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Abstract: This study focuses on optimizing generation costs for thermal power plants in the Southern Sulawesi 

(Sulbagsel) electricity system by incorporating Renewable Energy Sources (RESs). The Improved Mayfly Algorithm 

(IMA), inspired by the mating and flight behaviors of adult mayflies and enhanced with Exponent Decreasing Inertia 

Weight (EDIW) to adjust inertia variations, is applied to minimize generation costs. The effectiveness of the 

proposed IMA is evaluated through comparisons with other methods, such as the Quadratic Time Optimization 

(QTO) and the standard MA. Statistical analysis of the benchmarking results demonstrates that IMA outperforms 

comparable other algorithms. For the first case, mid-day peak load, the optimization results show that QTO reduces 

costs by 24.24%, MA by 24.25%, and the proposed IMA by 24.28%. In the second case, nighttime peak load, the 

cost reductions achieved are 25.96% for QTO, 26.28% for MA, and 26.72% for IMA. 

Keywords: Economic dispatch, Sulbagsel system, Swarm intelligence, Improved mayfly algorithm, Cost. 

 

 

1. Introduction 

Economic dispatch (ED) is one of the most 

critical tasks in the design and management of 

electric power systems. The primary goal of ED is 

to schedule the output of generating units to meet 

load demand at the lowest possible cost while 

satisfying the operational constraints of both the 

units and the system. Improvements in unit output 

scheduling can lead to substantial cost savings. 

Typically, ED prioritizes the use of the most 

efficient generators, which helps to reduce both fuel 

costs and carbon emissions [1]. Several methods are 

available for solving ED, including lambda iteration 

[2], Newton [3], gradient [4], linear programming 

[5], and base point and participation factor methods 

[6]. However, various constraints can render the ED 

problem non-convex [7], emphasizing the need for 

advanced intelligent methods to effectively manage 

these complexities. 

Swarm Intelligence is an artificial intelligence 

technique based on collective behavior. Swarm 

intelligence techniques are being increasingly 

employed to address ED issues. An ED issue for a 

hybrid power system with 40 thermal generators is 

optimized using the salp-swarm algorithm (SSA) [8]. 

Paper [9] presents an ED model based on the 

enhanced krill swarm optimization algorithm 

(IKSO) for an integrated energy system comprising 

photovoltaic, wind, and grid sources. In another 

study, an improved artificial bee colony (IABC) is 

proposed to address the ED problem in three large-

scale test systems [10]. The work presented in [11] 

addresses the ED problem using the artificial fish 

swarm algorithm (AFSA) on five standard test 

systems consisting of generating units. Additionally, 

the performance of the chameleon swarm algorithm 
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(CSA) in solving the ED problem for four 

conventional power units is discussed in [12]. While 

these studies demonstrate promising results with 

swarm intelligence methods, many primarily rely on 

test cases to evaluate the effectiveness of the 

proposed algorithms. 

The Southern Sulawesi (Sulbagsel) electricity 

system, formerly known as Sulselrabar, is located in 

the Sulawesi province of Indonesia [13]. Operating 

at a voltage of 150 kV and 57 transmission lines 

[14]. Research focused on optimizing ED in the 

Sulbagsel electricity system has been conducted. For 

example, in [15], the horse herd optimization (HHO) 

method is introduced to minimize thermal 

generation costs in the Sulbagsel system, 

specifically in a mid-day peak load case study. A 

modified improved PSO (MIPSO) algorithm is 

proposed in [16] and compared with the Lagrange 

method, applied to the Sulselrabar system prior to 

the recent incorporation of RESs. Furthermore, the 

ACO method is employed in [17] to tackle the ED 

problem for the 150 kV Sulselrabar electrical system. 

Given the existing research on ED in the Sulbagsel 

electricity system, further analysis is warranted to 

investigate ED systems integrated with RESs, which 

is relevant to the current configuration of the 

Sulbagsel electricity system. This serves as the 

primary motivation for examining optimal ED in the 

actual Sulbagsel electricity system with RESs, 

utilizing the latest available data. In this study, the 

power generation of the Sulbagsel electricity system 

includes 9 thermal units, 5 hydro power plants 

(HPPs), and 1 wind power plant (WPP). 

