3 

discusses Optical Flow Extraction and Motion 

Segmentation, Section 4 covers Crowd Energy 

Distribution, Section 5 presents comparative 

experimental analysis, and finally, Section 6 includes 

the conclusion of the paper. 

2. Related works 

Abnormal crowd behaviour detection is vital for 

intelligent surveillance in crowded areas like airports 

and stadiums to prevent safety risks. Real-time 

detection is challenging due to factors like occlusion, 

environmental conditions, and complex crowd 

dynamics. Over the years, various methods, from 

traditional motion detection to advanced machine 

learning, have been developed, each with its strengths 

and limitations in real-world scenarios. 

Aldhamari et al. [1] proposed an abnormal 

behaviour detection method using sparse 

representations with a sequential generalization of 

the k-means algorithm to capture unusual crowd 

dynamics. By employing sparse representation 

techniques, the model effectively reduces data 

complexity, enabling the identification of abnormal 

patterns across varying scenes. This approach 

demonstrates solid performance in detecting outlier 

behaviours while maintaining computational 

efficiency, making it suitable for moderate real-time 

applications. However, the reliance on k-means 

clustering limits the method’s adaptability in highly 

complex or densely populated environments, where 

behaviour patterns are diverse and less distinct. 

Additionally, the sparse representation may struggle 

with scalability in large-scale settings, as it requires 

careful tuning to maintain detection accuracy amidst 

high variability in crowd behaviours. 

Abdullah et al. [5] developed a multi-person 

tracking and crowd behaviour detection system 

utilizing a particles gradient motion descriptor 

combined with an improved entropy-based classifier. 

Their approach effectively captures crowd dynamics 

by leveraging motion gradients to track individuals 
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and identify anomalous behaviours, yielding high 

accuracy across diverse crowd scenarios. This 

method demonstrated robust performance, 

particularly in small to mid-sized groups, where 

motion gradients and entropy measures efficiently 

distinguished normal and abnormal behaviours. 

However, the system’s reliance on particle motion 

descriptors limits its scalability in large, high-density 

crowds, where occlusions and complex interactions 

present tracking challenges. Overall, while the study 

advances multi-person tracking methods, its 

applicability to more extensive, densely populated 

settings remains a limitation for real-world crowd 

surveillance applications. 

Luo et al. [6] introduced a crowd-level abnormal 

behaviour detection framework based on multi-scale 

motion consistency learning, aimed at capturing 

abnormal patterns across varying crowd densities. 

Their approach leverages multi-scale analysis to 

enhance detection accuracy by learning motion 

consistency across diverse regions, effectively 

identifying subtle anomalies within dense crowds. 

This technique demonstrated strong performance in 

both low- and high-density scenarios, showing 

adaptability to different crowd structures. However, 

the model’s multi-scale design increases 

computational load, which can limit its efficiency in 

real-time, large-scale surveillance applications.  

Alafif et al. [7] leveraged generative adversarial 

networks (GANs) to address the complex task of 

detecting abnormal behaviors in massive crowds, 

using Hajj pilgrimage videos as a case study. Their 

approach combines optical flow with a GAN-based 

framework, enhancing the system’s capacity to 

distinguish subtle deviations in crowd behavior 

patterns. This method demonstrated high accuracy on 

benchmark datasets (UMN and UCSD) and achieved 

average detection accuracy on the HAJJ dataset, 

indicating its robustness in diverse, dense crowd 

settings. However, its performance in large-scale, 

occlusion-heavy environments like Hajj remains 

limited, with detection accuracy notably lower 

compared to simpler scenes due to challenges in 

managing distant camera views and extensive 

occlusions. This study contributes to the field by 

advancing GAN-based techniques for real-time 

surveillance but highlights ongoing challenges in 

scalability and accuracy under highly dynamic, large-

scale crowd conditions. 

