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Abstract: This study proposes a hybrid Quantum-Deep Learning framework to enhance the efficiency and accuracy 

of land cover classification. The approach integrates a Quantum Gaussian Mixture Model (QGMM) for outlier 

detection, a Bidirectional Gated Recurrent Unit (BiGRU) for feature extraction, and a combination of Random Forest 

(RF) and XGBoost (XGB) for feature selection. By leveraging quantum principles in the Expectation-Maximization 

(EM) algorithm, the QGMM significantly optimizes parameter estimation, enabling robust outlier detection that 

supports better model generalization. Experimental results on the UCI Forest Cover dataset demonstrate near-perfect 

classification performance, achieving an accuracy of 99.9% and an Area under the curve (AUC) of 1.0, highlighting 

the model's capacity to handle high-dimensional, imbalanced data effectively. This framework provides a promising 

solution for complex environmental datasets, paving the way for future research into integrating quantum techniques 

for broader ecological and geospatial applications. 

Keywords: Hybrid quantum model, Land cover classification, Quantum clustering, Quantum expectation-

maximization, Quantum Gaussian mixture model. 

 

 

Table 1. Notation List 

Notation Definition 

𝑥 Data point in the dataset 

𝑁 Total number of data points in 

the dataset 

𝐾 Number of Gaussian 

components in the GMM 

𝜋𝑘 Weight or prior probability of 

the  

𝑘-th Gaussian component 

𝜇𝑘 Mean of the 𝑘-th Gaussian 

component 

Σ𝑘 Covariance matrix of the 𝑘-th 

Gaussian component 

𝛾𝑖𝑘 Posterior probability that data 

point 𝑥𝑖 belongs to the 𝑘-th 

Gaussian component 

𝒩(𝑥|𝜇𝑘 , Σ𝑘) Gaussian distribution function 

𝐻 Hadamard gate for creating 

superposition in the quantum 

circuit 

𝜃 Rotation angle for quantum 

gates based on Gaussian 

parameters 

𝑅𝑍 Quantum rotation gates around 

the z-axis 

𝑅𝑋 Quantum rotation gates around 

the x-axis 

𝑅𝑌 Quantum rotation gates around 

the y-axis 

𝐶𝑁𝑂𝑇 Controlled-NOT gate for 

entanglement in quantum 

computing 

𝜓𝑘 Quantum state probability 

amplitude for component 𝑘 

cost Cost function used for 

optimizing parameters in 

Quantum EM 

𝐹𝐼𝑅𝐹(𝑗) Feature importance score for 

feature 𝑗 calculated by Random 

Forest 

Δ𝐼𝑡(𝑗) Impurity reduction for feature 𝑗 

in tree 𝑡 
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𝐹𝐼𝑋𝐺𝐵(𝑗) Feature importance score for 

feature 𝑗 calculated by XGBoost 

𝑇 Total number of trees in the 

Random Forest or XGBoost 

ensemble 

gain Reduction in impurity or loss 

after splitting on a feature in 
XGBoost 

lossbefore , lossafter  Loss values before and after a 

split in XGBoost 

1. Introduction 

Accurate land cover classification is essential for 
various environmental applications, such as natural 

resource management, land use planning, and climate 

change mitigation. Accurate land cover data helps 
researchers and policymakers make better decisions 

regarding ecosystem conservation and environmental 

management [1–3]. However, reliable classification 

requires complex data processing and efficient 
approaches to handle large and heterogeneous 

datasets. 

One of the biggest challenges in land cover 
classification is extracting features that can capture 

hidden patterns and relationships between attributes. 

Deep learning models like recurrent neural networks 

have shown great potential in solving such tasks [4]. 
However, these approaches have limitations in 

handling data that require more complex 

bidirectional processing. A newer alternative, the 
Bidirectional Gated Recurrent Unit (BiGRU), offers 

the advantage of processing bidirectional sequential 

data, allowing the model to combine information 
from the past and future simultaneously, enhancing 

feature representation [5]. Thus, BiGRU provides 

significant advantages in capturing richer patterns 

compared to unidirectional approaches such as 
LSTM and traditional GRU [6]. 

