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Abstract: In content delivery networks (CDN) and edge caching, efficient cache replacement strategies are essential 

to reduce latency and enhance hit ratios. This study introduces adaptive similarCache (ASC), an adaptive caching 

framework based on greedy dual size frequency (GDSF) that includes DBSCAN for anomaly detection. ASC 

framework analyzes the IRcache dataset, which consists of proxy server access logs from four cities—Boulders, New 

York, Silicon Valey, and Urbana Campaign— and simulates dynamic adjustments to access patterns as they would 

occur in real-time, considerably boosting cache performance under fluctuating traffic situations when compared to 

classic approaches like LRU and LFU. The technique improves cache utilization, achieving a hit ratio of up to 45% 

and exhibiting lower latency in high-demand conditions, focusing specifically on data from these cities. The findings 

underscore the need for adaptive caching techniques, particularly in resource-constrained contexts, and suggest the 

possibility of future hybrid systems. 
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1. Introduction 

The rapid growth of internet usage, from its 

modest beginnings to the current digital era, reflects 

the expanding needs and expectations of global users 

[1]. Originally designed as a rudimentary means of 

disseminating information, the web has evolved into 

a sophisticated and interactive environment, shaping 

how people consume content daily [2]. With the 

advent of more intelligent web applications, the 

demand for fast, reliable, and scalable services has 

increased dramatically [3]. As more users rely on 

bandwidth-intensive applications, such as streaming 

services and online gaming, caching systems have 

become vital for maintaining speed and efficiency in 

data delivery [4]. These systems work by temporarily 

storing frequently accessed data closer to the user, 

thereby reducing network latency and congestion [5]. 

The continued development of more efficient caching 

strategies is critical to meeting these growing 

demands, ensuring that users experience minimal 

delays while accessing the content they require [6]. 

Despite the significant role caching plays, 

modern systems face substantial challenges in 

adapting to the complexities of today's internet traffic. 

Web content is now more dynamic, with personalized 

and frequently changing data, and user behavior is 

increasingly unpredictable. Traditional cache 

replacement algorithms, like Least Recently Used 

(LRU) and Least Frequently Used (LFU), are ill-

suited to these dynamic environments, as they focus 

solely on access recency or frequency [7]. LRU may 

evict items that are soon requested again, while LFU 

can retain items that were frequently accessed in the 

past but are no longer relevant, leading to inefficient 

cache usage. These algorithms often result in 

suboptimal cache performance, particularly when 

access patterns change rapidly. In response, size-

based caching algorithms, such as Greedy Dual Size 

(GDS), have emerged. GDS factors in the size of data 

objects, addressing some of the limitations of 
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traditional algorithms [8]. However, GDS’s exclusive 

focus on object size often leads to inefficient 

decisions regarding frequently accessed content, 

which may be unnecessarily evicted, impacting the 

overall performance of the caching system [9]. 

The Greedy Dual Size Frequency (GDSF) 

algorithm was developed as an improvement over 

GDS, aiming to overcome the limitations of its 

predecessor by incorporating both object size and 

access frequency into the caching process [10]. 

GDSF balances the trade-offs between storing large 

data objects and frequently requested content, 

optimizing cache utilization and improving hit rates 

[11]. Nevertheless, GDSF is not without its 

challenges. The algorithm still struggles to adapt to 

the rapid fluctuations in internet traffic, often 

retaining outdated or irrelevant data due to its reliance 

on static frequency measures [12]. As traffic patterns 

evolve, the need for a more dynamic and responsive 

approach becomes apparent, leading to the proposal 

of enhanced cache replacement strategies that can 

better respond to these demands [13]. 

Traditional cache replacement approaches like 

GDSF runs into challenges as it is not well suited for 

dynamic and mobile network environments and is 

also prone to cache miss. The limitation actually 

emanates from their shortcoming in the detection of 

abnormal data usage and also in responding to such 

irregular events. To address this problem, we need to 

enhance GDSF method by applying an adaptive 

cache replacement policy, which employing 

DBSCAN for anomaly detection on the fly [14]. 

DBSCAN is particularly useful in that it finds groups 

of similar items and also finds items which for some 

reason do not belong to the clusters, making it a 

powerful instrument for exposing rarely occurring 

usage patterns [15]. Such approach enables the 

caching system to change as per the prevailing 

network situation and thus preventing the wastage of 

cache resources due to contamination by unworthy 

information using DBSCAN during the cache 

replacement procedure. This provides a more 

accurate assessment of the relevance of the data when 

the symptoms of the anomaly are included in the 

objective function of GDSF. It leads to better caching 

policy and better system performance. 

