
Received: November 1, 2024. Revised: November 27, 2024. 693

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.49

Adaptive Cache Replacement Strategy Based on Greedy Dual Size Frequency

Incorporating DBScan for Internet Access Anomaly Detection

Mulki Indana Zulfa1* Adhwa Moyafi Hartoyo1 Stephen Prasetya Chrismawan1

Waleed Ali Ahmed2

1Engineering Faculty, Jenderal Soedirman University, Purbalingga, Indonesia

2Information Technology Department, King Abdulaziz, Rabigh, Saudi Arabia

* Corresponding author’s Email: mulki_indanazulfa@unsoed.ac.id

Abstract: In content delivery networks (CDN) and edge caching, efficient cache replacement strategies are essential

to reduce latency and enhance hit ratios. This study introduces adaptive similarCache (ASC), an adaptive caching

framework based on greedy dual size frequency (GDSF) that includes DBSCAN for anomaly detection. ASC

framework analyzes the IRcache dataset, which consists of proxy server access logs from four cities—Boulders, New

York, Silicon Valey, and Urbana Campaign— and simulates dynamic adjustments to access patterns as they would

occur in real-time, considerably boosting cache performance under fluctuating traffic situations when compared to

classic approaches like LRU and LFU. The technique improves cache utilization, achieving a hit ratio of up to 45%

and exhibiting lower latency in high-demand conditions, focusing specifically on data from these cities. The findings

underscore the need for adaptive caching techniques, particularly in resource-constrained contexts, and suggest the

possibility of future hybrid systems.

Keywords: CDN, Cache replacement, IRcache, Latency, Hit ratio.

1. Introduction

The rapid growth of internet usage, from its

modest beginnings to the current digital era, reflects

the expanding needs and expectations of global users

[1]. Originally designed as a rudimentary means of

disseminating information, the web has evolved into

a sophisticated and interactive environment, shaping

how people consume content daily [2]. With the

advent of more intelligent web applications, the

demand for fast, reliable, and scalable services has

increased dramatically [3]. As more users rely on

bandwidth-intensive applications, such as streaming

services and online gaming, caching systems have

become vital for maintaining speed and efficiency in

data delivery [4]. These systems work by temporarily

storing frequently accessed data closer to the user,

thereby reducing network latency and congestion [5].

The continued development of more efficient caching

strategies is critical to meeting these growing

demands, ensuring that users experience minimal

delays while accessing the content they require [6].

Despite the significant role caching plays,

modern systems face substantial challenges in

adapting to the complexities of today's internet traffic.

Web content is now more dynamic, with personalized

and frequently changing data, and user behavior is

increasingly unpredictable. Traditional cache

replacement algorithms, like Least Recently Used

(LRU) and Least Frequently Used (LFU), are ill-

suited to these dynamic environments, as they focus

solely on access recency or frequency [7]. LRU may

evict items that are soon requested again, while LFU

can retain items that were frequently accessed in the

past but are no longer relevant, leading to inefficient

cache usage. These algorithms often result in

suboptimal cache performance, particularly when

access patterns change rapidly. In response, size-

based caching algorithms, such as Greedy Dual Size

(GDS), have emerged. GDS factors in the size of data

objects, addressing some of the limitations of

Received: November 1, 2024. Revised: November 27, 2024. 694

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.49

traditional algorithms [8]. However, GDS’s exclusive

focus on object size often leads to inefficient

decisions regarding frequently accessed content,

which may be unnecessarily evicted, impacting the

overall performance of the caching system [9].

The Greedy Dual Size Frequency (GDSF)

algorithm was developed as an improvement over

GDS, aiming to overcome the limitations of its

predecessor by incorporating both object size and

access frequency into the caching process [10].

GDSF balances the trade-offs between storing large

data objects and frequently requested content,

optimizing cache utilization and improving hit rates

[11]. Nevertheless, GDSF is not without its

challenges. The algorithm still struggles to adapt to

the rapid fluctuations in internet traffic, often

retaining outdated or irrelevant data due to its reliance

on static frequency measures [12]. As traffic patterns

evolve, the need for a more dynamic and responsive

approach becomes apparent, leading to the proposal

of enhanced cache replacement strategies that can

better respond to these demands [13].

Traditional cache replacement approaches like

GDSF runs into challenges as it is not well suited for

dynamic and mobile network environments and is

also prone to cache miss. The limitation actually

emanates from their shortcoming in the detection of

abnormal data usage and also in responding to such

irregular events. To address this problem, we need to

enhance GDSF method by applying an adaptive

cache replacement policy, which employing

DBSCAN for anomaly detection on the fly [14].

DBSCAN is particularly useful in that it finds groups

of similar items and also finds items which for some

reason do not belong to the clusters, making it a

powerful instrument for exposing rarely occurring

usage patterns [15]. Such approach enables the

caching system to change as per the prevailing

network situation and thus preventing the wastage of

cache resources due to contamination by unworthy

information using DBSCAN during the cache

replacement procedure. This provides a more

accurate assessment of the relevance of the data when

the symptoms of the anomaly are included in the

objective function of GDSF. It leads to better caching

policy and better system performance.

The primary contribution of this work is an

adaptive cache replacement strategy that effectively

handles cache pollution by integrating DBSCAN into

GDSF. This approach enhances the identification of

anomalies in data access patterns, allowing the

caching system to identify and exclude irregular or

harmful access patterns in real time, significantly

reducing the impact of cache pollution. The

integration of DBSCAN also enables more intelligent

eviction decisions, leading to improved cache

performance across various network conditions.

Additionally, the dynamic adjustment mechanism

allows the system to adapt to fluctuating network

conditions, providing a more agile response

compared to traditional static methods like LRU and

LFU. The modified GDSF algorithm employs an

intelligent eviction strategy that balances object size,

access frequency, and the presence of anomalies,

resulting in superior cache utilization and increased

hit rates. These features ensure optimal cache

performance under a wide range of conditions,

making it a robust solution for the challenges faced

by modern caching systems, particularly in

environments characterized by dynamic and

unpredictable access patterns, such as edge networks

and content delivery systems.

This paper first discusses related works in Section

2 to provide the foundation for the proposed method.