Although these approaches are effective, there is 

still a need to improve efficiency and enrich the 
extracted information, which can be achieved with 

quantum computing-based approaches. The 

integration of quantum computing in feature 
extraction allows for improvements in terms of 

processing and deeper feature capture, thanks to its 

ability to leverage the principles of quantum 

superposition and interference [7–9].  
On the other hand, outlier detection in data is also 

significantly critical since outliers can interfere with 

model training and lead to biased or inaccurate 
predictions [10, 11]. The application of outlier 

detection has been proven effective in improving 

model performance in various fields, including 

agriculture [12], data security [13], business [14], and 
healthcare [15]. Integrating outlier detection into the 

data analysis pipeline can help improve data quality 
before the model is trained, resulting in more stable 

and reliable classification results. 

Classical methods, such as Isolation Forest, One-

Class SVM, and Local Outlier Factor (LOF), have 
been widely used in various studies to detect outliers 

[16]. However, these methods have scale and 

computational efficiency limitations, especially for 
large and complex datasets. Meanwhile, the Gaussian 

Mixture Model (GMM) has an Expectation-

Maximization (EM) algorithm [17, 18]. EM is an 
algorithm widely used in statistical model parameter 

estimation, especially when latent variables exist. 

The iterative nature and modular structure of EM 

make it relatively easy to modify and implement in 
quantum computing [19, 20]. Thus, Quantum GMM 

(QGMM) can offer a solution to process parameter 

optimization more efficiently than classical methods 
[21]. This allows faster parameter space exploration 

and reduces the risk of getting stuck in local optima 

[22]. 
The increase in the number of features resulting 

from the feature engineering process, both deep 

learning-based feature extraction techniques and 

quantum computing, as well as outlier detection, 
often causes increased computational complexity, 

especially in high-dimensional datasets [7, 13, 14]. 

Whereas not all features are necessarily useful and 
make the dataset more informative. Therefore, 

feature selection is an important step in ensuring that 

only the most informative features are retained, 

reducing computational complexity while 
maintaining or even improving model performance 

[6, 23, 24]. Various feature selection methods such as 

Recursive Feature Elimination (RFE), Information 
Gain(IG), and Chi-square have been applied to 

address this issue [25, 26]. However, these methods 

may miss essential features that contribute to model 
accuracy. The combination of Random Forest (RF) 

and XGBoost (XGB) has emerged as a practical 

approach in feature selection, combining the stability 

and in-depth evaluation provided by RF with the high 
sensitivity of XGB in identifying significant features 

[27, 28]. This combination enables more informative 

feature selection, reducing complexity without 
sacrificing model performance.  

In recent years, quantum computing approaches 

have attracted attention as a potential solution to 
complex optimization and computational challenges. 

Unlike classical computing, quantum computing 

offers advantages in solving optimization problems 

more efficiently [21, 29]. This study provides new 
opportunities to improve model performance in land 

cover classification and maximize computational 

efficiency by integrating quantum computing 
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methods with deep learning and classical machine 
learning techniques.  

This paper proposes a Hybrid Quantum-Deep 

Learning framework that combines Quantum GMM 

for outlier detection, feature extraction using BiGRU, 
and feature selection based on a combination of 

Random Forest and XGBoost. This framework aims 

to optimize the land cover classification process by 
improving the overall accuracy and computational 

efficiency. The proposed method integrates quantum 

computing, BiGRU, and RF-XGB to optimize land 
cover classification. Quantum computing accelerates 

parameter estimation in GMM, BiGRU extracts 

temporal patterns, and RF-XGB reduces 

computational complexity, forming a robust 
framework for high-dimensional and imbalanced 

datasets. 

The rest of this paper is organized as follows: 
Section 2 reviews related work to position this study 

within the current research landscape. Section 3 

details the proposed hybrid framework, including 
preprocessing, feature extraction, outlier detection, 

and feature selection. Section 4 presents the results 

and analysis, highlighting the performance and 

robustness of the proposed method. Finally, Section 
5 concludes the study and outlines future research 

directions. 

2. Related works 

Land cover classification has become an 

important research subject due to its relevance in 

natural resource management and ecosystem balance. 
Previous studies have explored the use of classical 

machine learning algorithms, such as K-Nearest 

Neighbors (KNN), Random Forest (RF), Gradient 
boosting, and Support Vector Machine (SVM), for 

land cover dataset classification from the UCI 

Machine Learning Repository [30–32]. These studies 

highlight the effectiveness of supervised learning 
methods in processing structured datasets with 

diverse features, including cartographic variables 

such as elevation, slope, soil type, and distance to 
hydrology. 

