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Abstract: Human action recognition (HAR) identifies and classifies human activities by analyzing activity patterns, 

with feature extraction and classification accuracy being key challenges. In the field of surveillance vision-based, it 

requires the ability to accurately detect suspicious human activities to provide public safety. In the classifier model for 

action recognition, the steps start from feature extraction to classification. The classification step uses recurrent neural 

network architectures such as LSTM to handle sequential data. However, this approach struggles to process spatial 

information in video data, necessitating the need for a model to learn spatiotemporal patterns from feature data. To 

address these issues, this study proposes a novel method for classifying activities based on the pattern of 2D skeleton 

joint swing and angle features for each activity. Additionally, it introduces a novel modified AlexNet architecture with 

two LSTM layers, called AlexNet-2LSTM, to improve the accuracy of human activity classification. In the 
performance experiments, the proposed method was evaluated on the KTH and Weizmann datasets, both of which 

include videos of several people performing different actions. Moreover, to demonstrate the accuracy of the proposed 

classifier model, it was compared against other state-of-the-art (SOTA) deep learning classifiers, namely Optimized-

LSTM, Triple Parallel LSTM, Hybrid CNN-LSTM, LCSWnet, and CC-LSTM-CNN, which the AlexNet-2LSTM 

achieved precision of 0.95, recall of 0.95, F1-score of 0.94, and accuracy of 0.96on the KTH dataset. Besides that, on 

the Weizmann dataset 0.95, 0.94, 0.94, and 0.93, respectively. These achievements highlight the proposed model 

contribution to improving feature extraction and classification accuracy in vision-based HAR systems. 

Keywords: Vision-based human action recognition, Skeleton joint, Deep learning classifier, Long short-term memory. 

 

 

1. Introduction 

Human action recognition (HAR) is the process 

of identifying and classifying human activities or 
actions based on sensor data. It involves analyzing 

various types of data, such as visual sensors, motion 

sensors, and wearable devices, to discern patterns of 
activities [1]. HAR is widely employed in the field of 

computer vision for activity detection and analysis, 

including applications in surveillance and security 

systems [2], health rehabilitation monitoring [3], and 
video game controllers [4]. Surveillance systems use 

HAR to identify specific activities by detecting 

movement patterns in individuals. The motivation for 

implementing deep learning in surveillance vision-

based systems to detect suspicious human activities 

is to enhance public safety. Typically, the HAR 

process begins with feature extraction from video 
input data, gathering crucial information that feeds 

into a classifier to identify the action [5, 6]. In the 

surveillance applications, human action recognition 
is beneficial for identifying threatening actions. The 

main challenge for HAR systems lies in the feature 

extraction methods and classifier models required to 
achieve high accuracy in identifying and classifying 

human actions. 

Vision-based techniques focus on collecting 

image sequences using visual cameras to capture 
information about human motion. Previous studies [7, 
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8] have used multiple cameras to detect joint 
positions based on body markers. However, placing 

body markers on a subject's body makes this method 

unsuitable for surveillance systems. HAR systems 

often utilize image or video data captured to analyze 
body movements [9]. These studies frequently 

incorporate both RGB and depth information for 

more accurate body tracking based on skeleton 
models [10, 11]. They track the skeleton joints from 

video sequences and calculate vector features for 

each subject's movements. However, the use of depth 
cameras remains limited due to their cost. One study 

explored using a simple RGB camera to extract 

features from human skeleton motion data [12, 13]. 

Human motion refers to the movement of key body 
points used to represent the 2D image of body joints 

through pose estimation. Common pose estimation 

algorithms, such as OpenPose [14] and MediaPipe 
[15], are used to determine these joint positions in the 

human skeleton. These detected joints are then 

extracted to derive useful features for recognizing the 
actions of subjects in the image sequences, 

converting them into time-series data. 

In action classification, HAR systems use deep 

learning to identify specific actions or activities based 
on joint position features. Recent work [11] has 

leveraged deep learning to classify human activities 

using deep convolutional neural networks with 
spatial features on image data, although the spatial 

component still limits its effectiveness. One of the 

deep learning algorithms for processing human 

motion time-series data is one-dimensional 
convolutional neural networks (1D-CNN) [16]. 

Using supervised learning methods, CNNs classify 

human activities such as walking, walking upstairs, 
walking downstairs, sitting, standing, and lying [17]. 