The primary contribution of this work is an 

adaptive cache replacement strategy that effectively 

handles cache pollution by integrating DBSCAN into 

GDSF. This approach enhances the identification of 

anomalies in data access patterns, allowing the 

caching system to identify and exclude irregular or 

harmful access patterns in real time, significantly 

reducing the impact of cache pollution. The 

integration of DBSCAN also enables more intelligent 

eviction decisions, leading to improved cache 

performance across various network conditions. 

Additionally, the dynamic adjustment mechanism 

allows the system to adapt to fluctuating network 

conditions, providing a more agile response 

compared to traditional static methods like LRU and 

LFU. The modified GDSF algorithm employs an 

intelligent eviction strategy that balances object size, 

access frequency, and the presence of anomalies, 

resulting in superior cache utilization and increased 

hit rates. These features ensure optimal cache 

performance under a wide range of conditions, 

making it a robust solution for the challenges faced 

by modern caching systems, particularly in 

environments characterized by dynamic and 

unpredictable access patterns, such as edge networks 

and content delivery systems. 

This paper first discusses related works in Section 

2 to provide the foundation for the proposed method. 

Section 3 then elaborates on the design and 

implementation of{nama algoritma}, detailing how it 

improves upon traditional caching techniques. 

Section 4 presents the results of our experiments, 

comparing {nama algoritma} to existing caching 

algorithms and discussing its performance across 

several datasets. Finally, Section 5 concludes the 

study by summarizing the findings and suggesting 

directions for future research. 

2. Related works 

This paper continues our previous caching system 

research work in a framework called similarCache 

[16]. In the simulation phase, similarCache has a 

positive contribution to the hit ratio performance 

improvement tested using IRcache datasets. However, 

simulation results on one of the datasets (NY) have 

not shown good performance. The investigation 

shows that the NY dataset has different data access 

characteristics (anomalies). Therefore, we conducted 

a literature study on specific techniques that can 

detect anomalies. Aware of the future development of 

research towards adaptive intelligent caching systems, 

we specifically targeted the literature on anomaly 

detection techniques that use machine learning 

techniques, namely DBSCAN. 

Integrating anomaly detection techniques into 

caching strategies has been suggested as a way to 

optimize performance further. Internet access 

anomalies, such as flash crowds or viral surges in 

specific content, can significantly affect cache 

efficiency and network stability. The use of Density-

Based Spatial Clustering of Applications with Noise 

(DBSCAN) has proven effective for detecting such 

anomalies in network traffic. Gao et al. [17] 
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implemented DBSCAN to detect anomalies in IoT 

traffic, significantly improving the efficiency of 

caching systems by identifying abnormal data 

patterns in real-time and preventing network 

congestion. Han et al. [18] employed DBSCAN in 

lightweight anomaly detection models, enhancing 

caching performance in IoT environments by quickly 

identifying and categorizing anomalies based on 

network traffic characteristics. Zhang et al. [19] 

utilized DBSCAN in Underwater Wireless Sensor 

Networks (UWSNs) for anomaly detection, which 

improved the system's robustness against malicious 

routing attacks and optimized caching performance 

in sparse network environments. Shen et al. [20] 

proposed an adaptive caching system that leverages 

DBSCAN to improve cache hit rates by enabling 

elastic adjustments to network traffic demands and 

minimizing latency during peak usage periods. 

Wang et al. [21] tackled the issue of automatically 

determining the optimal radius of neighborhood 

parameter in the DBSCAN clustering algorithm, 

proposing an adaptive method using the Bird Swarm 

Optimization (BSA) algorithm, which enhanced 

clustering accuracy. You et al. [22] addressed the 

issue of detecting anomalies in real-time body weight 

(BW) data of broiler breeders recorded by a precision 

feeding system, highlighting that traditional methods 

were ineffective in distinguishing reasonable BW 

variations from true anomalies. Zeufack et al. [23] 

proposed an unsupervised anomaly detection 

framework for computer systems by analyzing 

network log files, which effectively addressed the 

challenges associated with using DBSCAN in 

datasets with varying densities. 

