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Abstract: Detecting malicious activities in networks has become increasingly challenging as internet usage grows, 

making network security vital for ensuring secure communication between devices. While machine learning (ML) and 

deep learning (DL) have been integrated into intrusion detection systems (IDSs), there is limited research exploring 

their full potential. This paper introduces a hybrid sequential-visual deep feature extractor network (HSV-DFEN) for 

intrusion detection, using spectrogram transformations to combine visual and sequential data processing techniques. 

The model leverages convolutional neural networks (CNN) and bidirectional long short-term memory (BiLSTM) 

networks to extract time-frequency features from network traffic, and employs ensemble learning along with principal 

component analysis (PCA) for dimensionality reduction. Experimental results on the CICIDS2017 dataset demonstrate 

that HSV-DFEN achieves an average accuracy of 99.98%, significantly outperforming existing models in detecting 

various types of attacks, making it an effective solution for anomaly detection in network security. 

Keywords: Spectrogram transformations, Deep Learning (DL), Machine Learning (ML), Bidirectional long short-

term memory (Bilstm), Principal Component Analysis (PCA). 

 

 

1. Introduction 

The rapid expansion of Internet and 

communication technologies has led to a substantial 

increase in network size and the diversity of 

applications supported. Consequently, the volume of 

data transmitted across network nodes has escalated, 

necessitating robust security measures to protect 

against potential intrusions. One of the effective 

approaches to providing safe networks is 

implementing an intrusion detection . 

System (IDS) [1]. The IDS is a pivotal tool 

designed to monitor network traffic and system 

activities for signs of malicious behavior and policy 

violations. The primary objective of an IDS is to 

detect and respond to unauthorized access attempts, 

thereby safeguarding the integrity of network 

infrastructure and data [2]. IDS can generally be 

categorized into two types: network-based IDS 

(NIDS), which scrutinizes network traffic for unusual 

activities, and host-based IDS (HIDS), which focuses 

on individual host systems for signs of intrusion. 

Initial IDS systems relied on signature-based 

detection, referred to as SIDS  , which utilized 

predefined patterns of known attacks to identify 

intrusions[4]. While effective against known threats, 

SIDS systems struggled with detecting novel attacks, 

commonly known as zero-day exploits [1].  

To address this limitation, anomaly-based IDS 

(AIDS)approaches emerged, focusing on deviations 

from normal behavior patterns. AIDS models can 

identify new emerging threats; however, they are 

susceptible to generating false alarms due to benign 

operations appearing unusual under specific 

conditions [5, 6]. Recent advancements in deep 

learning (DL) and machine learning (ML) have 

shown promising results in enhancing IDS 

capabilities. These technologies enable IDS to learn 

intricate patterns and identify anomalous behaviors 

more effectively than traditional methods [7].  
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This study aims to enhance IDS capabilities by 

developing a novel hybrid sequential-visual deep 

feature extractor network (HSV-DFEN) for 

intelligent intrusion detection. The proposed 

approach utilizes spectrogram transformation to 

convert raw network traffic data into spectral images, 

facilitating the extraction of sequential and visual 

features. The system employs a bidirectional long 

short-term memory (BiLSTM) network to capture 

sequential patterns and a convolutional neural 

network (CNN) to derive visual characteristics from 

spectrogram images. These features are fused and 

subjected to principal component analysis (PCA) to 

reduce dimensionality and eliminate redundancy. 

Finally, the extracted features are classified using 

ensemble learning methods to enhance detection 

accuracy and robustness. 

The performance of the proposed HSV-DFEN 

model is evaluated using the publicCIC-IDS2017 

dataset, which includes diverse cyber-attack types. 

Comprehensive experiments and comparisons with 

existing methods demonstrate a significant 

improvement in detection performance, particularly 

in addressing imbalanced data and mitigating 

overfitting. The results confirm the potential of the 

proposed model in advancing intrusion detection 

capabilities and providing robust defenses against 

emerging cyber threats. 

To summarize, the contributions of this paper are 

as follows: 

• Spectrogram transformation preprocessed 

using short-time Fourier transform (STFT) to 

extract frequency features in the form of 

visual patterns: This strategy  leads to efficient 

identification of attack patterns. 

• Jointly extraction of time and frequency 

patterns: Sequential time patterns are extracted 

using BiLSTM neural networks, while visual 

frequency patterns are extracted using 

convolutional neural networks (CNN). These 

features are stored as vectors and combined to 

provide comprehensive time-frequency features. 

• Dimensionality reduction using principal 

component analysis (PCA): PCA is employed 

to reduce feature redundancy and dimensionality 

of feature vectors. This process simplifies model 

complexity and enhances computational 

efficiency. 