Studies have shown that RF and KNN often excel 

in terms of accuracy. For example, RF consistently 
outperformed other algorithms in classifying forest 

cover types due to its ability to handle high-

dimensional data and reduce overfitting through 

ensemble learning [33, 34]. Using non-parametric 
methods such as KNN has proven effective, with 

significant accuracy results of up to 97.09%, 

significantly better than the baseline values reported 
in the UCI Repository [33]. However, these methods 

face challenges when applied to large datasets, 

particularly regarding computational efficiency. 
KNN, for instance, requires extensive distance 

computations, making it less practical for real-time 

applications. 

 Additionally, ensemble-based studies, such as 
the EMLARDE method, have highlighted the 

advantages of ensemble models in improving 

multiclass classification accuracy [35]. By 
employing a decorrelation mechanism among 

decision trees, EMLARDE achieves enhanced 

performance for multiclass datasets. Despite their 
effectiveness, ensemble methods are computationally 

intensive, especially when dealing with high-

dimensional data or datasets with significant 

imbalances in class distributions. These limitations 
restrict their scalability for large-scale or real-time 

classification problems [31, 34, 35].  

Traditional optimization methods often struggle 
with complex classification problems due to their 

reliance on iterative and deterministic approaches, 

which may fail to find global optima in high-
dimensional spaces. Recently, quantum computing 

methods have been introduced to overcome these 

challenges. Techniques such as Annealing Lévy 

Quantum Inspired Particle Swarm Optimization 
(ALQPSO) have demonstrated advantages in 

parameter space exploration, offering higher 

convergence speeds and better optimization in 
diverse applications [36]. However, their application 

to land cover classification remains limited. 

Although previous studies have investigated 

feature selection methods, outlier detection, and 
machine learning algorithms for land cover 

classification, significant gaps remain. The 

integration of quantum computing methods for 
optimization, Quantum GMM-based outlier detection, 

and deep learning models such as BiGRU have not 

been thoroughly explored. Existing methods often 
fail to address the combined challenges of noisy data 

and imbalanced class distributions. This study fills 

this gap by proposing a Hybrid Quantum-Deep 

Learning framework that integrates QGMM, BiGRU, 
and RF-XGB for feature selection to improve land 

cover classification accuracy and computational 

efficiency. 

3. Proposed method  

The proposed method in this study combines 

quantum approaches, deep learning, and classical 
methods to improve the accuracy and efficiency of 

land cover classification. This approach involves 

several stages, from data preprocessing feature 
extraction using deep learning architectures such as 

BiGRU,   outlier   detection   based   on  GMM   and  
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Figure. 1 Overview proposed method 

 

QGMM, and feature selection with Random Forest 
and XGBoost. 

3.1 Preprocessing 

The preprocessing process ensures that the data is 

in optimal condition before being used in the model. 

The first step involves removing missing and 
duplicate data. Discrete data labels are converted into 

a numeric format using LabelEncoder so that the 

machine learning model can process them. Next, 
numeric features are scaled using MinMaxScaler to 

normalize the data between 0 and 1, ensuring that all 

features have the same scale and thus avoiding bias 

in the algorithm. 

3.2 Deep Learning Future Extraction 

Feature extraction uses the Bidirectional Gated 

Recurrent Unit (BiGRU) architecture. BiGRU is a 

variant of Recurrent Neural Network (RNN) that 
processes data in two directions, forward and 

backward, so it can simultaneously capture 

contextual information from the past and future. The 

BiGRU model used in this study is implemented in 
the Sequential framework with the following 

parameters: 

1. Input Layer to receive input data. This section 
requires dimension expansion to be compatible 

with the BiGRU layer, namely data 

transformation from (𝑛samples , 𝑛features)  to 

(𝑛samples , 𝑛features , 1) 

2. BiGRU Layer with 16 units in each direction, 

equipped with return_sequences=False, ensures 

that only the layer's last output is returned. 

3. The dense layer is a fully connected layer with 
eight neurons and a ReLU activation function, 

which helps reduce non-linearity and processes 

the BiGRU output into a denser feature vector. 

The BiGRU integration steps in feature extraction 
ensure that temporal and complex patterns in the 

dataset are well captured so that the model can 

produce more informative feature representations for 
the next stage. 

