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Abstract: The multi-area power smart grid faces the problem of maintaining stability due to load variations and power 

exchange through the tie-line, which leads to a significant deviation in the system's frequency. All controllers face the 

challenge of changing system parameters, which leads to the controller's failure to maintain the system's stability, 

except the adaptive control, which has the drawback of needing a mathematical system model. The novelty of the 

presented method lies in facing this challenge by using a combination strategy between an artificial neural network 

and real-time particle swarm optimization through which the controllers' gains are continuously updated according to 

the change in system parameters. The proposed method provides additional novelty in immediately deducing the cost 

function, unlike other real-time methods, which need a long time to evaluate the cost function. In this approach, the 

parameters of the PID controller are tuned and updated dynamically by real-time monitoring and optimization. 

Simultaneously, the artificial neural network was trained to predict the optimization cost function for present and next 

disturbances. Simulation results confirm that the proposed method outperforms the related conventional control 

techniques. Comparison investigations with recent works show significant enhancement in terms of dynamic 

performances when the system is subjected to power disturbance equal to 20% of the rated load, which gives about 

58%, 45%, and 62% reduction in overshoot, undershoot, and settling time of the frequency deviation in the first area, 

respectively while giving about 45%, 43%, and 54% reduction in the second area respectively. Also, it exceeds the 

traditional methods by about 67%, 23%, and 50% in the tie-line power variations, respectively. Furthermore, results 

demonstrate high robustness and resilience against the system's parameters uncertainty and variations. The robustness 

was verified by varying the system's inertia and turbine time constant, which increases the reliability and controllability 

of the modern multi-area smart grid stability. 

Keywords: Load frequency control, Multi-area power system, Smart grid, Robust control, Real-time optimization, 

System parameter uncertainty. 

 

 

List of nomenclature 

Symbol Description 

∆𝜔𝑠 Frequency deviation 

∆𝑃𝑚𝑐ℎ  Mechanical power variation 

∆𝑃𝑔𝑛 Generation power variation 

∆𝑃𝑒𝑙𝑐 Load power variation 

𝐻𝑎 Moment of inertia 

∆𝑃𝐿 Insensitive load variation 

𝐷𝑎 Load-to-frequency ratio 

𝜏𝑡 Turbine time constant 

∆𝑃𝑔𝑜𝑣 Governor power variation 

∆𝑃𝑣𝑙𝑣  Variation of steam power 

𝑅𝑟𝑒𝑔 Regulation ratio 

𝜏𝑔 Governor time constant 

𝐴𝐶𝐸𝑎 Area control error 

1. Introduction 

In interconnected multi-area grids, load-

frequency control is essential because it consists 

of more than a single grid connected by tie-lines 

supplying or absorbing power. These areas include 

multiple generating units that meet various load 

conditions. The dynamic behaviour of the system's 

power and frequency variations add complexity due 

to nonlinearity and parameter uncertainty. Effective 

multi-area operations should balance load and 
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generation to maintain frequency in the desired value 

and enhance reliability [1]. This balance is important 

for measuring loads, managing disturbances, and 

selecting appropriate control schemes. Power 

systems function on a large scale with nonlinear 

dynamics requiring fast frequency responses, 

stability, and automatic generation control. Recent 

research highlights robust control for enhancing 

system security is developing, but optimization 

methods for interconnected systems remain 

unexplored [2].  

Recent literature has extensively reported various 

innovative schemes and strategies for effective 

operational methods and controlling techniques 

essential for optimizing dynamic performance. Most 

approaches are regarding the single input, single 

output (SISO) controlling form, incorporating 

integral, proportional, and derivative (PID) control 

methods [3]. However, achieving exceptional 

dynamic performance remains challenging due to 

system nonlinearity [4]. Despite this, diverse 

controller implementations are evident in modern 

applications in various sectors. A comprehensive 

comparison of these controllers highlights their 

applications in industrial settings, showcasing 

differences in features, policies, and optimization 

attractors [5].  

Notably, gaps in the literature on the power swing 

issue in multiarea systems with input delay are under-

researched, revealing a lack. Population-based 

optimization methods addressing multi-area load 

frequency control (LFC), especially with embedded 

renewable generators, are insufficiently explored, 

underscoring the need for innovative policies to bring 

transformative changes in conventional controllers 

[6]. A combination of bald eagle and sparrow 

searching techniques is used for load frequency 

control processes that rely heavily on optimization 

methods, which have recently gained acceptance for 

sustainable power performance improvements [7]. 

