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Abstract: Intrusion detection systems are crucial for maintaining the security of network infrastructures, yet they 

remain vulnerable to sophisticated and adversarial attacks. To address this issue, we propose a novel intrusion detection 

method that combines the transformer architecture with Fast Gradient Sign Method (FGSM) adversarial training. The 

transformer-based network is specifically designed to process network traffic data, utilizing a transformer encoder with 

multi-head self-attention mechanisms and position-wise feed-forward layers. The core innovation lies in replacing 

standard training procedures with FGSM adversarial training, where the model is trained on both clean and adversarial 

examples. This enhances the system’s ability to detect and resist adversarial attacks. The network’s performance is 

evaluated under varying values of the adversarial rate parameter (lambda), with the best results achieved at lambda = 

0.5. The model demonstrates a high classification accuracy of 99.7321% on the training data (using the NSL-KDD 

dataset), 99.603% on the testing data, and 99.4641% on adversarial data. These findings demonstrate the method’s 

robustness and reliability, providing an effective solution for secure and efficient intrusion detection. 

Keywords: Intrusion detection system (IDS), Transformer architecture, Adversarial training, Fast gradient sign 

method (FGSM), Adversarial attacks, Multi-head self-attention. 

 

 

1. Introduction 

In the evolving digital network landscape, 

Intrusion Detection Systems (IDS) are crucial for 

preventing unauthorized access and malicious 

activities. As networks grow more complex, 

traditional IDS face challenges in accurately 

detecting threats due to the increasing diversity and 

volume of network traffic [1]. These systems must 

discern between legitimate and malicious activities in 

real-time, but the sophistication of modern cyber 

threats often exposes vulnerabilities. One major issue 

is adversarial attacks, where attackers manipulate 

inputs to trick machine learning models into making 

incorrect predictions [2]. Such attacks highlight the 

need for IDS solutions that leverage advanced 

technologies like transformers while incorporating 

robust training techniques to defend against both 

conventional and adversarial attacks. 

Multiple studies have proposed methods to 

enhance IDS performance. In SCADA systems, 

Reference [3] introduces a stacking ensemble model 

using a combination of random forest, light boosting 

gradient machine, and extreme gradient boosting. 

Although this approach has shown promising results 

in many scenarios, it may have limitations in 

processing long-term dependencies in the data. These 

methods might not be able to effectively model the 

complex and long-term relationships within network 

data, which could, in some cases, impact the accuracy 

and performance of the model in real-world network 

conditions. In reference [4], an autoencoder-based 

intrusion detection system (IDS) is used, focusing on 

the Distributed Network Protocol 3 (DNP3). While 

this approach may be effective in detecting attacks 

within the DNP3 protocol, its limitation to this 

specific protocol could prevent the model from 

effectively identifying attacks in other protocols or 

network data types. Furthermore, autoencoder-based 

models may encounter challenges in processing long-

term dependencies and complex network data, and 

they tend to be more sensitive to noisy data, which 
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can affect detection accuracy in certain network 

conditions. In [5], a deep learning-based intrusion 

detection system (IDS) for SCADA networks 

compares feedforward neural networks (FNN) and 

long short-term memory (LSTM) models. The results 

indicate that LSTM outperforms FNN in detecting 

both correlated and uncorrelated attacks. However, 

while LSTM demonstrates its strength in handling 

temporal sequences, it may face challenges in 

capturing broader contextual relationships in network 

traffic data, which are essential for detecting complex 

attack patterns. Reference [6] introduces a deep 

reinforcement learning (DRL) framework 

specifically tailored for SCADA systems. The DRL 

approach effectively learns optimal defense strategies 

by interacting with the environment. Nonetheless, 

such methods may struggle to model long-term 

dependencies in network data comprehensively, 

especially when dealing with diverse and large-scale 

traffic patterns in modern networks. In [7], a hybrid 

approach is proposed to address class imbalance in 

IDS datasets by combining the Synthetic Minority 

Oversampling Technique (SMOTE) with support 

vector machine (SVM) classifiers. This approach 

improves the detection of underrepresented classes. 

However, it may fall short in leveraging contextual 

information present in network traffic, which could 

limit its capability to detect subtle and evolving attack 

scenarios. 

In Wireless Sensor Networks (WSNs), several 

approaches are explored. Reference [8] introduces a 

machine learning-based intrusion detection system 

(IDS) that utilizes Gaussian Process Regression 

(GPR). This method demonstrates strong 

performance in predicting and detecting anomalous 

behaviors in network data. Reference [9] employs 

Support Vector Machine (SVM) and Stochastic 

Gradient Descent (SGD) with context awareness for 

intrusion detection. These approaches effectively 

extract key features from network data. However, 

both methods discussed in [8] and [9] are often 

sensitive to noise in the data and can be vulnerable to 

adversarial attacks, such as input manipulations 

designed to deceive the model, which may reduce 

their detection accuracy in real-world conditions. 

SLGBM, proposed in [10], addresses detection rates 

and computational overhead in WSNs using the 

LightGBM algorithm. While this approach 

effectively balances detection performance and 

efficiency, it may encounter challenges in capturing 

long-term dependencies in network traffic. 

Additionally, like many machine learning-based 

methods, it could be sensitive to noisy data and 

adversarial manipulations, which might affect its 

robustness in dynamic and unpredictable network 

environments. Reference [11] suggests a real-time 

IDS for WLANs using a Conditional Deep Belief 

Network (CDBN) and an instance selection 

algorithm to handle data redundancy. While this 

approach effectively reduces data redundancy and 

balances the dataset for training, it may still face 

challenges when dealing with noisy data and 

adversarial attacks aimed at manipulating the 

detection model. Reference [12] presents a stacked 

ensemble approach for intrusion detection, 

outperforming traditional models. It evaluates the 

system using the NSL-KDD dataset and compares its 

performance to individual models like ANN, CART, 

Random Forest, and SVM. Although the combination 

of different models in this approach has improved 

accuracy, these models may still face limitations in 

identifying dynamic changes in network data and 

unknown attacks. 