3.3 Quantum-Classic Outlier Detection  

The classical Gaussian Mixture Model (GMM) 

and QGMM are used at this stage. GMM is a 

probabilistic model that models the data distribution 
as a mixture of several Gaussian distributions. The 

probability that data 𝑥  is generated by a Gaussian 

mixture distribution with 𝐾 k components is given by 
Eq. (1). 

 

𝑝(𝑥|𝜃) = ∑ 𝜋𝑘𝒩(𝑥|𝜇𝑘 , Σ𝑘)

𝐾

𝑘=1

 (1) 

 

Where 𝜋𝑘  is the weight or proportion of the 𝑘th 

Gaussian component; 𝜇𝑘 is the mean of the 𝑘th 

component; Σ𝑘 is the 𝑘th  component covariance 

matrix; 𝒩(𝑥|𝜇𝑘 , Σ𝑘) is a Gaussian distribution 

function described in Eq. (2). 

𝒩(𝑥|𝜇𝑘 , Σ𝑘) =
1

(2𝜋)𝑑/2|Σ|1/2
exp (−

1

2
(𝑥

− 𝜇)𝑇Σ−1(𝑥 − 𝜇)) 

(2) 
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Expectation-Maximization (EM) is used to 

estimate the parameters 𝜃 of GMM in two iterative 

stages, namely Expectation Step (E-Step) and 

Maximization Step (M-Step). E-Step functions to 

calculate the latent probability distribution for data 𝑥𝑖, 
while M-Step is responsible for updating the 

parameters based on the latent probability 

distribution. E-step and M-step can be calculated by 
Eq. (3) and (4), respectively. 

 

𝛾𝑖𝑘 =
𝜋𝑘𝒩(𝑥𝑖|𝜇𝑘 , Σ𝑘)

∑ (𝑥𝑖|𝜇𝑗 , Σ𝑗)𝐾
𝑗=1

 

 

(3) 

𝜇𝑘 =
∑ 𝛾𝑖𝑘𝑥𝑖

𝑁
𝑖=1

∑ 𝛾𝑖𝑘
𝑁
𝑖=1

, 

Σ𝑘 =
∑ 𝛾𝑖𝑘(𝑥𝑖 − 𝜇𝑘)𝑁

𝑖=1 (𝑥𝑖 − 𝜇𝑘)𝑇

∑ 𝛾𝑖𝑘
𝑁
𝑖=1

 

(4) 

 
To modify the EM algorithm into a Quantum 

version, several quantum circuits are designed to 

perform E-step and M-step calculations in a quantum 
state, allowing simultaneous processing of multiple 

parameters. In this study, a quantum circuit is 

designed with 4 qubit inputs processed through 

several layers of processing, consisting of the 
following quantum gates: 

1. A Hadamard (𝐻) gate is applied to each qubit at 

the beginning of the circuit to place the qubit in 
a superposition state. This allows each qubit to 

have an equal chance of being in the states |0⟩ 
and |1⟩. The Hadamard gate is expressed as in 

Eq. (5). 
2.  

𝐻 =
1

2
[1 1
1 −1

] (5) 

 

3. After the initial superposition, the 𝑅𝑌  and 𝑅𝑍 

rotation gates are applied to adjust the quantum 

state based on the Gaussian distribution 
parameters. Each qubit is rotated about the 

𝑌 and 𝑍 axes using angles corresponding to the 

model parameters, such as the Gaussian mean 

and covariance. The 𝑅𝑌  and 𝑅𝑍  rotations are 
performed by Eq. (6) and (7), respectively. The 

𝑅𝑌 gate controls the amplitude of the qubit state, 

while the 𝑅𝑍 gate controls the phase. 

𝑅𝑌(𝜃) = [
cos (

𝜃

2
) −sin (

𝜃

2
)

sin (
𝜃

2
) cos (

𝜃

2
)

] 

 

(6) 

𝑅𝑍(𝜃) = [𝑒−𝑖𝜃/2 0
0 𝑒𝑖𝜃/2

] 
(7) 

 
4. The CNOT gate is applied between adjacent 

qubits in the third layer to form entanglement. 

Entanglement allows strong interactions 
between qubits, which is useful in capturing 

correlations between variables in multivariable 

data. The CNOT gate acts as a control gate, 

changing the state of the target qubit only if the 

control qubit is in the |1⟩  state. The CNOT 

matrix is given as in Eq. (8). 