Traditional caching algorithms such as Recently 

Used (LRU), Least Frequently Used (LFU), First In 

First Out (FIFO), Greedy Dual Size (GDS), and 

Greedy Dual Size Frequency (GDSF) require 

additional capabilities in detecting ongoing access 

anomalies. These five algorithms generally only use 

one variable to decide caching content, except for 

GDSF which already considers access count and file 

size. LRU, for instance, relies exclusively on recency, 

evicting the least recently accessed item, which 

becomes highly inefficient when access patterns 

change quickly. This results in unnecessary cache 

misses and reduced performance, particularly in 

scenarios involving viral content or rapidly 

fluctuating demands, where items that were recently 

evicted might suddenly regain popularity [24]. LFU, 

on the other hand, uses frequency-based eviction, 

retaining items that have been accessed frequently in 

the past. While this strategy is useful for identifying 

popular content, it is inherently flawed in 

environments where content popularity shifts rapidly. 

LFU tends to retain outdated data, reducing cache 

efficiency when new high-priority items enter the 

system as noted by Cui et al. [25]. FIFO is 

computationally efficient, it often leads to frequent 

cache misses since it ignores the temporal or spatial 

locality of content access, which is crucial for 

maintaining performance in mixed-use scenarios [18]. 

GDSF improves upon GDS by incorporating both 

object size and frequency to optimize cache 

utilization, providing better hit rates under typical 

conditions. However, GDSF remains limited by its 

reliance on static frequency measures, which cannot 

accommodate rapid shifts in user behavior. As a 

result, it tends to retain outdated or irrelevant data, 

particularly in environments like edge computing, 

where caching strategies need to adapt dynamically 

to maintain efficiency [20]. 

Despite its improvements over traditional 

algorithms, GDSF has been identified with several 

critical limitations in prior research. Studies have 

shown that its reliance on static frequency measures 

can result in retaining less relevant data, ultimately 

lowering cache efficiency [26]. Cui et al. [25] also 

highlighted that static cache mechanisms lead to 

inefficient resource use, especially under dynamic 

conditions. Xiao et al. [24] demonstrated that the lack 

of adaptive mechanisms in traditional algorithms like 

GDSF results in increased delay and energy 

consumption during task offloading in mobile 

networks. These two studies also modified the GDSF 

algorithm but have not been tested using the real 

world IRcache dataset as a real illustration of internet 

access behavior. 

Wang et al. [27] proposed a multi-objective data 

caching optimization model for edge computing 

environments. They introduced a Cyclic Genetic Ant 

Colony Algorithm which enhanced data selection and 

caching decisions. Zulfa et al. [28] proposed LRU-

GENACO a hybrid cached data optimization method 

combining LRU with a Genetic Algorithm and Ant 

Colony Optimization (ACO), demonstrating a 

significant improvement in hit ratio through the use 

of IRCache datasets. However, both studies have not 

implemented anomaly detection, which can be seen 

from the suboptimal hit ratio performance on certain 

datasets. 

Iqbal and Asaduzzaman [29] proposed Cache-

MAB, a reinforcement learning-based hybrid caching 

scheme for Named Data Networks (NDN) that 

dynamically selects the optimal caching policy from 

a set of distance-based policies, allowing it to 

improve hit rates and reduce latency. Dhara et al. [30] 

proposed POPS-Cache, a caching scheme for 

Vehicular Named Data Networks (VNDN) that 

considers both predicted spatial-temporal popularity 
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and vehicle experience with content popularity, 

which improved adaptability in environments 

characterized by high mobility. Li et al. [31] proposed 

PEC, a predictive edge caching system that 

proactively prefetches content at the edge based on 

real-time user predictions using sequential learning 

models, allowing edge networks to better 

accommodate fluctuating content demands. Hidouri 

et al. [32] proposed Q-ICAN, a Q-learning-based 

intrusion prevention system for mitigating cache 

pollution attacks in Named Data Networks (NDN), 

which enhanced the network's ability to discard 

malicious interest packets in real-time. Based on 

these findings, it becomes evident that traditional 

cache replacement strategies are insufficient for 

handling the complexities of modern network traffic, 

often characterized by sudden spikes in demand and 

unpredictable user behavior.  

Enhanced methods, such as those involving 

machine learning and anomaly detection, show 

promise in addressing these limitations by enabling 

more adaptive, context-aware, and intelligent 

decision-making processes. However, they still face 

issues such as computational overhead and sensitivity 

to parameter tuning, which can limit their scalability 

and real-world applicability. This research aims to 

address these challenges by proposing Adaptivc 

similarCache (ASC), an adaptive caching approach 

that combines the GDSF algorithm with DBSCAN 

for real-time anomaly detection. By incorporating 

dynamic anomaly detection and an intelligent 

eviction mechanism, ASC aims to improve cache 

utilization, reduce latency, and provide a more 

responsive solution to fluctuating traffic conditions, 

particularly in edge network environments. 