Fan et al. [8] proposed a real-time abnormal 

behaviour detection system in videos, focusing on 

achieving both high accuracy and efficiency for 

practical applications. Their method utilizes a feature 

extraction approach that combines motion patterns 

and spatial information, enabling effective detection 

of anomalous activities in varied environments. The 

model demonstrated strong real-time performance 

and accuracy, making it suitable for dynamic 

monitoring scenarios. However, the reliance on 

handcrafted features limits the method's adaptability 

to highly complex or crowded scenes where 

behaviour patterns are unpredictable and vary 

significantly. While this study contributes valuable 

insights for responsive abnormal behaviour detection, 

its dependency on fixed feature designs constrains its 

scalability and robustness in more intricate video 

surveillance applications. 

Alafif et al. [9] developed a hybrid classifier 

framework for real-time detection, tracking, and 

recognition of abnormal behaviours in large-scale 

Hajj crowds, integrating spatio-temporal features to 

address the complexities of dense crowd dynamics. 

This approach combines convolutional neural 

networks (CNNs) with traditional classifiers, 

enhancing detection accuracy by leveraging spatial 

and temporal information effectively. The method 

demonstrated robust performance on benchmark 

datasets and real-world Hajj data, showing its 

adaptability in high-density environments. However, 

the model's reliance on multiple classifiers and real-

time processing requirements increases 

computational complexity, potentially limiting 

scalability in extensive surveillance systems. 

Direkoglu [10] introduced an abnormal crowd 

behaviour detection method that combines motion 

information images with convolutional neural 

networks (CNNs) to identify anomalies. By 

converting motion data into image-like 

representations, this approach leverages CNNs’ 

spatial recognition capabilities to accurately detect 

unusual crowd behaviours, achieving competitive 

results across multiple crowd datasets. The model’s 

ability to extract meaningful features from motion 

information enhances detection accuracy and makes 

it adaptable to various crowd scenarios. However, the 

approach relies on hand-crafted motion features, 

which may not fully capture complex crowd 

dynamics. Moreover, the computational cost of 

CNNs poses challenges for real-time applications in 

large-scale surveillance.  

Rajasekaran and Sekar [11] presented an 

abnormal crowd behaviour detection method 

leveraging an optimized Pyramidal Lucas-Kanade 

(PLK) technique to enhance motion tracking 

accuracy in dense crowds. By refining the PLK 

optical flow approach, the model improves detection 

precision, particularly in moderately crowded 

environments where individual motion patterns 

remain distinct. This optimization addresses some 

limitations of traditional optical flow methods, 
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making the technique suitable for real-time 

applications. However, the approach is sensitive to 

noise and occlusions, which can reduce its accuracy 

in real-world environments. Additionally, the 

computational complexity of the pyramidal approach 

can limit its scalability for large-scale, real-time 

surveillance systems. 

3. Optical flow extraction and motion 

segmentation  

The optical flow method is utilized to derive the 

velocity field from a crowd video sequence. This 

study employs the Gunnar-Farneback optical flow 

algorithm, a popular technique for predicting dense 

optical flow fields in image sequences. The 

Farneback optical flow algorithm estimates the 

motion between consecutive frames in a video by 

analysing pixel displacements. It represents each 

frame as a quadratic polynomial, allowing the 

detection of motion in terms of pixel shifts. The 

algorithm computes pixel movement by comparing 

the intensity of neighbouring pixels across frames. 

Each frame is modeled as: 

 

𝑔(𝑥) = 𝑥𝑥𝑇𝐵 + 𝑥𝑎𝑇 + 𝑑                                      (1) 

 

Where, x is the pixel position, B is a matrix 

representing the shape of the intensity variation, and 

a and d are coefficients. The motion is calculated as: 

 

𝑠 = −
1

2
𝐵1

−1(𝑎2 − 𝑎1)                                   (2) 

 

Here, s is the displacement between consecutive 

frames, capturing pixel flow. This dense optical flow 

is then refined to enhance accuracy, making it useful 

for real-time applications like object tracking and 

motion detection. 