Genetic algorithms combined with adaptive fuzzy 

logic control for LFC and load redistribution among 

generating stations effectively eliminate frequency 

error signals in multi-source and multi-area power 

grids [8]. Particle swarm optimization was used in 

off-line mode to optimize the PID controller 

parameters of the LFC transmission line [9]. An Ant 

colony optimization technique is also used to 

optimize the response of the interconnected power 

systems and increase reliability with the challenge of 

governor nonlinearity [10]. The drawback of the 

methods presented by [7-10] is the implementation of 

off-time mode adapting techniques, which make 

them unable to handle uncertainty cases and maintain 

the system's stability. More efforts were made to 

improve system performance and increase resiliency, 

such as using artificial bee colonies for hydro-thermal 

systems [11]. Also, some work presents the fractional 

order PID controller to optimize the response of 

frequency deviation due to load variation [12, 13]. 

The shortage of this method is that adapting at a 

specific rated load degrades the response with 

variable load. The lack of literature on online 

teaching, learning, or optimizing algorithms for 

optimal feedback gain selection in LFC also signifies 

significant methodological gaps. Currently, only the 

metaheuristic competitive algorithms are effectively 

used to design LFC systems. The rise of particle 

swarm optimization (PSO) methodologies opens 

promising avenues for future research and 

applications in this vibrant field, and it can be 

integrated with another stability method, such as 

Routh Hurwitz's Theory or Flower Pollination 

Algorithm, for obtaining robust controllers and 

increasing stability margin [14, 15]. Besides, 

intelligent techniques, such as neural networks, fuzzy 

logic, etc., can significantly enhance the performance 

of smart grids that are integrated with renewable 

energy [16-18]. Despite their high efficiency, the 

primary deficiency of the metaheuristic techniques is 

the constant controllers' parameters due to the offline 

optimization. Even when real-time optimization is 

used, the method faces the challenge of evaluating the 

cost function, which requires a sufficient period.   

The novelty and contribution of this work are to 

address the challenges that impact maintaining the 

system's stability, which is affected by varying 

system parameters and changing the capabilities of 

exchange power between different areas. This is done 

by applying real-time particle swarm optimization 

combined with an artificial neural network. The 

proposed method also uses a unique process to 

evaluate the cost function using a trained neural 

network, which can determine the cost function 

immediately for each particle publication, unlike the 

traditional technique, which needs an extended 

period for comprehensive cost function evaluation. 

The proposed method can overcome the challenges 

of parameter uncertainty and system nonlinearity. 

This is because the controller's gains are updated 

constantly following the system’s parameter 

variations, which yield robust control. This paper 

considers the system's robustness and aims to 

maintain frequencies within defined limits by 

continuously adjusting controller gains. Various load 

and system parameter fluctuations case studies 

validate system performance and robustness. It is 

structured as follows: Section 2 represents the 

concept of LFC, Section 3 details the PSO, Section 4 

discusses the real-time PSO approach and the cost 
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function, Section 5 gives details on the investigated 

system, Section 6 presents simulation results, and 

Section 7 summarizes the conclusions and future 

works. 

2. Concepts of LFC in multi-area grids 

In a multiarea power system, load-frequency 

control (LFC) manages real power demand changes 

and maintains frequency for inter- and intra-area 

exchanges. It uses area and tie-line signals for 

regulation. Effective LFC enhances system security 

by preventing power imbalances and fluctuations, 

ensuring stability, and damping low-frequency 

oscillations. LFC also balances load and generation 

by reducing active power losses in tie lines [10, 12]. 

Power systems experience rapid electrical changes, 

causing frequency deviations and impacting 

synchronous machine performance. They strive for 

high-quality power, adjusting generation to align 

with demand, which is essential for frequency 

stability [13].  