Section 3 then elaborates on the design and

implementation of{nama algoritma}, detailing how it

improves upon traditional caching techniques.

Section 4 presents the results of our experiments,

comparing {nama algoritma} to existing caching

algorithms and discussing its performance across

several datasets. Finally, Section 5 concludes the

study by summarizing the findings and suggesting

directions for future research.

2. Related works

This paper continues our previous caching system

research work in a framework called similarCache

[16]. In the simulation phase, similarCache has a

positive contribution to the hit ratio performance

improvement tested using IRcache datasets. However,

simulation results on one of the datasets (NY) have

not shown good performance. The investigation

shows that the NY dataset has different data access

characteristics (anomalies). Therefore, we conducted

a literature study on specific techniques that can

detect anomalies. Aware of the future development of

research towards adaptive intelligent caching systems,

we specifically targeted the literature on anomaly

detection techniques that use machine learning

techniques, namely DBSCAN.

Integrating anomaly detection techniques into

caching strategies has been suggested as a way to

optimize performance further. Internet access

anomalies, such as flash crowds or viral surges in

specific content, can significantly affect cache

efficiency and network stability. The use of Density-

Based Spatial Clustering of Applications with Noise

(DBSCAN) has proven effective for detecting such

anomalies in network traffic. Gao et al. [17]

Received: November 1, 2024. Revised: November 27, 2024. 695

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.49

implemented DBSCAN to detect anomalies in IoT

traffic, significantly improving the efficiency of

caching systems by identifying abnormal data

patterns in real-time and preventing network

congestion. Han et al. [18] employed DBSCAN in

lightweight anomaly detection models, enhancing

caching performance in IoT environments by quickly

identifying and categorizing anomalies based on

network traffic characteristics. Zhang et al. [19]

utilized DBSCAN in Underwater Wireless Sensor

Networks (UWSNs) for anomaly detection, which

improved the system's robustness against malicious

routing attacks and optimized caching performance

in sparse network environments. Shen et al. [20]

proposed an adaptive caching system that leverages

DBSCAN to improve cache hit rates by enabling

elastic adjustments to network traffic demands and

minimizing latency during peak usage periods.

Wang et al. [21] tackled the issue of automatically

determining the optimal radius of neighborhood

parameter in the DBSCAN clustering algorithm,

proposing an adaptive method using the Bird Swarm

Optimization (BSA) algorithm, which enhanced

clustering accuracy. You et al. [22] addressed the

issue of detecting anomalies in real-time body weight

(BW) data of broiler breeders recorded by a precision

feeding system, highlighting that traditional methods

were ineffective in distinguishing reasonable BW

variations from true anomalies. Zeufack et al. [23]

proposed an unsupervised anomaly detection

framework for computer systems by analyzing

network log files, which effectively addressed the

challenges associated with using DBSCAN in

datasets with varying densities.

Traditional caching algorithms such as Recently

Used (LRU), Least Frequently Used (LFU), First In

First Out (FIFO), Greedy Dual Size (GDS), and

Greedy Dual Size Frequency (GDSF) require

additional capabilities in detecting ongoing access

anomalies. These five algorithms generally only use

one variable to decide caching content, except for

GDSF which already considers access count and file

size. LRU, for instance, relies exclusively on recency,

evicting the least recently accessed item, which

becomes highly inefficient when access patterns

change quickly. This results in unnecessary cache

misses and reduced performance, particularly in

scenarios involving viral content or rapidly

fluctuating demands, where items that were recently

evicted might suddenly regain popularity [24]. LFU,

on the other hand, uses frequency-based eviction,

retaining items that have been accessed frequently in

the past. While this strategy is useful for identifying

popular content, it is inherently flawed in

environments where content popularity shifts rapidly.

LFU tends to retain outdated data, reducing cache

efficiency when new high-priority items enter the

system as noted by Cui et al. [25]. FIFO is

computationally efficient, it often leads to frequent

cache misses since it ignores the temporal or spatial

locality of content access, which is crucial for

maintaining performance in mixed-use scenarios [18].

GDSF improves upon GDS by incorporating both

object size and frequency to optimize cache

utilization, providing better hit rates under typical

conditions. However, GDSF remains limited by its

reliance on static frequency measures, which cannot

accommodate rapid shifts in user behavior. As a

result, it tends to retain outdated or irrelevant data,

particularly in environments like edge computing,

where caching strategies need to adapt dynamically

to maintain efficiency [20].

Despite its improvements over traditional

algorithms, GDSF has been identified with several

critical limitations in prior research. Studies have

shown that its reliance on static frequency measures

can result in retaining less relevant data, ultimately

lowering cache efficiency [26]. Cui et al. [25] also

highlighted that static cache mechanisms lead to

inefficient resource use, especially under dynamic

conditions. Xiao et al. [24] demonstrated that the lack

of adaptive mechanisms in traditional algorithms like

GDSF results in increased delay and energy

consumption during task offloading in mobile

networks. These two studies also modified the GDSF

algorithm but have not been tested using the real

world IRcache dataset as a real illustration of internet

access behavior.

Wang et al. [27] proposed a multi-objective data

caching optimization model for edge computing

environments. They introduced a Cyclic Genetic Ant

Colony Algorithm which enhanced data selection and

caching decisions. Zulfa et al. [28] proposed LRU-

GENACO a hybrid cached data optimization method

combining LRU with a Genetic Algorithm and Ant

Colony Optimization (ACO), demonstrating a

significant improvement in hit ratio through the use

of IRCache datasets. However, both studies have not

implemented anomaly detection, which can be seen

from the suboptimal hit ratio performance on certain

datasets.