3. The proposed method 

3.1 Greedy dual size frequency 

The ability to balance object size and access 

frequency has led to the widespread adoption of the 

GDSF algorithm in caching systems, including web 

caching and content delivery networks [33]. GDSF 

efficiently manages cache space by prioritizing 

frequently accessed and smaller objects but faces 

challenges when confronted with rapidly changing 

access patterns or anomalies in web traffic. The 

algorithm’s reliance on static frequency measures 

often results in the retention of outdated or less 

relevant content during unpredictable traffic 

fluctuations. A dynamic modification of GDSF has 

been proposed to enhance its adaptability to real-time 

variations in internet access patterns [34]. 

GDSF functions as the core mechanism for cache 

management by balancing two critical factors: size 

and access frequency. Objects stored in the cache are 

assigned a value, Kg, which is calculated based on 

access frequency and size. This value informs the 

caching decision process, where objects with higher 

Kg values are retained, while those with lower values 

are evicted when cache space is limited [35]. The cost 

of each object is calculated using the formula 

presented in Eq. (1), which considers both the size of 

the object and a fixed constant. Kg is then determined 

by the formula in Eq. (2), combining access 

frequency, cost, and size to optimize the retention of 

frequently accessed smaller objects. This approach 

prioritizes such objects, leading to more efficient 

utilization of cache space. The calculation of Kg 

plays a pivotal role in maintaining balance across 

different content types, and the formula’s emphasis 

on size and frequency provides a structured 

framework for optimizing cache performance [36]. 

Eviction decisions in GDSF rely on a predefined 

cache capacity and the Kg values of cached objects 

[37]. When the cache reaches capacity, objects with 

the lowest Kg values are removed to create space for 

new content. This process ensures GDSF maintains 

high cache efficiency under normal traffic conditions. 

The static nature of GDSF results in inefficiencies 

when access patterns change unexpectedly. Fig. 1 

illustrates the eviction process, showing how objects 

are inserted into the cache and subsequently evicted 

based on their Kg values when space is limited. 

 

𝑐𝑜𝑠𝑡 = 2 + 
𝑠𝑖

536
      (1) 

 

𝐾𝑔 =  
𝑓𝑖 ×𝑐𝑜𝑠𝑡

𝑠𝑖
      (2) 

 

Annotation list 

• cost:The calculated cost for caching an item, with 

a base value of 2 plus an additional component 

based on the item’s size. 

 

 

 
Figure. 1 Greedy dual size frequency method 
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• 𝑠𝑖: Represents the size of the i-th item in the cache, 

influencing the cost by adjusting based on its 

magnitude relative to 536 

• 536: Represents an approximation of the number 

of bytes that fit into a typical network packet, used 

as a normalization factor to prioritize smaller 

objects in caching, as the are more efficient in 

terms of network transfer and cache utilization. 

• 𝑓𝑖 : The frequency of access for the i-th item, 

indicating how often this item has been requested. 

• 𝐾𝑔: The weighted priority of the i-th cache item, 

computed by scaling cost by 𝑓𝑖  and normalizing 

by the item’s size (𝑠𝑖). 

3.2 Recency algorithm 

Recency-based algorithms such as Least Recently 

Used (LRU), play a critical role in addressing the 

unpredictability of dynamic traffic by focusing on the 

time since an object was last accessed [38]. GDSF 

optimizes for size and frequency, whereas recency 

algorithms simplify the decision-making process by 

only considering the last access time of each object, 

making them highly adaptable to traffic that exhibits 

fluctuating demand. Despite their simplicity, LRU 

and similar algorithms may fail to retain content that, 

while less frequently accessed, remains valuable for 

future requests, highlighting a key trade-off between 

simplicity and long-term efficiency [39]. 

Recency-based caching strategies maintain a list 

of objects ordered by their access times. When the 

cache reaches its capacity, the object that has not been 

accessed for the longest duration is evicted, ensuring  

that the most recently accessed data is retained. This 

straightforward mechanism facilitates effective cache 

management in environments with highly volatile 

access patterns, where past behavior provides limited 

predictive value for future demand. Evicting the least 

recently accessed object ensures that the cache retains 

more up-to-date data, thus improving overall cache 

hit ratios in dynamic scenarios [40]. The eviction 

process in the LRU algorithm is both straightforward 

and effective, particularly in high-traffic 

environments. Upon reaching cache capacity, the 

algorithm automatically removes the object that has 

remained unaccessed for the longest period. This 

method ensures that the cache preserves the most 

 

 
Figure. 2 Recency based algorithm 

recently accessed data, maintaining its relevance in 

dynamically fluctuating traffic conditions. Fig. 2 

illustrates how objects are introduced, accessed, and 

subsequently evicted based on their recency. 