Research in Software-Defined Networking 

(SDN) includes a three-tier IDPS for mitigating 

DDoS attacks [13], a decentralized IDS for large 

SDN networks [14], and a priority-based anomaly 

detection model [15]. While the three-tier IDPS in 

[13] enhances security through layered processing, it 

may face limitations in scalability and adapting to 

dynamic attack patterns. Similarly, the decentralized 

IDS in [14] reduces controller overhead but might 

encounter challenges in detecting complex attack 

behaviors and handling adversarial traffic. The 

priority-based anomaly detection model in [15] 

improves efficiency for critical applications but may 

struggle to identify low-frequency anomalies and 

advanced persistent threats. Additionally, [16] 

integrates machine learning with SDN for attack 

detection, and [17] proposes a hybrid feature 

selection framework using the Whale Optimization 

Algorithm (WOA) for improved network intrusion 

detection. While the machine learning-based 

approach in [16] achieves high accuracy for known 

attack detection, it may face limitations in processing 

long-term dependencies in network traffic and 

adapting to evolving attack patterns. Similarly, the 

feature selection framework in [17] improves 

efficiency but might struggle with capturing 

contextual relationships in complex datasets, which 

are crucial for identifying sophisticated attacks.  For 

Internet of Things (IoT), several studies propose IDS 

enhancements. Reference [18] introduces a Network 

Intrusion Detection System (NIDS) using supervised 

machine learning on the UNSW-NB15 dataset. While 

this approach achieves high accuracy in classifying 

malicious and normal traffic, it may encounter 

challenges in processing long-term dependencies in 

network traffic and adapting to evolving attack 

scenarios. Additionally, [19] employs a fuzzy rough 
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set-based approach combined with convolutional 

neural networks (CNN) and GAN for IoT edge 

computing. Although this method shows promise in 

feature selection and data augmentation, it might face 

difficulties in addressing real-time detection 

requirements and handling adversarial attacks that 

can manipulate data and deceive the IDS. The 

Cognitive Memory-guided AutoEncoder (CMAE) 

for intrusion detection is presented in [20], and [21] 

evaluates the robustness of intrusion detection 

systems (IDS) against adversarial examples using the 

FGSM algorithm. While the CMAE model in [20] 

offers an innovative approach to memory-based 

feature extraction, it may face challenges in adapting 

to evolving attack patterns. Similarly, [21] effectively 

evaluates robustness against adversarial attacks but 

does not address sensitivity to noisy data, which 

could impact the accuracy of the model. Reference 

[22] addresses dataset imbalance using focal loss for 

improved detection in IoT environments. While focal 

loss effectively mitigates class imbalance by 

emphasizing hard-to-classify instances, this approach 

may face challenges in adapting to evolving attack 

patterns and handling noisy or incomplete datasets, 

which are common in dynamic IoT environments. In 

the Industrial Internet of Things (IIoT), reference [23] 

presents the CCSOA-OWKELM technique for 

feature selection and hyperparameter optimization. 

While the use of chaotic cuckoo search and sunflower 

optimization algorithms shows promising results in 

improving detection accuracy, the model may face 

challenges in managing adversarial traffic patterns, 

which are increasingly prevalent in IIoT networks. 

Additionally, this approach might have limitations in 

processing complex relationships within data and 

extracting deep contextual information, which are 

essential for identifying advanced attacks. An 

ensemble model combining feature selection with 

classifiers like XGBoost and Random Forest is 

proposed in [24]. The study uses the Chi-Square 

Statistical method for feature selection and applies 

ensemble classifiers to the ToN-IoT dataset, 

achieving high accuracy in detecting and classifying 

IIoT attacks. While this approach demonstrates 

impressive performance, it may face challenges in 

processing complex temporal relationships inherent 

in IIoT traffic data. Additionally, the reliance on 

specific statistical methods for feature selection 

might limit its adaptability to dynamically evolving 

attack scenarios. Reference [25] discusses using 

graph neural networks (GNN) for IIoT intrusion 

detection, leveraging their ability to model complex 

relationships in graph-structured data. While the 

method effectively captures dependencies among 

network nodes, it may face challenges in scalability 

for large-scale IIoT networks and managing 

adversarial modifications to graph structures, which 

could reduce its robustness. Similarly, [26] 

introduces a GNN-based framework to address data 

imbalance and high feature dimensions. While this 

approach improves feature representation and 

classification accuracy, it may face limitations in 

resilience against evolving attack scenarios. Finally, 

Reference [27] discusses using Singular Value 

Decomposition (SVD) and SMOTE for IIoT 

intrusion detection to address outdated datasets and 

overfitting challenges. While SVD effectively 

reduces feature dimensions and SMOTE mitigates 

dataset imbalance, the approach may face challenges 

in handling complex temporal dependencies and 

adversarial attacks that exploit vulnerabilities in 

static feature representations, potentially impacting 

the robustness of the detection system in dynamic 

IIoT environments. While deep learning models such 

as CNN and recurrent neural networks (RNN) have 

enhanced IDS, they struggle with long-range 

dependencies and are vulnerable to adversarial 

attacks. Transformers, initially developed for natural 

language processing (NLP), show potential in 

addressing these challenges by processing complex 

data and extracting contextual information. This 

paper introduces a novel approach to intrusion 

detection that combines the transformer architecture 

with FGSM adversarial training. The primary 

contribution of this work is the design and 

implementation of a transformer-based model 

specifically tailored for network traffic analysis, 

enhanced with adversarial training to improve 

robustness against attacks. The transformer encoder, 

augmented by a multi-head self-attention mechanism 

and position-wise feed-forward layers, provides a 

sophisticated framework for feature extraction and 

contextual understanding of network data. 