Long Short-Term Memory (LSTM) networks, widely 

used for time-series data, improve accuracy and 
reduce model complexity [18, 19]. The LSTM was 

implemented and trained with time-series data of 

joint positions to estimate walking patterns using 

markerless capture instead of whole images [20]. 
Integrating CNNs and LSTMs with temporal features 

can significantly enhance classification performance 

[21]. Although combining deep CNN and LSTM 
models requires higher computational costs [22, 23], 

this model has demonstrated satisfactory accuracy in 

classifying human activities. Technically, the choice 
of feature extraction methods and classifier models is 

crucial because it affects the accuracy of action 

recognition, and differentiating between various 

human activities remains a challenge. 
In this study, a surveillance vision-based human 

action recognition system is proposed, utilizing 

skeleton joint swing and angle from 2D images, 

combined with modified deep convolutional neural 
networks and Long Short-Term Memory. The main 

contributions of this study are as follows: 

• A feature extraction method for a human action 

recognition system is proposed, based on 2D 

skeleton joint positions, including the shoulder, 
wrist, hip, and knee. Pose estimation is used to 

detect these positions. Joint positions are 

extracted from a sequence of images to 
determine joint swing and angles, which serve as 

features for identifying specific activities 

performed by the subject. 

• Based on the deep learning classifier, a novel 
deep convolutional neural network is proposed, 

incorporating a modified AlexNet model 

combined with Long Short-Term Memory to 

improve the accuracy of activity classification.  

• The model is evaluated against other state-of-
the-art deep learning classifiers to assess its 

accuracy. This classifier achieves the highest 

accuracy score, contributing to the enhancement 
of the human activity classification system. 

This paper is organized as follows: In Section 2, 

related works on feature extraction and classifiers in 
activity recognition are reviewed. In Section 3, the 

proposed method model applied in this study are 

discussed. In Section 4, the proposed method is 

evaluated against other state-of-the-art deep learning 
classifiers to assess their accuracy. Finally, Section 5 

provides conclusions and outline future work. 

2. Related works 

To identify specific actions or activities based on 

joint position features, Mundt et al [24] suggested 

using multiple calibrated 2D cameras to estimate 
human body poses and perform 3D tracking, enabling 

the calculation of human leg kinematics. Meanwhile, 

Yoo and Nixon [25] estimated body joint positions 
using 2D skeletal models with six lower body joints 

from each image, focusing on the hip, knee, and ankle 

joints as features. Jun et al [26] extracted hip, knee, 

and ankle angles to track leg movements derived 
from video sequences for detecting abnormal human 

movement. Incorporating joint position and angle 

feature extraction from skeleton data is essential for 
enhancing recognition performance. However, their 

studies focus on the lower body and leg joints. 

In analyzing elderly actions, the system utilizes 
specific joint coordinates to monitor movements. The 

activity of crucial joints is referred to as motion 

analysis. The system models these movements 

through a series of joint positions along the x, y, and 
z axes. Oikonomou et al [27] explored this approach 
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Table 1. Previous studies problems related to our contribution 

Studies Problems Our Contribution 

Mundt et al. 

[24], Yoo and 

Nixon [25], Jun 

et al [26] 

Identifying actions with human body pose and leg 

kinematics. Estimating body joint positions focusing 

on hip, knee, and ankle joints. Extracting the patterns 

of these joints movement to detect human motion. 

Analyze the movement of body joint 

positions in a 2D framework, including not 

only the leg, hip knee, and ankle joints but 

also the shoulder and wrist. 

Oikonomou et al 

[27],  

Action analysis refers to the movement of key joints, 

and this approach uses SVM and CNN to recognize 

actions based on a subset of joint positions.  

Add joint swing and angle features based on 

the movement position of joints to improve 

data validation for specific activities. 

Tasnim et al 
[28], Challa et al 

[29],  

Shayestegan et 

al [30] 

Using skeletal joint information along the x, y, and z 
axes is based on capturing temporal changes of video 

frames for action recognition. Action recognition 

utilizing temporal data changes through CNN-based 

and LSTM-based approaches. 

Using temporal data of joint swing and 
angle features, propose a deep learning 

classifier for activity classification that 

draws inspiration from the AlexNet model 

and combines two LSTM layers. 

Zheng et al [31], 

Cao et al [32], 

Alharthi and 

Ozanyan [33], 

Gao et al [34], 

Lis et al [35], 

CNN, deep CNN, or LSTM can extract 

spatiotemporal features from skeleton angle data for 

human motion pattern analysis, but it often results in 

the loss of structural information and reduce 

accuracy. Combining CNN and LSTM can address 

this issue, but their architecture is complex.  

Evaluate and demonstrate the proposed 

classifier architecture against other state-of-

the-art deep learning classifier architectures 

to assess its classification performance 

using the proposed features. 

 

by employing classifiers to assess the effectiveness of 

recognizing actions based on a subset of joints, 
comparing the performance of support vector 

machines (SVM) and convolutional neural networks 

(CNN) in improving recognition accuracy. The 
disadvantages of recognizing actions solely based on 

joint positions could include reduced accuracy and 

unreliability in data validation. 

On the other hand, Tasnim et al [28] proposed an 
effective method for action recognition using 3D 

skeleton joint information. Their approach analyzes 

3D skeleton data along the X, Y, and Z axes and 
captures temporal changes by subtracting 

consecutive frames. They designed a Deep CNN and 

evaluated prior models such as ResNet18 and 
MobileNetV2 for detection and classification. 