3.3 Anomaly detection 

Anomalies such as viral content, flash crowds, or 

malicious access patterns can severely impact cache 

efficiency. These anomalies lead to cache pollution, 

where irrelevant or temporary data occupies valuable 

cache space, ultimately degrading overall system 

performance [41]. To address this issue, ASC 

employs an anomaly detection mechanism based on 

Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN), which enables the system to 

detect and respond to abnormal access patterns in real 

time. The anomaly detection process begins with the 

normalization of data. Each data point, 𝑥𝑖, 
representing an object in the cache, undergoes Z-

score normalization to ensure that differing feature 

scales do not distort the results. The normalized value 

x_i^', is computed using Eq. (3). 

Normalized data is processed using the DBSCAN 

clustering algorithm, which operates based on two 

primary parameters. The parameter 𝜖 (eps) defines 

the maximum distance between two points for them 

to be considered neighbors, while minPts specifies 

the minimum number of points required to form a 

dense region or cluster [41]. These parameters allow 

DBSCAN to effectively identify core points, border 

points, and outliers, enabling the differentiation 

between regular and anomalous access patterns [42]. 

Mathematically, DBSCAN defines the neighborhood 

𝑁(𝑝) of a point 𝑝 shown in Eq. (4). Points where the 

number of neighbors 𝑁(𝑝) is less than minPts are 

labeled as anomalies. The condition for anomaly 

detection is expressed in Eq. (5). 

 

 

 
Figure. 3 DBSCAN anomaly detection visualization 
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The data points labeled as -1 by DBSCAN after 

clustering are classified as anomalies. ASC system 

monitors access patterns based on object size, elapsed 

time, and access frequency, applying DBSCAN to 

detect irregularities within these patterns. Anomalous 

requests, such as those triggered by viral content or 

abnormal spikes in access frequency, are flagged. Fig. 

3 illustrates the anomaly detection process, where red 

points represent detected anomalies and blue points 

signify normal data points, showing how DBSCAN 

differentiates between normal clusters and outliers 

using normalized values of object size, elapsed time, 

and frequency. 

 

𝑥𝑖
′ =  

𝑥𝑖 − 𝜇

𝜎
       (3) 

 

Annotation list: 

• xi: Individual data point in a feature (e.g., size, 

elapsed time, frequency) 

• μ: Mean of all data points in the feature, a central 

reference point. 

• σ: Standard deviation of the feature, indicating 

data spread around μ. 

• 𝑥𝑖
′ : The normalized value for xi, obtained by 

centering xi around ero and scaling by feature’s 

variability. 

 

𝑁(𝑝) = {𝑞 ∈ 𝑋 |𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑞) ≤ 𝜖}   (4) 

 

Annotation list: 

• N(p): Represents the neighborhood of point p, 

identifying nearby points within a specified 

distance. 

• 𝜖: The maximum distance threshold for points to 

be considered within the same neighborhood. 

• 𝑞: A data point that is within the neighboorhood 

of p if it meets the distance condition. 

• 𝑋: The set of all data points in the dataset being 

analyzed. 

• 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑞): The calculated distance between 

points 𝑝 and 𝑞. 

 

𝑎𝑛𝑜𝑚𝑎𝑙𝑦(𝑝) =  {
1 𝑖𝑓|𝑁(𝑝)| < 𝑚𝑖𝑛𝑃𝑡𝑠

0 𝑖𝑓|𝑁(𝑝)| ≥ 𝑚𝑖𝑛𝑃𝑡𝑠
   (5) 

 

Annotation list: 

• 𝑎𝑛𝑜𝑚𝑎𝑙𝑦(𝑝) : A binary indicator function 

representing whether point p is classified as an 

anomaly. 

• 𝑁(𝑝) : The neighboorhood of point p, which 

contains all points within a specified distance 

threshold (as defined by DBSCAN) 

• 𝑚𝑖𝑛𝑃𝑡𝑠 : The minimum number of points 

required in 𝑁(𝑝)for p to be classified as a core 

point (i.e., not an anomaly) 

3.4 The adaptive similar cache (ASC) 

The ability of ASC to dynamically switch 

between caching strategies is crucial for maintaining 

performance under varying traffic conditions. Under 

normal circumstances, ASC operates using a 

centroid-based eviction strategy, where objects are 

evaluated based on their distance from a central 

centroid object. The centroid is defined as the object 

with the highest cache value, 𝐾𝑔𝑖
, within the cache. 