Additionally, by integrating FGSM adversarial 

training, the proposed method trains the model on 

both clean and adversarial examples, thereby 

enhancing its resilience and accuracy in detecting and 

mitigating sophisticated attacks. This approach not 

only improves the performance of the IDS under 

normal conditions but also strengthens its defense 

against adversarial manipulations. 

The structure of this paper is organized as 

follows: Section 2 provides the basic concepts needed 

for understanding the proposed method. Section 3 

details the proposed methodology, including the 

design of the transformer-based model and the 

implementation of FGSM adversarial training. 

Sections 4 and 5 provides necessary information 

about the dataset and evaluation metrics employed 

for evaluating the proposed method, respectively. 



Received:  October 21, 2024.     Revised: December 16, 2024.                                                                                      1095 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.79 

 

Section 6 presents the simulation results, including 

performance evaluations for various lambda values, 

and results for both normal and adversarial attack 

detection. A comparison between the proposed 

approach and other methods in the literature is 

presented in Section 7. Finally, Section 8 concludes 

the paper with a discussion on the implications of the 

results and future directions for research in this 

domain. 

2. Basic concepts 

In this section, a detailed overview of the 

fundamental principles and key concepts required to 

understand the proposed method is presented. 

2.1 Transformer architecture 

In recent years, Transformer models, introduced 

by Vaswani et al. (2017) [28], have become essential 

in sequence modeling tasks. Built on an encoder-

decoder architecture, the encoder processes input 

sequences into continuous representations, while the 

decoder generates output sequences [29]. However, 

in intrusion detection, classification is the focus, so 

the decoder is discarded, and only the encoder is used. 

This version captures long-range dependencies using 

self-attention mechanisms and extracts global 

features from network traffic data, which is ideal for 

classification tasks [29]. The encoder consists of six 

identical layers, each with a multi-head self-attention 

mechanism and a position-wise fully connected feed-

forward network, along with residual connections 

and layer normalization for stable training. The 

encoder output passes through a fully connected layer 

and a Softmax function to classify whether the input 

represents an intrusion. 

 

1) Patch Embedding Layer 

For tasks like network intrusion detection, input 

data is divided into patches representing different 

features. The patch embedding layer converts these 

into fixed-length vectors, allowing the Transformer 

to process the data uniformly across various input 

sizes. The mathematical representation of the Patch 

Embedding process is as follows: 

 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥) =
𝑥−𝜇

𝜎
∙ 𝛾 + 𝛽   (1) 

 

2) Position Embedding Layer 

Unlike RNNs, Transformers lack a built-in 

mechanism to maintain sequence order. To resolve 

this, the position embedding layer is introduced, 

adding unique positional encodings to each input 

token or patch.  

 
Figure. 1 The transformer model architecture [28] 

 

In network intrusion detection, this ensures that the 

sequence order, such as packet sequences, is 

preserved during processing. By combining position 

embeddings with patch embeddings, the model 

captures both the content and the relative position of 

each element in the data. The combined input to the 

Transformer is given by: 

 

𝑋𝑝𝑜𝑠 = 𝑋𝑒𝑚𝑏 + 𝑃     (2) 

 

3) Multi-Head Self-Attention Layer 

Self-attention enables the model to focus on 

various parts of the sequence when representing a 

token, while multi-head attention allows the model to 

attend to multiple positions simultaneously through 

several attention heads. This mechanism is highly 

effective for intrusion detection, as it captures 

complex patterns and correlations in network traffic 

data without the limitations of traditional 

convolutional or recurrent architectures. Each 

attention head computes a weighted sum of input 

elements, allowing the model to focus on different 

aspects of the input at the same time.  

 

Self-Attention:  

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉  (3) 
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Multi-Head Attention:  

 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) =
𝐶𝑜𝑛𝑡𝑎𝑐𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂   (4) 

 

where each ℎ𝑒𝑎𝑑𝑖 =

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄. 𝑊𝑖
𝑄

, 𝐾. 𝑊𝑖
𝐾 , 𝑉 ∗ 𝑊𝑖

𝑉) 

 

4) Point-Wise Fully Connected Layer 

After self-attention, the output goes through two 

linear transformations that expand and then reduce its 

dimensionality, helping capture complex feature 

relationships. A non-linear activation adds flexibility, 

allowing the model to learn more intricate patterns. 

This process refines the features for better accuracy 

in intrusion detection. The transformation in the 

Point-Wise Fully Connected layer is described as: 

 

𝐹𝐹𝑁(𝑥) = 𝑓(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2   (5) 

 

5) Layer Normalization 

This technique normalizes inputs after each sub-

layer to stabilize and speed up training, preventing 

issues like vanishing or exploding gradients. It 

ensures balanced outputs, which enhances the 

model’s learning, particularly in complex intrusion 

detection tasks. The Layer Normalization process can 

be described by: 

 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥) =
𝑥−𝜇

𝜎
∙ 𝛾 + 𝛽   (6) 

 

6) Softmax Layer 

The Softmax layer converts the model’s raw 

output into a probability distribution, with values 

between 0 and 1 that sum to 1. It allows the model to 

classify input data as normal traffic or an intrusion by 

selecting the class with the highest probability. This 

makes the results interpretable and helps assess the 

likelihood of different intrusion types. The Softmax 

function is represented as: 

 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑁

𝑗=1

    (7) 

 

2.2 Fast gradient sign method adversarial training 

Fast Gradient Sign Method (FGSM) is a 

foundational approach in adversarial training that 

seeks to improve the robustness of machine learning 

models against adversarial attacks. These attacks 

involve slightly perturbing an input sample in a way 

that causes a model to misclassify it, even though the 

perturbed input remains nearly indistinguishable 

from the original [30]. FGSM, introduced by 

Goodfellow [31], is a single-step method for 

generating adversarial examples by making use of the 

gradient of the model’s loss function with respect to 

the input. 