However, in CNN-based methods, the loss of 

temporal information is unavoidable when using 

sequential data. To overcome the challenges of 
sequence data and improve performance, various 

studies have proposed LSTM-based methods, such as 

Optimized-LSTM and Triple Parallel LSTM [29, 30]. 
The implementation of LSTM learning methods has 

achieved promising performance for action 

recognition. In their studies, they employ CNN-based 

and LSTM-based approaches for action classification 
using temporal data, respectively. So that, using an 

approach that combines CNN and LSTM to process 

temporal features can improve it. 
Current methods mainly use CNN and LSTM to 

extract spatio-temporal features from skeleton data 

but often lose critical structural information. Zheng et 

al [31] highlighted that with CNN-LSTM models, 

both spatial and temporal by combining a CNN for 

spatial features and a multi-layer LSTM for temporal 
features. For instance, a combination of deep CNN 

and LSTM was evaluated for human movement 

analysis, such as ResNet and LSTM [32] to detect the 
movement phase, and Hybrid CNN and LSTM [33] 

for gait speed classification. In contrast, LSTM and 

deep CNN were used for the classification of 

movement patterns using angle information on the 
LCSWnet architecture [34] and to identify different 

users' movement data based on cross-correlation 

(CC) and the LSTM-CNN classification model [35]. 
While the studies present satisfactory results with 

high accuracy, there are also some limitations to 

consider, such as the complexity of the architecture 
used in the classifier model. 

Based on the shortcomings of the studies 

mentioned above, this study proposes a method for 

human action recognition, which includes human 
detection and tracking, joint motion feature 

extraction, modification of deep CNN and LSTM 

models, and classification evaluation. The video 
sequences are processed using pose estimation with 

human body detection and tracking within a skeleton 

model, which includes the coordinates of each body 

joint. From the joint positions, features are extracted 
by calculating the swing and angle of the joints as 

temporal data. The feature data are then input into the 

human activity recognition. Finally, the proposed 
model is evaluated against other SOTA classifiers to 

compare their accuracy. Table 1 describes previous 

studies that motivated the contributions of this study 
for further work. 
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Figure. 1 Proposed method for human action recognition 

 

3. Proposed method 

The goal of this study is to improve classification 

accuracy in recognizing actions from video images 

by using joint swing and angle features along with a 
deep learning classifier to enhance a vision-based 

HAR system. To achieve this, the method is divided 

into four steps. The first step involves detecting 
humans and tracking the positions of body joints. The 

second step focuses on extracting joint positions to 

determine joint movement and angles. The next step 

is to build a classifier model based on a modified 
AlexNet model combined with LSTM. The final step 

involves evaluating the classification.  

The proposed method for human action 
recognition is shown in Fig. 1. The input consists of 

a sequence of videos obtained from the KTH and 

Weizmann datasets featuring a subject performing a 

specific activity. The motion of the activity is 
represented using a human skeleton model through 

pose estimation. Pose estimation provides the 
coordinate data for each body joint to extract its 

features. For classification, the feature data is used as 

input for the proposed AlexNet-2LSTM classifier 

model. During the experiments, the accuracy of the 
proposed model is tested and compared with that of 

other classifiers. 

3.1 Body joints detection and tracking 

Human detection and tracking using pose 

estimation begins by capturing each frame from a 

video dataset [6]. The KTH dataset consists of 

recordings of grayscale videos at a resolution of 
160×120 pixels, including six classes of activities 

performed by 25 subjects. Moreover, the Weizmann 

dataset is used for the detection of body joints, 
consisting of videos at a resolution of 180×44 pixels 

and including 10 classes performed by nine subjects. 

Fig. 2 shows the detection of body joints for various 
2D actions from video images. 

 

 
Figure. 2 Examples of the detection of body joints for various 2D actions 
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(a)     (b)    (c) 

Figure. 3 The selected joint points for features on the skeleton model 

 

3.2 Swing and angle joint motion feature 

extraction 

When a person performs an action, body parts 

move and experience changes in position, especially 

at the joints. These changes in joint positions allow 

us to identify an action by comparing it to its position 
pattern during the activity. Temporal position data 

describes the activity's characteristics for the selected 

joints. Each joint point 𝐽  consists of joint position 

coordinate data on the skeleton, where 𝑃 is the total 

number of joint points, and 𝑃 = 𝐽1, 𝐽2, … , 𝐽𝑃. At each 

point 𝐽𝑃, the coordinates consist of the x-axis, y-axis, 

and z-axis values (𝐽𝑃𝑥 , 𝐽𝑃𝑦 , 𝐽𝑃𝑧). Fig. 3(a) shows the 

five joint points selected in this study: the hip (𝐽ℎ), 
knee (𝐽𝑘), ankle (𝐽𝑎), shoulder (𝐽𝑠), and wrist (𝐽𝑤) 
joints. The selection of these joints is crucial for 

tracking the overall movement of the body's joints. 