The mayfly algorithm (MA) is a swarm 

intelligence-based optimization technique [18], 

inspired by the flight patterns and mating behaviors 

of mayflies. It combines the strengths of both swarm 

intelligence and evolutionary algorithms. The 

mating dance and random flight behaviors enhance 

the algorithm's ability to balance exploration and 

exploitation, helping to avoid local optima. In [19], 

the performance of seven advanced metaheuristic 

optimization algorithms is evaluated across 25 test 

functions, categorized into three types: unimodal, 

multimodal, and fixed-dimension. However, the 

standard MA has limitations that hinder its 

application to high-dimensional, nonlinear complex 

problems, such as feature selection [18]. One way to 

enhance the performance of swarm intelligence 

algorithms is by adjusting the inertia weight [20]. 

This study introduces the Improved MA (IMA), 

which incorporates an Exponent Decreasing Inertia 

Weight (EDIW) strategy to enhance both 

exploration capabilities and convergence speed 

compared to the standard MA. The EDIW strategy 

accelerates individual convergence and has been 

successfully applied to other swarm intelligence 

techniques, improving their performance [21]. 
The application of the MA for ED optimization 

has been explored in various studies. In [22], MA is 

proposed for solving the ED problem in microgrids, 

where the test case includes thermal power 

generation units, solar power, and wind power. 

Similarly, in [23], ED optimization is examined in a 

system that integrates thermal power generation 

units, wind turbines, photovoltaic panels, and energy 

storage devices. Based on the research into MA 

applications for ED problems, a comprehensive 

study on real systems is essential to ensure optimal 

implementation. Additionally, performance 

improvements with the IMA need to be explored for 

applications in large-scale systems. This provides 

our second motivation: to investigate the IMA's 

effectiveness in minimizing generation costs for the 

Sulbagsel electricity system integrated with RESs, 

focusing on peak load case studies during midday 

and nighttime. 

The main contributions of this study are as 

follows: 

1) Investigating optimal ED for a real Sulbagsel 

electricity system integrated with RESs using 

the most recent data updates. This includes 

considering generation limits, ensuring that 

the load demand can be met, and applying 

both equality and inequality constraints. 

2) Implementing IMA to minimize generation 

costs, optimizing the composition of RESs, 

and reducing system losses for Sulbagsel 

electricity through case studies focusing on 

peak loads during mid-day and nighttime. 

The remainder of this paper is organized as 

follows: Section II summarizes the ED and the case 

system, Section III outlines the research 

methodology of the study, Section IV presents the 

results, and Section V concludes the study. 

2. Economic dispatch problem 

This section covers the development of ED 

theory and the test systems used in this study. 

2.1 Economic dispatch 

An electrical power system consists of multiple 

generating units. It is important to recognize that 

transmission losses occur, even if they may be 

negligible when powering nearby generators. When 

transmission losses are ignored, the costs of fuel use 

and power generation can be calculated using Eq. 

(1) until Eq. (3) [24]. 
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𝐹𝑇 = 𝐹𝑎𝑃𝑎 + 𝐹𝑏𝑃𝑏 + 𝐹𝑐𝑃𝑐   
 

(1) 

𝑃𝑅=𝑃𝑟  

 

(2) 

𝑃𝑇=𝑃𝑎+𝑃𝑏+𝑃𝑐 

 

(3) 

 

Here, 𝑃𝑇  represents the total output power of the 

generators (MW), 𝑃𝑅 denotes the system load (MW), 

and 𝐹𝑇 indicates the fuel consumption (Rp/hr). The 

input-output (IO) characteristics of thermal 

generators reveal that as output power increases, 

fuel costs also rise. These attributes are expressed in 

Eq. (4). 

 

Hn  = αn + βnPn + γnPn
2 (4) 

 

The fuel input of the generator is represented by 

Hn (L/hr), and and its output by Pn (MW). The IO 

coefficients for the n-th generator are constants αn, 

βn, and γn. These figures must be determined using 

the unique output power data and fuel cost 

characteristics of each generator. Based on the 

observed values, a functional relationship is 

determined by analyzing the data using the least 

squares regression method. 

Each generator's capacity is considered in the 

ED solution, where both equality and inequality 

constraints must be addressed to ensure optimal 

operation. The equality constraint ensures that the 

total power generated by all generators meets the 

load demand plus transmission losses, as stated in 

Eq. (5). Although the output power of each 

generator in the system varies, loss coefficients can 

be regarded as constant [25].  