Consider a classification task over pairs of 

samples (x, y), where x represents an input and y the 

corresponding label. Given a model 

𝑓𝜃(𝑥)parameterized by θ and a loss function L, the 

goal of adversarial training is to train the model to be 

robust to adversarial examples, x′, which are 

perturbed versions of x. The adversarial example 

satisfies 𝐷 (𝑥, 𝑥′)  <  𝜖 𝐷 (𝑥, 𝑥′) for some small 𝜖 >
 0, where D is a distance metric, commonly the 𝑙𝑝 

norm. In the case of FGSM adversarial training, the 

𝑙1  norm is often used to measure the distance 

between x and x′, and the aim is to ensure that the 

model does not misclassify x′. 

The core idea of FGSM adversarial training is to 

train the model on adversarial generated samples, 

instead of purely natural examples. These adversarial 

examples are crafted by adding perturbations to the 

input data based on the gradient of the loss function. 

The FGSM attack is computed as follows [31]: 

 

�́� = 𝑥 + 𝜖 . 𝑠𝑖𝑔𝑛 (∇𝑥𝐿(𝑓𝜃(𝑥), 𝑦))   (8) 

 

The sign of the gradient is taken to ensure that the 

perturbation increases the loss function, thereby 

forcing the model to make an incorrect prediction. 

3. Methodology 

In this section, the methodology used to develop 

the proposed intrusion detection system is explained 

in detail, combining the transformer architecture with 

adversarial training. The first significant contribution 

of this method lies in the design of the network 

architecture, with the transformer encoder forming 

the core. The original transformer architecture, 

typically used for sequence transduction, consists of 

both an encoder and a decoder. The encoder 

processes input data by capturing context and 

extracting relevant features, while the decoder uses 

these features to generate sequential outputs. 

However, for the classification task in this paper, only 

feature extraction is needed. As a result, the decoder 

is discarded, and the encoder is expanded to enhance 

performance. 

The proposed architecture begins with an 

essential embedding layer, which is a fundamental 

component for transformers. However, in some cases, 

the input data may lack sufficient features for an 

effective embedding in a deep network like a 

transformer. One option is to manually extract 
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additional features by combining input data to create 

a larger feature space. However, handcrafted features 

may not always be ideal, making automatic feature 

extraction through the network preferable. To address 

this, the input data is projected into a 1x4096 vector 

using a feed-forward layer and then reshaped to a 

64x64 matrix. This feed-forward layer automatically 

extracts features based on the weights and biases 

learned during training, while reshaping enhances 

flexibility for further processing. 

Next, the projected values are embedded using a 

patch embedding layer with a patch size of 4x4 and 

an embedding dimension of 100. These embedded 

values are then fed into the transformer encoder. 

Since transformers lack an inherent mechanism to 

account for the order of inputs, a positional encoding 

layer is added after the embedding step. Positional 

encoding provides information about the relative or 

absolute position of elements within the sequence. By 

summing the embedding vectors with the 

corresponding positional encoding vectors, the 

transformer receives a combined representation of 

both content and positional information. 

The processed data is then passed to the 

transformer encoder, which consists of two main 

layers, each containing two sub-layers. The first sub-

layer is a multi-head self-attention mechanism with 4 

heads and 12 key channels. This mechanism 

enhances the processing of data by capturing 

relationships between different feature patches, 

allowing the model to focus on multiple aspects of the 

extracted features simultaneously for more effective 

representation. Each attention head operates in 

parallel, attending to different aspects of the input, 

such as short-range dependencies and long-range 

contextual information. 

The second sub-layer is a position-wise fully 

connected feed-forward layer with a hidden size of 

150. This sub-layer is composed of two dense layers, 

separated by a non-linear activation function. 

Specifically, the Gaussian Error Linear Unit (GeLU) 

activation function is used to improve network 

performance. GeLU’s probabilistic nature makes it 

particularly effective for capturing complex patterns 

in deep networks, which is crucial for transformer 

architectures. 

Additionally, residual connections are 

incorporated into both the multi-head self-attention 

mechanism and the position-wise feed-forward layers. 

These connections allow information to flow directly 

from the input to the output of each layer, bypassing 

intermediate layers. This design helps prevent the 

vanishing gradient problem, which is critical for 

training deeper networks effectively. By directly 

adding the input to the output, residual connections 

ensure that important information is preserved 

throughout the network, allowing the model to build 

upon knowledge from previous layers without losing 

critical insights during processing. 

After each layer, a dropout layer with a 

probability of 0.1 is applied, followed by layer 

normalization to enhance the training process. These 

additions help prevent overfitting by randomly 

deactivating certain neurons during training, which 

improves generalization. Layer normalization 

ensures stable and efficient learning by normalizing 

the outputs within each layer, promoting faster 

convergence and more robust model performance. 

The network concludes with indexing, fully 

connected layers, and a SoftMax activation function 

for the classification of the input data. This final 

configuration results in a transformer encoder with 

approximately 7.9 million parameters. Fig. 2 

illustrates the complete architecture of the designed 

network. 