In real-time applications like object tracking and 

motion analysis, the Farneback optical flow method 

is renowned for its speed and accuracy in estimating 

dense optical flow fields [12, 13]. To obtain more 

precise motion regions, the system applies temporal 

filtering after using the Farneback method. Fig. 2 

shows the first two consecutive frames of the UMN 

dataset [14] and their corresponding optical flow. 

3.1 Temporal filtering 

In optical flow analysis, averaging serves as a 

straightforward yet powerful temporal filtering 

technique [15, 16] that mitigates noise and improves 

the accuracy of optical flow estimation over time. 

This method is particularly effective in reducing 

high-frequency noise within the optical flow field. 

 
Figure. 2 Farneback Optical Flow of two consecutive 

frames 

 

 

Accordingly, our system utilizes a moving average 

filter, which averages the optical flow vectors across 

a specified number of frames. Considering a 

sequence of N frames (t1, t2,…, tN), that is used to 

compute the filtered optical flow at time ti. The 

filtered optical flow is denoted as follows: 

 

𝐹𝑖𝑙𝑡𝑒𝑟𝑓(𝑥,  𝑦, 𝑡𝑖) = (�̅�, �̅�)                                   (3) 

 

The temporal filter equation can be defined as: 

 

�̅�(𝑥,  𝑦, 𝑡𝑖) =  
1

𝑁
 ∑ 𝑢(𝑥,  𝑦, 𝑡𝑖)𝑁

𝑗=1                          (4) 

 

�̅�(𝑥,  𝑦, 𝑡𝑖) =  
1

𝑁
 ∑ 𝑣(𝑥,  𝑦, 𝑡𝑖)𝑁

𝑗=1                           (5) 

 

Here, N denotes the number of frames used for 

filtering. The filtered flow vectors (ū, ῡ) at a specific 

pixel (x, y) and time ti are obtained by averaging the 

flow vectors over the N frames. The choice of N 

depends on the video sequence characteristics and the 

desired balance between preserving motion details 

and achieving effective smoothing. 

3.2 Motion region extraction 

Motion segmentation is performed using flow 

field visualization with HSV colour mapping to 

distinguish moving targets by their velocity vectors, 

enhancing motion region visualization through 

colour assignment based on speed and direction. 

Motion region extraction involves evaluating 

uncertainty and determining the optimal threshold 

through pixel value distribution analysis. Our system 

integrates image gray entropy with the Otsu 

segmentation method for accurate foreground 

extraction [17, 18]. This approach ensures precise 

isolation of moving objects from the background, 

significantly improving motion segmentation 
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accuracy for applications in surveillance, object 

tracking, and video analysis. 

3.2.1. Uncertainty estimation 

Estimating uncertainty is crucial for 

understanding the confidence levels of a model’s 

predictions, leading to more informed decision-

making. In crowd motion analysis, the gray texture of 

the image highlights intensity distribution differences 

between motion and background regions. Entropy, a 

statistical measure of randomness, characterizes the 

texture of the input image. Higher entropy values 

denote more disordered intensity distributions. 

The gray entropy [19], defined as: 

 

𝐸(𝑦) = − ∑ 𝑝(𝑦𝑖)𝑙𝑜𝑔2𝑝(𝑦𝑖)𝐿−1
𝑖=0   (6) 

 

is used to describe this texture information. L 

represents the total number of distinct gray levels, 

and p (yi) denotes the probability distribution.  

In videos with moving crowds, motion regions 

have low entropy values (indicating structured 

patterns), while background regions have high 

entropy values (indicating greater disorder). This 

contrast in entropy values is critical for accurate 

segmentation and analysis of crowd movements. By 

utilizing entropy measurements, the system 

effectively distinguishes dynamic areas from static 

ones within video frames, enhancing detection 

accuracy and robustness in applications such as 

surveillance and video analysis. 