 

∑ 𝑃𝑖 = 𝑃𝑅 + 𝑃𝐿

𝑁

𝑖=1
 (5) 

 

In this context, PR represents the total load (MW), 

PL denotes the transmission losses (MW), and Pi is 

the generator’s output power (MW). The generator's 

output power is maintained within preset limitations 

by an inequality constraint that prevents it from 

falling below the minimum or rising above the 

maximum permitted power. This constraint is 

represented by Eq. (6) and Eq. (7).  

 

Pi min ≤ Pi  ≤ Pi max (6) 

 

 

 

Table 1. Numbering of sulbagsel system generations 
Bus Name-Type Bus Name-Type 

1 Bakaru-Slack 24 Bontoala-Load 

2 Pinrang-Gen 25 Panakukkang-Load 

3 Suppa-Gen 26 Tanjung Bunga-Load 

4 Tello-Gen 27 Sungguminasa-Load 

5 Borongloe-Gen 28 Talasa-Load 

6 PLTUjnpto-Gen 29 Jeneponto-Load 

7 PLTUpngya-Gen 30 Bulukumba-Load 

8 PLTUbsw-Gen 31 Bone-Load 

9 Bantaeng-Gen 32 Soppeng-Load 

10 Sinjai-Gen 33 Sidrap-Load 

11 WPPsidrap-Gen 34 Maros-Load 

12 Sengkang -Gen 35 Bolangi-Load 

13 Palopo-Gen 36 Enrekang-Load 

14 Makale-Gen 37 Siwa-Load 

15 Mamuju-Gen 38 Pangkep70-Load 

16 Polmas-Load 39 Tonasa-Load 

17 Majene-Load 40 Mandai-Load 

18 Pare-Pare-Load 41 Daya-Load 

19 Barru-Load 42 Tello70-Load 

20 Pangkep-Load 43 Tello Lama70-Load 

21 Bosowa-Load 44 Bontoala 70-Load 

22 Kima-Load 45 Tello30-Load 

23 Tello Lama-Load 46 Barawaja-Load 

 

 

𝑃𝐿 = ∑ ∑ 𝑃𝑖𝐵𝑖𝑗𝑃𝑗 +
𝑁

𝑗=1

𝑁

𝑖=1
∑ 𝐵𝑖0𝑃𝑗

𝑁

𝑗=1

+ 𝐵00 
(7) 

 

Here, Bi0 and B00 are loss-related constants, 

while Bij represents the loss coefficients. It is 

assumed that the loss coefficients remain constant, 

regardless of variations in output power. 

2.2 Sulbagsel electricity system 

The Sulbagsel system operates at a voltage of 

150 kV and consists of nine thermal generators and 

six RES generators [26]. The numbering of the 

buses in the Sulbagsel system is presented in Table 

1 [27]. 

3. Research method 

This section describes the formulation of the 

proposed strategy and the objective function. 

3.1 Mayfly algorithm (MA) 

The study highlights the unique behavior of 

mayflies, a species with a lifespan of only twenty-

four hours. Researchers have observed a distinct 

difference between male and female mayflies, with 

males consistently achieving higher optimization 
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levels due to their inherent strength advantage. This 

trait parallels PSO, where individuals, like mayflies, 

update their positions xi(t) and velocities vi(t) based 

on their current state. 

3.1.1. The action of male mayfly 

Eq. (8) demonstrates that, within the MA 

framework, male mayflies adjust their positions 

based on their individual velocities. In this context, xi 

represents the position of male mayfly i at the 

current time step t in the search space. 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (8) 

 

During the iterative process described in [28], the 

male mayfly performs both exploration and 

exploitation tasks. When updating its velocity, the 

mayfly considers its most recent fitness value, 𝑓(𝑥ᵢ), 

as well as the best fitness value observed along its 

previous trajectory, 𝑓(xₕᵢ). Specifically, if 𝑓(𝑥ᵢ) 

surpasses 𝑓(xₕᵢ), the male mayfly adjusts its speed. 

This adaptive speed adjustment enables the male 

mayfly to refine its movement strategy when 

detecting an improvement in fitness. The process is 

mathematically formulated in Eq. (9). 

