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Abstract: Nowadays the efficiency of solar energy generation is compromised by the different kinds of solar defects 

occurred due to regular operations or environmental conditions. Such defects can be visualized by electroluminescence 

(EL) images. Recently various techniques introduced which are based on image processing and machine learning 

functions using the EL images. The conventional machine learning methods are semi-automatic which needs the hand-

crafted features extraction. In this paper, the automatic solar defect detection and classification proposed using deep 

learning. The proposed methodology consists of three phases which are Pre-processing, Feature Extraction and 

Reduction, and Classification. Convolution Neural Network (CNN) based features extraction and reduction, and Long-

Short-Term-Memory (LSTM) for the classification of solar defects are used. In the pre-processing phase, the distortion 

correction algorithm introduced to remove the distortions using the special kind of Gaussian filtering and improve the 

contrast. The distortion correction helps to estimate the more robust and reliable features during the CNN which deliver 

the improved accuracy of detection. This paper enhances the existing CNN-based feature extraction process by 

incorporating Wavelet Transform (WT) for improved feature representation and applying Principal Component 

Analysis (PCA) for feature reduction. This optimization reduces the high-dimensional feature vectors into compact, 

unique, and smaller-sized representations, enabling more efficient and accurate defect detection. The proposed model 

in this paper, called D-CNN-WT-P-LSTM, is simulated and evaluated with recent deep learning and conventional 

machine learning methods. The proposed model, D-CNN-WT-P-LSTM, outperforms existing methods, achieving 

accuracy improvements of 14% and 20% for 2-class and 13% and 11% for 4-class compared to DCNN and CNN 

models, respectively. 

Keywords: Convolution neural network, Deep learning, Electroluminescence, Features reduction, Defect detection, 

Solar cell, Wavelet transform. 

 

 

1. Introduction  

The renewable energies playing the important 

role to address the growing demand of power supply 

along with the environment protection in recent past. 

The solar farms produce the solar energy and hence 

it is rapidly growing technology that offers the eco-

friendly power supply. However, solar energy 

generation efficiency is compromised by the different 

kinds of solar defects occurred due to regular 

operations or environmental conditions. Such 

detected effectively visualized by the EL imagining 

techniques [1]. EL is the electrically determined 

emanation of light from non-crystalline natural 

materials, which was first watched and widely 

concentrated during the 1960s. In 1987, a group in 

Kodak presented a twofold layer natural light-

emanating gadget (OLED), which joined current slim 

film statement procedures with reasonable materials 

and structure to give modestly low predisposition 

voltages and appealing luminance productivity. In 

1990 new directing polymer-based LED appeared [2]. 
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From that point forward, there have been expanding 

interests and research exercises right now and 

colossal advancement have been made in the 

upgrades of shading range, luminance productivity 

and gadget unwavering quality [3]. The developing 

interest is largely roused by the guarantee of the 

utilization of this innovation in level board shows. As 

a result, different OLED shows have been illustrated.  

As talked about before, utilizing solar imaging, it 

is conceivable to envision deserts like splits and inert 

cell zones to assess the cell productivity and the 

general module and sunlight-based park area. As 

machine vision grows quickly, a picture-based 

imperfection discovery technique has been utilized 

for sun powered cells regulation in assembling 

company [4]. Sunlight based cell surface properties 

assessment cannot just improve the creation nature of 

the sun-oriented cell module, yet in addition 

increment the lifetime of the sun powered cell module. 

For the most part, the raw materials used to make 

solar cells are divided into monocrystalline silicon 

and polysilicon. The silicon is monocrystalline sun 

powered cell has a balanced foundation surface [5]. 

To dependably acquire the surface deformity 

attributes, some component extraction strategies are 

powerful when picture force consistency is fulfilled. 

The current surface deformity discovery strategies 

dependent on computer vision can be characterized 

into 4 classifications in terms of surface highlights: 1) 

non-finished surface; 2) rehashed design surface; 3) 

homogeneously finished surface; 4) non-

homogeneously-finished surface. However, using 

these approaches leads to semi-automatic process of 

defect detection with limited scope. The machine 

learning techniques using deep learning gained 

significant attentions due to automatic learning and 

detection functionality. The recently few studies 

proposed for the deep learning based (using CNN 

model) solar defect detection according to different 

configuration of CNN; however the yet complete 

research problems to solve.  