3.2.2. Otsu segmentation 

The Otsu method for image thresholding is a 

clustering-based approach designed to work 

effectively with bimodal histograms. It aims to 

minimize within-class variance while maximizing 

between-class variance. 

At grey-level t, the image is divided into two 

classes: C0 and C1, or C0 = {0,1,2,……..,t} and C1 

= {t+1,t+2,……,L-1}. L is the image's total number 

of gray levels. 

The class probability estimates w0 (t) and w1 (t) 

are calculated using the subsequent formulas: 

 

𝑤0(𝑡) =  ∑ 𝑝(𝑖)𝑡−1
𝑖=0                                             (7) 

 

𝑤1(𝑡)  = ∑ 𝑝(𝑖)𝐿−1
𝑖=𝑡                                            (8) 

 

Where the probability that gray level i will occurs in 

the image is denoted by p (i). 

To optimize the threshold, the method focuses on 

maximizing the inter-class variance, which is 

equivalent to minimizing the intra-class variance. 

The between-class variance δb
2 (t) is defined as: 

 

𝛿𝑏
2(𝑡) =   𝛿2 − 𝛿𝑤

2(𝑡)                                            (9) 

 

=  𝑤0 (𝜇0 − 𝜇𝑇)2 + 𝑤1 (𝜇1 − 𝜇𝑇)2                 (10) 

 

= 𝑤0(𝑡)𝑤1(𝑡) [𝜇0(𝑡) − 𝜇1(𝑡)]2                        (11) 

 

Which is expressed in terms of class probabilities w 

and class mean μ, where the class means μ0 (t), μ1 (t), 

and μT are: 

 

𝜇0(𝑡) = 
∑ 𝑖 𝑝(𝑖)𝑡−1

𝑖=0

𝑤0(𝑡)
                                                (12) 

 

𝜇1(𝑡) = 
∑ 𝑖 𝑝(𝑖)𝐿−1

𝑖=𝑡

𝑤1(𝑡)
                                              (13) 

 

𝜇𝑇   = ∑ 𝑖 𝑝(𝑖)𝐿−1
𝑖=0                                                       (14) 

 

It is possible to compute the class probabilities and 

means iteratively. By maximizing the between-class 

varianceδb
2 (t), one can obtain the optimal threshold 

T=ArgMax((δb)
2 (t)). Threshold T allows for the 

segmentation of the motion and background zones. 

The input image Iin (m,n) can be segmented from the 

output binary image Iout (m,n) in the manner described 

below: 

 

𝐼𝑜𝑢𝑡(𝑚, 𝑛) = {
1 𝑖𝑓 𝐼𝑖𝑛(𝑚, 𝑛) ≥ 𝑇

0 𝑖𝑓 𝐼𝑖𝑛(𝑚, 𝑛) < 𝑇
                     (15) 

 

4. Crowd energy distribution  

The quantitative assessment of crowd energy 

distribution reveals the energy levels of particles 

within the motion. This distribution is characterized 

using a co-occurrence matrix, which captures the 

spatial relationships between energy levels. The 

descriptors derived from this matrix are then utilized 

to accurately describe and analyze the crowd state, 

aiding in the detection of abnormal behaviours. 

4.1 Particle energy model 

The energy resulting from the movement of 

particles is constructed based on particle velocity. 

The energy of the mth frame optical flow with the 

coordinate of (i, j) is defined as the following 

formula: 

 

𝐸(𝑛) =  ∑ ∑
1

2
𝑐𝑖,𝑗(𝑚)𝑢𝑣𝑖,𝑗

2(𝑚)𝐻
𝑗=1

𝑊
𝑖=1            (16) 
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E(n) is the energy of the optical flow in the motion 

region. W and H indicate the width and height of the 

motion area. The velocity of mth frame image pixels 

pix (i, j) is represented by the parameter uvi,j (m), and 

the coefficient ci,j (m) is obtained from the motion 

region of the current frame. The velocity of each pixel 

in the motion area is calculated by the following 

formula: 

 

𝑢𝑣𝑖,𝑗 (m) = √u𝑖,𝑗
2 + v𝑖,𝑗

2                      (17) 

 

4.2 Energy-level co-occurrence matrix 

The Grey-Level Co-occurrence Matrix (GLCM), 

as outlined in [20], is a prevalent method for 

analyzing the distribution of grey values in an image. 