 

𝑣𝑖(𝑡 + 1) = 𝑔. 𝑣𝑖(𝑡) + 𝑎𝑖𝑒−𝛽𝑟𝑝
2
[𝑥ℎ𝑖 − 𝑥𝑖(𝑡)]

+ 𝑎2𝑒−𝛽𝑟𝑔
2
[𝑥𝑔 − 𝑥𝑖(𝑡)] (9) 

 

The described process involves the gradual linear 

reduction of the variable 𝑔 from its maximum to 

minimum values, controlled by the weight-balancing 

parameters 𝑎1, 𝑎2, and 𝛽. The variables rp and rg are 

used to compute the Cartesian distance between 

individuals and their historically best positions 

within the swarm. Specifically, Eq. (10) calculates 

the Euclidean distance in Cartesian space, 

quantifying the distance between individuals and 

their historically optimal locations within the swarm. 

 

||𝑥𝑖 − 𝑥𝑗|| = √∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2

𝑛

𝑘=1

 (10) 

The male mayfly uses a random dance 

coefficient, denoted as d, to update its speed from the 

current value when the fitness value 𝑓(𝑥i) is less than 

𝑓(𝑥hi), as specified in Eq. (11). A uniformly 

distributed random number in the interval [-1, 1] is 

denoted by the symbol 𝑟𝑖. 

 

𝑣𝑖(𝑡 + 1) = 𝑔(𝑣𝑖(𝑡) + 𝑑. 𝑟𝑖 (11) 

3.1.2. The action of female mayfly 

Female mayflies exhibit different behaviors 

compared to males. Instead of congregating, they 

actively seek out males to mate. Since yi (t) 

represents the current position of the female mayfly 

in the search space at time step t, Eq. (12) can be 

utilized to update its position by adding the velocity 

vi(t+1) to the current position, as follows: 

 

𝑦𝑖(𝑡 + 1) = 𝑦𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (12) 

 

As discussed in [28], female mayflies adjust their 

speed based on the traits and behavior of the selected 

male mayfly. 

If 𝑓(𝑦i) > 𝑓(𝑥i), the 𝑖-th female mayfly will use 

Eq. (13) to update its speed. The Cartesian distance 

between the female mayfly and the chosen male 

mayfly is represented by 𝑟m in this equation, while 

the speed is adjusted by an additional constant 𝑎3. 
 

𝑣𝑖(𝑡 + 1) = 𝑔. 𝑣𝑖(𝑡)

+ 𝑎3𝑒−𝛽𝑟𝑚𝑓
2

[𝑥𝑖(𝑡) − 𝑦𝑖(𝑡)] (13) 

 

When 𝑓(𝑦i) < 𝑓(𝑥i), the female mayfly adjusts its 

speed using a different random dance coefficient, 

denoted as 𝑓𝑙. As shown in Eq. (14), 𝑟2 represents a 

randomly generated value within the range [-1, 1]. 

 

𝑣𝑖(𝑡) = 𝑔. 𝑣𝑖(𝑡) + 𝑓𝑙. 𝑟2 (14) 

3.1.3. Mayflies mating 

Each female mayfly, along with most male 

mayflies, engages in mating, resulting in the 

production of offspring. These offspring undergo 

random evolutionary changes and inherit traits from 

their parents, as described by Eq. (15) and Eq. (16). 

In this case, L, representing a set of random integers, 

is composed of values derived from a Gaussian 

distribution. 

 

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1 = 𝐿 ∗ 𝑚𝑎𝑙𝑒 + (1 − 𝐿)
∗ 𝑓𝑒𝑚𝑎𝑙𝑒 (15) 

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2 = 𝐿 ∗ 𝑓𝑒𝑚𝑎𝑙𝑒 + (1 − 𝐿)
∗ 𝑚𝑎𝑙𝑒 

(16) 
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3.1.4. Mayflies variation 

To address the potential issue of early 

convergence, where the optimal value might be a 

local rather than a global optimum, we incorporated 

a normally distributed random number into the 

mutation process for mayfly offspring. The mutation 

formula for the mayfly offspring is outlined in Eq. 

(17). 

 

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑛 = 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑛 + 𝜎. 𝑁(0,1) (17) 

 

In this context, N(0, 1) denotes a standard normal 

distribution with a mean of zero and a variance of 

one, while σ represents the standard deviation of the 

normal distribution. The estimated number of mutant 

individuals is approximately 5% of all male mayflies, 

rounded to the nearest whole number. 