By utilizing these reference points, the movement 
patterns of the human body during activities can be 

effectively observed. Joint features are extracted 

from each movement using the reference joint points, 
which are represented as vectors. 

Joint swing refers to the distance between the 

joint reference point and the hip joint. To obtain the 

swing distances for the knee (|𝑆𝑘|) and ankle (|𝑆𝑎|), 
as shown in Fig. 3(b), refer to Eq. (1) and Eq. (2). The 

distance of the knee swing 𝑆𝑘 measured from point 𝐽ℎ 

to 𝐽𝑘 on the z-axis, while 𝑆𝑎 is the distance of the 

ankle swing measured from 𝐽𝑘  to 𝐽𝑎  on the x-axis. 

Both 𝑆𝑘 and 𝑆𝑎 are absolute values. 

 

|𝑆𝑘| = √(𝐽ℎ𝑧 − 𝐽𝑘𝑧
)
2
   (1) 

 

|𝑆𝑎| = √(𝐽ℎ𝑥 − 𝐽𝑎𝑥
)
2
   (2) 

 

Referring to Fig. 3(b), the hip joint angle (𝜃ℎ) 

between the vectors 𝐽ℎ  ⃗⃗⃗⃗  and 𝐽𝑘 ⃗⃗⃗⃗  can be calculated 

using Eq. (3). 

 

𝜃ℎ = cos−1 (
𝐽ℎ ⃗⃗ ⃗⃗  ⃗∙ 𝐽𝑘 ⃗⃗ ⃗⃗  ⃗

|𝐽ℎ ⃗⃗ ⃗⃗  ⃗| ∙ |𝐽𝑘 ⃗⃗ ⃗⃗  ⃗|  
)   (3) 

Where, 

𝐽ℎ  ⃗⃗⃗⃗ ∙ 𝐽𝑘  ⃗⃗⃗⃗ = 𝐽ℎ𝑥𝐽𝑘𝑥 + 𝐽ℎ𝑧𝐽𝑘𝑧   (4) 

 

|𝐽ℎ  ⃗⃗⃗⃗ | ∙ |𝐽𝑘 ⃗⃗⃗⃗ | = √𝐽ℎ𝑥
2 + 𝐽ℎ𝑧

2 ∙ √𝐽𝑘𝑥
2 + 𝐽𝑘𝑧

2
    (5) 

 

Then, the ankle swing (𝜃𝑘), which involves the 

vectors 𝐽𝑘 ⃗⃗⃗⃗  and 𝐽𝑎  ⃗⃗⃗⃗ , is calculated using Eq. (6). 
 

𝜃𝑘 = cos−1 (
𝐽𝑘 ⃗⃗ ⃗⃗  ⃗∙ 𝐽𝑎 ⃗⃗⃗⃗  ⃗

|𝐽𝑘 ⃗⃗ ⃗⃗  ⃗| ∙ |𝐽𝑎 ⃗⃗⃗⃗  ⃗|  
)   (6) 

 

𝐽𝑘 ⃗⃗⃗⃗ ∙ 𝐽𝑎  ⃗⃗⃗⃗ = 𝐽𝑘𝑥𝐽𝑎𝑥
+ 𝐽𝑘𝑧𝐽𝑎𝑧

      (7) 

 

|𝐽𝑘 ⃗⃗⃗⃗ | ∙ |𝐽𝑎  ⃗⃗⃗⃗ | = √𝐽𝑘𝑥
2 + 𝐽𝑘𝑧

2 ∙ √𝐽𝑎𝑥
2 + 𝐽𝑎𝑧

2
    (8) 

 

Using the same calculations, the wrist swing (|𝑆𝑤|) 
on the y-axis, as shown in Fig. 3(c), can be computed 

using Eq. (9). 

 

|𝑆𝑤| = √(𝐽ℎ𝑦 − 𝐽𝑤𝑦
)
2

   (9) 

 

The feature of ankle swing (𝜃𝑠)is obtained using the 

vectors 𝐽𝑠 ⃗⃗  ⃗ and 𝐽𝑤 ⃗⃗⃗⃗  ⃗ as specified in Eq. (10). 
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𝜃𝑠 = cos−1 (
𝐽𝑠 ⃗⃗ ⃗⃗ ∙ 𝐽𝑤 ⃗⃗⃗⃗⃗⃗ 

|𝐽𝑠  ⃗⃗ ⃗⃗ | ∙ |𝐽𝑤 ⃗⃗⃗⃗⃗⃗ |  
)                            (10) 

 

𝐽𝑠  ⃗⃗  ⃗ ∙ 𝐽𝑤 ⃗⃗⃗⃗  ⃗ = 𝐽𝑠𝑥
𝐽𝑤𝑥 + 𝐽𝑠𝑧

𝐽𝑤𝑧    (11) 

