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Abstract: Liver tumor segmentation from Computed Tomography (CT) images plays a significant role in diagnosis 

and treatment planning. However, automatic segmentation techniques face challenges because of irregularity, fuzzy 

boundaries and heterogeneity of tumor tissues. This research proposes Dense Depthwise Separable Convolution with 

Multi-Encoder Network (DDSC-MENet) for liver tumor segmentation. The MENet is developed in this research with 

down-sampling structure for liver tumor segmentation, which contains a whole down-sampling path with four encoders 

along with the same structures. The decoder connections in MENet allow the model to obtain feature representations 

from multiple encoder branches and perform integration of multi-scale and multi-modal information. The DDSC-

MENet enhances the capacity of segmentation of tumors having different shape, sizes or intensity to the existing 

regular model. The Convolution Neural Network with Multiple Parametric Exponential Linear Units (CNN-MPELU) 

is applied in the classification stage for classifying liver tumors, which helps to resolve the vanishing gradient issues 

and quickens the convergence. The DDSC-MENet achieves dice of 94.58% and 92.62% for LiTS2017 and 

3DIRCADB datasets respectively, which is better than Multi-Scale Feature Attention Network (MS-FANet).  

Keywords: Computed tomography, Convolution neural network, Dense depthwise separable convolution, Liver tumor 

segmentation, Multi-encoder network, Multiple parametric Exponential linear unit. 

 

 

1. Introduction 

Liver is a large and highly structured granular 

organ of humans, and it plays a crucial role in 

different metabolic functions. However, modern 

lifestyle factors have exceptionally led to cases of 

liver disorders like cirrhosis, acute and chronic viral 

hepatitis and fatty liver [1]. It is important to detect 

liver cancer in its early stages because this greatly 

increases the choice of treatment. However, due to 

the limited availability of accurate physical 

examinations for liver cancer, imaging and radiology 

remains as essential tools [2].  Liver segmentation 

with the identification of associated tumors is a 

significant step in treatment planning such as ablation 

or Selective Internal Radiation Therapy (SIRT) [3]. 

However, manual segmentation is time-consuming 

and this has made the treatment planning to become 

more complex [4]. In regular clinical tasks, especially 

in recognition of hepatic tumor, CT has gained many 

advantages in clinical application because of its high 

signal-to-noise ratio, high elliptical image resolution, 

fast scanning speed and low cost and so on [5]. CT 

image segmentation of liver tumors must be done 

accurately because it supplies important information 

for the differentiation of the more detailed tumor 

features like the shape or the size of the lesion and the 

exact location of the tumor which assist the clinicians 

in performing a better therapy plan [6, 7]. However, 

segmentation of liver tumor is challenging, and it is 

considered a crucial aspect. The irregular shapes and 

sizes of the liver tumors with low contrast with 

surrounding healthy tissues and the difficulty in 

accurately distinguishing tumor boundaries present 

significant segmentation challenges [8].  

Many computational methods have been 

developed in the existing research to improve 

diagnostic performance, but these computer aided 

systems are not performing optimally when dealing 

with the challenging task of liver lesion segmentation 
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and detection [9]. Several factors make this process 

complex such as the absence or low differentiation of 

the liver from the surrounding structures, high 

contrast between the liver tissue and tumors, differing 

number of tumors and their size, irregular growth and 

mutual arrangement of tumors, and the presence of 

very small tumors [10-12]. These challenges have 

been overcome by Deep Learning (DL) models 

which have been demonstrated to be useful. Recent 

works from existing research show better outcomes 

when using DL methods, especially CNN-based 

models employed for the segmentation of liver tumor 

from CT scans. The gray scale and texture-based 

image processing techniques were applied to 

automatically segment liver tumors [13]. However, 

the CNN was showed better performance in a wide 

range of computer vision applications and its bias 

assumption limits model performance in learning 

dependencies to local perceptual fields which loss 

capturing of long-range feature association 

possibilities [14]. It is not enough to adjust image 

inputs with various sizes, textures and shapes which 

leads to data loss and model variability [15]. The 

contributions are summarized as follows: 

• The decoder connections in MENet enable the 

model to obtain feature representations from 

multiple encoder branches and perform 

integration of multi-scale and multi-modal 

information.  