Iqbal and Asaduzzaman [29] proposed Cache-

MAB, a reinforcement learning-based hybrid caching

scheme for Named Data Networks (NDN) that

dynamically selects the optimal caching policy from

a set of distance-based policies, allowing it to

improve hit rates and reduce latency. Dhara et al. [30]

proposed POPS-Cache, a caching scheme for

Vehicular Named Data Networks (VNDN) that

considers both predicted spatial-temporal popularity

Received: November 1, 2024. Revised: November 27, 2024. 696

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.49

and vehicle experience with content popularity,

which improved adaptability in environments

characterized by high mobility. Li et al. [31] proposed

PEC, a predictive edge caching system that

proactively prefetches content at the edge based on

real-time user predictions using sequential learning

models, allowing edge networks to better

accommodate fluctuating content demands. Hidouri

et al. [32] proposed Q-ICAN, a Q-learning-based

intrusion prevention system for mitigating cache

pollution attacks in Named Data Networks (NDN),

which enhanced the network's ability to discard

malicious interest packets in real-time. Based on

these findings, it becomes evident that traditional

cache replacement strategies are insufficient for

handling the complexities of modern network traffic,

often characterized by sudden spikes in demand and

unpredictable user behavior.

Enhanced methods, such as those involving

machine learning and anomaly detection, show

promise in addressing these limitations by enabling

more adaptive, context-aware, and intelligent

decision-making processes. However, they still face

issues such as computational overhead and sensitivity

to parameter tuning, which can limit their scalability

and real-world applicability. This research aims to

address these challenges by proposing Adaptivc

similarCache (ASC), an adaptive caching approach

that combines the GDSF algorithm with DBSCAN

for real-time anomaly detection. By incorporating

dynamic anomaly detection and an intelligent

eviction mechanism, ASC aims to improve cache

utilization, reduce latency, and provide a more

responsive solution to fluctuating traffic conditions,

particularly in edge network environments.

3. The proposed method

3.1 Greedy dual size frequency

The ability to balance object size and access

frequency has led to the widespread adoption of the

GDSF algorithm in caching systems, including web

caching and content delivery networks [33]. GDSF

efficiently manages cache space by prioritizing

frequently accessed and smaller objects but faces

challenges when confronted with rapidly changing

access patterns or anomalies in web traffic. The

algorithm’s reliance on static frequency measures

often results in the retention of outdated or less

relevant content during unpredictable traffic

fluctuations. A dynamic modification of GDSF has

been proposed to enhance its adaptability to real-time

variations in internet access patterns [34].

GDSF functions as the core mechanism for cache

management by balancing two critical factors: size

and access frequency. Objects stored in the cache are

assigned a value, Kg, which is calculated based on

access frequency and size. This value informs the

caching decision process, where objects with higher

Kg values are retained, while those with lower values

are evicted when cache space is limited [35]. The cost

of each object is calculated using the formula

presented in Eq. (1), which considers both the size of

the object and a fixed constant. Kg is then determined

by the formula in Eq. (2), combining access

frequency, cost, and size to optimize the retention of

frequently accessed smaller objects. This approach

prioritizes such objects, leading to more efficient

utilization of cache space. The calculation of Kg

plays a pivotal role in maintaining balance across

different content types, and the formula’s emphasis

on size and frequency provides a structured

framework for optimizing cache performance [36].

Eviction decisions in GDSF rely on a predefined

cache capacity and the Kg values of cached objects

[37]. When the cache reaches capacity, objects with

the lowest Kg values are removed to create space for

new content. This process ensures GDSF maintains

high cache efficiency under normal traffic conditions.

The static nature of GDSF results in inefficiencies

when access patterns change unexpectedly. Fig. 1

illustrates the eviction process, showing how objects

are inserted into the cache and subsequently evicted

based on their Kg values when space is limited.

𝑐𝑜𝑠𝑡 = 2 +
𝑠𝑖

536
 (1)

𝐾𝑔 =
𝑓𝑖 ×𝑐𝑜𝑠𝑡

𝑠𝑖
 (2)

Annotation list

• cost:The calculated cost for caching an item, with

a base value of 2 plus an additional component

based on the item’s size.

Figure. 1 Greedy dual size frequency method

Received: November 1, 2024. Revised: November 27, 2024. 697

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.49

• 𝑠𝑖: Represents the size of the i-th item in the cache,

influencing the cost by adjusting based on its

magnitude relative to 536

• 536: Represents an approximation of the number

of bytes that fit into a typical network packet, used

as a normalization factor to prioritize smaller

objects in caching, as the are more efficient in

terms of network transfer and cache utilization.

• 𝑓𝑖 : The frequency of access for the i-th item,

indicating how often this item has been requested.

• 𝐾𝑔: The weighted priority of the i-th cache item,

computed by scaling cost by 𝑓𝑖 and normalizing

by the item’s size (𝑠𝑖).

3.2 Recency algorithm

Recency-based algorithms such as Least Recently

Used (LRU), play a critical role in addressing the

unpredictability of dynamic traffic by focusing on the

time since an object was last accessed [38]. GDSF

optimizes for size and frequency, whereas recency

algorithms simplify the decision-making process by

only considering the last access time of each object,

making them highly adaptable to traffic that exhibits

fluctuating demand. Despite their simplicity, LRU

and similar algorithms may fail to retain content that,

while less frequently accessed, remains valuable for

future requests, highlighting a key trade-off between

simplicity and long-term efficiency [39].

Recency-based caching strategies maintain a list

of objects ordered by their access times. When the

cache reaches its capacity, the object that has not been

accessed for the longest duration is evicted, ensuring

that the most recently accessed data is retained. This

straightforward mechanism facilitates effective cache

management in environments with highly volatile

access patterns, where past behavior provides limited

predictive value for future demand. Evicting the least

recently accessed object ensures that the cache retains

more up-to-date data, thus improving overall cache

hit ratios in dynamic scenarios [40]. The eviction

process in the LRU algorithm is both straightforward

and effective, particularly in high-traffic

environments. Upon reaching cache capacity, the

algorithm automatically removes the object that has

remained unaccessed for the longest period. This

method ensures that the cache preserves the most

Figure. 2 Recency based algorithm

recently accessed data, maintaining its relevance in

dynamically fluctuating traffic conditions. Fig. 2

illustrates how objects are introduced, accessed, and

subsequently evicted based on their recency.