The key challenge of solar cell manufacturing to 

generate the eco-friendly solar energy is multiple and 

indeterminate detection of detects on solar cell 

exterior with presence of uneven texture and a 

complicated background. The existing methods 

focused on directly automated features extraction and 

detection of using CNN based deep learning models 

but does not address the challenge of defects 

detection under the complex and heterogeneous 

texture. Additionally, the current CNN models are 

based on automated features extraction process 

which may not be the reliable by considering the solar 

surface images variations and hence it is required to 

optimize the automatic process of features extraction 

using CNN. Additionally, the current techniques 

mainly focused on defects detection, however for 

further analysis purpose it is important to classify the 

detected defect into the type detect as well. In this 

paper we presented a novel framework of automatic 

solar cell detect detection using the optimized deep 

learning model called D-CNN-WT-P-LSTM, which 

consist of contributions such as: 

• Distortion correction of input solar cell 

images and improving the quality of poor cell 

regions to enhance the detection performance 

using various filtering methods. 

• CNN features extraction process improved by 

addition of wavelet transform to estimate the 

more reliable and robust features and further 

select the unique features using the PCA. This 

block is called as CNN-WT-P which is 

designed for automatic features extraction.  

• The LSTM introduced to perform the 

sequential learning and classification.  

The rest of this paper is organized as follows: 

Section 2 provides the review of various related 

works in literature; Section 3 provides the design of 

proposed methodology; Section 4 provides the 

simulation results and evaluation; and finally, Section 

5 provides the conclusion and Future work. 

2. Related works  

Since from last decade, several image processing-

based techniques introduced for solar-cell detect 

detection using semi-automated and automated 

approaches. In [6-15] various techniques based on 

semi-automatic defect detection proposed. The 

authors in [6] propose a thermal imaging-based fault 

detection method for PV systems using the SLIC 

super-pixel strategy. It enhances detection accuracy, 

provides timely alerts, and is adaptable but faces 

challenges with environmental sensitivity, scalability, 

and limited fault types. 

In [7], the authors propose an image-processing 

method to detect broken corners and black edges in 

solar cells, improving quality and reducing defects. 

While efficient and practical for industrial use, it 

faces limitations in scalability, reliance on high-

quality images, and sensitivity to environmental 

factors like lighting. 

In [8], the authors propose a surface defect 

detection algorithm using MobileNet-SSD, a 

lightweight deep learning model for real-time 

applications. It offers efficient and accurate defect 

detection, making it suitable for mobile and resource-

constrained environments. However, it relies on pre-

trained models, struggles with complex defects, and 

is sensitive to environmental factors like lighting. 
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In [9], the authors propose an automated defect 

detection system for silicon solar cells using EL 

imaging and machine learning. While it improves 

production efficiency and reduces manual inspection, 

the method is sensitive to environmental factors, 

relies on high-quality data, and faces scalability 

challenges in high-speed production. 

In [10], the authors present a method for robust 

segmentation of dislocation defects in polysilicon 

wafer images, improving defect detection in complex 

backgrounds. While effective for quality control, the 

method faces challenges with image quality, 

computational complexity, scalability, and 

generalization to other defects or materials. 

In [11], the authors introduce a pseudo-

colorization technique for EL images of multi-

crystalline silicon solar cells to enhance defect 

detection. While it improves defect visibility, the 

method is limited by image quality, may amplify 

noise, and is computationally challenging for large-

scale production. 

In [12], the authors introduce a novel feature 

descriptor for classifying defects in multi-crystalline 

solar cells, improving defect detection and quality 

control. However, it faces challenges with high-

quality image requirements, feature extraction 

complexity, scalability for large-scale production, 

and adaptation to new defect types. 