The second major contribution of this paper is the 

replacement of the standard training procedure with 

Fast Gradient Sign Method (FGSM) Adversarial 

Training. FGSM adversarial training is a technique 

designed to make deep learning models more robust 

against adversarial attacks—attacks that involve 

subtle manipulations of input data to deceive the 

model into making incorrect predictions. The key 

idea behind this method is to incorporate adversarial 

examples generated using FGSM during training. By 

exposing the model to both clean and adversarial data, 

it learns to resist such attacks, thus increasing its 

resilience. 

To implement adversarial training, adversarial 

examples are generated during each iteration using 

FGSM. Given an input x, label y, and a model with 

parameters 𝜃 , the adversarial example 𝑥𝑎𝑑𝑣  is 

computed as: 

 

𝑥𝑎𝑑𝑣 = 𝑥 + 

{
min(∙ 𝑠𝑖𝑔𝑛(∇𝑥  𝐽(𝜃, 𝑥, 𝑦)), 𝛼),   ∇𝑥  𝐽(𝜃, 𝑥, 𝑦) > 0    

max(∙ 𝑠𝑖𝑔𝑛(∇𝑥  𝐽(𝜃, 𝑥, 𝑦)), −𝛼),   ∇𝑥  𝐽(𝜃, 𝑥, 𝑦) ≤ 0
 

(9) 

 

𝐽(𝜃, 𝑥, 𝑦) is the cross-entropy loss in this paper. 

The  and α are considered equal to the 0.02 and 

0.015, respectively. These adjustments are done 

based on the dispersion of the data in different 

features.  

The model should be trained on both the original 

clean examples and the adversarial examples 

generated by FGSM. This dual training helps the 

model learn to handle both types of data. Thus, the 

model’s parameters θ are  updated  based  on  the  loss 

・



Received:  October 21, 2024.     Revised: December 16, 2024.                                                                                      1098 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.79 

 

 
Figure. 2 The proposed network structure 

 

computed from both clean and adversarial examples. 

The goal is to minimize the loss for both types of 

inputs, making the model more robust. 

The overall objective of FGSM adversarial 

training is to minimize the loss function on both clean 

and adversarial examples. The loss function can be 

expressed as: 

 

𝐿𝑡𝑜𝑡𝑎𝑙 = (1 − 𝜆)𝐿𝑐𝑙𝑒𝑎𝑛(𝑥, 𝑦) + 𝜆𝐿𝑎𝑑𝑣(𝑥𝑎𝑑𝑣 , 𝑦)  (10) 

 

λ is the adversarial rate parameter making a trade-off 

between the importance of clean examples and 

adversarial examples for training the network. 

Finally, the new parameters of the network θ are 

obtained using the ADAM optimizer as follows: 

 

𝜃 = 𝜃 − 𝜂 ∙
�̂�𝑡

√�̂�𝑡+𝜀𝜖
               (11) 

 

Both �̂�𝑡 and �̂�𝑡 are obtained using the gradient of 

the total loss ( 𝐿𝑡𝑜𝑡𝑎𝑙 ) with respect to the model 

parameters. To calculate these parameters, the 

gradient decay factor is considered equal to 0.9 and 

squared gradient decay factor is considered 0,999. 

Moreover, 𝜂  is the learning rate and 𝜀  is a small 

constant added for numerical stability. 

4. Dataset 

In this paper, we utilize the NSL-KDD dataset, 

which is an improved version of the original KDD 

Cup 1999 dataset [32], widely used for evaluating 

network intrusion detection systems. The NSL-KDD 

dataset addresses several issues in the original KDD 

dataset, such as the elimination of redundant records 

and providing a more balanced and reliable dataset 

for classification tasks. It consists of a wide variety of 

simulated network intrusions and normal activities, 

making it suitable for training and testing machine 

learning models for anomaly detection [33]. 

The dataset includes both training and testing sets, 

each containing a mixture of normal and malicious 

network traffic. The training set consists of 125,973 

instances, while the testing set contains 22,544 

instances. Each instance in the dataset is 

characterized by 41 features, categorized into three 

types: basic features, content features, and traffic 

features, which capture various aspects of network 

traffic behavior. Additionally, each instance is 

labeled as either “normal” or belonging to one of 

several attack types, which are grouped into four 

main categories: Denial of Service (DoS), Probe, 

User-to-Root (U2R), and Remote-to-Local (R2L) 

attacks. We leverage this dataset to evaluate the 

performance of our proposed intrusion detection 

model. By utilizing the NSL-KDD dataset, we aim to 

ensure that our model is trained and tested on a 

representative and balanced dataset, allowing for a 

comprehensive assessment of its ability to detect both 

known and unknown network intrusions [34]. 

In this paper, the NSL-KDD dataset features are 

normalized between 0 and 1 first. Then, the dataset is 

balanced by undersampling. 

5. Evaluation metrics 

In this paper, we use four evaluation metrics 

(accuracy, precision, recall, and F1 score) to evaluate 

the performance of our model. These metrics are 

crucial for providing a comprehensive assessment of 

how well the model detects network intrusions and 
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classifies normal traffic. The details of each of these 

metrics are given as follows: 

 

• Accuracy: Accuracy measures the overall 

performance by calculating the proportion of 

correctly classified instances out of the total number 

of instances. It gives an overview of how well the 

model is performing across both positive and 

negative classes.  Accuracy is calculated using Eq. 

(12): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
              (12) 

 

Where TP is True Positives which refers to 

correctly identified attacks, TN is True Negatives 

which refers to correctly identified normal traffic, FP 

is False Positives which indicates normal traffic 

misclassified as attacks, and FN is False Negatives 

which indicates attacks misclassified as normal 

traffic. 