 

|𝐽𝑠 ⃗⃗  ⃗| ∙ |𝐽𝑤 ⃗⃗⃗⃗  ⃗| = √𝐽𝑠𝑥
2 + 𝐽𝑠𝑧

2 ∙ √𝐽𝑤𝑥
2 + 𝐽𝑤𝑧

2
     (12) 

3.3 Modification of the AlexNet-2LSTM 

architecture model 

The deep learning architecture is designed with 
neural network structures to extract spatio-temporal 

features. In the context of swing and angle motion 

joint features, detecting human activities in video 

recordings relies on extracting information from 
sequential data. CNN-LSTM models can 

significantly enhance classification performance, but 

they require substantial computational resources and 
training time. This means that the choice of deep 

learning architecture is based on specific needs. This 

study highlights the selection of the architectural 

model that provides the best accuracy, focusing on 
the optimal structure of the deep learning architecture 

to predict human actions, as demonstrated by its 

performance. The models are trained using state-of-
the-art deep learning architectures with swing and 

angle features and their performance is compared. 

The architectural descriptions used in each SOTA 
model are shown in Table 2.  

In this study modified the deep CNN architecture 

from AlexNet to train the action recognition model 

using one-dimensional time series data features. The 
proposed modified architecture is shown in Fig. 4. 

AlexNet consists of four 1D convolutional layers, 
followed by two max pooling layers and two fully 

connected layers with dense layers. The Softmax 

activation function in the final layer is used for 

classifying probabilities. In this stage, LSTM is 
utilized to enhance performance. The modified model 

includes two LSTM layers inserted between the 

convolutional layers and the fully connected layers to 
effectively handle data features during training. 

The first step uses a Conv1D layer with 32 filters 

activated by the ReLU activation function. Next, the 
output passes through a max pooling layer with a 

pooling window size of 1, which helps to retain all 

the dimensional information of the data after 

convolution and improves the processing accuracy on 
smaller data. The second layer uses a Conv1D layer 

with 64 filters, followed by max pooling. The third 

and fourth layers, each consisting of a Conv1D layer 
with 128 filters, aim to extract more features than the 

previous layers. 

LSTM is chosen for its reliability in handling 
sequential data because it has a learning parameter 

called the hidden state ℎ𝑡 , which is updated 

repeatedly based on both current and previous 

information. The input of LSTM is the current 

sequence input data 𝑥𝑡, which includes the previous 

hidden layer state ℎ𝑡−1 at time 𝑡. Where the 𝑊 is the 

weight, and the 𝑏 is the bias. An LSTM updating the 

hidden states using the forget gate 𝑓𝑡 , input gate 𝑖𝑡, 
output gate 𝑜𝑡 , and the memory cell state value 𝐶𝑡  

refer to Eq. (13) – Eq. (17). Updating the hidden ℎ𝑡 

as the result of the output gate and the memory cell 
state [30].

  
Table 2. Architectural descriptions used in each SOTA model 

Model Reference Architectural Layers 

Optimized-LSTM [29] 
Conv1D, MaxPooling1D, Reshape, LSTM, Dropout, LSTM, Dropout, 

Dense, Dense, Dense(Softmax) 

Triple Parallel LSTM [30] 

Conv1D, lstm_1 = LSTM, lstm_2 = LSTM, lstm_3 = LSTM, 

concatenate([lstm_1, lstm_2, lstm_3]), Dropout, Dense, Dense, 

Dense(Softmax) 

Hybrid CNN-LSTM [33] 

Conv1D, MaxPooling1D, Reshape, conv1_1 = Conv1D, conv1_2 = 
Conv1D, concatenate([conv1_1, conv1_2]), lstm_1 = LSTM, 

concatenate([merged_conv1, lstm_1]), LSTM, Dropout, Dense, 

Dense(Softmax) 

LCSWnet (LSTM-CNN) [34] 
Conv1D, LSTM, Dropout, Conv1D, Conv1D, Conv1D, MaxPooling1D, 

Reshape, Dense, Dense(Softmax) 

CC-LSTM-CNN [35] 

Conv1D, LSTM, Dropout, MaxPooling1D, Conv1D, MaxPooling1D, 

Conv1D, MaxPooling1D, Conv1D, MaxPooling1D(1), Conv1D, 
MaxPooling1D, Conv1D, Dense, Dense(Softmax) 
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𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                (13) 

 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                (14) 
 

 𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑜)                  (15) 

 

𝐶𝑡 = 𝑓𝑡 ∘ 𝐶𝑡−1 + 𝑖𝑡 ∘ tanh(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)(16) 
 

ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝐶𝑡)         (17) 
 

The output of the LSTM is fed into two dense 
layers, with 128 and 64 neurons respectively, for 

change the output dimension of the LSTM matrix to 

linear and enlarge the dimension of data output before 

classification. Finally, the output data from the dense 
layer is multiplied by a matrix in Softmax to get 

probability values. These values are used to classify 

activities into their respective classes as output in 

vector using Eq. (18). The 𝑊𝑓𝑐 is the weight, and the 

𝑏𝑓𝑐 is the bias. 