This combination of techniques presents a 

comprehensive and efficient approach for 

detecting attacks in computer networks, 

addressing complex security challenges 

effectively. 

The structure of the paper is organized as follows: 

Section 2 provides a summary of related work. 

Section 3 details the proposed method and its 

components. Section 4 presents experimental results 

and discussions. Finally, Section 5 concludes the 

paper and outlines potential future research directions. 

2. Related works 

An Intrusion Detection System (IDS) based on 

deep learning leverages data from commonly used 

datasets like CIC-IDS 2017 and CIC-IDS 2018, 

which include various types of attacks. Through the 

application of algorithms, preprocessing steps are 

taken to normalize data and address missing values. 

Time stamps are typically selected and largely 

excluded from attack datasets using the Random 

Forest (RF) method. Subsequently, essential features 

are extracted from these datasets using a Deep Auto 

encoder (AE), refining the feature set.  

In [10], a comprehensive comparison of the initial 

two datasets yielded promising results for each tested 

deep learning model. For the CIC-IDS 2017 dataset, 

the precision, F1-score, and recall were 99.5%, 

98.7%, and 99.8%, respectively. Similarly, for the 

CIC-IDS 2018 dataset, the precision, F1-score, and 

recall were consistently 99.5% across all algorithms. 

They showed that the CNN model demonstrated the 

highest performance outcomes. 

In [11], the authors employed data augmentation 

techniques on some emphasized databases, 5G-

NIDD, FLNET2023, UNSW-NB15, and CIC-IDS-

2017 to improve the operation of the selected deep 

learning-based models. The outcomes of the 

experiments indicated that just the plain model based 

on a CNN was able to provide an accurate 

identification of network attacks, further more 

complex models described only minor improvements 

to the performance. The findings suggest that the 

advancement of approaches based on deep learning 

for intrusion detection can be implemented without 

much disruption into cyber security paradigms to 

improve the detection and prevention of 

contemporary complex network attacks. The 

outcomes of the study showed that the ID models had 

high accuracy with the maximum being 91% in the 

augmented CIC-IDS-2017 database. In [12], the 

authors described a network intrusions detection 

system using the oversampling technique to correct 

the lack of balance in the data and the stacking feature 

embedding (SFE) approach and PCA for 

dimensionality reduction. The efficiency of the 

system is thoroughly evaluated utilizing three 

sophisticated benchmark datasets: CIC-IDS 2018, 

CIC-IDS 2017, and UNSW-NB15. They showed that 
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random forest (RF)and extra trees (ET) models 

achieved 99. 59% and 99. The results indicate that 

both the given models, DT and RF, are very accurate 

with 99 % accuracy. More specifically, it was 

possible to achieve an average detection rate of 94% 

on the CIC-IDS-2018 dataset. 

In[13], researchers proposed multinomial mixture 

modeling (MMM) with median absolute deviation 

and random forest algorithm (MMM-RF) for 

classifying different types of attacks in a network. 

The MMM model includes the combination of the 

Expectation-Maximization (EM)algorithm and 

median absolute deviation (MAD). After that, the 

random forest model is applied to the CSE-CIC-

IDS2018 database. The presented method achieved 

an accuracy of approximately 99%. In [14] The 

authors introduces two intrusion detection and 

classification models, named Trust-based Intrusion 

Detection and Classification System (TIDCS) and its 

accelerated version (TIDCS-A), which exploit a new 

feature selection algorithm to improve the detection 

accuracy with less computational overhead. 

The authors in [15] introduced a dynamic 

ensemble algorithm for anomaly detection in 

streaming imbalanced data within the context of IoT 

using sample synthesis techniques such as 

Borderline-SMOTE and a chunk-based strategy for 

training classifiers based on five real-world datasets. 

A new method for increasing the level of security 

of IDS in IoT-based smart cities proposed in [16] 

using ensemble techniques such as (SVM, ANN, 

KNN, LR, and DT). It showed that experimental 

results on datasets like UNSW-BC15 and 

CICIDS2017 show that these approaches can detect 

rare cyberattacks, increasing accuracy, precision, 

recall, and F1 score. 

The authors in [17] proposes a two-stage 

Intrusion Detection System (IDS) for IoT networks 

using Naive Bayes classification and elliptic 

envelope methods to enhance anomaly detection. 

Stage one classifies the input data into four classes: 

nominal, integer, binary, and float, using different 

forms of the Naive Bayes classifier.The second stage 

filters the benign data extracted in the first stage 

through an elliptic envelope method.The method 

achieves a high accuracy rate on NSL-KDD, 

UNSW_NB15, and CIC-IDS2017 datasets and 

advocates for enhancing security in IoT networks. 