To compute GLCM, one must measure how often a 

pixel with intensity value i appears in a specific 

spatial relationship with a pixel of value j. Each 

element (i, j) in the GLCM represents the cumulative 

frequency of pixels with value i in relation to pixels 

with value j within the image. The size of matrix is 

based on the number of grey levels in the image, and 

typically, GLCM scales image intensity values down 

to eight levels. 

This method generates a GLCM with a specific 

spatial relationship, using two horizontally adjacent 

pixels. However, a single GLCM cannot capture all 

textural characteristics, such as vertical textures. 

Therefore, multiple GLCMs with various offsets are 

needed to account for pixel relationships in different 

directions and distances. By defining an array of 

offsets in four directions (two diagonals, horizontal, 

and vertical) and four distances, the system produces 

16 GLCMs per image, describing the distribution of 

energy levels and forming the energy-level co-

occurrence matrix. 

Consider an image of f with N potential energy 

levels, and let Q define the relative position of two 

pixels. The matrix G contains elements gij, each 

representing the frequency of pixel pairs with energy 

levels li and lj at the offset Q, where 1 ≤ i, j ≤ N. This 

matrix G is the energy-level co-occurrence matrix. 

By examining G with an appropriate position 

operator, one can identify the distribution of energy 

levels. A set of useful descriptors for characterizing 

the contents of G are listed below: 

Uniformity: A uniformity metric inside the 

interval [0, 1]. For a constant energy-level, 

uniformity is 1. 

 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 =  ∑ ∑ 𝑝𝑖𝑗
2𝐾

𝑗=1
𝐾
𝑖=1                        (18) 

 

Entropy: Calculates how random each element of G 

is. 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ ∑ 𝑝𝑖𝑗  𝑙𝑜𝑔2𝑝𝑖𝑗
𝐾
𝑗=1

𝐾
𝑖=1                 (19) 

 

Contrast: The energy-level contrast between a 

particle and its neighbour through the whole image. 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ ∑ (𝑖 − 𝑗)2𝐾
𝑗=1

𝐾
𝑖=1 𝑝𝑖𝑗                   (20) 

 

Homogeneity: measures the similarity of intensity 

values in a local neighbourhood within an image. It 

quantifies how uniform or consistent the pixel 

intensities are within a region. 

 

𝐻𝑜𝑚𝑜𝑡𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑ ∑
𝑝𝑖𝑗

1+|𝑖−𝑗|
𝐾
𝑗=1

𝐾
𝑖=1                    (21) 

 

Where, K is the row or column of the square matrix 

G, and pij is the estimation of the probability for a pair 

of points satisfying Q, which will have values (li,lj) . 

It is defined as follows: 

 

𝑝𝑖𝑗 =  
𝑔𝑖𝑗

𝑛𝑢𝑚
                                                         (22) 

 

Where, num is the sum of the elements of G. The sum 

of these probability is one, and they fall between 0 

and 1. The system uses four position operators with a 

distance of 1 and angles of 0, 45, 90, and 135 degrees 

to generate four energy-level co-occurrence matrices 

and calculate four descriptors for each image.  

5. Experiment and discussion  

This section presents the experimental results on 

abnormal crowd behaviour using the University of 

Minnesota (UMN) benchmark dataset [14]. The 

UMN dataset includes three scenes: a play court 

(scene 1), a museum (scene 2), and a ground (scene 

3). The play court scene contains 2 videos, the 

museum contains 6 videos, and the ground contains 3 

videos, totalling 11 videos. The video properties of 

the UMN dataset are 320x240 resolution, 30 frames 

per second, and 24 bits per pixel. Each sequence 

consists of varying train and test frames. In the UMN 

dataset, the sudden running of people is identified as 

abnormal behaviour as shown in Fig. 3. 