3.3 Anomaly detection

Anomalies such as viral content, flash crowds, or

malicious access patterns can severely impact cache

efficiency. These anomalies lead to cache pollution,

where irrelevant or temporary data occupies valuable

cache space, ultimately degrading overall system

performance [41]. To address this issue, ASC

employs an anomaly detection mechanism based on

Density-Based Spatial Clustering of Applications

with Noise (DBSCAN), which enables the system to

detect and respond to abnormal access patterns in real

time. The anomaly detection process begins with the

normalization of data. Each data point, 𝑥𝑖,
representing an object in the cache, undergoes Z-

score normalization to ensure that differing feature

scales do not distort the results. The normalized value

x_i^', is computed using Eq. (3).

Normalized data is processed using the DBSCAN

clustering algorithm, which operates based on two

primary parameters. The parameter 𝜖 (eps) defines

the maximum distance between two points for them

to be considered neighbors, while minPts specifies

the minimum number of points required to form a

dense region or cluster [41]. These parameters allow

DBSCAN to effectively identify core points, border

points, and outliers, enabling the differentiation

between regular and anomalous access patterns [42].

Mathematically, DBSCAN defines the neighborhood

𝑁(𝑝) of a point 𝑝 shown in Eq. (4). Points where the

number of neighbors 𝑁(𝑝) is less than minPts are

labeled as anomalies. The condition for anomaly

detection is expressed in Eq. (5).

Figure. 3 DBSCAN anomaly detection visualization

Received: November 1, 2024. Revised: November 27, 2024. 698

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.49

The data points labeled as -1 by DBSCAN after

clustering are classified as anomalies. ASC system

monitors access patterns based on object size, elapsed

time, and access frequency, applying DBSCAN to

detect irregularities within these patterns. Anomalous

requests, such as those triggered by viral content or

abnormal spikes in access frequency, are flagged. Fig.

3 illustrates the anomaly detection process, where red

points represent detected anomalies and blue points

signify normal data points, showing how DBSCAN

differentiates between normal clusters and outliers

using normalized values of object size, elapsed time,

and frequency.

𝑥𝑖
′ =

𝑥𝑖 − 𝜇

𝜎
 (3)

Annotation list:

• xi: Individual data point in a feature (e.g., size,

elapsed time, frequency)

• μ: Mean of all data points in the feature, a central

reference point.

• σ: Standard deviation of the feature, indicating

data spread around μ.

• 𝑥𝑖
′ : The normalized value for xi, obtained by

centering xi around ero and scaling by feature’s

variability.

𝑁(𝑝) = {𝑞 ∈ 𝑋 |𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑞) ≤ 𝜖} (4)

Annotation list:

• N(p): Represents the neighborhood of point p,

identifying nearby points within a specified

distance.

• 𝜖: The maximum distance threshold for points to

be considered within the same neighborhood.

• 𝑞: A data point that is within the neighboorhood

of p if it meets the distance condition.

• 𝑋: The set of all data points in the dataset being

analyzed.

• 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑞): The calculated distance between

points 𝑝 and 𝑞.

𝑎𝑛𝑜𝑚𝑎𝑙𝑦(𝑝) = {
1 𝑖𝑓|𝑁(𝑝)| < 𝑚𝑖𝑛𝑃𝑡𝑠

0 𝑖𝑓|𝑁(𝑝)| ≥ 𝑚𝑖𝑛𝑃𝑡𝑠
 (5)

Annotation list:

• 𝑎𝑛𝑜𝑚𝑎𝑙𝑦(𝑝) : A binary indicator function

representing whether point p is classified as an

anomaly.

• 𝑁(𝑝) : The neighboorhood of point p, which

contains all points within a specified distance

threshold (as defined by DBSCAN)

• 𝑚𝑖𝑛𝑃𝑡𝑠 : The minimum number of points

required in 𝑁(𝑝)for p to be classified as a core

point (i.e., not an anomaly)

3.4 The adaptive similar cache (ASC)

The ability of ASC to dynamically switch

between caching strategies is crucial for maintaining

performance under varying traffic conditions. Under

normal circumstances, ASC operates using a

centroid-based eviction strategy, where objects are

evaluated based on their distance from a central

centroid object. The centroid is defined as the object

with the highest cache value, 𝐾𝑔𝑖
, within the cache.

Objects are evicted based on their distance from this

centroid, with those furthest from the centroid being

evicted first, ensuring that only the most relevant data

remains cached, thus optimizing cache utilization.

The distance to the centroid is mathematically

expressed as shown in Eq. (6).

𝑑(𝑖) = |𝐾𝑔𝑖
 − 𝐶| (6)

𝑟𝑖 =
𝐻

𝑇
 (7)

𝐾𝑔𝑖
 =

𝑓𝑖 × (2 +
𝑠𝑖

536
) × 𝑟𝑖

𝑠𝑖
 (8)

Annotation list:

• 𝑑(𝑖): Distance from centroid, representing how

far an object is from the central reference in the

cache

• 𝐾𝑔𝑖
: Cache value for item i, calculated based on

frequency, size, and other factors (see eq. 8)

• 𝐶: Centroid, defined as the cache entry with the

highest 𝐾𝑔𝑖
value in the cache.

• 𝑟𝑖 : Current hit ratio, a measure of cache

effectiveness, adjusting dynamically.

• 𝐻 : Total number of cache hits, representing

successful retrievals from the cache.

• 𝑇 : Total number of cache requests, giving the

overall access count.

• 𝑓𝑖: Frequency of access for item i, denoting how

often it is requested

• 𝑠𝑖 : Size of item i, which contributes to the cache

cost in relation to available space.

• 536: Represents an approximation of the number

of bytes that fit into a typical network packet,

used as a normalization factor to prioritize

smaller objects in caching, as the are more

efficient in terms of network transfer and cache

utilization.

The cache value 𝐾𝑔𝑖 is influenced by several

factors, including the frequency of access (𝑓), the

Received: November 1, 2024. Revised: November 27, 2024. 699

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.49

object size (𝑠𝑖), and a size normalization factor (536),

which are combined with the current hit ratio 𝑟𝑖 (Eq.

(7)) to calculate 𝐾𝑔𝑖
 as shown in Eq. (8). This formula

ensures that frequently accessed and valuable content

is retained, while less relevant data is removed. The

system selects the cache entry with the highest cache

value K_(g_i) as the centroid, as defined by Eq. (9).