 

• Precision: Precision evaluates the model’s ability 

to accurately identify positive instances (attacks). It 

is defined as the ratio of true positives to the total 

number of predicted positives, including false 

positives. This metric reflects the model’s accuracy 

in its positive predictions and is given by Eq. (13): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
               (13) 

 

• Recall: Recall, also known as sensitivity or true 

positive rate, measures the model’s ability to capture 

all relevant positive instances (attacks). It is 

calculated as the ratio of true positives to the total 

actual positives, ensuring that the model correctly 

identifies as many positive cases as possible. The 

calculation of recall is as given in Eq. (14): 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (14) 

 

F1 Score: The F1 score is the harmonic mean of 

precision and recall, providing a single metric that 

balances the trade-off between false positives and 

false negatives. It is particularly useful when dealing 

with imbalanced datasets where one class might 

dominate. The F1 score is calculated using Eq. (15): 

 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
             (15) 

 

 

 

6. Simulation results 

This section presents simulation results for the 

proposed intrusion detection system, focusing on the 

effectiveness of the transformer-based model and the 

influence of FGSM adversarial training on detection 

accuracy. Evaluations include adjusting the lambda 

parameter and analyzing performance metrics for 

normal attack detection and resilience against 

adversarial attacks. The simulations were conducted 

using MATLAB 2024a on a system with an Intel 

Core i7 13650HX CPU, 16 GB RAM, and an 

NVIDIA RTX 4060 GPU. 

6.1 Lambda parameter adjustment 

In this section, we analyze the effect of varying 

the λ parameter on the performance of the proposed 

intrusion detection model using FGSM adversarial 

training. The parameter λ controls the trade-off 

between clean and adversarial data in the training 

process, and its impact on accuracy is evaluated 

across three different data sets: training data, testing 

data, and adversarial data. The values of λ considered 

are 0 (normal training), 0.25, 0.5, and 0.75. Fig. 3 

presents the results for each data set, showing how 

the accuracy changes with different λ values. 

As depicted in Fig. 3, the performance of the 

model on training data remains consistently high 

across all λ values. For λ = 0 (normal training), the 

accuracy is 99.7519%. As the adversarial component 

is introduced with λ = 0.25, the accuracy increases 

slightly to 99.8115%. However, further increases in λ 

lead to slight reductions in accuracy, with 99.7321% 

for λ = 0.5 and 99.474% for λ = 0.75. This trend 

indicates that while introducing adversarial training 

improves the robustness of the model, a high 

emphasis on adversarial examples can slightly affect 

performance on clean training data. 

 

 
Figure. 3 Performance evaluation for different λ values 



Received:  October 21, 2024.     Revised: December 16, 2024.                                                                                      1100 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.79 

 

For the testing data, the normal training (with λ = 

0) achieves an accuracy of 99.4442%. Interestingly, 

when λ = 0.5, the model reaches its highest accuracy 

on the testing data, with 99.603%, outperforming 

both normal training and lower values of λ. At λ = 

0.25, the accuracy is 99.3251%, and at λ = 0.75, it 

decreases to 99.2854%. These results suggest that 

moderate values of λ (particularly 0.5) strike an 

effective balance between clean and adversarial data 

for testing scenarios, leading to better generalization. 

The most significant results appear when 

analyzing the model’s performance on adversarial 

data. As expected, the network trained with λ = 0 

(normal training) performs poorly under adversarial 

attacks, with an accuracy of 96.8145%. However, as 

adversarial training is introduced with λ = 0.25, the 

model’s accuracy increases significantly to 

99.1168%. This trend continues, with λ = 0.5 

achieving 99.5633%, and λ = 0.75 yielding the 

highest accuracy of 99.8908%. These results clearly 

demonstrate the effectiveness of FGSM adversarial 

training in improving the model’s robustness against 

adversarial attacks.  

In summary, the results suggest that while a 

moderate adversarial rate (λ = 0.5) offers the best 

trade-off between clean and adversarial performance, 

higher values of λ (λ = 0.75) provide optimal 

protection against adversarial attacks at the cost of 

slightly reduced performance on clean data. Since the 

obtained results of the trained network using λ = 0.5 

shows a great balance, it is used to evaluate proposed 

approach’s performance in the rest of this paper. 

6.2 Normal attack detection results 

In this section, we present the performance of the 

proposed intrusion detection model in identifying 

normal network attacks using a confusion matrix and 

Receiver Operating Characteristic (ROC) curve. 

A confusion matrix is a useful tool for visualizing 

the performance of a classification model by 

comparing the predicted labels against the true labels. 

It provides detailed information about the true 

positives (TP), true negatives (TN), false positives 

(FP), and false negatives (FN), which helps in 

understanding the model’s accuracy, precision, recall, 

and overall reliability. The diagonal elements of the 

confusion matrix represent correct predictions, while 

the off-diagonal elements represent 

misclassifications. Specifically, true positives refer to 

attack instances that were correctly identified, while 

true negatives represent non-attack instances that 

were correctly classified. On the other hand, false 

positives occur when non-attack instances are 

incorrectly predicted as attacks, and false negatives 

occur when attack instances are misclassified as non-

attacks. 

Fig. 4 shows the confusion matrix for the model’s 

performance on normal attack detection. The results 

indicate that the model correctly identified 1,347 

attack samples (true positives) and 1,162 non-attack 

samples (true negatives). In contrast, there were only 

6 false positives and 4 false negatives, showcasing 

the model’s high precision and recall. These results 

demonstrate that the proposed model performs 

exceptionally well in distinguishing between normal 

network activity and attack instances.  

 

 
Figure. 4 The confusion matrix of evaluating the testing 

dataset using the proposed approach 

 

 
Figure. 5 The ROC curve of evaluating the testing dataset 

using the proposed approach 
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The minimal number of false positives and false 

negatives further suggests that the model can reliably 

detect attacks while maintaining a low error rate in 

classifying non-attack samples. 