Every video begins with scenes of people walking 

leisurely and ends with people rushing in a panicked 

state, providing a range of unusual test images. The 

proposed method can be applied to disaster 

prevention and safety monitoring. These applications 

guide the method's performance evaluation, 

emphasizing its ability to detect abnormal behaviour 

early. 
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Figure. 3 Normal and Abnormal frames of each scene of 

the UMN dataset 

 

5.1 Threshold computation 

The classification of a crowd as either normal or 

abnormal is based on comparing four specific 

parameters to their predetermined thresholds. 

Consequently, it is crucial to accurately estimate 

these thresholds. To achieve this, the first 300 frames 

from the initial video of each scene are used for 

parameter training. Subsequently, the values for these 

four parameters are computed for each frame in the 

video sequences. Using these computed values, the 

thresholds for each parameter in various scenes are 

determined according to the following formula. 

 
[𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑]𝑃𝑠

=  

𝑎𝑟𝑔 max
𝑖=1…300

[𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑛]𝑖 +  

𝑎𝑟𝑔 min
𝑖=1…300

[
1

(2𝜋)2
∑

(−1)𝑗(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑛)2𝑗+1

𝑗!(2𝑗+1)
∞
𝑗=0 ]

𝑖
   (23) 

 

Where Ps represent the sample video for various 

scenes (s=1, 2, 3), i denote the frame number in the 

video Ps (i =1,2,….,300), and featuren be the value of 

the nth parameter (n=1, 2, 3, 4). To accurately 

estimate the thresholds, the system incorporates small 

Gaussian errors as a margin based on the maximum 

parameter value. Table 1 presents the threshold 

values for four parameters: uniformity, entropy, 

contrast, and homogeneity, across three different 

scenes from the UMN dataset. 

5.2 Experimental results 

The proposed system employs four feature 

descriptors derived from the energy-level co-

occurrence matrix to assess crowd behaviour. To 

evaluate these descriptors, various videos from the 

UMN dataset were analyzed. The findings indicate 

that these descriptors effectively differentiate 

between normal and abnormal crowd behaviour. To 

minimize noise, the system triggers an alarm only if 

the value exceeds its threshold for 10 consecutive 

frames. The system successfully detected these 

anomalies in real time. 

Fig. 4 illustrates the results of anomalous activity 

detection for an outdoor scene (Scene 1) from the 

UMN dataset. Initially, individuals are seen walking 

freely on the grass, but they suddenly start running 

and dispersing in various directions, signaling 

abnormal crowd behavior. The graphs of four feature 

descriptors—uniformity, entropy, contrast, and 

homogeneity—demonstrate their effectiveness in 

identifying this transition from normal to abnormal 

crowd activity. The feature descriptor graphs cross 

their respective thresholds when the abnormal 

behavior occurs, highlighting the variations that 

emerge as the crowd dynamics change and clearly 

delineating periods of normal and abnormal behavior. 

In the detection of unusual behaviour in indoor 

Scene 2 from the UMN dataset, an anomaly is first 

indicated at the 532nd frame when the uniformity 

descriptor drops below its threshold for over 10 

consecutive frames, triggering an alert. The entropy 

descriptor also exceeds its threshold at this point, 

reinforcing the abnormal behaviour detection. 

However, the contrast descriptor does not 

consistently breach its threshold until the 534th frame. 

Consequently, the system officially confirms the 

abnormal state starting from the 534th frame, based 

on uniformity, entropy, and homogeneity 

consistently exceeding their thresholds. 