Objects are evicted based on their distance from this 

centroid, with those furthest from the centroid being 

evicted first, ensuring that only the most relevant data 

remains cached, thus optimizing cache utilization. 

The distance to the centroid is mathematically 

expressed as shown in Eq. (6).  

 

𝑑(𝑖) =  |𝐾𝑔𝑖
 − 𝐶|      (6) 

 

𝑟𝑖  =  
𝐻

𝑇
       (7) 

 

𝐾𝑔𝑖
 =  

𝑓𝑖 × (2 + 
𝑠𝑖

536
) × 𝑟𝑖

𝑠𝑖
     (8) 

 

Annotation list: 

• 𝑑(𝑖): Distance from centroid, representing how 

far an object is from the central reference in the 

cache 

• 𝐾𝑔𝑖
: Cache value for item i, calculated based on 

frequency, size, and other factors (see eq. 8) 

•  𝐶: Centroid, defined as the cache entry with the 

highest 𝐾𝑔𝑖
value in the cache. 

• 𝑟𝑖 : Current hit ratio, a measure of cache 

effectiveness, adjusting dynamically. 

• 𝐻 : Total number of cache hits, representing 

successful retrievals from the cache. 

• 𝑇 : Total number of cache requests, giving the 

overall access count. 

• 𝑓𝑖: Frequency of access for item i, denoting how 

often it is requested 

• 𝑠𝑖 : Size of item i, which contributes to the cache 

cost in relation to available space. 

• 536: Represents an approximation of the number 

of bytes that fit into a typical network packet, 

used as a normalization factor to prioritize 

smaller objects in caching, as the are more 

efficient in terms of network transfer and cache 

utilization.   

The cache value 𝐾𝑔𝑖 is influenced by several 

factors, including the frequency of access (𝑓), the 
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object size (𝑠𝑖), and a size normalization factor (536), 

which are combined with the current hit ratio 𝑟𝑖 (Eq. 

(7)) to calculate 𝐾𝑔𝑖
 as shown in Eq. (8). This formula 

ensures that frequently accessed and valuable content 

is retained, while less relevant data is removed. The 

system selects the cache entry with the highest cache 

value K_(g_i ) as the centroid, as defined by Eq. (9). 

The eviction process then targets the cache entry that 

maximizes the distance from this centroid, as 

described in Eq. (10). The decision to evict is based 

on finding the cache entry whose value has the 

greatest absolute difference from the centroid value 

C, ensuring that only the most relevant data remains 

cached, thereby optimizing cache performance. 

Fig. 4 illustrates the eviction process based on the 

centroid, enabling ASC to dynamically adapt to 

varying cache contents, retaining the most critical 

data according to the calculated 𝐾𝑔𝑖
 value and its 

proximity to the centroid. Objects such as A, B, C, 

and D are evaluated based on this principle, ensuring 

optimal data retention under normal traffic conditions. 

When an anomaly in access patterns is detected, ASC 

switches to a recency-based strategy, which is better 

suited to handling unpredictable traffic surges. In this 

mode, the least recently accessed data is evicted first, 

ensuring that temporary or irrelevant data does not 

occupy valuable cache space during anomalous 

events. This dynamic switch to the recency-based 

strategy, as demonstrated in the second part of Fig. 3, 

prevents cache pollution and ensures that the cache is 

optimized for real-time traffic conditions. 

This dual-strategy approach—centroid-based 

eviction under normal conditions and recency-based 

eviction during anomalies—enables ASC to maintain 

efficiency, regardless of whether access patterns are 

regular or erratic. The adaptive objective function is 

a critical aspect of ASC dynamic adaptation 

capabilities. This function integrates multiple factors, 

including object size, access frequency, and the 

current hit ratio, enabling the system to make more 

informed decisions about which objects to retain or 

evict. By adjusting to real-time traffic conditions, this 

objective function ensures that the cache remains 

efficient, even as access patterns evolve. 

Table 1 provides a comparison between the Kg 

calculations of GDSF and ASC, demonstrating how 

ASC adjusts its calculations by incorporating the 

current hit ratio into the objective function. These 

adjustments allow ASC to prioritize frequently 

accessed content that is likely to be requested again 

soon, ensuring higher performance across a variety of 

traffic conditions. The inclusion of the current hit 

ratio in the ASC calculation further refines its 

 

 

Figure. 4 The proposed ASC caching framework 

 

 
Table 1. GDSF comparison 

Request GDSF Kgi ASC Kgi 

111 0,01187 0,01187 

112 0,00853 0,00853 

111 0,02373 0,00791 

113 0,01519 0,0038 

114 0,01853 0,00371 

114 0,03707 0,01236 

115 0,00587 0,00336 

113 0,03039 0,01139 

111 0,0356 0,01582 

116 0,00758 0,00303 

 