The Receiver Operating Characteristic (ROC) 

curve is a key metric for evaluating a model’s 

classification performance. It plots the true positive 

rate (sensitivity) against the false positive rate (1-

specificity) at various decision thresholds. The Area 

Under the Curve (AUC) quantifies the model’s 

ability to distinguish between classes, with values 

close to 1 indicating high effectiveness and values 

near 0.5 suggesting poor performance. The ROC 

curve visually demonstrates model performance 

across thresholds, making it especially valuable for 

imbalanced datasets where one class is more 

prevalent than the other. 

Fig. 5 shows the ROC curve for the proposed 

model’s performance in detecting normal attacks. 

The AUC obtained for this curve is 0.99985, which is 

almost the maximum possible value, signifying near-

perfect classification ability. This extremely high 

AUC demonstrates that the model can accurately 

detect attack instances while minimizing false 

positives. The curve’s proximity to the top-left corner 

of the plot indicates that the model achieves a high 

true positive rate while maintaining a low false 

positive rate, further confirming its robustness and 

effectiveness in normal attack detection scenarios. 

6.3 Adversarial attack detection results 

In this section, the results for adversarial attack 

detection are analyzed and compared with those for 

clean data to evaluate the model’s robustness. Fig. 6 

displays the confusion matrix for the adversarial 

attack detection. The model shows strong 

performance with 1358 true positive samples and 

1150 true negative samples, alongside only 3 false 

positives and 8 false negatives. The model achieves 

an accuracy of 99.56% on adversarial data, which is 

slightly lower compared to the 99.60% accuracy 

obtained on clean testing data. This slight difference 

indicates the effectiveness of the adversarial training 

procedure, as the model manages to maintain high 

performance even under adversarial attacks. When 

compared to the results from the previous section, 

where the normal attack detection confusion matrix 

was analyzed, it can be observed that the model 

shows a small increase in false negatives in 

adversarial attack detection, from 4 to 8, while false 

positives decreased from 6 to 3. Despite the 

adversarial nature of the input data, the model 

remains resilient, as demonstrated by its consistently 

high accuracy and classification ability. 

 
Figure. 6 The confusion matrix of evaluating the 

adversarial dataset using the proposed approach 

 

 
Figure. 7 The evaluation metrics bar chart of evaluating 

both clean and adversarial datasets using the proposed 

approach 

 
Table 1. The assessment results of the proposed method 

using the evaluation metrics 

 
Accura

cy 

Precisio

n 
Recall 

F1-

Score 

Advers

arial 
99.56% 99.54% 99.58% 99.56% 

Normal 

Testing 
99.60% 99.61% 99.60% 99.60% 

 

Fig. 7 presents a comparison of the model’s 

performance metrics (accuracy, precision, recall, and 

F1 score) on both adversarial and clean testing data. 

For adversarial data, the model achieved an accuracy 

of 99.56%, a precision of 99.54%, a recall of 99.58%, 

and an F1 score of 99.56%. When compared to the 

performance on clean data, where the model attained 

an accuracy of 99.60%, a precision of 99.61%, a 

recall of 99.60%, and an F1 score of 99.60%, the 

results indicate a slight decrease in all metrics for 

adversarial data. Despite this minor reduction, the 
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model maintains exceptional performance across all 

metrics, with differences in accuracy, precision, 

recall, and F1 score being less than 0.1%. This 

marginal drop suggests that the adversarial training 

strategy employed, particularly through FGSM 

adversarial training, has effectively enhanced the 

model’s resilience to adversarial attacks. These 

findings confirm that the model can perform 

comparably well on both adversarial and clean data, 

making it a robust solution for real-world intrusion 

detection scenarios where adversarial examples may 

be present. Table 1 illustrates the summary of 

assessing the proposed method using the evaluation 

metrics. 

7. Comparison 

In this section, we compare the proposed method 

with state-of-the-art approaches in terms of 

performance metrics including accuracy, precision, 

recall, F1-score, and adversarial robustness.  

 
Table 2. The comparison of the proposed method with other intrusion detection approaches 

Ref. Method Dataset 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1Score 

(%) 

Able to 

handle 

adversarial 

attacks 

[35] 

Logistic 

regression 

NSL-

KDD 

96.6 97 97 97 No 

K-nearest 

neighbor 
95.5 96 95 96 No 

Random forest 95.7 96 96 96 No 

Decision tree 96.7 97 97 97 No 

Multi-layer 

perceptron 

(MLP) 

97.8 97 98 98 No 

Long-short 

term memory 

(LSTM) 

97.5 97 97 97 No 

[36] 

Artificial 

neural network 

(MLP) 

NSL-

KDD 
97.5 99 96.7 95.7 No 

[37] 

XGBoost 

feature 

selection + 

recurrent 

neural network 

NSL-

KDD 

83.70 N.M N.M N.M No 

XGBoost 

feature 

selection + 

LSTM 

88.13 N.M N.M N.M No 

XGBoost 

feature 

selection + 

Gated 

recurrent unit 

84.66 N.M N.M N.M No 

[38] 

Adaptive 

boosting 
NSL-

KDD 

92.20 N.M N.M 91.70 No 

Random forest 99.70 N.M N.M 99.70 No 

J84 classifier 99.60 N.M N.M 99.60 No 

Naïve Bayse 86.60 N.M N.M 84.20 No 

Proposed 

method 

Transformer 

network 

trained with 

FGSM 

adversarial 

training 

NSL-

KDD 
99.60 99.61 99.60 99.60 Yes 

*N.M: not mentioned  
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The comparison results reported in Table 2 provide 

insights into the strengths and limitations of each 

method. 