The eviction process then targets the cache entry that

maximizes the distance from this centroid, as

described in Eq. (10). The decision to evict is based

on finding the cache entry whose value has the

greatest absolute difference from the centroid value

C, ensuring that only the most relevant data remains

cached, thereby optimizing cache performance.

Fig. 4 illustrates the eviction process based on the

centroid, enabling ASC to dynamically adapt to

varying cache contents, retaining the most critical

data according to the calculated 𝐾𝑔𝑖
 value and its

proximity to the centroid. Objects such as A, B, C,

and D are evaluated based on this principle, ensuring

optimal data retention under normal traffic conditions.

When an anomaly in access patterns is detected, ASC

switches to a recency-based strategy, which is better

suited to handling unpredictable traffic surges. In this

mode, the least recently accessed data is evicted first,

ensuring that temporary or irrelevant data does not

occupy valuable cache space during anomalous

events. This dynamic switch to the recency-based

strategy, as demonstrated in the second part of Fig. 3,

prevents cache pollution and ensures that the cache is

optimized for real-time traffic conditions.

This dual-strategy approach—centroid-based

eviction under normal conditions and recency-based

eviction during anomalies—enables ASC to maintain

efficiency, regardless of whether access patterns are

regular or erratic. The adaptive objective function is

a critical aspect of ASC dynamic adaptation

capabilities. This function integrates multiple factors,

including object size, access frequency, and the

current hit ratio, enabling the system to make more

informed decisions about which objects to retain or

evict. By adjusting to real-time traffic conditions, this

objective function ensures that the cache remains

efficient, even as access patterns evolve.

Table 1 provides a comparison between the Kg

calculations of GDSF and ASC, demonstrating how

ASC adjusts its calculations by incorporating the

current hit ratio into the objective function. These

adjustments allow ASC to prioritize frequently

accessed content that is likely to be requested again

soon, ensuring higher performance across a variety of

traffic conditions. The inclusion of the current hit

ratio in the ASC calculation further refines its

Figure. 4 The proposed ASC caching framework

Table 1. GDSF comparison

Request GDSF Kgi ASC Kgi

111 0,01187 0,01187

112 0,00853 0,00853

111 0,02373 0,00791

113 0,01519 0,0038

114 0,01853 0,00371

114 0,03707 0,01236

115 0,00587 0,00336

113 0,03039 0,01139

111 0,0356 0,01582

116 0,00758 0,00303

decision-making, allowing it to better respond to real-

time fluctuations in access demand. As shown in

Table 1, ASC dynamically fine-tunes its retention

and eviction decisions, which leads to more

optimized cache utilization under fluctuating network

demands. The ability to adjust 𝐾𝑔𝑖
 based on hit ratio

gives ASC a performance advantage over GDSF,

particularly in environments with irregular or

unpredictable traffic patterns. By adapting in real

time, ASC maintains a higher level of efficiency,

ensuring that relevant data is kept in the cache, while

less valuable data is evicted.

4. Results and discussion

The results of this study underscore the

effectiveness of the proposed caching strategy in

handling diverse and dynamic internet access

patterns. A comprehensive analysis across four

distinct datasets—BO2, NY, SV, and UC—evaluated

the performance of the ASC caching framework

compared to traditional caching methods like LRU,

LFU, and GDSF. Key indicators, such as hit ratio and

latency saving ratio, were measured to assess the

adaptability and efficiency of these strategies under

Received: November 1, 2024. Revised: November 27, 2024. 700

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.49

varying traffic conditions as shown Table 2. The

results highlight ASC's superior ability to

dynamically respond to anomalies in internet traffic,

outperforming other algorithms in both stable and

irregular environments. This superiority is

particularly evident in high-anomaly scenarios,

where static methods struggle. The adaptive nature of

ASC maintains higher hit ratios and reduced latency,

optimizing content delivery and enhancing user

experience, with implications for modern network

infrastructures that face traffic unpredictability and

content diversity challenges.

4.1 Result

Fig. 5 demonstrates the anomaly detection

process across four datasets: bo2, ny, sv, and uc.

Anomalies, depicted by red points, are identified

based on object size, frequency, and elapsed time.

Dataset ny on Fig. 5(b) reveals a dense clustering of

anomalies, signifying highly irregular traffic patterns

that would typically challenge static caching

algorithms such as LRU and FIFO. A more stable

traffic pattern is observed in dataset bo2 Fig. 5(a),

where fewer anomalies are present. ASC utilizes this

anomaly detection to adapt its caching strategy,

ensuring sustained cache efficiency. This adaptation

becomes particularly evident in Fig. 6(a), where ASC

achieves a significantly higher hit ratio compared to

other algorithms, effectively managing abnormal

traffic. The presence of anomalies in all datasets

influences the hit ratios of the algorithms, with ASC

consistently outperforming others due to its ability to

adjust dynamically.

Fig. 6 presents the hit ratio performance across

varying cache sizes and algorithms. ASC

demonstrates superior hit ratios across all datasets,

notably when cache sizes exceed 25K. Dataset sv Fig.

6(c) reflects ASC’s ability to maintain high hit ratios

even in the presence of numerous anomalies.

Algorithms like LRU and FIFO, which lack dynamic

adaptability, show a steep decline in performance at

lower cache sizes (below 50K). Dataset uc Fig. 6(d)

mirrors this trend, where ASC maintains an

advantage in hit ratio throughout all cache sizes.

Dataset ny Fig. 6(b) depicts a more gradual

improvement across algorithms, yet ASC continues

to lead in performance due to its responsive strategy

to traffic irregularities. The correlation between hit

ratio and anomaly detection further emphasizes

ASC’s ability to thrive under fluctuating conditions

where static algorithms falter. Fig. 7 evaluates the

Latency Saving Ratio (LSR) across different datasets

and algorithms. ASC achieves the highest LSR across

all datasets, with particularly notable performance in

dataset bo2 Fig. 7(a) and dataset uc Fig. 7(d).

The low anomaly rate in dataset bo2, as shown in

Fig. 5(a), allows ASC to maintain optimal

performance with an LSR of 5.71%. In contrast,

algorithms like FIFO and GDSF perform poorly in

anomaly-prone environments, as illustrated in Fig.