3.1.5. Improved Mayfly Algorithm (IMA) 

This section proposes the IMA, which 

incorporates the EDIW strategy to enhance both the 

exploration capabilities and convergence speed of 

the standard MA. A larger inertia weight during the 

initial phases facilitates broader particle exploration, 

allowing particles to search a larger space, while a 

smaller inertia weight in later phases supports 

particle exploitation. This paper introduces the 

EDIW into the MA, as presented in Eq. (18). 

 

𝑔 = 𝑔𝑚𝑖𝑛 + 𝑒𝑥𝑝 (1 −
𝑖𝑡𝑒𝑟𝑚𝑎𝑥

𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟 + 1
)

∗ (𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛) 

(18) 

   

For comparison, the latest intelligence methods 

based on Quadratic Time Optimization (QTO) [29] 

and the standard MA are utilized. Table 2 provides 

the parameter settings of MA. 

 
Table 2. MA Parameters  

Name Parameter 

MA 

IMA 

g=0.2, a1=1, a2=a3=1.5, d=5, b=2, f l=1 

gmax=0.9, gmin=0.2, a1=1, a2=a3=1.5, d=5, b=2, 

f l=1 

3.2 Objective function 

The algorithms utilize Eq. (19) to determine the 

most economical generation combination. The first 

step in this process is to calculate the IO 

characteristics of the generators [30]. 

 

𝐶𝑡 = ∑𝑖 + 
𝑖
𝑃𝑖 + 

𝑖
𝑃𝑖

2

𝑛𝑔

𝑖=1

 (19) 

 

The generator must operate within its capacity 

limits to ensure stable performance [31]. 

Consequently, the equality constraint, as stated in 

Eq. (20), must limit the power output of the 

generator. Furthermore, as shown in Eq. (21) [31], it 

must adhere to the bounds established by the 

inequality constraint [32]. 

 

∑ 𝑃𝑖 = 𝑃𝐷

𝑛𝑔

𝑖=1

 (20) 

𝑃𝑖𝑚𝑖𝑛
≤ 𝑃𝑖 ≤ 𝑃𝑖𝑚𝑎𝑥

 (21) 

4. Results and discussion 

The experiment is carried out using MATLAB 

2023b, with the following device specifications: an 

Intel Core i7-10870H-CPU @ 2.20GHz (16 cores), 

SSD storage consisting of a 512 GB Micron SSD 

and a 512 GB V-Gen SSD, 32 GB DDR4 RAM 

configured in dual-channel mode, and an NVIDIA 

GTX 1650 4 GB. 

This section discusses the application of the 

IMA to optimize generation costs in the Sulbagsel 

electricity system, which is integrated with RESs. 

To evaluate the IMA's performance, mid-day and 

nighttime peak load case studies are used. The 

calculation begins by determining the cost function 

based on IO characteristics, with results presented in 

Table 3. Before implementing the IMA, a 

benchmarking analysis is conducted to compare the 

proposed method with similar intelligence 

algorithms, assessing each algorithm's performance 

based on the objective function.  

4.1 Cost function 

The first step in the computation process is to 

determine the IO characteristics of the thermal 

generators. These characteristics are then used in the 

IO equation, which is multiplied by the fuel price to 

derive the fuel cost equation. Table 3 [17] provides 

a comprehensive analysis of the data, including the 

IO characteristics and cost functions for each 

thermal generator in the Sulbagsel electrical system.  
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Tabel 3. Thermal power plant cost function 

Unit IO Equation (L/Hr) 

Suppa 42642000 + 3679160P + 8240P2 

Agrekko/T.Lama 15902685 + 3296000P + 56437.82P2 

Jeneponto 57795360 + 5182960P - 2467.056P2 

PNGYA 11494800 + 3594700P + 28325P2 

BSW 68319900 + 444960P + 233671.98P2 

Bantaeng 12723075 + 9831350P - 85834.02P2 

Sengkang 14708400 + 11688440P - 67858.46P2 

Palopo 2132100 + 2315440P + 1030000P2 

Mamuju 12967185 + 3631780P + 98987.12P2 

4.2 IMA benchmarking 

A benchmark analysis is conducted to assess the 

performance of the IMA method in comparison to 

the QTO and MA methods before applying it to 

optimization. The purpose of this analysis is to 

evaluate each method’s exploration and exploitation 

capabilities. Table 4 presents six benchmark test 

functions. The unimodal functions (f1-f2) evaluate 

the algorithm's exploitation performance, while the 

multimodal functions (f3-f4) assess its exploration 

performance. This two-pronged approach offers a 

comprehensive evaluation of the algorithm across 

various optimization tasks. Additionally, the fixed-

dimensional multimodal functions (f5-f6) examine 

the algorithm's ability to handle low-dimensional 

optimization settings. Table 5 presents the best 

results after 30 runs of the IMA, along with the 

corresponding standard deviations. These statistical 

results highlight the proposed algorithm's accuracy, 

consistency, and significant improvements. The 

findings indicate that the IMA outperforms both the 

QTO and MA approaches, demonstrating superior 

accuracy, consistency, and enhanced exploration 

and exploitation capabilities. 