Gas, hydraulic, or thermal turbines can generate 

the input mechanical power. The governor observes 

the variation in generator speed and regulates the 

turbine's mechanical power output by modifying the 

state of the turbine's valve, which is called the 

primary frequency response. The multi-area model 

can be derived from the per-area model, i.e., the 

single-area model can be expanded to represent the 

system model. Accordingly, the generation model 

can be expressed from the balance electro-

mechanical swing equation of the power system [13]: 

 

∆𝜔𝑠(𝑠) =
∆𝑃𝑚𝑐ℎ(𝑠)+∆𝑃𝑔𝑛(𝑠)−∆𝑃𝑒𝑙𝑐(𝑠)

2𝐻𝑎
   (1) 

 

Where, ∆𝑃𝑚𝑐ℎ , ∆𝑃𝑔𝑛  , ∆𝑃𝑒𝑙𝑐   are the variation of 

mechanical, generation, and load power, respectively,  

𝐻𝑎 is the system inertia for individual areas, ∆𝜔𝑠 is 

the frequency deviation. 

The power system contains resistive and 

inductive loads that may depend on or be independent 

of line frequency deviation. Therefore, the rate of 

change in load power can be realized as the aggregate 

of sensitive and insensitive load variations. The From 

which the electric load model can be written as 

follows [9]: 

 

∆𝑃𝑒𝑙𝑐(𝑠) = ∆𝑃𝐿(𝑠) + 𝐷𝑎 ∙ ∆𝜔𝑠(𝑠)   (2) 

 

where ∆𝑃𝐿  is the insensitive load variation, 𝐷𝑎 ∙
∆𝜔𝑠 is the sensitive load variation, and 𝐷𝑎 is the rate 

of change in load to the frequency. The relation 

between load deviation and frequency variation can 

be depicted as follows: 

 

∆𝑃𝐿(𝑓) = 𝐷𝑎 ∙ ∆𝜔𝑠     (3) 

 

 On the other hand, mechanical energy is supplied 

through the turbine, which obtains its power by 

combusting fuel, gas, or any other source. The 

transfer function of the turbine can be derived as the 

rate of the change in mechanical output power ∆𝑃𝑚𝑐ℎ 

to the rate of variation in steam valve position ∆𝑃𝑣𝑙𝑣 

as follows: 

 

𝐺𝑡(𝑠) =
∆𝑃𝑚𝑐ℎ(𝑠)

∆𝑃𝑣𝑙𝑣(𝑠)
=

1

1+𝑠𝜏𝑡
    (4) 

 

Where, 𝜏𝑡  is the time constant of the turbine 

response. 

Furthermore, the output power of the governor 

∆𝑃𝑔𝑜𝑣(𝑠)  is equal to the difference between the 

reference power ∆𝑃∗ and rate of frequency variation 

power: 

 

∆𝑃𝑔𝑜𝑣(𝑠) = ∆𝑃∗(𝑠) −
∆𝜔𝑠(𝑠)

𝑅𝑟𝑒𝑔
    (5) 

 

Where, 𝑅𝑟𝑒𝑔 is the regulated ratio.  

Then, the transfer function of the governor can be 

expressed as: 

 

𝐺𝑔𝑜𝑣(𝑠) =
∆𝑃𝑣𝑙𝑣(𝑠)

∆𝑃𝑔𝑜𝑣(𝑠)
=

1

1+𝑠𝜏𝑔
    (6) 

 

Where, 𝜏𝑔 is the time constant of the governor's 

response. 

The multi-area system is usually controlled by the 

proportional, integral, and derivative (PID) 

controllers, which are standard controllers used in 

several applications. They evaluate the distinction 

between the actual process quantity and the required 

set value. The controller's performance depends on 

the fine-tuning of its parameters. They are essential 

to enhance the dynamic response and reduce the 

steady-state error [10]. The transfer function of this 

controller is: 

 

𝐺𝑐(𝑠) =
𝐾𝑖+𝐾𝑝𝑠+𝐾𝑑𝑠2

𝑠
     (7) 

 

The controlling signal 𝑢�̂�  that maintains the 

system's frequency is the response of the PID 

controller to the area-controlling error 𝐴𝐶𝐸𝑎: 

 

𝑢�̂�(𝑠) = −𝐺𝑐(𝑠) ∙ 𝐴𝐶𝐸𝑎(𝑆)    (8) 
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𝐴𝐶𝐸𝑎(𝑠) = 𝐵𝑎 ∙ ∆𝜔𝑟     (9) 

 

Where, 𝐵𝑎 is the based frequency. 

The multiarea controller faces many challenges, 

such as frequency deviations, parameter uncertainty, 

and variable power demands. The work aims to 

develop adaptive controllers for real-time 

optimization, increasing the PID controller's ability 

and robustness. 