7(b) and Fig. 7(c) for datasets ny and sv. ASC’s

dynamic adjustment capabilities, which respond to

real-time traffic anomalies, enable it to maintain both

high hit ratios and latency efficiency. Dataset sv,

known for its highly irregular traffic patterns,

demonstrates this relationship clearly, with ASC

significantly outperforming static algorithms in both

hit ratio and LSR.

(a) (b)

Figure. 5 Anomaly detection on datasets: (a) bo2 and (b) ny

Received: November 1, 2024. Revised: November 27, 2024. 701

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.49

(a)

(b)

(c) (d)

Figure. 6 Hit ratio comparison on datasets: (a) bo2, (b) ny, (c) sv, and (d) uc

(a)

(b)

(c) (d)

Figure. 7 Latency saving ratio comparison on datasets: (a) bo2, (b) ny, (c) sv, and (d) uc

Received: November 1, 2024. Revised: November 27, 2024. 702

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.49

Table 2. Average hit ratio and latency saving ratio comparison

Alg.
Avg. Hit Ratio (%) Avg. Latency Saving Ratio (%)

Bo2 UC NY SV Bo UC NY SV

ASC 18.28 24.85 20.83 22.94 5.71 8.81 6.77 7.72

LRU 17.61 23.57 20.35 22.15 4.71 9.45 6.00 8.72

GDSF 16.07 21.28 17.57 20.05 3.82 5.95 4.71 6.92

LFU 15.77 20.95 17.27 19.74 3.42 5.95 4.39 5.52

SIZE 13.93 20.38 17.45 19.22 3.41 6.31 4.32 4.98

FIFO 12.65 19.63 15.88 17.76 2.56 6.00 3.43 4.55

GDS 10.96 13.40 8.18 8.30 2.02 3.83 3.27 4.12

4.2 Discussion

The ASC adaptive method has the most

versatility across all datasets. This validates the idea

that algorithms optimising recency, frequency, and

magnitude are more effective for the varied access

patterns seen in real-world systems. This dynamic

behaviour is particularly crucial in edge networks,

where content delivery fluctuates markedly based on

geographic location or user activity. The efficacy of

SIZE at increased cache sizes, especially in datasets

such as UC, illustrates its capability in managing

workloads with significant variability in object sizes.

SIZE is a beneficial choice for systems managing

multimedia material or extensive file distributions,

since size-aware eviction may enhance cache

efficiency. Although LRU performs well in most

cases, it does poorly in highly variable scenarios like

the UC dataset since it doesn't take non-recent factors

into consideration. This suggests that although LRU

could work for simple caching systems, more

complex situations with complex access patterns

need more sophisticated approaches.

In environments characterised by dynamic

material, such as live-streaming services or content-

centric platforms, algorithms like ASC, which adjust

to evolving access patterns, are essential. ASC's

constant superiority across all datasets indicates its

exceptional suitability for these contexts. For CDNs

delivering substantial multimedia assets, SIZE

performance at increased cache capacities illustrates

its capability. By including object size into eviction

choices, SIZE reduces the probability of evicting big,

frequently accessed items that are costly to retrieve

from origin servers. Although complex algorithms

such as ASC and GDSF provide superior

performance, they may incur more computational

cost relative to simpler methods like LFU and LRU.

Investigating the capabilities of hybrid algorithms

that integrate the advantages of ASC and SIZE,

especially for CDNs managing diverse content types,

may enhance hit ratio performance. Furthermore,

including Quality of Service (QoS) measurements,

such as latency and byte hit ratio, into this research

might provide a more thorough insight into the

influence of cache replacement methods on user

experience in content delivery systems. Examining

cache replacement methods that dynamically adjust

to access patterns and content types (such as

differentiating between video streams, static photos,

and tiny text items) may improve cache efficiency in

multimedia-intensive CDNs.

5. Conclusion

The simulations show that the suggested caching

approach works better than the others, especially

when it comes to how well it works and how many

hits it gets across all datasets. The ASC algorithm

regularly does better than normal methods like LRU,

LFU, and SIZE, especially when cache sizes are

bigger. It gets hit rates as high as 40-45% across

datasets. Compared to more conventional methods,

including advanced features like adaptive item

prioritisation improves cache hit rate and decreases

latency. Nevertheless, although the suggested

technique was generally successful, it exhibited

considerable unpredictability when dealing with

lower cache sizes, resulting in less substantial

performance benefits when compared to established

methods. Because of this restriction, future research

might look at further optimisations, such as

improving the algorithm's speed when resources are

limited.

Further study should examine hybrid methods to

increase performance and application-driven caching

situations like QoS-based prioritisation. By adding

real-time network dynamics, the design may adapt to

changing traffic patterns. Applying the recommended

caching strategy to present caching infrastructures

gives promising results and sets the path for future

intelligent and adaptive caching advancements.

Conflicts of Interest

The authors declare no conflict of interest.

Received: November 1, 2024. Revised: November 27, 2024. 703

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.49

Author Contributions

conceptualization, MULKI and ADHWA;

methodology, MULKI and ADHWA; software,

MULKI and ADHWA; formal analysis, MULKI and

ADHWA; investigation, MULKI and ADHWA;

writing: MULKI and ADHWA; visualization:

STEPHEN; final review: WALEED ALI.

Acknowledgments

This research was funded by a DRTPM grant

from the Ministry of Higher Education, Research and

Technology based on decree number

0667/E5/AL.04/2024 and LPPM contract number of

20.44/UN23.35.5/PT.01.00/VI/2024.

References

[1] X. Wei, Y. Liu, and Y. Liu, “Study on the

Impact of Internet Usage, Aging on Farm

Household Income”, Sustainability, Vol. 15, No.

19, p. 14324, 2023, doi: 10.3390/su151914324.

[2] W. Liang and W. Li, “Impact of internet usage

on the subjective well-being of urban and rural

households: Evidence from Vietnam”,

Telecomm. Policy, Vol. 47, No. 3, p. 102518,

2023, doi: 10.1016/j.telpol.2023.102518.