 
Table 4. Definition of terms 

Function 

𝑓1(𝑥) = ∑(𝑥𝑖 + 0.5)2

𝐷

𝑖=1

 

𝑓2(𝑥) = ∑ 𝑖𝑥𝑖
4

𝑛

𝑖=1

+ 𝑟𝑎𝑛𝑑(0,1) 

𝑓3(𝑥) = ∑[

𝑛

𝑖=1

𝑥𝑖 
2  − 10 cos(2𝜋𝑥𝑖) + 10] 

𝑓4(𝑥) =
1

4000
∑ 𝑥𝑖

2𝑛
𝑖=1 − ∏ cos (

𝑥𝑖

√𝑖
)  + 1𝑛

𝑖=1   

𝑓5(𝑥) = (
1

500
+ ∑

1

𝑗 + ∑ (𝑥𝑖 − 𝑎𝑖𝑗)62
𝑖=1

25

𝑗=1

)

−1

 

𝑓6(𝑥) = − ∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1

10

𝑖=1

 

 

Table 5. Benchmarking scenarios of the algorithms 

Statistical  

Parameter 

Algorithm 

QTO [29] MA IMA 

f1 

Best 0.00E+00 2.37E-18 3.33E-31 

Std. 4.29E+03 3.37E+01 6.02E-01 

Mean 8.48E+00 1.08E+01 1.20E-01 

f2 

Best 3.51E-03 4.16E-04 5.14E-04 

Std. 5.84E+00 3.15E-04 1.91E-04 

Mean 6.10E-03 5.43E-04 5.66E-04 

f3 

Best 0.00E+00 9.95E-01 9.95E-01 

Std. 9.97E+01 3.82E-01 5.26E-01 

Mean 0.00E+00 1.07E+00 1.22E+00 

f4 

Best 0.00E+00 0.00E+00 0.00E+00 

Std. 2.93E+01 5.42E-07 5.21E-04 

Mean 1.52E-02 7.78E-08 8.08E-05 

f5 

Best 9.98E-01 9.98E-01 9.98E-01 

Std. 2.90E+00 3.60E-02 3.63E-02 

Mean 6.05E+00 1.00E+00 1.00E+00 

f6 

Best -1.05E+01 -1.05E+01 -1.05E+01 

Std. 2.75E+00 1.63E+00 1.75E+00 

Mean -3.04E+00 -1.02E+01 -1.01E+01 

4.3 Economic dispatch optimization 

The first case study focuses on optimizing ED 

for the mid-day peak load, which totals 774.8 MW. 

The optimization result for the mid-day peak load is 

illustrated in the generation cost convergence graph 

in Figure 1 and summarized in Table 6, showing 

results over 100 iterations. The QTO method 

converges by the 41st iteration with a generation cost 

of Rp. 521.142.678,34per hour, achieving a 24.24% 

reduction. The MA method converges by the 20th 

iteration with a generation cost of Rp. 
521.131.360,88 per hour, resulting in a 24.25% 

reduction. The IMA method, proposed in this study, 

converges most quickly by the 13th iteration, 

achieving the lowest generation cost of Rp. 
520.900.804,14 per hour, reflecting a 24.28% 

reduction. The total power allocated to the thermal 

power plant is 657.101 MW using QTO (a reduction 

of 6.7544%), 657.099 MW using MA (a reducing of 

6.7547%), and 657.099 MW with IMA (a reduction 

of 6.7547%). In terms of RESs, the total generation 

capacity using the QTO method is 162.55 MW, 

marking a 38.10% increase from initial values. The 

MA method results in a total generation of 162.783 

MW, reflecting a 38.31% increase, while the IMA 

method achieves the highest total generation 

capacity of 162.653 MW, representing a 38.19% 

increase from previous levels. Under real conditions, 

the losses are 47.603 MW. After optimization, the 

losses are reduced as follows: with the QTO method, 

losses decrease to 44.854 MW, reflecting an 5.77% 

reduction; with the MA method, losses decrease to 
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45.084 MW, representing a 5.29% reduction; and 

with the proposed IMA method, losses decrease to 

44.950 MW, indicating a 5.57% reduction.  

The second case study focuses on the nighttime 

peak load, with a total system load of 842.6 MW. 