In [13], the authors explore the use of machine 

learning (ML) to optimize solar cell design and 

fabrication, improving efficiency and reducing costs. 

While promising, the method faces challenges with 

large datasets, training complexity, model 

transparency, adaptation to new materials, and 

integration into existing manufacturing processes. 

In [14], the authors propose a weakly supervised 

segmentation method for detecting cracks in solar 

cells using a normalized Lp norm. This approach 

improves detection accuracy without requiring pixel-

level annotations, but it depends on high-quality 

images, may struggle with background variations, 

and has challenges in generalizing to different defect 

types or environments. 

In [15], the authors propose a machine learning 

method to classify defects in EL images of 

photovoltaic panels, improving defect detection and 

quality control. However, the method relies on high-

quality images, requires extensive annotated data, 

and may struggle with generalization, interpretability, 

and background variations. 

As the progressive advantages of deep learning 

technology, recently deep learning based automated 

solar cell defect detection strategies designed in [16–

25]. This method discusses various approaches to 

identifying and detecting surface deformities and 

defects in solar cells using deep learning techniques. 

The methods span several research studies and 

include the following highlights: 

1. Deep Belief Networks (DBNs): Used to 

initialize network weights by training on 

sample features, enabling a foundation for 

detecting surface deformities. 

2. Deep Learning and Neural Networks: Various 

studies proposed using CNNs for fully 

automated defect classification from EL 

images, including CNNs with specific 

architectures, such as GoogleNet and 

lightweight CNNs, tailored for high accuracy 

and efficiency. Neural algorithms and multi-

spectral CNNs were employed to adjust 

system parameters for improved defect 

mapping and classification. 

 

 
Figure. 1 Proposed automatic deep learning-based solar cell defect system 
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3. Image Processing and Classification 

Pipelines: Techniques involve extracting 

individual cells from module images, 

analyzing light spectrum features, and 

applying pre-trained networks for defect 

identification. 

4. Performance Improvements and Hardware 

Considerations: Approaches range from 

hardware-efficient Support Vector Machines 

(SVMs) to resource-intensive CNNs that 

leverage GPUs for enhanced performance. 

5. Specialized Applications: A few methods 

focus on specific use cases, such as organic 

photovoltaics (OPVs) and material screening 

using AI-based models to establish structure-

property relationships. 

6. Datasets and Evaluations: Studies utilize 

publicly available datasets or create specific 

datasets to benchmark their models for defect 

detection accuracy. 

These advancements demonstrate the 

effectiveness of integrating machine learning and 

deep learning techniques into photovoltaic defect 

detection but also highlight variations in hardware 

requirements, dataset availability, and model 

complexity. 

In this paper, we proposed scalable and efficient 

deep learning model for solar cell defect detection. 

3. Methodology  

In this part, the design of proposed D-CNN-WT-

P-LSTM model presented. Fig.1 depicts the 

architecture of proposed system.  

As showing in figure.1, the proposed model steps 

are: 

 
1 - Training Phase: 

• Raw Solar Images: Raw images of solar cells 

are collected as input for training the system. 

• Distortion Correction: Training includes 

applying a distortion correction algorithm to 

reduce noise and geometric distortions in the 

images, ensuring accurate feature extraction. 

• Contrast Enhancement: Images undergo 

contrast enhancement to improve visibility of 

defects and enhance the quality of extracted 

features.  

• Automatic Features Learning (CNN-

Layers Features): A CNN automatically 

learns features from the processed images, 

producing a set of feature maps (F1, F2, ..., 

Fn). 

 
2 - Testing Phase: 

• Raw Test Image: A new test image is input 

into the system for defect detection. 

• Distortion Correction: The same distortion 

correction process is applied to the test image 

for consistency with the training phase. 

• CNN Features Extraction: Features are 

extracted from the corrected image using the 

trained CNN. 

• Wavelet Transform: The CNN features are 

transformed using the WT to extract 

additional spatial and frequency information 

(W1, W2, ..., Wn). 

• PCA Reduction: PCA is applied to reduce 

the dimensionality of the transformed features 

into a smaller feature set (P1, P2, ..., Pn), 

making it computationally efficient. 