[3] K. Wakil and D. N.A.Jawawi, “Intelligent Web

Applications as Future Generation of Web

Applications”, Sci. J. Informatics, Vol. 6, No. 2,

pp. 213-221, 2019, doi:

10.15294/sji.v6i2.19297.

[4] H. Jens, P. Auter, M. Takaaki, K. Atsushi, and

S. Kentaro, “Multi-threaded High-Level

Synthesis for Bandwidth-intensive

Applications”, Comput. Networks, Vol. 31, No.

11, pp. 1203–1213, 1999, doi: 10.1016/S1389-

1286(99)00055-9.

[5] J. Sim et al., “Computational CXL-Memory

Solution for Accelerating Memory-Intensive

Applications”, IEEE Comput. Archit. Lett., Vol.

22, pp. 5-8, 2023.

[6] F. Zeng, K. Zhang, L. Wu, and J. Wu, “Efficient

Caching in Vehicular Edge Computing Based

on Edge-Cloud Collaboration”, IEEE Trans.

Veh. Technol., Vol. 72, No. 2, pp. 2468-2481,

2023, doi: 10.1109/TVT.2022.3213130.

[7] H. Jens, P. Auter, M. Takaaki, K. Atsushi, and

S. Kentaro, “Multi-threaded High-Level

Synthesis for Bandwidth-intensive

Applications”, In: Proc. of IEICE The Institute

of Electronics, Information and Communication

Engineers, Kitakyushu: RECONF, pp. 51–56,

2019.

[8] T. Ma, J. Qu, W. Shen, Y. Tian, A. Al-Dhelaan,

and M. Al-Rodhaan, “Weighted Greedy Dual

Size Frequency Based Caching Replacement

Algorithm”, IEEE Access, Vol. 6, pp. 7214-

7223, 2018, doi:

10.1109/ACCESS.2018.2790381.

[9] M. I. Zulfa, A. Fadli, A. E. Permanasari, and W.

A. Ahmed, “Performance comparison of cache

replacement algorithms onvarious internet

traffic”, J. INFOTEL, Vol. 15, No. 1, pp. 1-7,

2023, doi: 10.20895/infotel.v15i1.872.

[10] M. I. Zulfa, R. Hartanto, and A. E. Permanasari,

“Caching strategy for Web application - a

systematic literature review”, Int. J. Web Inf.

Syst., Vol. 16, No. 5, pp. 545-569, 2020, doi:

10.1108/IJWIS-06-2020-0032.

[11] K. S. Lam, “Dynamic Cache Replacement

Policy Selection Using Experts”, 2022.

[12] R. Cai, Y. Qian, and D. Wei, “Dynamic Cache

Replacement Strategy of Space Information

Network Based on Cache Value”, J. Phys. Conf.

Ser., Vol. 2290, 2022.

[13] L. Li, C. Ye, and H. Zhou, “Cache Replacement

Algorithm Based on Dynamic Constraints in

Microservice Platform”, In: Proc. of 2022

International Conference on Service Science

(ICSS), pp. 167-174, 2022, doi:

10.1109/ICSS55994.2022.00033.

[14] M. Civera, L. Sibille, L. Zanotti Fragonara, and

R. Ceravolo, “A DBSCAN-based automated

operational modal analysis algorithm for bridge

monitoring”, Measurement, Vol. 208, p. 112451,

2023, doi: 10.1016/j.measurement.2023.112451.

[15] S. Chowdhury, N. Helian, and R. Cordeiro de

Amorim, “Feature weighting in DBSCAN using

reverse nearest neighbours”, Pattern Recognit.,

Vol. 137, p. 109314, 2023, doi:

10.1016/j.patcog.2023.109314.

[16] M. I. Zulfa, S. Maryani, - Ardiansyah, T.

Widiyaningtyas, and W. Ali, “Application-

Level Caching Approach Based on Enhanced

Aging Factor and Pearson Correlation

Coefficient”, JOIV Int. J. Informatics Vis., Vol.

8, No. 1, p. 31, 2024, doi:

10.62527/joiv.8.1.2143.

[17] H. Gao, B. Qiu, R. J. D. Barroso, W. Hussain, Y.

Xu, and X. Wang, “TSMAE: A Novel Anomaly

Detection Approach for Internet of Things Time

Series Data Using Memory-Augmented

Autoencoder”, IEEE Trans. Netw. Sci. Eng., Vol.

10, pp. 2978-2990, 2023.

[18] D. Han et al., “LMCA: a lightweight anomaly

network traffic detection model integrating

adjusted mobilenet and coordinate attention

mechanism for IoT”, Telecommun. Syst., Vol.

84, pp. 549-564, 2023.

Received: November 1, 2024. Revised: November 27, 2024. 704

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.49

[19] R. Zhang, J. Zhang, Q. Wang, and H. Zhang,

“DOIDS: An Intrusion Detection Scheme Based

on DBSCAN for Opportunistic Routing in

Underwater Wireless Sensor Networks”,

Sensors, Vol. 23, No. 4, 2023, doi:

10.3390/s23042096.

[20] J. Shen et al., “Ditto: An Elastic and Adaptive

Memory-Disaggregated Caching System”, In:

Proc. 29th ACM Symp. Oper. Syst. Princ., pp.

675-691, 2023, doi: 10.1145/3600006.3613144.

[21] L. Wang, H. Wang, X. Han, and W. Zhou, “A

novel adaptive density-based spatial clustering

of application with noise based on bird swarm

optimization algorithm”, Comput. Commun.,

Vol. 174, No. February, pp. 205-214, 2021, doi:

10.1016/j.comcom.2021.03.021.

[22] J. You, E. Lou, M. Afrouziyeh, N. M. Zukiwsky,

and M. J. Zuidhof, “A supervised machine

learning method to detect anomalous real-time

broiler breeder body weight data recorded by a

precision feeding system”, Comput. Electron.

Agric., Vol. 185, No. October 2020, p. 106171,

2021, doi: 10.1016/j.compag.2021.106171.

[23] V. Zeufack, D. Kim, D. Seo, and A. Lee, “An

unsupervised anomaly detection framework for

detecting anomalies in real time through

network system’s log files analysis”, High-

Confidence Comput., Vol. 1, No. 2, p. 100030,

2021, doi: 10.1016/j.hcc.2021.100030.