• This proposed DDSC-MENet enhances the 

capacity of segmentation of tumors having 

different shapes, sizes or intensities to the 

existing regular model.  

• The CNN-MPELU is applied for classifying 

liver tumor which helps to resolve the 

vanishing gradient issues and quickens the 

convergence. 

This research paper is organized in the 

subsequent manner: Section 2 describes literature 

review and Section 3 details proposed methodology 

with the process. Section 4 generates results with 

discussion and Section 5 concludes the manuscript 

with future direction.  

2. Literature review 

The recent research related to liver tumor 

segmentation are analyzed in this research with 

advantages and limitations.  

Zhang [16] developed a U-shaped network with 

Scale-Axis-Attention (SAA-Net) for liver tumor 

segmentation. The scale attention fused receptive 

fields from numerous scales that were helpful for 

multi-scale target segmentation. The axis attention 

models the spatial long-range dependencies 

effectively. The scale and axis attention were 

integrated with adaptive global pooling named as 

SAA. Moreover, the model was better than self-

attention with computational resource utilization but 

it integrated scale and spatial attention mechanisms 

for enhancing performance. The SAA-Net improves 

liver tumor segmentation by efficiently concentrating 

on relevant features at multiple scales. However, it 

struggled with tumor segmentation because of less 

contrast against liver tissue surroundings thereby 

reducing segmentation performance.  

Chen [17] suggested a MS-FANet for liver tumor 

segmentation. The Residual Attention (RA) block 

and Multi-scale Atrous Down-sampling (MAD) are 

developed in the encoder part of MS-FANet to 

acquire sufficient variable features and the tumor 

features at various ranges. Moreover, Dual-path 

Feature (DF) filter and Dense Up-sampling (DU) 

were developed in feature reduction for reducing 

efficient features for better liver tumor segmentation. 

The MS-FANet improves segmentation accuracy by 

focusing on significant tumor regions among various 

scales thereby capturing both global and fine-grained 

information efficiently. However, it struggled with 

small and irregular tumor segmentation for accurate 

boundary detection.   

Wang [18] introduced a Multi-Scale-Aware and 

Twin-Split Attention module (MSA-TSA) for liver 

tumor segmentation. The MSA link semantic gap and 

minimizes detailed data loss. Moreover, TSA 

recalibrates feature map channel response according 

to segmentation results from a 3D view for 

classifying tumors. The skip connection with MSA 

was developed to clean spliced features from the 

encoding phase for reducing single-scale feature 

detail and overcoming semantic gaps. The MSA-TSA 

improves segmentation by efficiently capturing 

context data at various scales which enables to 

recognition tumors accurately in different shapes and 

sizes. However, it was complex to interpret attention 

weights that complicated the decision-making 

process thereby affecting performance.  

Liu [19] presented a Spatial and Spectral-learning 

Double-branched Aggregation Network (S2DA-Net) 

for liver tumor segmentation. The Fourier Spectral-

learning Multi-scale Fusion (FSMF) employed a 

Fourier-based network to acquire phase and 

amplitude data which captures feature and detained 

data without numerus parameters. The Multi-axis 

Aggregation Hadamard Attention (MAHA) 

integrated spatial data enhancing discriminative 

features when reducing computational cost. In Group 

Multi-Head Cross-Attention Aggregation (GMCA) 

decoder path extracts local data and long-term 

dependencies which enhances the localization 
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abilities through combining features from various 

breaches. However, S2DA-Net struggled with tumor 

variability and anatomical structures among various 

patients that affect generalizability.    

Di [20] implemented a 3D U-Net for automatic 

liver tumor segmentation from CT images. The liver 

region was separated into homogeneous super-pixels 

by applying LI-SLIC based hierarchical interactive 

approach in that super-pixels are decomposed based 

on intensity standard deviation to tumor boundaries 

accurately. Every pixel in liver regions is classified 

into tumor and non-tumor through Support Vector 

Machine (SVM). Lastly, voting based model was 

developed to identify tumour regions from super-

pixels based on pixel-wise classification results. The 

3D U-Net captures spatial information which enables 

to apply context relationship among 3D thereby 

improving performance. However, it struggled with 

overfitting due to noise which affects the 

segmentation performance.  