• LSTM Classification: The reduced features 

are input into LSTM network for sequence-

based classification, identifying defect types. 

 
3 - Output: 

• Softmax Layer: The LSTM output passes 

through a Softmax layer to assign 

probabilities to defect categories. 

• Defect Detection and Classification 

Results: The system outputs the type and 

likelihood of detected defects. 

• Post-Processing: Final results are refined, 

and any additional adjustments are made for 

enhanced accuracy and usability 

3.1 Pre-processing  

The image acquired by the EL-imagine devices 

may suffer from the challenges such as distortions, 

poor contrast, noise and artefacts while collecting the 

solar panel images. Existing techniques directly 

works on such images for defect prediction which 

leads to incorrect or misclassification problems. To 

overcome such challenges, in this paper we presented 

the pre-processing algorithm that overcomes the 

problems of EL images. Algorithm 1 shows the pre-

processing of input solar cell images.  

As showing in Algorithm 1, we first applied the 

Laplacian operator for focus estimation of input 

image. The Laplacian operation on input cell image 

results into focused areas with important intensity 

change. In order to reduce the noise sensitivity, this 

Laplacian approach is commonly employed in image 

smoothing processes. This feature accepts a 2-D 

grayscale image with 𝐼 as input and provides output 
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as the filtered greyscale (2-D). A picture with pixel 

intensity values 𝐼 (𝑝, 𝑞) has the following Laplacian 

𝐿𝐹 (𝑝, 𝑞): 

 

𝐿𝐹 (𝑝, 𝑞) = ∇2  
𝜕2𝐼

𝜕𝑝2 +
𝜕2𝐼

𝜕𝑞2                                          (1) 

 

Where, ∇2  represents the convolutional filter and 𝜕 

sigma value used to construct filter in range between 

0 to 1 only. The p and q stand for the position of 

image pixels. The focused image 𝐼𝐹  returned by the 

LF function. The outcome of LF function passed to 

the flat field correction. 

 

Algorithm 1: Solar Cell Image Pre-processing  

Input 

𝐼: 𝑖𝑛𝑝𝑢𝑡 𝑠𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙 𝑟𝑎𝑤 𝑖𝑚𝑎𝑔𝑒  

𝑇: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑛𝑔 𝑚𝑒𝑑𝑖𝑎𝑛 𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔  

𝜎: 𝑠𝑖𝑔𝑚𝑎 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔  

Output 

𝐼𝑃: 𝑝𝑟𝑒 − 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑠𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙 𝑖𝑚𝑎𝑔𝑒  

1. Select input raw image 𝐼 

2. 𝐼𝐹: Apply the Laplacian operation using Eq. (1) 

3. Flat Field correction function on 𝐼𝐹: 

4. 𝐼𝐹𝐶 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝐼𝐹 , 𝜎) 

5. Artefact removal using median filtering: 

6. 𝐼𝑀 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝐼𝐹𝐶) 

7. 𝐼𝑀: Apply thresholding using Eq. (2) 

8. Adaptive pixel intensity and contrast adjustment  

9. 𝐼𝑃 =  𝑖𝑚𝑎𝑑𝑗𝑢𝑠𝑡(𝐼𝑀) 

10. Return (𝐼𝑃)  

 

The flat field correction performed using the 

Gaussian smoothing with a standard deviation of 

sigma to approximate the shading component of 𝐼𝐹.  

After correcting the flat field, the corrected image 

𝐼𝐹𝐶 may have the artefacts, thus we applied the 

median filtering to remove such artefacts. 

A pure median filter responds to features in the 

image; therefore, we designed the threshold median 

filter to remove the outliers. A median filtered image 

𝐼𝑀 is produced for this purpose. All pixels are set to 

the median filtered value if their relative divergence 

from the provided image is greater than a threshold: 

 

𝐼𝐹𝐶 [𝑇 <
𝐼𝐹𝐶− 𝐼𝑀

𝐼𝑀  ] =  𝐼𝑀                                      (2) 

 

After removing the artefact, we applied the function 

of adaptive contrast enhancement function in which 

the poor contrast pixels automatically adjusted. This 

can be done by using the 𝑖𝑚𝑎𝑑𝑗𝑢𝑠𝑡  function of 

matlab. The final pre-processed image returns as𝐼𝑃.  