 

�̂� = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑓𝑐 ∙ ℎ𝑡 + 𝑏𝑓𝑐)    (18) 

3.4 Classification evaluation 

The performance of the classification model was 

evaluated using metrics such as precision, recall, F1-
score, and accuracy [36]. The confusion matrix 

indicates the number of correct and incorrect of 

human action predictions. Based on the confusion 

matrix, where true positives (𝑇𝑃) , true negatives 

(𝑇𝑁), false positives (𝐹𝑃), and false negatives (𝐹𝑁) 

are obtained, the evaluation metrics are calculated as 

shown in Eq. (19) – Eq. (22). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
          (19) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                        (20) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
           (21) 

 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
       (22) 

4. Experiments and results 

In this experiment, to generate features for each 

action class in the form of swing joint patterns and 
angles, the coordinates of each body joint are 

extracted from the tracked joint positions 

representing the subject performing the action. The 
proposed method is implemented on the KTH and 

Weizmann datasets, which are video datasets of 

subjects performing specific actions. To evaluate the 
performance of the AlexNet-2LSTM model for 

action recognition, it is analyzed based on precision, 

recall, F1 score, and accuracy values for each dataset. 

A confusion matrix is used to compare the 
performance of the proposed model with the baseline 

model and the state-of-the-art (SOTA) model. 
 

 
 

Figure. 4 Proposed of the AlexNet-2LSTM architecture model 
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(a) 

 
(b) 

 
(c) 

Figure. 5 Samples the pattern of swing and angle joint feature for activities: (a) boxing, (b) running, and (c) walking 

 

 

4.1 Pattern of the swing and angle joint feature 

The feature extraction method for a human action 
recognition system is proposed to use swing and 

angle joints as features to identify specific activities 

performed by the subject. The detected joints focus 

on the movement of the 2D skeleton joint positions, 
specifically the shoulder, wrist, hip, and knee, using 

pose estimation. As long as the subject's entire body 

is captured by the camera, the joint positions will be 
detected and then extracted to obtain the swing and 

joint angle features from the time series data. From 

the dataset, the feature data patterns are used to 
identify human activities such as boxing, waving 

hands, running, clapping hands, jogging, and walking.  

Fig. 5 shows samples the pattern of swing joints 

and joint angles derived from the activity features, 
which are used as input data for the classifier model. 

The feature pattern includes the swing and joint 

angles obtained from the time series data, consisting 

of normalized values for |𝑆𝑘|, |𝑆𝑎|, |𝑆𝑤|, 𝜃ℎ , 𝜃𝑘 , and 

𝜃𝑤 . Significant differences exist in the feature 

distribution across various actions. However, the 

distribution of feature values for running and walking 

actions demonstrates some similarities. Nevertheless, 

most of the amplitudes differ, indicating the 
effectiveness of the proposed feature extraction 

method. 

4.2 Performance of the swing and angle joint 

feature and AlexNet-2LSTM model with 

KTH dataset and Weizmann sataset 

In the performance experiments of the modified 

AlexNet-2LSTM model for action recognition, the 
model was trained on various video datasets 

specifically designed for surveillance systems. These 

datasets feature a constant recording angle and a 
specific set of actions. The training utilized the KTH 

and Weizmann datasets [37]. The results were 

analyzed based on the precision, recall, F1-Score and 

accuracy values for each dataset, as shown in the 
classification reports in Table 3 and Table 4. 

The initial experiments, we applied k-fold 2 to 

maximize both the training and testing data, minimize 
computational time, and ensure the system's 

generality. Table 3 presents the evaluation metrics for 

the KTH dataset, including precision, recall, F1-
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Score and accuracy. The results indicate that the 
average values for all action classes in the dataset are 

0.95 for precision, 0.95 for recall, 0.94 for F1-Score 

and 0.96 for accuracy. However, the system shows 

lower performance in distinguishing between running, 
jogging, and walking, as these activities are quite 

similar. 

Next, the performance of the modified model was 
tested using the Weizmann dataset, with results 

shown in Table 4. The findings indicate that, despite 

having nine classes, the system performs well. The 
average values for the three metrics are 0.97, 0.96, 

0.96, and 0.93, respectively. However, the Weizmann 

dataset presents challenges in classifying the actions 

of jumping in place, running, and walking. 
In addition, the visualized curves of the training 

history provide information about the loss and 

accuracy for both training and validation. To evaluate 
the performance of the model, the dataset was input 

into the model using the AlexNet-2LSTM 

architecture until the optimal weights were achieved. 
The first test was conducted on the KTH dataset with 

up to 100 epochs of iterations. Fig. 6 shows the 

accuracy and loss curves for the action recognition 

model trained on the KTH dataset. Accuracy 
increased from 0.81 to 0.96 between epochs 64 to 100, 

while the loss value decreased from 0.39 to 0.14 
starting at epoch 65. 