Tiange Zhang et al. [21] suggested an Edge-

guided multi-scale adaptive feature fusion network 
(MAEG-Net) for liver tumor segmentation. The 

multi-scale adaptive feature fusion efficiently 

integrates the multi-scale data to guide tumor 

segmentation in various sizes. To report blurred 

image boundaries, the edge-aware guidance was used 

to enhance its learning capability. The feature fusion 

model improves the channel partition selection to 

fuse features adaptively from every encoder layer. 

The MAEG-Net enhances the performance through 

conserving boundary details and utilizing multi-scale 

contextual data by adaptive feature fusion. However, 

it struggled with high heterogeneous tumor 

generalization because of overfitting to edge features.  

In summary, the existing methods have 

limitations such as less contrast against liver tissue 

surroundings, struggle with small and irregular tumor 

segmentation for accurate boundary detection and 

overfitting due to noise. Moreover, complex 

interpreting attention weights complicated the 

decision-making process, and struggled with tumor 

variability and anatomical structures among various 

patients that affect generalizability. To overcome 

these limitations, this research proposes a DDSC-

MENet for liver tumor segmentation.  

3. Proposed method 

The LiTS2017 and 3DIRCADB datasets are 

applied in this research and are preprocessed by 

wiener filter and data augmentation. The Wiener 

filter is used to remove noise and artefacts in liver 

images which enhances the reliability and quality of 

the image. The data augmentation is applied by 

replacing some training images with new images 

which enhances the training dataset to see a huge 

variety of liver tumors. Then, the preprocessed 

images are segmented by using DDSC-MENet which 

achieves better segmentation by factorizing spatial 

and channel-wise convolution. The segmented 

images are provided in the CNN-MPELU classifier 

which classifies the liver tumor. Fig. 1 depicts the 

process of the proposed methodology. 

3.1 Dataset 

Two publicly available liver tumor segmentation 

datasets such as LiTS2017 and 3DIRCADB datasets 

are applied in this research, The detailed explanation 

of these two datasets is given in the following: 

 

 

 
Figure. 1 Process of proposed methodology 
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Figure. 2 Sample images for LiTS2017 dataset 

 

 
Figure. 3 Sample images for 3DIRCADB dataset 

 

LiTS2017 [22] is one of the largest and most 

representative datasets for liver tumor segmentation 

including 201 CT scans (131 labelled, 70 unlabeled) 

from six medical centers. Randomly, the 131 labelled 

CT scans were divided into a training set of 111 and 

a validation set of 20. The 3DIRCADB dataset [23] 

is commonly used in current works as a training 

dataset. This dataset is composed of 3D CT scans of 

10 women and 10 men with hepatic tumors in 75% of 

cases. Fig. 2 and Fig. 3 depict the sample images for 

LiTS2017 and 3DIRCADB datasets. 

3.2 Preprocessing 

The liver image is preprocessed by using a wiener 

filter and data augmentation to remove noise and 

increase the data size. The detailed explanation of 

these two preprocessing is given in the following:  

3.2.1. Wiener filter 

Wiener filter is applied in this research to remove 

noise and artefacts in liver images, which enhances 

the reliability and quality of the image [24]. It is a 

crucial step for preprocessing and aims to eliminate 

noise when preserving significant information in 

liver images. The wiener filter enhances the Signal-

To-Noise Ratio (SNR) of medical images which 

makes it easier to differentiate healthy and abnormal 

liver tumor regions. The wiener filter is adaptive, and 

it adjusts itself based on the local mean and variance 

of the image which allows to selection of smooth 

noisy areas when maintaining edges and textures for 

identifying tumor boundaries. This adaptability is 

better than other filtering methods, such as Gaussian 

and median filters which blur the significant details 

and do not effectively handle noises present in the 

input images. Moreover, the wiener filter removes 

Gaussian and salt-pepper noise from the input image, 

thereby leading to better segmentation performance.  