Authors in [18] apply deep learning algorithms—

specifically Deep Neural Networks (DNN), Long 

Short-Term Memory networks (LSTM), and 

Convolutional Neural Networks (CNN)—to enhance 

intrusion detection systems in the Internet of Things 

(IoT) using the CIC-IDS 2017 dataset. It underscores 

the inadequacies of traditional IDS methods and 

showcases how deep learning can improve detection 

 

 
Table 1. Characteristics of anomaly detection methods 

Ref. method Dataset Advantage 
Disadvantage             

(Limitation) 
ACC        

 

[14] 

 

(TIDCS) 

Feature Selection 

algorithm  

- NSL-KDD 

- UNSW 

 

- Effectively Managing High-

Dimensional data 

- Leveraging past node 

behaviors 

- Biases 

- Challenges in real-time  

applications 
91% 

[15] 

 

Dynamic 

Ensemble 

Algorithm, 

Borderline-

SMOTE 

- MBD 

- SMD 

- IoT Botnet 

- EMOS Cloud 

- CICIDS2017 

- Dynamic Classifier 

Management 

- Real-World Applicability 

 

- Computational   

complexity 

- Potential for Overfitting 

 

 

79.5%. 

72.7%. 

78.4%. 

91.5%. 

81.0% 

[16] 

 

SVM, ANN, 

KNN, LR, DT 

- UNSW-BC15  

- CICIDS2017 

- Robustness 

- More comprehensive  

analysis of data 

- Complexity of managing 

multiple models 

- Data Dependency 

98.8% 

[17] 

 

 Naive Bayes 

classifier, 

elliptic envelope 

method. 

- NSL-KDD  

- NSW_NB15 

- CIC-IDS2017 

- Two-Phase 

Approach 

- Multiple Data Type 

Classification 

- Complexity of 

Implementation 

- Multiclass Classification 

Limitations 

97% 

86.9% 

98.59% 

[18] 

 

  DNN, LSTM, 

CNN 
- CIC-IDS2017 

- Ability to Handle 

Complex Data 

- Adapting Over Time 

- Data Requirement 

- Computational 

Resources 

- Complexity of 

Implementation 

98.61% 

97.67% 

94.61% 
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accuracy and efficiency. Table 1 summarizes the 

characteristics of recent anomaly detection methods. 

We can structure the prior study by categorizing 

the approaches based on important methodologies 

such as data preprocessing , feature extraction, 

classification algorithms, and benchmark dataset 

performance. 

In Preprocessing Techniques, the majority of the 

research employ oversampling or augmentation for 

imbalanced data [12, 15, 16], although such methods 

either raise computational costs or lack 

generalizability, as with Feature Extraction 

Traditional approaches, such as Random Forest and 

PCA [10, 12, 13], are useful, but they may not fully 

capture the temporal and visual patterns of network 

traffic data. 

Many discussed approaches do not use sequential 

and visual intrusion detection features. Where CNN-

based approaches [10, 11] focus on visual patterns 

but have inadequate capture of temporal dependency. 

RF and SFE approaches [12, 13] focus on feature 

selection but do not consider integrating the time and 

frequency domain information, which are essential to 

identify complicated attacks. 

State-of-the-art approaches are typically 

overfitting [11, 12] or handle imbalanced datasets [15, 

16], limiting their practical application. 

It can be concluded that the existing proposed 

methods surpass preceding models in aspects of 

classification precision and computational 

performance. 

3. Proposed method 

The objective of this work is to detect various 

types of attacks in computer networks. 

As shown in Fig. 1 the proposed method 

comprises six main steps, first input data is 

preprocessed. Due to the imbalance in the number of 

samples across different classes, data augmentation is 

applied. This improves model performance, reduces 

overfitting, and increases detection accuracy. Next, 

the augmented data are visualized using spectrogram 

transformation. In the visualization process, signals 

are converted into spectral images through a Short-

Time Fourier Transform (STFT) to extract frequency 

features as visual patterns.  

Subsequently, sequential data patterns are 

extracted using a Bidirectional Long Short-Term 

Memory (BiLSTM) neural network, while the 

visualized frequency patterns are extracted using a 

convolutional neural network (CNN). These 

extracted patterns are organized into feature vectors 

and combined to provide a wide range of time-

frequency features. Afterward, redundancy among 

the extracted features is reduced using Principal 

Component Analysis (PCA), which maps the features 

to a low-dimensional space. 

Finally, the resulting feature vectors are classified 

using Ensemble Learning. By integrating several 

methods, Ensemble Learning improves the precision 

of the final model compared to individual models, as 

different models can correct each other’s errors, 

thereby reducing the likelihood of overfitting. The 

components of the proposed method are described 

below. 