 

decision-making, allowing it to better respond to real-

time fluctuations in access demand. As shown in 

Table 1, ASC dynamically fine-tunes its retention 

and eviction decisions, which leads to more 

optimized cache utilization under fluctuating network 

demands. The ability to adjust 𝐾𝑔𝑖
 based on hit ratio 

gives ASC a performance advantage over GDSF, 

particularly in environments with irregular or 

unpredictable traffic patterns. By adapting in real 

time, ASC maintains a higher level of efficiency, 

ensuring that relevant data is kept in the cache, while 

less valuable data is evicted. 

4. Results and discussion 

The results of this study underscore the 

effectiveness of the proposed caching strategy in 

handling diverse and dynamic internet access 

patterns. A comprehensive analysis across four 

distinct datasets—BO2, NY, SV, and UC—evaluated 

the performance of the ASC caching framework 

compared to traditional caching methods like LRU, 

LFU, and GDSF. Key indicators, such as hit ratio and 

latency saving ratio, were measured to assess the 

adaptability and efficiency of these strategies under 
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varying traffic conditions as shown Table 2. The 

results highlight ASC's superior ability to 

dynamically respond to anomalies in internet traffic, 

outperforming other algorithms in both stable and 

irregular environments. This superiority is 

particularly evident in high-anomaly scenarios, 

where static methods struggle. The adaptive nature of 

ASC maintains higher hit ratios and reduced latency, 

optimizing content delivery and enhancing user 

experience, with implications for modern network 

infrastructures that face traffic unpredictability and 

content diversity challenges. 

4.1 Result 

Fig. 5 demonstrates the anomaly detection 

process across four datasets: bo2, ny, sv, and uc. 

Anomalies, depicted by red points, are identified 

based on object size, frequency, and elapsed time. 

Dataset ny on Fig. 5(b) reveals a dense clustering of 

anomalies, signifying highly irregular traffic patterns 

that would typically challenge static caching 

algorithms such as LRU and FIFO. A more stable 

traffic pattern is observed in dataset bo2 Fig. 5(a), 

where fewer anomalies are present. ASC utilizes this 

anomaly detection to adapt its caching strategy, 

ensuring sustained cache efficiency. This adaptation 

becomes particularly evident in Fig. 6(a), where ASC 

achieves a significantly higher hit ratio compared to 

other algorithms, effectively managing abnormal 

traffic. The presence of anomalies in all datasets 

influences the hit ratios of the algorithms, with ASC 

consistently outperforming others due to its ability to 

adjust dynamically. 

Fig. 6 presents the hit ratio performance across 

varying cache sizes and algorithms. ASC 

demonstrates superior hit ratios across all datasets, 

notably when cache sizes exceed 25K. Dataset sv Fig. 

6(c) reflects ASC’s ability to maintain high hit ratios 

even in the presence of numerous anomalies. 

Algorithms like LRU and FIFO, which lack dynamic 

adaptability, show a steep decline in performance at 

lower cache sizes (below 50K). Dataset uc Fig. 6(d) 

mirrors this trend, where ASC maintains an 

advantage in hit ratio throughout all cache sizes. 

Dataset ny Fig. 6(b) depicts a more gradual 

improvement across algorithms, yet ASC continues 

to lead in performance due to its responsive strategy 

to traffic irregularities. The correlation between hit 

ratio and anomaly detection further emphasizes 

ASC’s ability to thrive under fluctuating conditions 

where static algorithms falter. Fig. 7 evaluates the 

Latency Saving Ratio (LSR) across different datasets 

and algorithms. ASC achieves the highest LSR across 

all datasets, with particularly notable performance in 

dataset bo2 Fig. 7(a) and dataset uc Fig. 7(d). 

The low anomaly rate in dataset bo2, as shown in 

Fig. 5(a), allows ASC to maintain optimal 

performance with an LSR of 5.71%. In contrast, 

algorithms like FIFO and GDSF perform poorly in 

anomaly-prone environments, as illustrated in Fig. 

7(b) and Fig. 7(c) for datasets ny and sv. ASC’s 

dynamic adjustment capabilities, which respond to 

real-time traffic anomalies, enable it to maintain both 

high hit ratios and latency efficiency. Dataset sv, 

known for its highly irregular traffic patterns, 

demonstrates this relationship clearly, with ASC 

significantly outperforming static algorithms in both 

hit ratio and LSR. 