3. Particle swarm optimization 

Particle swarm optimization (PSO) is a stochastic 

algorithm inspired by bird flocks, where individuals 

balance their movements between personal bests and 

the global best founded by the search particles. It 

begins with a random population of particles' 

positions that learn from their own experiences, and 

the best particle is called the best. During iterations, 

particles update their positions based on local 

information, considering their personal best, best 

local, and best global positions. The particle 

velocities are adjusted to reflect the best particle in 

the local and global parameters for collective 

attraction. The PSO algorithm involves particles in a 

D-dimensional search space, each with a position and 

velocity updated according to performance evaluated 

at the global best. As the particles travel through the 

search space, they explore various regions randomly. 

Its simplicity and effective convergence have led it to 

be used in optimization problems, including online 

adaptation for dynamic environments. Particularly, 

PSO benefits for controlling issues can be exploited 

in load-frequency control in fluctuating load 

conditions [15].  

For h-dimensional space, let the position 𝑥𝑖 and 

velocity 𝑣𝑖 for 𝑖𝑡ℎ domain is expressed as: 

 

𝑥𝑖 = 𝑥𝑖,1, 𝑥𝑖,2, … . 𝑥𝑖,ℎ               (10) 

 

𝑣𝑖 = 𝑣𝑖,1, 𝑣𝑖,2, … . 𝑣𝑖,ℎ               (11) 

 

Then, the local and global best positions in the ith 

search domain are; 

 

𝑃𝑖
𝑏𝑒𝑠𝑡 = 𝑥𝑖,1

𝑝𝑏𝑒𝑠𝑡
, 𝑥𝑖,2

𝑝𝑏𝑒𝑠𝑡
, … . 𝑥𝑖,ℎ

𝑝𝑏𝑒𝑠𝑡
             (12) 

 

𝐺𝑖
𝑏𝑒𝑠𝑡 = 𝑥1

𝑔𝑏𝑒𝑠𝑡
, 𝑥2

𝑔𝑏𝑒𝑠𝑡
, … . 𝑥ℎ

𝑔𝑏𝑒𝑠𝑡
             (13) 

 

Then, the particle position and velocity are 

updated for each search process, which is evaluated 

by summing the previous velocity with the distance 

from 𝑃𝑖
𝑏𝑒𝑠𝑡 to 𝐺𝑖

𝑏𝑒𝑠𝑡 as in: 

 

𝑣𝑖,ℎ
(𝑘+1)

= 𝑊 ∙ 𝑣𝑖,ℎ
(𝑘)

+ 𝐶1 ∙ 𝛿1 ∙ (𝑃𝑖
𝑏𝑒𝑠𝑡(𝑘)

−

𝑥𝑖,ℎ
(𝑘)

) + 𝐶2 ∙ 𝛿2 ∙ (𝐺𝑖
𝑏𝑒𝑠𝑡(𝑘)

− 𝑥𝑖,ℎ
(𝑘)

)             (14) 

 

𝑊 = 𝑊𝑚𝑎𝑥 − (𝑊𝑚𝑎𝑥 − 𝑊𝑚𝑖𝑛) ∙
𝑖𝑡𝑒𝑟.𝑛𝑜.

max 𝑖𝑡𝑒𝑟.
       (15) 

 

𝑥𝑖,ℎ
(𝑘+1)

= 𝑥𝑖,ℎ
(𝑘)

+ 𝑣𝑖,ℎ
(𝑘+1)

              (16) 

 

Where, 𝑣𝑖,ℎ
(𝑘)

 is the velocity of the particle (i) in 

the domain (h) at iteration (k); W is the weighted 

inertia coefficient; 𝐶1  and 𝐶2  are the learning 

parameters; 𝛿1  and 𝛿2  are random numbers [0 to1]; 

𝑥𝑖,ℎ
(𝑘)

 is the particle position at the current iteration;  

𝑃𝑖
𝑏𝑒𝑠𝑡 and  𝐺𝑖

𝑏𝑒𝑠𝑡 are the best local and global particle 

positions. 