 

 
Figure. 1 Working principle of the proposed method 
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Table 2. Data distribution in CIC-IDS2017 dataset 

Seq Category No. of 

records 

Training 

(75%) 

Testing 

(25%) 

1. Benign 25000 18750 6250 

2. DoS 25000 18750 6250 

3. DDoS 25000 18750 6250 

4. Port scan 25000 18750 6250 

5. Brute force 13832 10374 3458 

6. Attack 2003 1503 500 

7. Total     

Records 

118015 88512 29503 

 

3.1. Data preprocessing 

In this study, the publicly available CIC-IDS2017 

dataset from the Canadian Institute for Cybersecurity 

is utilized to evaluate the presented model. This 

database includes records of various types of attack 

classes, including Port Scan, Brute Force, DoS, 

DDoS, Web Attack, Botnet, Infiltration, and 

Heartbleed. Due to the very low number of records 

for certain attacks, following the approach presented 

in[19], Botnet, Infiltration, and Heartbleed attacks are 

grouped into a unique category named “Attack” to 

ensure the system is trained with sufficient data. Each 

record in the CIC-IDS2017 dataset comprises 78 

numeric features and one target label. 

Table 2 lists the data distribution in the CIC-

IDS2017 dataset. As shown in this table, 118,015 

data samples are used for multiclass intrusion 

detection, considering seven different classes, 

including one Benign class and six attack classes. 

75% of the dataset is considered for training, whereas 

the residual 25% is utilized to assess the performance 

of the suggested method. 

3.1.1. Data augmentation 

Number of samples in the classes is highly 

imbalanced. Therefore, in the proposed method, data 

augmentation is employed to balance the data by 

increasing the number of samples in the minority 

classes. This involves generating new samples in the 

minority classes to balance the number of samples 

across different classes. In this study, two 

techniques—scaling and noise addition—are used to 

increase the diversity and volume of data. Firstly, the 

data are scaled by multiplying them by various scale 

factors, allowing the model to adapt to the scaling 

variations that may occur in real-world data. 

Secondly, random noise, extracted from a normal 

distribution with a mean of zero and a low standard 

deviation, is added to the data. Adding noise helps the 

model to be more robust against environmental noise 

and natural data fluctuations. These two methods 

increase the diversity and number of training samples, 

improving the model’s performance under various 

and more realistic conditions Fig. 2 and Table 3 show 

the difference between the distribution of data before 

and after using the augmentation techniques.  

3.2. Feature visualization using spectrogram 

A spectrogram provides a visual representation of 

the frequency spectrum over time. Spectrogram 

images provide a high degree of frequency precision, 

but this comes with a trade-off in time precision. This 

image is shown as a color map in terms of time and 

frequency, helping to understand how the frequency 

spectrum changes. Essentially, spectrograms present 

spatial and temporal features in a visual format that 

can be easily learned by deep convolutional neural 

networks (CNNs) [20].  

The segmentation of waveforms into short-term 

segments forms the basis for time-frequency 

techniques. In short-time Fourier transform (STFT), 

there are two steps: first, the data are divided into 

equal segments, and then the Fourier transform is 

applied to each segment. This operation generates 

time-frequency information, known as a spectrogram. 

The STFT approach heavily relies on the choice of an 

appropriate window. The frequency resolution of a 

rectangular window is inadequate. A triangular 

window is better than a rectangular one because it 

provides a decreasing frequency range. The functions 

employed as the primary window function in short-

time Fourier transform (STFT) must possess a 

confined quantity of energy. As a result of this 

limitation, the frequency axis in STFT is also reduced 

to enhance the distinction of the time axis. The 

window should be widened to improve the frequency 

axis selectivity[21, 22]. 

The continuous-time spectrogram Equation is as 

follows: 

 

𝑋(𝑡, 𝑓) = ∫ 𝑥(𝑡). 𝑤(𝑡 − 𝜏). 𝑒−𝑗𝜋/𝜏+∞

−∞
𝑑𝜏  (1) 

 

Where: 

X(t,f) is the STFT at time t and frequency f, x(t) 

is the input signal, w(t−τ) is the window function that 

moves along the signal, e−jπ/τ represents the Fourier 

transform's frequency domain component. 

The window function w(t−τ) plays a crucial role 

in localizing the signal in time, and f is the frequency 

to which the signal is transformed. 