3.2.2. Data augmentation 

The data augmentation is applied by replacing 

some training images with new images, which 

enhances the training dataset to see a huge variety of 

liver tumors [25]. The following techniques such as 

random contrast, random brightness, random scale, 

gaussian noise, coloring, cropping, horizontal 

flipping and rotation are applied to enhance the data 

size. Fig. 4 and Fig. 5 depicts the augmented images 

for LiTS2017 and 3DIRCADB datasets. 

3.3 Segmentation 

The proposed DDSC-MENet is used for liver 

tumor segmentation which achieves better 

segmentation by factorizing spatial and channel-wise 

convolution. This makes creating dense connections 

between layers essential within the DDSC as it 

enhances feature propagation and reuse throughout 

the network. This structure helps to maintain fine 

details which is important for distinguishing and 

accurately identifying liver tumor regions. 

 

 
Figure. 4 Augmented images for LiTS2017 dataset 
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Figure. 5 Augmented images for 3DIRCADB dataset 

 

3.3.1 Down-sampling 

The MENet is developed in this research with 

down-sampling structure for liver tumor 

segmentation in which the whole down-sampling 

route is comprised of four encoders with the same 

structure. The input of these four encoders is based 

on four modalities and the skip-connection is used to 

integrate model features extracted through every 

encoder. Compared to conventional V-Net uses one 

encoder to extract features from four modalities, the 

complexity of extracting image feature through 

encoder minimized the encoder to extract features 

from a particular model. This one-to-one feature 

extraction enhances capability of down-sampling 

procedure. The encoder in V-Net architecture is 

designed to compress and structure the image data 

effectively. In encoder, every encoder block contains 

1-3 DDSC layers and down-sampling layers. The 

convolution formula is given in Eqs. (1) and (2), 

 

𝑖𝑠 = 𝑖 + (𝑠 − 1)(𝑖 − 1)                        (1) 

 

𝑜 = [
𝑖𝑠+2𝑝−𝑘

𝑠
+ 1]                       (2) 

 

Where, 𝑖  is the highest integer that does not 

exceed the range. Here, DDSC with step-size of 2 is 

used to exchange pooling layer. This process doubles 

channels and has solution when maintaining 

computational complexity. The convolutional kernel 

size in encoder part is 3 × 3 × 3  and DDSC layer 

utilizes batch normalization, Rectified Leaky Unit 

(ReLU) functions and the final layer uses the sigmoid 

function. Moreover, ResNet short-circuiting is 

incorporated within every encoder block to prevent 

gradient disappearing because of excessive deep 

network structure.  

3.3.2 Up-sampling 

The architecture of a decoder is same as encoder 

and every up-sampling stage contains 2-3 DDSC 

layers with an up-sampling layer. It is mostly 

involved in the reconstruction of the image 

information. At up-sampling, deconvolution is 

performed with a stride of 2 to raise the resolution of 

the pre-trained image as shown in Eq. (3). 

 

𝑜 = 𝑠(𝑖 − 1) + 2𝑝 − 𝑘 + 2                                  (3) 

 

In the decoder part of the network, feature map 

size is doubled while number of channels is 

minimized to half. Additionally, each stage of 

decoder integrates features from the corresponding 

down-sampling stage. For the final down-sampling 

layer, the 1× 1 × 1 convolution kernel is adopted to 

set number of output channels equivalent to classes. 

Lastly, SoftMax layer normalizes the values of each 

channel to provide pixel-per-pixel segmentation. 

Furthermore, ResNet-style shortcut connections are 

used in each of the decoder blocks for better 

performance.  

3.3.3 Fusion strategy 

The feature map fusion process in MENet occurs 

primarily in two ways: First, they integrate feature 

maps from respective stages of four encoders at the 

encoder-reconstruction level.  Second, they join 

feature maps from equivalent stages of encoder-

decoder. When down-sampling, this research 

employs skip connections to fuse modal features 

obtained through every encoder. At each down-

sampling stage, the feature map output is sent to a 

similar stage in parallel encoder rough skip 

connections while at the same time being input to the 

next down-sampling stage. Finally, the required four-

modal fusions are attained after several fusion rounds 

in the down-sampling stages of the chosen 

architecture. In each of these down-sampling stages, 

these fused maps integrate the feature information of 

all four modes. 