4. Online PSO and cost function 

In real-time applications, PSO is adapted as an 

online PSO, allowing it to respond to dynamic 

environments by continuously updating parameters 

and learning from operational data. This adaptability 

helps manage disruptions like load or control 

structure changes rather than parameter variation [14, 

16]. Online PSO features learning from experiences, 

adaptability, and enhanced solution quality. This 

work modified a special PSO algorithm to run at real-

time optimization of the controller gains according to 

system situations. The particles and optimization 

iterations are reduced to 20 and 50, respectively, to 

reduce the computation time and speed the optimum 

decision. Discrete-time optimization models a 

parallel multi-agent system where controllers 

communicate through delays in negative feedback. 

The strategy focuses on reducing the overshoot of 

frequency deviation and enhancing resilience against 

unforeseen events. Achieving that goal depends on 

the choice and effectiveness of the cost function; it 

should represent a comprehensive evaluation of the 

total error in system frequency. Real-time 

optimization faces the limitation of operation time for 

each particle at a specific iteration, so ordinary cost 

functions can't be used. Instead, the rate of change in 

frequency deviation can be evaluated in terms of sign 

and magnitude for each particle in the searching 

domain. A simple separate Neural Network (NNT) 

was trained by a large amount of data extracted for 

various operation conditions that can easily decide 

whether the particle moves toward the best local or 

global position. The utilized training data is evaluated 

offline using an integral time absolute error (ITAE) 

cost function. The inputs of the NNT are the 
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Table 1. Power systems' parameters 

Symbol Descriptions Area 1 Area 2 

1/Reg 

(MW/Hz) 
Regulating ratio 0.0431 0.0787 

Ba 

(Hz/MW) 
Base frequency 19.6 13.8 

Da 
load/freq. rate of 

change 
0.7 0.85 

Ha Total inertias 4.2 6.1 

𝜏𝑔 (s) Governor time const. 0.3 0.52 

𝜏𝑡 (s) Turbine time constant 0.47 0.54 

K Synchronizing factor 3.1 

F (Hz) Systems' frequency 50 

LD (pu) Load Disturbance 0.2 

 

 

magnitude of the area control error and the rate of 

change in frequency deviation. The validation data 

confirms that the cost function evaluated by the NNT 

has a high degree of accuracy, which can be 

successfully adopted in the optimization process. 

This evaluation of the coat function required less than 

a few milliseconds. The PSO setting coefficients are 

modified by trial and error to get efficient 

optimization results: 𝑊𝑚𝑖𝑛=0.4, 𝑊𝑚𝑎𝑥=0.9, 𝐶1=1.5, 

𝐶2=1.5, no. of particles=20, no. of iterations=50. The 

proposed technique performs better than the previous 

methods due to the real-time optimization process.  

5. Investigated multi-area system 

The discussed power system in this work involves 

two unequal grids with interconnection tie-lines 

depicted in Fig. 1. This scheme has been extensively 

adopted in various studies for designing and 

analyzing the LF control. In a stable operation, the 

governor decreases its speed if the demand for power 

increases. This will lead to opening the turbine's 

valve to increase the input torque. The regulation 

coefficient (1/Reg) refers to the ratio frequency 

variation to the output power deviation. The 

parameters of the two systems are listed in Table 1. 

The 𝐴𝐶𝐸𝑎  is essentially evaluated, its value can be 

extracted for two areas from Eq. (15) by adding the 

term of the power difference between the two areas 

∆𝑃12. The ACE and the rate of change in ACE are the 

inputs of the NNT, which estimates the cost function. 

Simultaneously, the ACE is utilized as input of the 

PID controller. The controller's gains (𝐾𝑝 , 𝐾𝑖 , and 

𝐾𝑑 ) The PSO algorithm continuously updates the 

ACE values during online optimization. To achieve 

the function of LF control, the value of this procedure 

is accomplished for both areas. Eq. (17) and Eq. (18) 

can express the ACEs of the first and second areas. 

As control theory expects, the required operating of 

large multi-area smart grids is to conserve the tie-line 

power and frequency variations within prelimited 

values even in load variations; this is imposed by 

reducing the ACE value to zero. 

 

𝐴𝐶𝐸𝑎1 = ∆𝑃12 + 𝐵𝑎1 ∙ ∆𝐹𝑎1              (17) 

 

𝐴𝐶𝐸𝑎2 = ∆𝑃21 + 𝐵𝑎2 ∙ ∆𝐹𝑎2              (18) 

 

Where ∆𝐹𝑎1& ∆𝐹𝑎2 are the frequency deviations 

in the first and second systems, respectively, 

∆𝑃12 &  ∆𝑃21 are the variations in power between the 

two areas, 𝐵𝑎1 and 𝐵𝑎2, are the frequency biases. 