3.2 CNN-WT-P-LSTM model  

After pre-processing the input solar cell images, 

the proposed methodology applies a CNN-LSTM-

based model for feature extraction and classification. 

CNN is used for automatic feature learning, while 

LSTM handles the classification. To enhance 

performance, the method incorporates WT to refine 

the high-dimensional features extracted by CNN, 

making them more robust. Additionally, PCA is 

employed for feature reduction, reducing 

computational complexity and improving 

classification accuracy. The combined model, 

referred to as CNN-WT-P-LSTM, integrates robust 

feature extraction (CNN-WT-P) with efficient 

classification (LSTM). 

3.2.1. CNN-WT-P 

On each pre-processed cell image 𝐼𝑃 , the 

automated featured extraction of CNN applied in 

which the image processed through 5 CNN layers to 

estimate the 2-D features vector of size 128 x 128 of 

each image followed by the max pooling operation 

applied on those features. The output of a max-

pooling layer is transmitted together with an additive 

bias through one squashing function that integrates 

the convolution layer and the pooling layer: 

 

 
Figure. 2 Architecture of deep learning framework using 

CNN and LSTM 
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𝑌𝑗
𝑙 =  

𝑡𝑎𝑛ℎ(𝑝𝑜𝑜𝑙𝑖𝑛𝑔𝑚𝑎𝑥(∑ 𝑦𝑗
𝑙−1

𝑖 ∗ 𝑘𝑖𝑗) + 𝑏𝑗
𝑙)           (3) 

 

Where: 

𝑌𝑗
𝑙: the convolutional layer generates the feature 

maps 𝑙, 

𝑦𝑗
𝑙−1 :  the convolutional layer generates the 

feature maps, 𝑙 − 1,  

𝑘𝑖𝑗: are the 𝑖 trained convolution kernels  

𝑏𝑗
𝑙: the additive bias 

𝑝𝑜𝑜𝑙𝑖𝑛𝑔𝑚𝑎𝑥(·): the max-pooling operation  

𝑡𝑎𝑛ℎ( ·): The hyperbolic activation function.  

The 𝑌𝑗
𝑙 is 2-D feature map produced by the CNN 

layers which is assigned to 𝐹  vector. On 𝐹  we 

applied the 2-DWT operation to extract the 

approximation coefficient. The DWT applied on F 

using ‘Haar’ wavelet transform as: 

 

[𝐴𝑥, 𝐷𝑥]  =  2𝐷𝑊𝑇 (𝐹, ‘ℎ𝑎𝑎𝑟’)                         (4) 

 

𝑊 =  𝐴𝑥                                                                 (5) 

 

Where, 𝐴𝑥 𝑎𝑛𝑑 𝐷𝑥  are approximation and detailed 

wavelet coefficients respectively of size 64x64. The 

approximation coefficient used to estimate the final 

feature vector by applying the PCA function: 

 

𝑃 =  𝑚𝑒𝑎𝑛(𝑝𝑐𝑎(𝑊))                                            (6) 

 

3.2.2. LSTM-classification 

The input and output gates, forget gate, peephole 

connections, and memory blocks that are controlled 

by memory cells make up the hidden LSTM units. 

The classification of the input features was carried 

out by the LSTM model using sequential learning, 

fully connected layers, and SOFTMAX operations. 

Using the input feature vector,  𝐹 == 𝑃 . The 

equations below explain the activations of a memory 

block of the hidden LSTM layers. 𝐹 == 𝑃.  