Signals that need to be transformed are often 

divided into equal frames and then transformed using 

discrete-time methods. Artifacts at the borders 

resulting  from  this  method  are  minimized.   These 
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Table 3. Data distribution after augmentation 

Testing 

(25%) 

Training 

(75%) 

No. of 

records 

Category 

6250 18750 25000 Benign 

6250 18750 25000 DoS 

6250 18750 25000 DDoS 

6250 18750 25000 Port scan 

6250 18750 25000 Brute force 

6250 18750 25000 Web attack 

6250 18750 25000 Attack 

43750 131250 175000 Total Records 

 

 
(a) 

 

 
(b) 

 

Figure. 2 Distribution of data: (a) before and (b)after 

augmentation 

 

frames are then subjected to the Fourier 

Transform[23]. Consequently, the following matrix, 

which preserves the magnitude and phase for each 

time and frequency point, is constructed[14]: 

 

𝑋(𝜏, 𝑘) = ∑ 𝑥[𝑛]𝑤[𝑛 − 𝜏]𝑒−𝑗𝑛𝑘𝑁
𝑛=1    (2) 

 

Where: 

X(τ,k) is the STFT at discrete time step τ and 

frequency bin k, 

x[n] is the discrete signal, w[n−τ] is the discrete 

window function, 

N is the total number of points in the Fourier 

transform. 

 

The linear spectrogram represents the squared 

amplitude of the short-time Fourier transform (STFT), 

as indicated in Equation . 

 

𝑆(𝜏, 𝑘) = |𝑋(𝜏, 𝑘)|2     (3) 

 

Where:  

S(τ,k) is the spectrogram at time τ and frequency 

bin k, ∣X(τ,k)∣2| denotes the squared magnitude of 

the STFT. 

Fig. 3 shows an example of the visualized 

features for each class of data using spectrogram 

transformation. 

3.3. Feature extraction 

In the proposed method, two neural networks, 

BILSTM and CNN, are utilized to extract sequential 

and spatial features. Combining the sequential and 

spatial features extracted by these networks provides 

a diverse range of features. The feature extraction 

process using each network is described separately 

below. 

3.3.1. Sequential feature extraction. 

BILSTM neural networks can identify complex 

patterns in sequential data due to their unique 

structure, which includes input, output, and forget 

gates that allow memory units to retain relevant 

information and discard irrelevant information. This 

makes BILSTM suitable for extracting sequential 

features. 

The architecture of the BILSTM neural network 

used includes a combination of fully connected layers, 

dropout layers, and BILSTM layers. 

The BILSTM layers in this network are employed 

to model and extract temporal and sequential features 

from data. These layers, with their long-term and 

short-term memory capabilities, can learn complex 

relationships and temporal dependencies in intrusion 

detection data, which is crucial for identifying 

suspicious patterns and abnormal behaviors in the 

network. 

Following the BILSTM layers, Dropout layers are 

employed to prevent overfitting. These layers 

randomly deactivate some units of the network 

21%

21%

21%

21%

12%
2% 2%

Distribution of Data before Augmentation

Benign

DoS

DDoS

Port Scan

Brute Force

Web Attack

Attack

14%

14%

14%

14%

14%

14%

14%

Distribution of  Data After Augmentation

Benign

DoS

DDoS

Port Scan

Brute Force

Web Attack

Attack
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during training, which helps the model generalize 

better and adapt to new and unseen data. In the final 

stages, fully connected layers are used, where all 

neurons are connected to all neurons in the 

subsequent layer. These layers are used to combine 

and aggregate the features extracted by the previous 

layers and make the final decision for data 

classification. The combination of these layers allows 

the neural network to extract significant features from 

the intrusion detection data, achieving high accuracy 

and efficiency in identifying attacks and intrusions. 

Fig. 4 presents the BILSTM neural network 

structure used in the proposed model. 

 

 
(a)                                                                           (b) 

 
(c)                                                                            (d) 

 
(e)                                                                            (f) 

 
(g) 

Figure. 3 Examples of visualized features for each class using spectrogram transform: (a) sample of class 1, (b) sample of 

class 2, (c) sample of class 3, (d) sample of class 4, (e) sample of class 5, (f) sample of class 6, and (g) sample of class 7 
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3.3.2. Spatial feature extraction 

Feature extraction from the visualized frequency 

patterns generated by the spectrogram   

transformation is performed by leveraging a CNN 

network. The visualized information is applied to a 

deep CNN to extract spatial features presented in the 

visual data. 

CNNs employ convolutional layers to derive 

intricate attributes from images. CNNs can identify 

multi-scale features, meaning they can recognize 

features at various scales within the image. Fig. 5 

illustrates the structure of the CNN network used in 

this work . 

The proposed architecture for feature extraction 

from spectrogram images employs a CNN 

comprising four types of layers with three training 

epochs, including convolutional layers , ReLU 

activation layers, pooling layers, and fully connected 

layers. 