[24] Z. Xiao et al., “Multi-Objective Parallel Task

Offloading and Content Caching in D2D-Aided

MEC Networks”, IEEE Trans. Mob. Comput.,

Vol. 22, No. 11, pp. 6599-6615, 2023, doi:

10.1109/TMC.2022.3199876.

[25] L. Cui et al., “CREAT: Blockchain-Assisted

Compression Algorithm of Federated Learning

for Content Caching in Edge Computing”, IEEE

Internet Things J., Vol. 9, pp. 14151-14161,

2022.

[26] X. Zhi, X. Yan, B. Tang, Z. Yin, Y. Zhu, and M.

Zhou, “CoroGraph: Bridging Cache Efficiency

and Work Efficiency for Graph Algorithm

Execution”, Proc. VLDB Endow., Vol. 17, No.

4, pp. 891-903, 2023, doi:

10.14778/3636218.3636240.

[27] D. Wang, X. An, X. Zhou, and X. Lü, “Data

cache optimization model based on cyclic

genetic ant colony algorithm in edge computing

environment”, Int. J. Distrib. Sens. Networks,

Vol. 15, No. 8, p. 155014771986786, 2019, doi:

10.1177/1550147719867864.

[28] M. I. Zulfa, R. Hartanto, A. E. Permanasari, and

W. Ali, “LRU-GENACO: A Hybrid Cached

Data Optimization Based on the Least Used

Method Improved Using Ant Colony and

Genetic Algorithms”, Electronics, Vol. 11, No.

19, p. 2978, 2022, doi:

10.3390/electronics11192978.

[29] S. M. A. Iqbal and Asaduzzaman, “Cache-

MAB: A reinforcement learning-based hybrid

caching scheme in named data networks”, Futur.

Gener. Comput. Syst., Vol. 147, pp. 163-178,

2023, doi: 10.1016/j.future.2023.04.032.

[30] S. Dhara, A. Majidi, and S. Clarke, “Revving up

VNDN: Efficient caching and forwarding by

expanding content popularity perspective and

mobility”, Comput. Commun., Vol. 212, No.

October, pp. 342-352, 2023, doi:

10.1016/j.comcom.2023.10.004.

[31] C. Li, X. Wang, T. Zong, H. Cao, and Y. Liu,

“Predictive edge caching through deep mining

of sequential patterns in user content retrievals”,

Comput. Networks, Vol. 233, No. February, p.

109866, 2023, doi:

10.1016/j.comnet.2023.109866.

[32] A. Hidouri, H. Touati, M. Hadded, N. Hajlaoui,

P. Muhlethaler, and S. Bouzefrane, “Q-ICAN: A

Q-learning based cache pollution attack

mitigation approach for named data

networking”, Comput. Networks, Vol. 235, No.

May, p. 109998, 2023, doi:

10.1016/j.comnet.2023.109998.

[33] P. Li, Y. Guo, and Y. Gu, “Predicting Reuse

Interval for Optimized Web Caching: An

LSTM-Based Machine Learning Approach”, In:

Proc. of SC22 Int. Conf. High Perform. Comput.

Networking, Storage Anal., pp. 1-15, 2022.

[34] S. Kudagi, “Survey on different cache

replacement algorithms”, Int. J. Innov. Res. Eng.

Multidiscip. Phys. Sci., Vol. 7, No. 6, pp. 10–13,

2019, doi: 10.37082/IJIRMPS/BXDRC.

[35] K. Wang and F. Chen, “Catalyst: Optimizing

Cache Management for Large In-memory Key-

value Systems”, Proc. VLDB Endow., Vol. 16,

No. 13, pp. 4339-4352, 2023, doi:

10.14778/3625054.3625068.

[36] X. Lu, R. Wang, and X. H. Sun, “CARE: A

Concurrency-Aware Enhanced Lightweight

Cache Management Framework”, In: Proc. of

Int. Symp. High-Performance Comput. Archit.,

Vol. 2023-Febru, pp. 1208-1220, 2023, doi:

10.1109/HPCA56546.2023.10071125.

[37] Y. Fu, Q. Yu, A. K. Y. Wong, Z. Shi, H. Wang,

and T. Q. S. Quek, “Exploiting Coding and

Recommendation to Improve Cache Efficiency

of Reliability-Aware Wireless Edge Caching

Networks”, IEEE Trans. Wirel. Commun., Vol.

20, pp. 7243-7256, 2021.

[38] B. Sethi, S. K. Addya, and S. K. Ghosh, “LCS :

Alleviating Total Cold Starts Latency in

Received: November 1, 2024. Revised: November 27, 2024. 705

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.49

Serverless Applications with LRU Warm

Container Approach”, In: Proc.of 24th Int. Conf.

Distrib. Comput. Netw., 2023.

[39] J. Yang, Z. Qiu, Y. Zhang, Y. Yue, and K. V.

Rashmi, “FIFO can be Better than LRU: the

Power of Lazy Promotion and Quick Demotion”,

In: Proc. 19th Work. Hot Top. Oper. Syst., pp.

70-79, 2023, doi: 10.1145/3593856.3595887.

[40] T. Xie, T. He, P. McDaniel, and N. Nambiar,

“Attack resilience of cache replacement

policies”, In: Proc. of IEEE INFOCOM, Vol.

2021, No. 6, pp. 2433-2447, 2021, doi:

10.1109/INFOCOM42981.2021.9488697.

[41] F. Ozge Ozkok, “International Journal of

Intelligent Systems and Applications in

Engineering A New Approach to Determine Eps

Parameter of DBSCAN Algorithm”, Orig. Res.

Pap. Int. J. Intell. Syst. Appl. Eng. IJISAE, Vol.

5, No. 4, p. 247, 2017, doi: 10.1039/b0000.

[42] N. Valarmathy and S. Krishnaveni,

“WITHDRAWN: A novel method to enhance

the performance evaluation of DBSCAN

clustering algorithm using different

distinguished metrics”, Mater. Today Proc.,

2020, doi: 10.1016/j.matpr.2020.09.623.