Fig. 7 shows the accuracy and loss curves for the 

Weizmann dataset, spanning up to 150 epochs of 

iterations. The accuracy value increases from 0.83 to 
0.97 on the training data, starting from epoch 120. 

Starting at epoch 145, the loss curve shows a value 

lower than 0.18. The amount of data and the 
similarity of the classes used in the training process 

can influence the accuracy and loss values, thereby 

affecting the overall accuracy. 

4.3 Performance of the AlexNet-2LSTM with 

baseline deep CNN and LSTM models using 

KTH sataset 

To demonstrate the performance of the proposed 
model, this test compares it with baseline deep CNN 

and LSTM models using the same swing and angle 

joint feature data. The models are trained using five 
different baseline architectures: CNN, CNN-LSTM, 

LeNet-LSTM, AlexNet-LSTM, VGG-LSTM, and 

AlexNet-2LSTM. The resulting confusion matrix, 
which represents different types of actions for the 

KTH dataset is shown in Fig. 8. 

 

 

Table 3. Classification reports of AlexNet-2LSTM model using KTH dataset 

Action Precision Recall F1-Score Accuracy 

boxing 1.00 0.67 0.80 

0.96 

waving hand 1.00 1.00 1.00 

running 0.69 1.00 0.82 

clapping hand 1.00 1.00 1.00 

jogging 1.00 1.00 0.89 

walking 1.00 0.78 0.88 

Average 0.95 0.95 0.94 

 

 

Table 4. Classification reports of AlexNet-2LSTM model using Weizmann dataset 

Action Precision Recall F1-Score Accuracy 

bending 1.00 1.00 1.00 

0.93 

jumping jack 1.00 1.00 1.00 

jumping 1.00 1.00 1.00 

jumping in place 0.77 1.00 0.87 

running 1.00 0.67 0.80 

galloping sideways 1.00 1.00 1.00 

skipping 1.00 1.00 1.00 

walking 1.00 0.87 0.95 

two hand waving 1.00 1.00 1.00 

Average 0.95 0.94 0.94 
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Figure. 6 The training accuracy and loss curve of AlexNet-2LSTM using KTH dataset 

 

 

           
Figure. 7 The training accuracy and loss curve of AlexNet-2LSTM using Weizmann dataset 

 

 

The results presented in the confusion matrix for 
the CNN-LSTM and LeNet-LSTM models show that 

confusion is higher for the "jogging" and "running" 

actions. This is because the classifier treats the 
"jogging" and "running" actions as similar, but the 

accuracy remains above 0.75. In the CNN-LSTM, 

LeNet-LSTM, AlexNet-LSTM, and VGG-LSTM 

models, the accuracy for the "running" action is low 
and is frequently misclassified as the "boxing" action, 

with the highest error rate reaching 0.44. This 

misclassification occurs because during the "boxing" 
action, the foot angle remains relatively still, whereas 

in the "running" action, the foot angle changes due to 

the subject's speed. As a result, the foot angle data in 
both actions does not exhibit significant movement. 

Under certain conditions, compared to other baseline 

models, the "jogging" action is often misclassified as 

the "clapping hand" action, since the hand 
movements in both actions are similar. Overall, the 

results indicate that the accuracy of the AlexNet-

2LSTM model is superior to that of the baseline 
models, achieving a score of 0.96, which 

demonstrates the reliability of the proposed model. 

4.4 Comparison of the AlexNet-2LSTM with 

SOTA deep learning models 

To validate and evaluate the performance of the 

proposed AlexNet-2LSTM model, experiments were 
conducted by comparing the precision, recall, F1-

score, and accuracy values with those of other state-

of-the-art (SOTA) deep learning models, namely 

Optimized-LSTM, Triple Parallel LSTM, Hybrid 
CNN-LSTM, LCSWnet, and CC-LSTM-CNN. 

Tables 5 and 6 present a performance comparison of 

the SOTA models on the KTH and Weizmann 
datasets. The results of the tests performed on each 

model were compared using the same feature set of 

swing and angle data. 
Using VGG-LSTM and LCSWnet for the 

classification of the most relevant activity features 

achieves accuracies of 0.95 and 0.94, respectively. 