The convolutional layers are the first stage in this 

network, applying various filters to the image to 

identify local patterns and characteristics, including 

boundaries, colors, and vertices. 

Following convolutional layers, ReLU layers are 

used as activation functions, converting negative 

values to zero, enabling the network to model non-

linear relationships, and preventing issues like the 

vanishing gradient problem. 

The pooling layers are used to reduce the 

dimensions of the feature maps and decrease the 

number of parameters and computations. These 

layers help the model preserve essential spatial 

features and provide greater robustness to small 

variations and noise by dimensionality reduction. In 

the final stages, fully connected layers are employed, 

each with 20 neurons, allowing the model to learn 

complex features where all neurons are connected to 

all neurons in the subsequent layer. These layers 

combine the extracted features and make the final 

decision. 

 

 
Figure. 4 BILSTM neural network structure[15] 

 

 

 
Figure. 5 Structure of the CNN used in this research 
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The number of training epochs was set to 3 for the 

CNN, balancing between sufficient training time to 

learn the features and avoiding overfitting. 

This combination of layers works cohesively to 

extract useful and meaningful information from the 

spectrogram images, preparing it for analysis and 

final decision-making. This approach enables the 

neural network to efficiently and accurately identify 

and extract critical features in spectrogram images 

3.4. Dimensionality reduction 

In the proposed model, principal component 

analysis (PCA) is used to reduce the number of 

variables in the dataset while preserving the 

maximum variance (information) present in the data. 

This method transforms the original dataset into a set 

of principal components using a change of basis. In 

this technique, the data is first centralized using Eq. 

(4), where the mean of each feature is subtracted from 

its value: 

 

𝑋𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 = 𝑋 − 𝜇     (4) 

 

In Eq. (4), X represents the data matrix and 𝜇 is 

the vector of their means. 

Then, the covariance matrix of the centered data 

is calculated using Eq. (5): 

 

𝐶 =
1

𝑛−1
∑ (𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)𝑇𝑛

𝑖=1    (5) 

 

Where n is the number of data points. 

Xi represents the i-th data point (a row in the data 

matrix). 

Next, eigenvectors and eigenvalues are computed. 

In other words, we decompose the covariance matrix 

to obtain the eigenvectors 𝑣𝑖 and eigenvalues λ𝑖. 

 

𝐶𝑣𝑖 = λ𝑖𝑣𝑖      (6) 

 

Where: 

vi are the eigenvectors (directions of maximum 

variance), λi are the eigenvalues, which represent the 

amount of variance explained by each eigenvector. 

Then, the eigenvectors are sorted based on their 

corresponding eigenvalues, and k eigenvectors with 

the highest eigenvalues are selected. Finally, the 

original data is mapped to the new space of principal 

components using Eq. (7): 

 

𝑋𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = 𝑋𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑊    (7) 

 

Where W is a matrix containing the selected k 

eigenvectors. 

Reducing the number of features allows our 

proposed model to train faster and become simpler. 

Additionally, the PCA maps the data to a lower-

dimensional space, which leads to computational 

complexity reduction. Moreover, removing 

dimensions with less information helps to reduce 

noise and improve the model's performance. 

3.5. Data classification using ensemble learning 

In this work, the bagging technique was 

employed to classify data. Bagging (bootstrap 

aggregating) is a powerful ensemble learning method 

used to reduce the variance of machine learning 

models and improve their accuracy. In the bagging 

phase, random and resampled subsets of the dataset 

are used to create different sets, and then learning 

models are trained on these subsets. In this technique, 

the outputs of all trained models are combined, and 

the majority vote is considered as the final prediction. 

By training different models on different samples, 

bagging reduces the variance of the final model, thus 

preventing overfitting. Combining multiple models 

in this way improves the accuracy of the final model 

because different models compensate for each other's 

mistakes. Additionally, bagging creates more stable 

and robust models by reducing the sensitivity of the 

model to noise present in the training data. Fig. 6 

illustrates the framework of the ensemble learning 

method. 

4. Experimental results and discussion 

In this section, we evaluate the performance of 

the proposed method and compare it with previous 

state-of-the-art models. The proposed technique was 

implemented in MATLAB R2023b on a system with 

an Intel Core i7 CPU, 8 GB RAM, and an NVIDIA 

Quadro K2000 GPU. 

4.1. Benchmark dataset 

We utilized the CICDS2017 dataset for 

experiments, with 75% of the dataset used for 

training after the data augmentation stage, and the 

remaining 25% for testing. To prevent overfitting, we 

employed K-cross validation with K=10 in this 

research. 