In the anomalous behaviour detection for outdoor 

Scene 3 from the UMN dataset, an alarm is triggered 

at the 561st frame when the uniformity descriptor 

drops below its threshold for 10 consecutive frames. 

 

 
Table 1. Threshold values of Descriptors for the UMN 

dataset 

Descriptors UMN 

Scene 1 

UMN 

Scene 2 

UMN 

Scene 3 

Uniformity 0.8849949

9 

0.8590841

29 

0.8660367

35 

Entropy 0.7705461

59 

0.9122916

34 

0.8748643

75 

Contrast 0.6255728

26 

0.8416013

51 

0.8369826

14 

Homogeneity 0.9700730

83 

0.9632302

24 

0.9668598

71 
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Figure. 4 Statuses of abnormal behaviour detection in the outdoor scene 1 from the UMN dataset 
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Table 2. Comparison of experimental results for each scene in the UMN dataset 

Methods   Accuracy (%) Precision (%) Recall (%) F-Measure (%) 

FGOFE + SGK 

[1] 

Scene 1 93.910 N/A N/A N/A 

Scene 2 95.330 N/A N/A N/A 

Scene 3 93.667 N/A N/A N/A 

Average 94.302       

PGM + SURF + 

Improved 

Entropy [5] 

Scene 1 87.430 N/A N/A N/A 

Scene 2 83.210 N/A N/A N/A 

Scene 3 90.630 N/A N/A N/A 

Average 86.060       

CNN + RFs [9]  Scene 1 88.850 99.340 87.350 92.960 

Scene 2 81.070 99.060 76.230 86.160 

Scene 3 93.330 99.400 93.320 96.260 

Average 87.750 99.267 85.633 91.793 

OPLKTs [11] Scene 1 92.500 97.414 90.400 93.776 

Scene 2 87.500 94.643 84.800 89.452 

Scene 3 95.000 95.276 96.800 96.032 

Average 91.667 95.778 90.667 93.087 

Proposed 

Method 

Scene 1 96.750 97.510 92.380 93.920 

Scene 2 96.050 94.110 92.220 94.630 

Scene 3 98.600 97.700 95.960 96.330 

Average 96.870 96.440 93.520 94.960 

 

 

Although the uniformity dips at earlier frames, they 

do not sustain a consistent breach. The entropy 

descriptor surpasses its threshold at the 562nd frame, 

while the contrast descriptor consistently exceeds its 

threshold starting from the 558th frame. The 

homogeneity descriptor signals an anomaly at the 

564th frame due to sustained values below the 

threshold. In summary, the system confirms an 

abnormal state when descriptors consistently breach 

thresholds over 10 consecutive frames, highlighting 

effective detection by uniformity, entropy, contrast, 

and homogeneity. 

5.3 Comparison and analysis 

In this section, the performance of the proposed 

method is compared with established approaches 

such as foreground optical flow energy (FGOFE) 

with sequential generalization of k-means (SGK) [1], 

particles gradient motion (PGM) with speeded up 

robust features (SURF) and improved entropy [5], 

CNN with random forests (RFs) [9], and optimized 

pyramidal Lucas-Kanade techniques (OPLKTs) [11]  

based on evaluation metrics such as Accuracy, 

Precision, Recall, and F-Measure. 

Table 2 presents the comparative experimental 

results of different methods across all scenes of the 

UMN dataset, using metrics such as Accuracy, 

Precision, Recall, and F-Measure. 

The proposed method outperforms all others, 

achieving the highest Accuracy (96.87%) and F-

Measure (94.96%), indicating superior detection of 

anomalies. It also shows a strong balance between 

Precision (96.44%) and Recall (93.52%), reflecting 

its robustness in identifying abnormal crowd 

behaviour. Unlike CNN + RFs, which suffers from an 

imbalance between high precision and lower recall, 

the proposed method maintains a balanced and 

superior performance across all metrics. Furthermore, 

the robustness of the proposed approach is evident 

across different scenes, adapting well to complex 

crowd dynamics, whereas competing methods like 

FGOFE + SGK and PGM + SURF + Improved 

Entropy show significant performance drops. These 

results confirm that the proposed enhancements in 

motion estimation and feature extraction techniques 

effectively address the limitations of existing 

methods and provide a reliable solution for abnormal 

crowd behaviour detection. Figs. 5 and 6 show the 

comparison chart of the proposed method and the 

state-of-the-art methods. 