Meanwhile, the accuracy of AlexNet-LSTM, 
Optimized-LSTM, Triple Parallel LSTM, and Hybrid 

CNN-LSTM exceeds 0.91. Evaluation of the 

proposed model on the KTH dataset shows that 
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(a)       (b) 

 

  
(c)       (d) 

 

  
(e)       (f) 

Figure. 8 Confusion matrix for architecture model: (a) CNN, (b) CNN-LSTM, (c) LeNet-LSTM, (d) AlexNet-LSTM, (e) 

VGG-LSTM, and (f) AlexNet-2LSTM using the KTH dataset 
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Table 5. Performance comparison of SOTA model using KTH dataset 

Classifiers Model Author Precision Recall F1-Score Accuracy 

CNN baseline 0.91 0.88 0.89 0.91 

CNN-LSTM baseline 0.81 0.78 0.79 0.82 

LeNet-LSTM baseline 0.83 0.83 0.83 0.86 

AlexNet-LSTM baseline 0.93 0.89 0.90 0.91 

VGG-LSTM baseline 0.96 0.95 0.94 0.95 

Optimized-LSTM [29] 0.94 0.88 0.87 0.92 

Triple Parallel LSTM [30] 0.91 0.88 0.89 0.91 

Hybrid CNN-LSTM [33] 0.91 0.88 0.89 0.91 

LCSWnet (LSTM-CNN) [34] 0.95 0.91 0.92 0.94 

CC-LSTM-CNN [35] 0.86 0.79 0.78 0.83 

AlexNet-2LSTM our proposed model 0.95 0.95 0.94 0.93 

 

 
Table 6. Performance comparison of SOTA model using Weizmann dataset 

Classifiers Model Author Precision Recall F1-Score Accuracy 

CNN baseline 0.95 0.88 0.88 0.91 

CNN-LSTM baseline 0.92 0.89 0.88 0.91 

LeNet-LSTM baseline 0.91 0.88 0.87 0.91 

AlexNet-LSTM baseline 0.90 0.85 0.85 0.88 

VGG-LSTM baseline 0.94 0.88 0.88 0.91 

Optimized-LSTM [29] 0.93 0.91 0.89 0.93 

Triple Parallel LSTM [30] 0.90 0.86 0.83 0.87 

Hybrid CNN-LSTM [33] 0.81 0.88 0.84 0.91 

LCSWnet (LSTM-CNN) [34] 0.87 0.86 0.85 0.87 

CC-LSTM-CNN [35] 0.93 0.91 0.89 0.93 

AlexNet-2LSTM our proposed model 0.95 0.94 0.94 0.93 

 

 

AlexNet-2LSTM is able to accurately recognize 
human actions, achieving a precision of 0.95, recall 

of 0.95, F1-score of 0.94, and accuracy of 0.96. 

In addition, it can be observed that the 
performance evaluation results for the Weizmann 

dataset show that the accuracy of CNN, CNN-LSTM, 

LeNet-LSTM, VGG-LSTM, and Hybrid CNN-LSTM 
exceeds 0.91. Accuracy of the AlexNet-2LSTM 

model is very close to that of Optimized-LSTM and 

CC-LSTM-CNN, reaching 0.93. In this case, 

AlexNet-2LSTM outperforms these models in 
precision, recall, and F1-score, with values of 0.95, 

0.94, and 0.94, respectively. 

The simpler model may be more suitable for the 
classification task using the proposed features, 

resulting in better outcomes, even though it is less 

complex than the other SOTA models. Comparison 
experiments show that the proposed model, by 

utilizing the swing and angle joint features, 

outperforms existing deep learning models and 

improves vision-based human action recognition. 

5. Conclusions 

A surveillance vision-based human action 

recognition (HAR) system is widely used in 
computer vision applications, including surveillance 

and security systems. However, it requires the ability 

to accurately detect suspicious human activities to 

ensure public safety. This study proposes a novel 
feature extraction method based on joint swing 

patterns and angle features, along with a new 

classifier model, AlexNet-2LSTM, to improve the 
accuracy of human activity classification. A pose 

estimation algorithm is employed to create a 2D 

skeleton, which contains the coordinates of the body's 
joint positions. These joint positions are extracted 

from the image sequence to analyze joint swings and 

angles as features of human activity. The extracted 

features are then fed into a modified AlexNet model, 
which includes four 1D convolutional layers, two 

max-pooling layers, two fully connected dense layers, 
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and a Softmax layer. Additionally, two LSTM layers 
are incorporated to enhance performance during 

training. To evaluate the proposed method, its 

performance is analyzed based on precision, recall, 

F1 score, and accuracy using the KTH and Weizmann 
datasets. To further demonstrate the effectiveness of 

the proposed classifier model, it is compared against 

other state-of-the-art (SOTA) models, including 
Optimized-LSTM, Triple Parallel LSTM, Hybrid 

CNN-LSTM, LCSWnet, and CC-LSTM-CNN. The 

results show that the AlexNet-2LSTM model 
achieves a precision of 0.95, recall of 0.95, F1-score 

of 0.94, and accuracy of 0.96 on the KTH dataset, and 

a precision of 0.95, recall of 0.94, F1-score of 0.94, 

and accuracy of 0.93 on the Weizmann dataset. These 
results highlight the contribution of the proposed 

model in improving feature extraction and 

classification accuracy for vision-based HAR 
systems. Further studies could explore significant 

performance improvements with different datasets 

and more varied activities. Additionally, the 
incorporation of attention mechanisms could enhance 

the performance of classifier models. 
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