The optimization result for the nighttime peak load 

is illustrated in the generation cost convergence 

graph in Figure 2 and summarized in Table 7. The 

QTO method achieves computational convergence 

at the 39th iteration, with a generation cost of Rp. 
601.091.857,75 per hour, representing a 25.96% 

reduction. The MA method converges at the 13th 

iteration, with a generation cost of 

Rp.598.460.148,02 per hour, resulting in a 26.28% 

reduction. The proposed IMA method demonstrates 

the fastest convergence, reaching the optimal 

solution by the 12th iteration with the lowest 

generation cost of Rp. 594.879.554,43 per hour, 

reflecting a 26.72% reduction. The total power 

allocated to the thermal power plant is 739.329 MW 

using QTO and MA (a reduction of 6.4022%), and 

739.331 MW with IMA (a reduction of 6.4018%). 

The total generation from RESs using the QTO 

method is 148.95 MW, representing a 44.231% 

increase from the initial values. The MA method 

results in a total generation of 148.321 MW, 

reflecting a 43.62% increase, while the proposed 

IMA method yields a total generation of 146.951 

MW, marking a 42.29% increase. The losses are as 

follows: using QTO, 45.679 MW (a reduction of 

9.67%); using MA, 45.051 MW (a reduction of 

10.92%); and using the proposed IMA method, 

43.684 MW (a reduction of 13.62%). The IMA 

method achieves the most significant reduction in 

losses, with a decrease of 13.62%. Additionally, the 

lowest generation cost is attained with the proposed 

IMA-based method.  

4.4 Discussion 

The algorithmic process for identifying the 

optimal solution is illustrated by the convergence 

curves in Figure 1-2. These curves highlight the 

performance and effectiveness of each algorithm in 

achieving the optimal solution. The results clearly 

indicate that the IMA outperforms both the QTA 

and the standard MA in terms of convergence. 

Based on the statistical tests conducted, the choice 

between QTA and IMA ultimately depends on the 

specific application and problem context.  

 

Tabel 6. Comparison of generation cost optimization results for mid-day peak loads 
No 

Bus 

QTO MA IMA 

P (MW) Cost (Rp/hr) P (MW) Cost (Rp/hr) P (MW) Cost (Rp/hr) 

3 1 1.196.899,55  1  1.196.899,55  0.986224184 1.175.936,117 

4 40.13549823 23.910.261,33  38.67175695  22.776.782,58  38.9999996 23.028.860,614 

6 200 140.118.609,20  200  140.118.609,20  200 140.118.609,200 

7 200 144.367.551,33  200  144.367.551,33  200 144.367.551,325 

8 2.767023394 3.899.458,59  4.239144464  5.025.808,37  3.309058196 4.312.743,819 

9 1.00 1.511.782,50  1  1.511.782,50  0.80 1.438.868,800 

12 200 199.244.375,00  200  199.244.375,00  200 199.244.375,000 

13 10 4.828.640,00  10  4.828.640,00  10 4.828.640,000 

15 1 2.065.100,83  2.188098581  2.060.912,35  2.999999987 2.385.219,268 

Total 657.101 521.142.678,34 657.099  521.131.360,88  657.099 520.900.804,14 

% 6.7544 24.24 6.7547 24.25 6.7547 24.28 

 

Tabel 7. Comparison of generation cost optimization results for nighttime peak loads 

No  

Bus 

QTO MA IMA 

P (MW) Cost (Rp/hr) P (MW) Cost (Rp/hr) P (MW) Cost (Rp/hr) 