 

𝑖𝑡 = 𝜎(𝐹𝑡  𝑊𝐹𝑖 + ℎ𝑡−1𝑊ℎ𝑖 + 𝑐𝑡−1𝑊𝑐𝑖 + 𝑏𝑖)     (7) 

 

𝑓𝑡 = 𝜎(𝐹𝑡  𝑊𝐹𝑓 + ℎ𝑡−1𝑊ℎ𝑓 + 𝑐𝑡−1𝑊𝑐𝑓 + 𝑏𝑓)  (8) 

 

𝑜𝑡 = 𝜎(𝐹𝑡  𝑊𝐹𝑜 + ℎ𝑡−1𝑊ℎ𝑜 + 𝑐𝑡−1𝑊𝑐𝑜 + 𝑏𝑜)  (9) 

 
𝑐𝑡 =  

𝑓𝑡  ⋄ 𝑐𝑡−1 + 𝑖𝑡 ⋄ tanh(𝐹𝑡𝑊𝐹𝑐 + ℎ𝑡−1𝑊ℎ𝑐 + 𝑏𝑐)      (10) 

 

ℎ𝑡 = 𝑜𝑡 ⋄ 𝑡𝑎𝑛ℎ (𝑐𝑡),                                                   (11) 

 

Where: 

𝐹𝑡is the input to the LSTM block, 

𝑖𝑡 , 𝑓𝑡 , 𝑜𝑡 , 𝑐𝑡 , 𝑎𝑛𝑑 ℎ𝑡  Are the input gate, the forget 

gate, the output gate, the cell state and the output of 

the LSTM block, respectively, at the current time 

step𝑡.  

𝑊𝐹𝑖 , 𝑊𝐹𝑓  𝑊𝐹𝑜  are the corresponding weights 

between the input layer and the input gate, forget gate, 

and output gate.  

𝑊ℎ𝑖 , 𝑊ℎ𝑓  𝑊ℎ𝑜  are respectively, the weights 

between the input gate, forget gate, and output gate 

of the memory block's hidden recurrent layer. 

𝑊𝑐𝑖 , 𝑊𝑐𝑓 , 𝑊𝑐𝑜 are respectively, the weights 

between the cell state and the input gate, forget gate, 

and output gate. 

𝑏𝑖 ,𝑏𝑓  𝑏𝑜  are respectively, the input gate, forget 

gate, and output gate additive biases. 

The sigmoid function 𝜎( ·)  element-wise 

multiplication, and hyperbolic activation function 

𝑡𝑎𝑛ℎ (·) make up the set of activation functions. 

The output features were classified to one of the 

dataset classes by the fully connected layer and 

SoftMax layer.  

3.3 Post-processing  

Once the detection process identifies a solar cell 

image as defective, post-processing operations are 

applied. These operations utilize masking and image 

difference functions to highlight the defective areas 

within the image. Post-processing is only performed 

on defective cell images to visually emphasize the 

specific regions of interest, improving defect 

localization and interpretation. 

4. Experimental analysis  

The experimental results of proposed model 

conducted using the MATLAB tool. The simulation 

results and their evaluations using different existing 

methods presented in this section. The results of 

proposed D-CNN-WT-P-LSTM model compared 

with existing methods such as: 

Conventional Classifiers: ANN and SVM 

Basic Deep Learning Classifier: CNN 

State-of-art recent methods:  Sergiu et.al [24] 

and Deep Convolutional Neural Network 

(DCNN) [25] 

Then compare with different new models as 

illustrated in the result tables.  

 

A. Dataset: To evaluate the performance of 

proposed method and existing methods, we used the 

publicly available solar cell images [26,27]. The solar 

cells were extracted from the EL images two types  
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Table 1. Two class solar cell training dataset 

Parameter No. of images 

Normal Samples 1508 

Defected Samples (0.33, 0.66, 1.0) 1116 

Total Samples 2624 

 
Table 2. Four class solar cell training dataset 

Parameter Number of images 

0 Probability 1508 

0.33 Probability 295 

0.66 Probability 106 

1.0 Probability 715 

Total Samples 2624 

 

such as polycrystalline and monocrystalline PV 

modules [26]. Total 2624 solar images are available 

in dataset with each image of size 300x300.In this 

research we build the training dataset in two different 

labels as showing table 1 and 2. According to this, the 

performances measured for both types of datasets in 

this paper. In this dataset, each image is labelled with 

probability of defect such as 0, 0.33, 0.66, and 1.0. 