4.2. Performance measures 

Four performance measures, including accuracy, 

precision, recall, and F-score, are used to evaluate the 

performance of the proposed method compared to 

other works. These metrics provide a comprehensive 

assessment of the model's ability to classify different 
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types of attacks and intrusions of network traffic. The 

metrics are described as follows: 

Precision: This is the proportion of instances that are 

accurately identified as attacks out of all instances 

that are predicted as attacks [8].  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (8) 

 

Where: 

TP (True Positives) are instances correctly 

predicted as attacks. 

FP (False Positives) are instances incorrectly 

predicted as attacks. 

Recall: This is the proportion of all instances 

correctly identified as attacks out of all instances that 

are truly attacks [24][8]. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (9) 

 

Where: 

FN (False Negatives) are actual attacks that were 

not identified by the model. 

Accuracy: This refers to the proportion of 

instances that are correctly classified out of the total 

number of instances.  

Also known as detection accuracy, it serves as a 

valuable performance metric, particularly when 

dealing with a balanced dataset [8]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
              (10) 

 

Where: 

TN (True Negatives) are instances correctly 

identified as normal traffic. 

 

 

 
Figure. 6 Structure of the proposed ensemble learning 

model 

F-Score: This is the harmonic mean of precision 

and recall, serving as a statistical method to evaluate 

a system’s accuracy by taking into account both its 

precision and recall. In essence, it provides a 

balanced perspective on the system’s performance[8]. 

 

𝐹 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
)             (11) 

 

4.3. Results 

The ROC curve that is displayed in Fig. 7 

graphically represents the true positive rate (TPR) 

versus the false positive rate (FPR) at different 

threshold levels, illustrating the balance between the 

classifier’s specificity and sensitivity. An effective 

classifier gravitates towards the upper-left corner of 

the ROC curve, indicating a high true positive rate 

(TPR) and a low false positive rate (FPR). On the 

other hand, an ineffective classifier leans towards the 

lower-right corner, signifying a low TPR and a high 

FPR. A classifier that makes random predictions falls 

on the diagonal line of the ROC curve, where the TPR 

and FPR are identical. 

As observed in Fig. 7, the ROC curve for the 

proposed method exhibits high TPR and low FPR, 

with the break-even point of the curve near the upper-

left corner. Thus, the model’s performance in 

detecting attacks with high accuracy can be deduced. 

 

 
 

Figure. 7 The ROC curve on the training dataset 

generated by the proposed method 



Received:  October 15, 2024.     Revised: December 19, 2024.                                                                                       1271 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.91 

 

Table 4. Confusion matrix of classification outcomes generated by the proposed method. 

 Actual  

Attack Benign 
Brute 

force 
DDoS DoS 

Port 

scan 

Web 

Attack 

Predicted 

Attack 6373 0 0 0 0 0 0 6373 100% 

Benign 0 6167 0 0 0 0 0 6167 100% 

Brute 

Force 
0 0 6240 0 0 0 0 6240 100% 

DDoS 0 0 0 6323 0 0 0 6323 100% 

DoS 0 0 0 9 6240 0 0 6249 99.85% 

Port scan 0 0 0 3 0 6156 0 6159 99.95% 

Web 

Attack 
0 0 0 0 0 0 6239 6239 100% 

 6373 6167 6240 6335 6240 6156 6239  
100% 100% 100% 99.81% 100% 100% 100% 

 

 
Figure. 8 The results generated by comparison algorithm 

in terms of performance metrics 
 

Table 4 shows the confusion matrix of 

classification outcomes generated on the 

CICIDS2017 dataset. In this matrix, rows represent 

the actual classes, and columns represent the 

predicted classes by the model. Each cell in the 

matrix indicates the number of samples assigned 

from the actual class to the predicted class. Values on 

the main diameter of the matrix, such as 6373 for 

“attack”, 6167 for “benign”, and 6240 for “brute 

force”, represent the number of samples correctly 

detected as positive (Tp).Values outside the main 

diameter, such as 9 samples “DDoS” which are 

wrongly classified as “DoS” or 3 “DDoS” samples 

which are classified as “port scan” which represents 

the errors of the model in recognizing the classes. 

In Table 3, the last row for each class shows the 

amount of TPR (
Tp 

Tp+Fp
) which is calculated by 

dividing the correct positive detections by the total 

positive detections. As seen in Table 3, the TPR rate 

for the DDoS class is 99.81% and for the other classes, 

it is 100%. In addition, the last column shows the 

level of precision for each class.  