 

CNOT = [

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

] (8) 

 

5. The last layer is a measurement after rotation 

with the 𝑅𝑋  gate. This gate performs an 
additional rotation on the qubit, setting the final 

orientation before the measurement. The 

probability measurement calculates the 

probability distribution used in the parameter 
updates at the E-step and M-step. The matrix for 

rotation around the 𝑋-axis is given in Eq. (9). 

 

𝑅𝑌(𝜃) = [
cos (

𝜃

2
) −𝑖 sin (

𝜃

2
)

−𝑖 sin (
𝜃

2
) cos (

𝜃

2
)

] (9) 

 

For a clearer visualization of the quantum gates, 

see Figure 2. Passing through these quantum stages 

makes the Quantum E-step calculated in a quantum 
state that allows simultaneous evaluation for all 

Gaussian components (see Eq. (10)). The parameter 

update in the M-step is done by utilizing the 
measurement results of the quantum circuit to update 

the mean and covariance, as in Eq. (11). Finally, to 

perform quantum EM optimization, a cost function is 

added to maximize the parameter distribution shown 
in Eq. (12). 

 

𝛾𝑖𝑘
quantum

=
|𝜓𝑘⟩|2

∑ |𝜓𝑘⟩|2𝐾
𝑗=1

 

 

(10) 

𝜇𝑘
quantum

=
∑ 𝛾𝑖𝑘

quantum
𝑥𝑖

𝑁
𝑖=1

∑ 𝛾𝑖𝑘
quantum𝑁

𝑖=1

 

 

(11) 

cost = − ∑ |𝜓𝑘⟩2

measured

 (12) 
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Figure. 2. Quantum circuit visualization 

 

Once the cost values are calculated in the 

Quantum EM optimization step, these values are used 
to update the parameters in the quantum circuit 

through the optimization step. In the given code, the 

optimization is performed using AdamOptimizer, 

which updates the parameters based on the resulting 
cost values. The cost values  are not directly fed into 

the circuit but are used as a guide to direct the 

parameter updates to achieve the optimal probability 
distribution. This approach speeds up EM iterations 

by reducing computational complexity, allowing 

efficient and precise parameter processing for large-
dimensional datasets. 

3.4 Fusion feature selection 

Feature selection is done by combining the 

evaluation results from RF and XGB. RF calculates 

feature importance with Eq. (13). While XGB 
evaluates features based on the gain generated by 

each division with Eq. (14). The gain value is then 

accumulated for each occurrence of feature 𝑗 in all 
trees in the XGB ensemble, thus providing the final 

feature importance value 𝐹𝐼𝑋𝐺𝐵(𝑗). The higher the 

gain value generated by the feature, the more critical 

the model considers the feature. 
 

𝐹𝐼𝑅𝐹(𝑗) = ∑
Δ𝐼𝑡(𝑗)

𝑇

𝑇

𝑡=1

 

 

(13) 

gain = lossbefore − lossafter  (14) 

 

Where Δ𝐼𝑡(𝑗) is the impurity reduction in tree 𝑡 

for feature 𝑗.  

Finally, the mean importance is calculated by 
combining the scores from both models in Eq. (15). 

 

mean importance𝑗 =
𝐹𝐼𝑅𝐹(𝑗) + 𝐹𝐼𝑋𝐺𝐵(𝑗)

2
 (15) 

 
Features with mean importance above a threshold 

are selected to reduce computational complexity 

while maintaining model accuracy. 

3.5 Training and Testing 

In this study, a 5-fold StratifiedKFold was used, 

where the dataset was divided into five subsets, each 
of which had a similar class distribution. In each 

iteration, four subsets were used as training data, and 

one subset was used as testing data. This process was 

repeated five times so that each subset became testing 
data once and training data four times. The results of 

these five folds were then averaged to produce more 

stable evaluation metrics and reduce variability in 
model performance. 

3.6 Evaluation 

Several evaluation metrics are used to assess the 

model's overall performance, namely Accuracy, 

Precision, Recall, F1-Score, and Area Under Curve 
(AUC). Accuracy provides a general view of the 

model's performance but can be less informative in 

imbalanced data. Precision is important to measure 
the reliability of the model's positive predictions. 