All non-zero-defect probability labels are defected 

images. The defect types are: Cracks, Broken Fingers, 

Dislocations, Shunts, Black Spots or Stains, PID 

(Potential-Induced Degradation), Busbar Corrosion, 

and Inactive or Dead Regions 

 

B. Performance Metrics: Dataset is divided into 

the ratio of 80 % training and 20 % in this study, to 

evaluate the performance of proposed model and 

existing models. The performances are measured in 

terms of precision rate, recall rate, specificity rate, 

and accurate rate. The parameters such as True 

Positive (TP), True Negative (TN), False Positive 

(FP), and False Negative (FN) are used to compute 

these results.   

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                    (12) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                      (13) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                        (14) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                    (15) 

 

C. Comparative Results: This section presents 

the comparative results by considering both 2-Class 

and 4-Class datasets using the different methods 

discussed above.  

Table 3 shows the outcome of accuracy, precision, 

and recall rates respectively. Among all those 

methods the proposed model D-CNN-WT-P-LSTM 

achieved the significant performance improvement 

over the conventional classifiers ANN and SVM, 

basic deep learning classifier CNN, and recent deep 

learning based solar cell defect methods such as 

Sergiu et.al and DCNN considering both 2-Class and 

4-Class datasets.  

The conventional classifiers ANN and SVM 

showing the worst accuracy performance among all 

the methods as it mainly based on the hand-crafted 

features. The automated features extraction-based 

technique CNN further shows the better solar cell 

detection results compared to ANN and SVM 

considering the precision rate and accuracy rate 

parameters. The deep learning-based model designed 

in [24] and [25] shows the improvement in solar cell 

defect performances compared to ANN, Modified 

SVM, and CNN models. 

 
Table 3. Results Analysis of different classes 

Type  
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2-Classes 

Accuracy 73.33 81.52 82.10 86.10 90.10 92.00 94.67 94.10 96.00 90.10 98.48 

Precision 76.36 74.55 80.77 82.67 91.45 91.85 96.72 94.13 96.90 93.39 99.20 

Recall 73.68 88.89 79.41 81.46 93.59 96.18 95.68 97.12 95.06 91.20 98.67 

Specificity 72.92 75.60 84.32 89.06 83.52 84.32 92.26 88.20 96.95 88.04 98.00 

4-Classes 

Accuracy 76.00 83.62 85.14 83.05 88.38 93.90 94.29 92.19 96.38 93.90 94.10 

Precision 78.62 78.14 85.90 79.52 89.68 93.82 95.70 94.63 97.74 92.93 95.83 

Recall 76.41 89.71 81.71 78.40 92.12 96.67 95.70 93.24 96.19 96.17 94.99 

Specificity 75.52 78.37 88.17 86.22 82.05 89.23 91.48 90.27 96.67 91.18 92.47 
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Figure. 3 Confusion matrix comparison for 2-Classes 

 

 
Figure. 4 Confusion matrix comparison for 4-Classes  

 

 

The specificity rate further justified the 

correctness ratio improvement of proposed method 

over the existing methods. The D-CNN-WT-P-

LSTM results demonstrate efficiency of solar cell 

detect detection and classification compared to all 

existing methods due to points (1) inclusion of 

effective pre-processing 

step where the distorted and poor-quality solar 

cell images enhanced which is missing with existing 

deep learning-based methods like CNN, recent works 

Sergiu et.al. and DCNN, (2) optimized features 

extraction and reduction process at CNN module 

using the wavelet transform and PCA provides the 

more robust features compared existing solutions, 

and (3) last but not the least, the use of LSTM module 

for the classification purpose overcomes the 

problems of computational efficiency compared to 

individual CNN module for the automatic features 

extraction and classification.  
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Table 4. Comparison Average Accuracy Results with 

Relevant Works from Literature. 