In this work, enhanced pixel motion estimation 

through average temporal filtering significantly 

improved the performance of optical flow for 

abnormal crowd behaviour detection. Without 

filtering, pure optical flow yielded lower 

performance metrics, with accuracy dropping to 

88.17%, precision to 86.26%, recall to 74.36%, and 

F-Measure to 79.89%. In contrast, the proposed 

enhancement resulted in substantially higher values 

across these metrics. This improvement highlights 

the importance of temporal filtering in achieving 

more accurate and reliable motion estimation. 
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Figure. 5 Accuracy Comparison Chart 

 

 
Figure. 6 Performance Comparison Chart 

 
Table 3. AUC (%) comparison results on the UMN 

dataset 

Methods   AUC (%) 

FGOFE + SGK 

[1] 

Scene 1 94.49 

Scene 2 92.11 

Scene 3 94.29 

Average 93.63 

MSMC-Net [6] Scene 1 N/A 

Scene 2 N/A 

Scene 3 N/A 

Average 94.4 ± 0.5 

OF + GAN + U-

Net & Flownet 

[7]  

Scene 1 N/A 

Scene 2 N/A 

Scene 3 N/A 

Average 98.1 

CNN + RFs [9] Scene 1 97 

Scene 2 94.45 

Scene 3 97.38 

Average 96.28 

Proposed 

Method 

Scene 1 98.52 

Scene 2 97.68 

Scene 3 99.89 

Average 98.70 

Table 3 presents the AUC (%) comparison results 

on each scene of the UMN dataset, highlighting the 

performance of the proposed method against existing 

approaches, including FGOFE with SGK [1], Multi-

Scale Motion Consistency Network (MSMC-Net) [6], 

Optical Flow with Generative Adversarial Network 

(OF + GAN) [7], and CNN + RFs [9]. 

5.4 Discussion 

The results of this study demonstrate that the 

proposed method for detecting abnormal crowd 

behaviour offers significant improvements in both 

accuracy and efficiency compared to existing 

techniques. By enhancing optical flow analysis and 

incorporating energy distribution methods, the 

system effectively captures motion dynamics, 

leading to more precise anomaly detection. The 

evaluation, conducted on the UMN dataset, shows 

that our approach not only outperforms traditional 

methods but also achieves a balance between 

computational complexity and detection accuracy. 
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6. Conclusion  

In this paper, an unconventional method for 

detecting abnormal crowd behaviour using optical 

flow and energy-based techniques has been proposed 

and evaluated. The experimental results demonstrate 

that the proposed approach significantly improves 

accuracy, precision, recall, and F-Measure across 

multiple scenes of the UMN dataset, outperforming 

existing methods such as FGOFE with SGK, PGM + 

SURF with Improved Entropy, CNN with RFs, and 

OPLKTs. Specifically, the method achieved an 

overall accuracy of 96.87%, showing notable 

performance in both static and dynamic crowd 

scenarios. 

The key contributions of this work include 

enhanced pixel motion estimation to address the 

limitations of optical flow, as well as the use of image 

grey entropy for effective background and 

foreground separation. These innovations have 

proven to be highly effective in improving anomaly 

detection in complex and crowded environments. 

Despite its success, future research could focus on 

further refining the method for more diverse and 

highly dynamic scenes, as well as reducing 

computational complexity to facilitate real-time 

implementation in large-scale surveillance systems. 

The results of this study provide a promising step 

towards more accurate and efficient crowd behaviour 

analysis in public safety applications. 
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