 

  

(a) (b) 

Figure. 5 Anomaly detection on datasets: (a) bo2 and (b) ny 
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(a) 

 

(b) 

  
(c) (d) 

Figure. 6 Hit ratio comparison on datasets: (a) bo2, (b) ny, (c) sv, and (d) uc 

 

 

  
(a) 

 

(b) 

  
(c) (d) 

Figure. 7 Latency saving ratio comparison on datasets: (a) bo2, (b) ny, (c) sv, and (d) uc 
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Table 2. Average hit ratio and latency saving ratio comparison 

Alg. 
Avg. Hit Ratio (%) Avg. Latency Saving Ratio (%) 

Bo2 UC NY SV Bo UC NY SV 

ASC 18.28 24.85 20.83 22.94 5.71 8.81 6.77 7.72 

LRU 17.61 23.57 20.35 22.15 4.71 9.45 6.00 8.72 

GDSF 16.07 21.28 17.57 20.05 3.82 5.95 4.71 6.92 

LFU 15.77 20.95 17.27 19.74 3.42 5.95 4.39 5.52 

SIZE 13.93 20.38 17.45 19.22 3.41 6.31 4.32 4.98 

FIFO 12.65 19.63 15.88 17.76 2.56 6.00 3.43 4.55 

GDS 10.96 13.40 8.18 8.30 2.02 3.83 3.27 4.12 

 

 

4.2 Discussion 

The ASC adaptive method has the most 

versatility across all datasets. This validates the idea 

that algorithms optimising recency, frequency, and 

magnitude are more effective for the varied access 

patterns seen in real-world systems. This dynamic 

behaviour is particularly crucial in edge networks, 

where content delivery fluctuates markedly based on 

geographic location or user activity. The efficacy of 

SIZE at increased cache sizes, especially in datasets 

such as UC, illustrates its capability in managing 

workloads with significant variability in object sizes. 

SIZE is a beneficial choice for systems managing 

multimedia material or extensive file distributions, 

since size-aware eviction may enhance cache 

efficiency. Although LRU performs well in most 

cases, it does poorly in highly variable scenarios like 

the UC dataset since it doesn't take non-recent factors 

into consideration. This suggests that although LRU 

could work for simple caching systems, more 

complex situations with complex access patterns 

need more sophisticated approaches. 

In environments characterised by dynamic 

material, such as live-streaming services or content-

centric platforms, algorithms like ASC, which adjust 

to evolving access patterns, are essential. ASC's 

constant superiority across all datasets indicates its 

exceptional suitability for these contexts. For CDNs 

delivering substantial multimedia assets, SIZE 

performance at increased cache capacities illustrates 

its capability. By including object size into eviction 

choices, SIZE reduces the probability of evicting big, 

frequently accessed items that are costly to retrieve 

from origin servers. Although complex algorithms 

such as ASC and GDSF provide superior 

performance, they may incur more computational 

cost relative to simpler methods like LFU and LRU.  

Investigating the capabilities of hybrid algorithms 

that integrate the advantages of ASC and SIZE, 

especially for CDNs managing diverse content types, 

may enhance hit ratio performance. Furthermore, 

including Quality of Service (QoS) measurements, 

such as latency and byte hit ratio, into this research 

might provide a more thorough insight into the 

influence of cache replacement methods on user 

experience in content delivery systems. Examining 

cache replacement methods that dynamically adjust 

to access patterns and content types (such as 

differentiating between video streams, static photos, 

and tiny text items) may improve cache efficiency in 

multimedia-intensive CDNs. 

5. Conclusion 

The simulations show that the suggested caching 

approach works better than the others, especially 

when it comes to how well it works and how many 

hits it gets across all datasets. The ASC algorithm 

regularly does better than normal methods like LRU, 

LFU, and SIZE, especially when cache sizes are 

bigger. It gets hit rates as high as 40-45% across 

datasets. Compared to more conventional methods, 

including advanced features like adaptive item 

prioritisation improves cache hit rate and decreases 

latency. Nevertheless, although the suggested 

technique was generally successful, it exhibited 

considerable unpredictability when dealing with 

lower cache sizes, resulting in less substantial 

performance benefits when compared to established 

methods. Because of this restriction, future research 

might look at further optimisations, such as 

improving the algorithm's speed when resources are 

limited.  

Further study should examine hybrid methods to 

increase performance and application-driven caching 

situations like QoS-based prioritisation. By adding 

real-time network dynamics, the design may adapt to 

changing traffic patterns. Applying the recommended 

caching strategy to present caching infrastructures 

gives promising results and sets the path for future 

intelligent and adaptive caching advancements. 
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