3 1 1.196.899,55  1 1.196.899,55 2.421608104 4.056.977,424 

4 50 32.179.723,50  50 32.179.723,50 50 32.179.723,500 

6 200 140.118.609,20  200 140.118.609,20 200 140.118.609,200 

7 200 144.367.551,33  200 144.367.551,33 200 144.367.551,325 

8 77.22900003 76.359.677,86  73.90738187 72.453.975,36 65.1416059 62.448.733,764 

9 1 1.511.782,50  1 1.511.782,50 1 1.511.782,500 

12 200 199.244.375,00  200 199.244.375,00 200 199.244.375,000 

13 10 4.828.640,00  10 4.828.640,00 9.990366324 4.822.367,283 

15 0.1 1.284.598,81 3.421618132 2.558.591,58 10.77815173 6.129.434,434 

Total 739.329 601.091.857,75 739.329 598.460.148,02 739.331 594.879.554,43 

% 6.4022 25.96 6.4022 26.28 6.4018 26.72 



Received:  November 5, 2024.     Revised: December 2, 2024.                                                                                        901 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.63 

 

 
Figure. 1 Convergence graph for mid-day peak load 

 

 
Figure. 2 Convergence grap for nighttime peak load 
 

Table 8. Comparison by application 

Feature QTO IMA 

Scalability 
Poor for large 

datasets 

Excellent for 

large-scale 

problems 

Convergence 

Speed 

Slow, 

exhaustive 

Fast with proper 

tuning 

Accuracy 
Exact for small 

problems 

High, though 

sometimes 

approximate 

Adaptability 
Static, lacks 

flexibility 

Adaptive to 

dynamic 

problems 

Ease of 

Implementation 
Simple 

Moderate to 

complex 

Use Case 

Examples 

Small-scale 

optimization, 

brute force 

Multi-modal, 

nonlinear 

problems 

 

Table 8 provides a detailed comparison of the 

two approaches to assist in selecting the most 

suitable method for the given problem. QTO refers 

to addressing problems where time complexity is a 

significant factor, often arising in brute-force or 

exhaustive search approaches. It is not a specific 

algorithm but rather a category of computational 

effort. In contrast, the IMA is a swarm intelligence-

based optimization algorithm inspired by the mating 

behavior of mayflies. It effectively combines 

exploration and exploitation aspects to solve 

complex optimization problems efficiently. 

5. Conclusion 

The improvement of swarm intelligence 

performance in this study is achieved through the 

use of the improved mayfly algorithm (IMA) with 

the exponent decreasing inertia weight (EDIW) 

strategy. The IMA's exploration, exploitation, local 

optima avoidance, and convergence characteristics 

are evaluated using six benchmark functions. 

Results indicate that the IMA is highly competitive 

compared to other intelligence methods, such as the 

quadratic time optimization (QTO) and standard 

MA. Specifically, the IMA demonstrates superior 

performance in both exploration and exploitation 

tasks, effectively avoiding local optima and 

achieving efficient convergence, making it a robust 

choice for optimization challenges. Notably, the 

IMA excels on fixed-dimension multimodal 

benchmark functions, showcasing its strength in 

exploiting unimodal functions, exploring 

multimodal functions, and handling low-

dimensional optimization problems effectively. 

The IMA achieves optimal results in 

maximizing ED for the Sulbagsel system with 

renewable energy sources (RESs) across both mid-

day and nighttime peak loads. The optimization 

results indicate that, for mid-day peak loads, the 

QTO approach reduces thermal generation costs by 

24.24%, the MA method by 24.25%, and the 

proposed IMA-based method achieves the largest 

decrease at 24.28%. Regarding losses, the IMA 

approach yields a reduction of 5.57%, while QTO 

and MA achieve reductions of 5.77% and 5.29%, 

respectively. For nighttime peak loads, thermal 

generation costs decrease by 25.96% using QTO, 

26.28% with MA, and 26.72% with the proposed 

IMA method. Additionally, losses are reduced by 

9.67% with QTO, 10.92% with MA, and 13.62% 

with the proposed IMA method. 
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Notation List  

Parameters Notation 

𝑭𝑻 Fuel consumption (Rp/hr),  

𝑷𝑻 Output power of the generators (MW) 

𝑷𝑹 Load (MW) 

Hn Fuel input of the generator (L/hr)  

αn, βn, γn Input-output constants of generator. 

PL Transmission losses (MW). 

Bij Loss coefficients 

Bi0, B00 Constants related to the losses.  

Itr Iteration 

G Weight of inertia 

a1 Ratio of inertia for damping weight  

a2; a3 Coefficient of global learning 

 Sight coefficient for distance  

f1 Random flight 

fl_damp Parameters for mating  

nc Total offspring count 

mu Total mutant count 
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