This rate for DoS and port scan attacks is equal to 

99.85% and 99.95%, respectively. Also, the amount 

of precision criterion for other classes is equal to 

100%. According to the results, it can be seen that the 

proposed method has shown a verygood performance 

in correctly detecting all types of attacks 

The numerical values of F-measure, recall , and 

precision obtained by the comparison algorithm on 

the CICIDS2017 dataset shown in Fig. 8. The results 

confirm that the suggested model achieved high 

values for precision, recall, and F-score among all 

existing methods. After the proposed method, neural 

networks DNN-CNN and DNN-BILSTM show 

better performance compared to other methods.  

The improvement rate of the proposed method 

compared with its counterparts is shows in Fig. 9.  

To effectively verify the performance of the 

proposed method has been compared with other 

techniques like TIDCS [14], (BSDWLGB , DWLGB, 

EELM, NIE, and BARCA)[15] ,KNN [16] NB 

elliptic-envelope [17] ,(DNN BILSTM,DNN CNN) 

[18] and In terms of overall performance, our 

proposed is superior to the all anomaly detection 

algorithms of listed in Table 5 based on the accuracy 

measure. It is worth mentioning that the accuracy of 

the proposed technique was calculated by averaging 

the results of 30 simulation tests. 

The reason for this is that results vary randomly 

in each run, so an average of 30 runs was taken to 

obtain the desired results. 

The main reason for the high accuracy of the 

proposed method is the balanced data augmentation 

technique using the augmentation strategy and the 

extraction of a diverse spectrum of features with the 
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help of CNN and the BILSTM model. This enables 

the classifier to distinguish classes with higher 

accuracy. Moreover, reducing the dimensionality of 

features using the PCA algorithm decreases the 

complexity of the data and consequently enhances the 

accuracy of the group-based learning technique in 

classifying attacks 

5. Conclusion 

This study introduced a novel hybrid sequential-

visual deep feature extractor network (HSV-DFEN) 

for developing an intelligent intrusion detection 

system using spectrogram transformation. Our 

method successfully captured time-frequency 

patterns in network traffic by merging CNNs for 

visual feature extraction with BiLSTM networks for 

sequential feature extraction. 

It offered a robust and comprehensive solution for 

detecting various attack types, including DoS, DDoS, 

Port Scans, and Brute Force Attacks. The model's 

performance was rigorously evaluated using the 

CICIDS2017 dataset, with 10-fold cross-validation 

(K=10) applied to prevent overfitting. 

The experimental findings consistently showed 

that the suggested model was superior to the current 

approaches in terms of accuracy, precision, recall, 

and F-score. When a 99.98% accuracy percentage 

was attained, the other classes' precision and recall 

criteria were 100%. Additionally, the F1-Score was 

99.1%. Using several models, ensemble learning 

significantly improved the classification process and 

produced higher accuracy and robustness than 

standalone models. 

 

 

 
Figure. 9 The improvement rate of the  proposed method 

HSV-DFEN vs. counterpart algorithms 

Table 5. Comparison Accuracy of Different Methods on 

the CICIDS-2017 Dataset 

Method Accuracy 

DWLGB  86.59 

EELM  87.91 

NIE  90.48 

BARCA  90.87 

BSDWLGB  91.40 

TIDCS  94.6 

DNN BILSTM 97.67 

NB elliptic-envelope  98.59 

KNN  98.8 

DNN CNN  99.61 

Proposed Method 99.98 

 

 

Despite its strong performance on established 

attack classes, the model's ability to detect zero-day 

attacks remains limited due to its reliance on pre-

existing datasets. Addressing this limitation could 

involve integrating additional anomaly detection 

mechanisms to handle novel, previously unseen 

attack patterns better. Future research should focus on 

improving the model's real-time functionality, 

making it more suitable for deployment in real-world 

network environments. Enhancing computational 

efficiency through techniques like model 

quantization or pruning could enable the model to 

operate in dynamic, resource-constrained settings, 

further advancing its practical applicability in 

modern network security. 
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Notation List 

Symbol Meaning 

X(t,f) 
Short-Time Fourier Transform (STFT) at 

time 

x(t) Input signal in the time domain. 

w(t−τ) 
Window function used for segmenting 

the signal. 

e−jπ/τ 
Frequency domain component of the 

Fourier Transform. 

X(τ,k) Discrete STFT at time step  
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S(τ,k) 
Spectrogram, the squared magnitude of 

the STFT. 

X centered Data matrix after centering. 

μ Mean vector of the data. 

C Covariance matrix. 

λi 
Eigenvalue, representing the variance 

explained by each principal component. 

Vi 
Eigenvector, direction of maximum   

variance. 

W 
Transformation matrix containing     

selected eigenvectors. 

TN True Negatives 

FN False Negatives 

TP True Positive  

FP False Positive 
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