Ref. Method Accuracy  

[3] ANN 74.67% 

[24] Modified SVM 82.57% 

[22] CNN 83.62% 

[25] DCNN 84.57% 

[27] L-CNN 89.24% 

[21] Light CNN 92.95% 

[27] DFB-SVM 94.48% 

[28] Hessian Matrix 93.14% 

[29] ResNet152-Xception  96.19% 

[22] VGG-19 92% 

Proposed  D-CNN-WT-P-LSTM 96.29% 

 

The confusion matrix of 2-class and 4-class were 

illustrated in Fig. 3, and Fig.4. The evaluated models 

are ANN, Modified, CNN, DCNN, L-CNN, Light-

CNN, DFB-SVM, Hessian Matrix, ResNet152-

Xception, VGG-19, and the proposed model (D-

CNN-WT-P-LSTM)  

The comparative Table 4 shows the accuracy 

achieved by different methods for photovoltaic cell 

defect detection. The average is computed by 

combining the 2-Class and 4-Class dataset accuracy 

results. As showing the highest accuracy achieved by 

the proposed model D-CNN-WP-LSTM. In this table 

we included another variant without using the WT-P 

called D-CNN-LSTM to demonstrate the effect of 

improving the CNN features extraction process.  

As shown in Table 4 the proposed D-CNN-WT-

P-LSTM method achieves the highest accuracy of 

96.29%, slightly surpassing ResNet152-Xception. 

This improvement is due to the integration of: 

• Wavelet Transform (WT): Effective for 

signal and frequency analysis. 

• Parallel LSTM: Enhances temporal feature 

extraction and sequence modelling, providing 

an edge for tasks requiring temporal 

dependency analysis. 

5. Conclusion and future work  

The D-CNN-WT-P-LSTM framework is 

proposed for defect detection in solar cell EL images, 

incorporating pre-processing, feature extraction, 

classification, and post-processing steps. It 

effectively addresses challenges like distortions and 

noise while leveraging the combined strengths of 

CNN and LSTM for improved classification 

accuracy. The framework outperforms existing 

methods, achieving 14%-20% and 11%-13% higher 

accuracy for 2-class and 4-class classifications 

compared to CNN and DCNN models, with an 

additional 2% improvement over ResNet152-

Xception. These results highlight the framework's 

robustness and potential. Future work will explore 

other deep learning techniques to further enhance 

defect detection. 

 

Notations 
Variables  Description 

∇2 Convolutional filter 

𝜕 Sigma value used to construct filter 

p and q Stand for the position of image pixels. 

𝐼𝐹 focused image 

LF  Flat field correction function 

𝐼𝑀 Median filtered image 

𝑇 Threshold of Appling median filtering 

𝜎 Sigma value for Gaussian Filtering 

𝐼𝑃 Pre-Processed solar cell image 

𝑌𝑗
𝑙 Convolutional layer generates the maps 𝑙 

𝑦𝑗
𝑙−1 Convolutional layer generates the maps 

𝑙 − 1 

𝑘𝑖𝑗 The 𝑖 trained convolution kernels 

𝑝𝑜𝑜𝑙𝑖𝑛𝑔𝑚𝑎𝑥(·) Max-pooling operation 

𝑡𝑎𝑛ℎ( ·): Hyperbolic activation function. 

𝐴𝑥 𝑎𝑛𝑑 𝐷𝑥 Approximation and detailed wavelet 

coefficients respectively 

𝐹𝑡 Input to the LSTM block 

𝑖𝑡 , 𝑓𝑡 , 𝑜𝑡 , 
 𝑐𝑡, 𝑎𝑛𝑑 ℎ𝑡 

The input gate, the forget gate, the output 

gate, the cell state and the output of the 

LSTM block, respectively 

𝑊𝐹𝑖,𝑊𝐹𝑓 

𝑊𝐹𝑜 

Respectively, the weights between the 

input gate, forget gate, and output gate of 

the memory block's hidden layer 

𝑏𝑖,𝑏𝑓 𝑏𝑜 Respectively, the input gate, forget gate, 

and output gate additive biases. 

TP True Positive 

TN True Negative 

FP False Positive 

FN False Negative 
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