 

6. Simulation results and analysis 

The dynamic performance of the interconnected 

power grid under diverse sudden load disturbances is 

investigated by the MATLAB/SIMULINK program. 

The proposed system is evaluated under various 

initial conditions and step load settings with the same 

dynamic real-time control strategy. The simulation 

results were validated through several key 

approaches that assess the effectiveness, robustness, 

and adaptability of the proposed online PSO-PID 

multi-area control strategy. A comparison with 

previous related works was done to validate the 

proposed method's effectiveness. Because of the 

different parameters used in each work, the system 

commonly used in the literature was adopted, and the 

control methods presented in [9-12] were reorganized 

in the same context as those adopted by the authors 

of those works, as follows:  

• PSO-PID: This is closest to the proposed method. 

Our system's PID controllers' parameters were 

optimized using the presented procedure in [9] at 

off-time, and the cost function was integral time 

absolute error ITAE; the obtained response is 

identical to that obtained in [9] when the system 

was subjected to a 20% disturbance.  

• ACO-PID: In this method, the system's controllers 

were optimized using the ant colony optimization 

technique with the IATE cost function, as adopted 

in [10] precisely. The results were better than those 

obtained using the PSO method for area 2 but 

degraded in area 1. 

• ABC-PID:  The system structure used in [11] is 

very close to our system but consists of hydro-

thermal units, and the parameters differ from our 

system parameters. Then, we used the ant colony 

optimization method to manipulate our system 
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using the same settings utilized by the authors, such 

as (colony size=50, number of foods=20, limit=100, 

max. cycle=3000). The response is identical to that 

obtained in the work. 

• FOPID: The structure of the power system 

analyzed in [12] is a hybrid power system that 

slightly differs from ours. We used the part of 

thermal unit transfer functions and optimized the 

orders of the fractional-order PID controller using 

the Aquila optimizer algorithm. The response is 

identical to that obtained by the authors.  

Results demonstrate that the proposed controller 

significantly minimizes frequency deviations 

following load disturbances at 10 and 50 seconds in 

both Area 1 and Area 2, as shown in Fig. 2 and 3, 

which outperform conventional control methods by 

reducing overshoot, undershoot, and settling time. 

Similarly, Fig. 4 highlights the improved 

performance in tie-line power variation, where the 

real-time PSO-PID controller achieves superior 

dynamic response, ensuring smooth power exchange 

between interconnected areas. Table 2 summarizes 

the comparison dynamic response between the 

proposed and recent methods' showing the overshoot 

(Osh), undershoot (Ush), and settling time (ts) for the 

first and second areas' frequency deviations and tie-

line power deviations. Also, each method's integral 

absolute error (ITAE), obtained for a 50-second 

operation period, is listed. 
 

 

 
Figure. 1 Power system model 

 
Table 2 Comparison of transient response coefficients 

Method 
∆𝐅𝐚𝟏 (p.u.) ∆𝐅𝐚𝟐 (p.u.) ∆𝐏𝐭𝐢𝐞 (p.u.) 

ITAE 
Osh Ush ts (s) Osh Ush ts (s) Osh Ush ts (s) 

Off-line PSO-PID [9] 2.4 8.4 23.5 5.2 12.1 24.5 39.4 20.2 36.3 1.732 

ACO-PID [10] 4.6 9.1 28.4 4.2 12.6 21.3 37.2 24.2 36.5 1.841 

ABC-PID [11] 2.2 8.8 25.1 2.9 12.8 19.6 39.3 24.3 40.5 1.563 

FOPID [12] 3.2 8.9 20.7 5.6 12.5 29.5 39.4 24.4 37.1 1.689 

Proposed On-line PSO-PID 1.9 4 13.3 2.3 7.2 15.6 12.7 8.1 20.3 1.329 

Percentage enhancing (%) 58 45 62 45 43 54 67 23 50 ≈22 
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Figure. 2 Aera 1 frequency control response 

 

 
Figure. 3 Aera 2 frequency control response 

 

 
Figure. 4 Power variation in the tie-line 

 

Figs. 5 and 6 demonstrate the adaptive nature of 

the online PSO-based controller, with real-time 

updates to PID parameters in response to load 

 

 
Figure. 5 Real-time controller's parameters optimization 

of Area 1 

 

 
Figure. 6 Real-time controller's parameters optimization 

of Area 2 

 

 
Figure. 7 Frequency response of Area 1 under various 

load disturbances 

 

variations, showcasing its ability to maintain optimal 

performance under varying conditions. The proposed 

control method is tested under varying load 

disturbances occurring at different times in both areas. 