The proposed method demonstrates a competitive 

performance across all metrics. In terms of accuracy, 

the Random Forest classifier in [38] achieves the 

highest value at 99.7%, slightly outperforming the 

proposed method, which achieves 99.6%. However, 

this marginal difference in accuracy is outweighed by 

the proposed method’s ability to handle adversarial 

attacks, a critical advantage. Unlike [38], which does 

not explicitly address adversarial attacks, the 

proposed method maintains high accuracy and 

resilience when subjected to adversarial conditions, 

making it more reliable for real-world deployment. 

Other methods, such as those in [35] and [36], range 

between 95.5% and 97.8% in accuracy, showing that 

the proposed method stands on par with or 

outperforms many established models. Reference 

[37], which employs an XGBoost-based feature 

selection algorithm with recurrent neural networks, 

achieves lower accuracy compared to the proposed 

method, with a best performance of 88.13%. 

When comparing precision, recall, and F1-score, 

the proposed method again excels. It achieves an 

impressive precision of 99.61%, recall of 99.60%, 

and F1-score of 99.60%, indicating a highly balanced 

and effective intrusion detection system. In contrast, 

the methods in [35] and [36] which achieved strong 

accuracy (ranging from 95.5% to 97.8%), show the 

same (and lower in some cases) recall or precision. 

For example, [36] achieves precision of 99%, but 

with a recall of 96.7%, indicating potential for missed 

detections. The method in [38] achieves high F1-

score and accuracy, but the precision and recall are 

not reported to evaluate the balance performance like 

that the proposed method offers. Furthermore, the 

lack of detailed precision and recall metrics in [37] 

makes it difficult to fully assess its performance in 

this regard, though its accuracy of 88.13% falls 

behind the proposed method. 

Overall, while the Random Forest classifier in 

[38] shows slightly better accuracy and F1-score, the 

proposed method offers a more comprehensive and 

resilient solution excelling in adversarial robustness 

while having almost the same accuracy as the 

reported one in [38]. 

8. Conclusion 

In this paper, we proposed a novel intrusion 

detection system that combines the transformer 

architecture with Fast Gradient Sign Method (FGSM) 

adversarial training to enhance both accuracy and 

robustness against adversarial attacks. The core of the 

proposed method lies in the design of a transformer 

encoder, which efficiently processes network traffic 

data. The transformer encoder was modified by 

expanding its original structure, removing the 

decoder, and replacing embedding input data with a 

fully connected-based feature extractor and a patch 

embedding for better feature extraction. The 

transformer encoder is composed of two layers, each 

featuring a multi-head self-attention mechanism and 

a fully connected feed-forward layer. To prevent 

overfitting and ensure efficient training, dropout and 

normalization techniques were employed. Moreover, 

the use of residual connections in the network 

allowed for smoother information flow and improved 

the learning of complex data patterns. 

The second key contribution of this work is the 

incorporation of FGSM adversarial training, which 

enhances the network’s resistance to adversarial 

attacks. During training, adversarial examples were 

generated by introducing perturbations in the input 

data. The model was trained on both clean and 

adversarial data, allowing it to learn to identify 

adversarial patterns and become more resilient. The 

lambda parameter was introduced to balance the 

emphasis on clean versus adversarial data, and 

through experiments, a lambda value of 0.5 was 

found to provide the best trade-off. 

The results demonstrated that the proposed 

approach outperforms conventional training methods 

in both normal and adversarial detection scenarios. 

With lambda = 0.5, the model achieved a detection 

accuracy of 99.60% on clean data and 99.56% on 

adversarial data. These results underscore the 

effectiveness of the transformer-based model in 

identifying complex network attacks while 

maintaining robust performance against adversarial 

examples. Future research will explore further 

enhancements, such as optimizing adversarial 

defense techniques and refining transformer 

architectures for even greater robustness. 

 

Nomenclature: 

𝑥 The input patch matrix 

W The weight matrix 

b The bias term 

𝑃 The position embedding matrix 

Q The Query matrices 

K The Key matrices 

𝑉 The Value matrices 

𝑑𝑘 The dimension of the keys 

𝑊𝑖
𝑄

 
The learned weight matrices for 

queries 

𝑊𝑖
𝐾 

The learned weight matrices for 

keys 
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𝑊𝑖
𝑉 

The learned weight matrices for 

values 

σ The standard deviation of the 

inputs 

𝑐 The learned parameters 

𝛽 The learned parameters 

zi  The raw score (logit) for class i 

N The total number of classes 

∇𝑥𝐿(𝑓𝜃(𝑥), 𝑦) The gradient of the loss function 

𝜖 Controls the magnitude of the 

perturbation 

xadv  the adversarial example 

𝐽(𝜃, 𝑥, 𝑦) The gradient of the loss function 

with respect to learnable 

parameters 

𝛻𝑥𝐽(𝜃, 𝑥, 𝑦) The gradient of the loss with 

respect to the input x 

𝜖 A small constant controlling the 

magnitude of the perturbation 

α The boundary parameter that 

controls and limits the 

perturbation of the adversarial 

data 

𝐿clean(𝑥, 𝑦) The loss on the clean example x 

𝑊𝑖
𝑂 The learned weight matrices for 

output 

µ The mean of the inputs 

�̂�𝑡 The bias-corrected first-moment 

estimate 

𝜂 The learning rate 

FP False Positives 

FN False Negatives 

𝐿adv(𝑥adv, 𝑦) The loss on the adversarial 

example xadv 

λ The adversarial rate parameter 

�̂�𝑡 The bias bias-corrected second-

moment estimate 

TP True Positives 

TN True Negatives 
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