Recall is relevant in cases where identifying all 

positive classes is more important than avoiding false 
positive predictions. The F1 score evaluates the 

model's overall performance in handling the positive 

class without being too influenced by the class 

distribution. AUC is the area under the Receiver-
operating characteristic (ROC) curve, whose value 

ranges between 0 and 1. An AUC value close to 1 

indicates that the model can distinguish between 
positive and negative classes. To understand more 

details about how to calculate accuracy, precision, 

recall, f1-score, and AUC, you can see Eq. (16)-(20). 
 

accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 
(16) 

precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
(17) 

recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (18) 
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f1 = 2 ×
precision × recall 

precision + recall 
 

 
(19) 

AUC = ∫ ROC curve
1

0

 (20) 

4. Results and analysis 

4.1 Experimental setup 

Experiments were conducted on Google Colab 

using Python and core libraries such as TensorFlow 
and Keras for deep learning model development. 

Scikit-Learn was used for preprocessing, cross-

validation, and metric evaluation, while XGBoost 

and Random Forest were applied for feature selection. 

The quantum Gaussian Mixture Model (QGMM) was 
developed using the PennyLane quantum simulator. 

Data visualization and analysis results were 

performed using Matplotlib and Seaborn. The dataset 

used was taken from[37], which has seven classes 
with a total of 581012 records. The class distribution 

is very imbalanced, as can be clearly seen in Figure 3. 

This dataset has 54 features, so after deep learning 
and outlier processing both classically and quantumly, 

it has 112 features, consisting of 54 original features, 

54 BiGRU features, original classic outliers, original 
quantum outliers, BiGRU classic outliers, BiGRU 

quantum outliers.  

This dataset has also been proven to have quite 

dominant outliers, as evidenced by the feature  
 

 

 
Figure. 3 Cover type class distribution 

 
Table 2. Selected Features 

No Feature No Feature 

1 BiGRU_QuantumGMM_Outlier_Label 15 Soil_Type39 

2 BiGRU_GMM_Outlier_Label 16 Wilderness_Area4 

3 QuantumGMM_Outlier_Label_Original 17 Wilderness_Area1 

4 GMM_Outlier_Label_Original 18 Soil_Type10 

5 BiGRU_Feature_0 19 Aspect 

6 Soil_Type4 20 Soil_Type11 

7 BiGRU_Feature_2 21 Soil_Type38 

8 BiGRU_Feature_6 22 Hillshade_9am 

9 BiGRU_Feature_3 23 Horizontal_Distance_To_Fire_Points 

10 Elevation 24 Soil_Type32 

11 BiGRU_Feature_7 25 Horizontal_Distance_To_Roadways 

12 Soil_Type40 26 Hillshade_3pm 

13 BiGRU_Feature_5 27 Soil_Type23 

14 Soil_Type2 28 Horizontal_Distance_To_Hydrology 
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Table 3. Classification Results 

Metrics Fold 

1 

Fold 

2 

Fold 3 Fold 

4 

Fold 

5 

Acc 1.0 1.0 0.99999 1.0 1.0 

Prec 1.0 1.0 0.99999 1.0 1.0 

Recall 1.0 1.0 0.99999 1.0 1.0 

F1 1.0 1.0 0.99999 1.0 1.0 

AUC-

ROC 

1.0 1.0 1.0 1.0 1.0 

 

 
Figure. 4 Confusion matrix in fold 3 

 
selection process using RF and XGB, where all four 

outlier features are included in the important feature 

category. The selected features are features that have 
a threshold mean importance > 0.001. The total 

selected features are 28 features, presented in Table 

2. 

4.2 Results 

After the feature selection process, the 
classification results with 5-fold cross-validation are 

presented in Table 3. Meanwhile, the sample 

confusion matrix is presented in Figure 4. Based on 
the results presented in Table 3, this method achieves 

almost perfect performance on every major 

evaluation metric, such as accuracy, precision, recall, 

and F1-score, with an average of 999998 for all folds 
in cross-validation. This shows that the proposed 

method is very efficient in handling complex and 

high-dimensional land cover classification, thanks to 
the integration of quantum processing, deep learning, 

and ensemble-based feature selection. 