Fig. 7 and Fig. 8 show that the system successfully 

mitigates the frequency deviations and stabilizes the 

grid after disturbances at 20, 40, 60, and 80 seconds. 

Under multiple disturbances, the dynamic response 

validates the controller’s effectiveness in real-world 

scenarios, illustrated by the real-time updating of the 
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PID controller parameters. This adjustment is the 

success key when the system experiences load 

variations, ensuring the controller parameters are 

always at the optimum values for any given condition.  

Moreover, the robustness of the proposed 

technique is examined against parameter 

uncertainties, such as power system inertia and 

turbine time constants. Firstly, the system's inertia 

was varied by steps: +100%, +50%, -50%, and -100% 

of its nominal value. The system adapts through 

continuous optimization of the controller parameters, 

as shown in Figs. 9 and 10, ensuring optimal 

performance under different uncertainty conditions. 

Secondly, the turbine time constant varies by steps: 

+20%, +10, -10%, and -20% of its nominal values. 
 

 
Figure. 8 Frequency response of Area 2 under various 

load disturbances 

 

 
Figure. 9 Frequency deviation under inertia variation 

 
Figure. 10 Real-time controller's parameters optimization 

under inertia variation 

 

 
Figure. 11 Frequency deviation under variation of turbine 

time constant 

 

 

Results demonstrate that the controller preserves 

the system's stability even when the turbine time 

constant varies significantly, as shown in Figs. 11 and 

12. Notably, high variation in a turbine or governor 

time constants may cause unstable response and 

denigrating controllers. Finally, investigating the 

ACE for both areas, as depicted in Fig. 13, can 

provide additional confirmation.  

These results confirm that the presented 
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Figure. 12 Real-time controller's parameters optimization 

under variation of turbine time constant 

 

 
Figure. 13 Area control errors  

 

controller enhances the response and stability of the 

multi-area LFC and ensures robustness and 

adaptability in real-world applications. This 

comprehensive investigation demonstrates the 

effectiveness of the presented real-time PSO-PID 

control strategy in solving the LFC problem in the 

presence of uncertainties. Furthermore, results show 

that this approach leads to superior dynamic 

performance because it has a less integrated absolute 

error and faster settling time than traditional 

controllers. Nevertheless, when the system 

parameters are changed significantly, the sensitivity 

analysis highlights that the proposed control strategy 

may lose some effectiveness in achieving optimal 

performance. 

7. Conclusion and future work 

This paper proposes an LFC technique based on 

real-time PSO combined with artificial NNT to 

address the challenge of parameter uncertainty. The 

method significantly improved the dynamic response 

and robustness of the interconnected power grids. 

The simulation results detect that this approach 

effectively enhances the tie-line power and frequency 

performances of overshoot, undershoot, and settling, 

outperforming conventional control techniques. This 

adaptability behaviour of the controllers, offered by 

continuous tuning of PID parameters via the real-time 

PSO algorithm, enables the system to respond 

effectively to load variations and preserve stability 

across interconnected areas. The results show 

significant enhancement in dynamic performances, 

which give about 58%, 45%, and 62% reduction in 

overshoot, undershoot, and settling time for the first 

area, respectively, while giving about 45%, 43%, and 

54% reduction in the second area respectively. Also, 

it outperformed the traditional by about 67%, 23%, 

and 50%, respectively. Furthermore, the proposed 

controller's robustness is confirmed under variations 

of system parameters, such as uncertainties in system 

inertia and turbine time constants. The method shows 

strong resilience by maintaining stable operation 

despite significant parameter variations. The 

proposed method offers a practical and reliable 

solution for improving multi-area smart grids' 

stability and dynamic performance. Its real-time 

optimization facility handles system uncertainties, 

making it an excellent candidate for future power grid 

control applications. However, further investigation 

is recommended to explore the proposed method's 

capability in larger multi-area grids. 
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