The achievement of perfect AUC-ROC values 
across all folds demonstrates the model's ability to 

distinguish classes consistently and accurately 

without experiencing performance degradation. This 

reliability is mainly supported by the utilization of 
 

Table 4. Ablation Study 

Method Acc Prec Recall F1 AUC-

ROC 

Without 

feature 

selection 

0.957 0.957 0.957 0.957 0.998 

Without 

QGMM 

0.947 0.947 0.947 0.947 0.997 

Proposed 0.999 0.999 0.9999 0.999 1.0 

 

 
Quantum EM on GMM, which allows the model to 

accelerate parameter convergence without getting 

stuck in local optima and precise feature selection to 
reduce data dimensions without sacrificing important 

information.  

The confusion matrix visualization in Fold 3 

shows that the model experiences almost no 
misclassification. This strengthens the conclusion 

that the model can classify with great precision, even 

on class-imbalanced data. This is supported by 
feature analysis, which shows that all outlier features 

are included in the important feature category. 

4.3 Comparison and analysis 

In this section, we perform some analysis related 

to the performance of the proposed method with the 
ablation studies presented in Table 4. Table 3 shows 

the ablation study results evaluating the proposed 

model's performance by removing the main 
components, namely feature selection and QGMM. 

The results without feature selection show a decrease, 

indicating that RF-XGB feature selection helps 
reduce less relevant features and improves model 

generalization by focusing on the most informative 

attributes. 

Furthermore, removing QGMM results in a 
greater decrease in performance, with accuracy, 

precision, recall, F1 score of 0.947, and AUC-ROC 

of 0.997. QGMM plays an essential role in detecting 
outliers and optimizing model parameters. This 

method helps the model handle deviant observations 

and capture complex patterns in the data, which 

supports classification accuracy. This decrease in 
performance reinforces the importance of QGMM in 

improving the model's ability to handle complex 

datasets. 
The proposed model, which combines QGMM 

and feature selection, achieves the highest 

performance with perfect scores on all metrics 
(accuracy, precision, recall, F1, and AUC-ROC of 

1.0). This shows that an integrative approach that 

utilizes the advantages of QGMM, BiGRU for feature 

extraction, and RF-XGB for feature selection has 
significantly improved the classification performance. 
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Table 5. Comparison with related works 

Ref Acc Prec Recall F1 AUC-

ROC 

Ref [30] 0.966 - - - - 

Ref [31] 0.965 0.965 0.965 0.965 - 

Ref [32] 0.93 0.93 0.92 0.92 - 

Ref [34] 0.946 - - - - 

Ref[35] ≈0.91 - - - - 

Proposed 0.999 0.999 0.9999 0.999 1.0 

 

 

Overall, both QGMM and feature selection 
contribute to the robustness and accuracy of the 

model, which are essential to achieving optimal 

results in land cover classification. Finally, a 

comparison was also made with several other studies, 
as shown in Table 5. 

5. Conclusions 

This study demonstrates the effectiveness of 

integrating quantum-enhanced methods with 

classical machine learning and deep learning 

techniques for land cover classification. The 
proposed approach achieved improved accuracy and 

computational efficiency by employing a QGMM for 

outlier detection, BiGRU for feature extraction, and 
combining feature selection with Random Forest and 

XGBoost. The experimental results show a near-

perfect classification performance with an average 

accuracy of 99.99%, precision of 99.99%, recall of 
99.99%, F1-score of 99.99%, and AUC-ROC of 1.0 

across five cross-validation folds. These metrics 

highlight the model's capability to effectively handle 
high-dimensional and imbalanced data. 

The quantum enhancements, particularly through 

applying the Quantum EM (QEM) algorithm, proved 
valuable in optimizing the parameter estimation 

process, contributing to more accurate and reliable 

classification results. For instance, the ablation study 

reveals that removing QGMM significantly drops 
accuracy to 94.7%, underlining the importance of 

quantum-based outlier detection in this framework. 

Moreover, feature selection using RF-XGB reduces 
computational complexity by selecting only 28 

features from the original 112 without compromising 

performance, as demonstrated by the retained high 
evaluation metrics. 

This fusion of quantum and classical methods 

highlights the potential of quantum computing in 

handling complex data distributions and large-scale 
environmental datasets, demonstrating the approach's 

applicability in real-world scenarios. Future work 

could further explore extending this framework to 

other types of datasets, such as those in urban 
planning or ecological monitoring, to validate its 

versatility. Additionally, enhancing the quantum 

circuit design by optimizing gate operations or 

increasing qubit numbers could improve 
computational efficiency and result precision, 

especially as quantum hardware continues to advance. 
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