Subsequently, a 1 × 1 × 1 convolution is utilized 

to feature maps generated after fusing multiple stages 

to change the number of channels. The network 

integrates numerous skip connections throughout the 

network to capture information that is not lost during 

four compression paths.  

The MENet enhances final contour prediction but 

also reduces the time it takes for the model to 

converge. To recover the information not captured by 

the encoder, connections between the encoder and 
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decoder are used which add the corresponding feature 

maps from the two processes.  

This enables the decoder to retrieve necessary 

information for up-sampling by map. By 

incorporating higher resolution data, the model 

increases precision by recovering detailed features 

from the original image. The reconstruction of a 

cross-layer feature using the encoder and decoder 

visualizes the potential for coupling feature maps 

from downsampling with new features from 

upsampling. As the network deepens detailed 

information from the feature map is retained which 

addresses the loss of details. This process assists in 

the retention of vital feature information hence 

enhance the segmentation achievements.  

3.3.4 Dense Depthwise Separable Convolution 

The DDSC network is inspired through U-Net is 

fully convolutional with feature connections between 

corresponding stages. It contains of an encoder part 

followed by a decoder part with skip connections 

between these two. The encoder receives the image 

input and extracts high semantic features of image, 

while decoder reconstructs high semantic features 

into actual image size. The skip connections are 

employed to connect the multi-scale features at the 

encoder and decoder part. Unlike U-Net, the DDSC 

replaces most layers of standard convolution with 

DDSC layers, leading to a commendably low 

computational complexity. This makes it possible to 

develop an advanced network with the ability to learn 

feature information at a compound level. 

Furthermore, for transferring the contextual feature 

information, this research establishes the remaining 

skip connections among encoder and decoder. The 

DDSC network is composed of three main 

components: DDSC blocks, subsampling layers and 

up-sampling layers. The DDSC block includes five 

densely connected layers that contain the batch 

normalization layer, ReLU activation function and 

DDSC with a size of 3 ×  3. The subsampling layer 

is a max-pooling layer by kernel size and stride of 2 

while the use of an up-sampling layer is a 3 ×  3 

transferred convolution layer. For traditional 

convolution, output feature map 𝐹  is calculated by 

Eq. (4), when assuming stride and padding of one.  

 

𝐹𝑘,𝑙,𝑛 = ∑ 𝐾𝑖,𝑗,𝑚,𝑛𝑖,𝑗,𝑚 ∙ 𝐼𝑘+𝑖−1+𝑗−1,𝑚                (4) 

Where, 𝐼  is an input feature map, 𝐾  is a 

convolution kernel size. While DDSC is composed of 

depthwise and pointwise convolutions. The output 

feature map 𝐹 for depthwise separable convolution is 

calculated as Eq. (5). Comparing parameters of 

DDSC with standard convolution is attained by Eq. 

(6). 

 

𝐹𝑘,𝑙,𝑛
′ = ∑ 𝐾𝑖,𝑗,𝑚

′
𝑖,𝑗 ∙ 𝐼𝑘+𝑖−1+𝑗−1,𝑚                        (5) 

 
𝑘×𝑘×𝑀+𝑀×𝑁

𝑘×𝑘×𝑀×𝑁
=

1

𝑁
+

1

𝑘2                                            (6) 

 

The DDSC uses less parameters than standard 

convolution which allows the network to acquire 

contextual data. The segmented images are given as 

input to the classification process for classifying liver 

tumors. Fig. 6 shows the systematic diagram of 

DDSC-MENet. 

3.4 Classification 

The generalized CNN architecture primarily 

consists of three key layers such input convolution 

layer, hidden convolution layer and output 

convolution layer. Liver images are fed into the input 

layer as data and the output features are derived from 

the output layer [26]. The hidden layer located 

between the input and output layers is crucial in the 

convolution process with neurons acting as its 

fundamental components.  

 

 
Figure. 6 Systematic diagram of DDSC-MENet 
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Each neuron in this network has unique learning 

weights and biases. The number of inputs received by 

each neuron corresponds to the number of inputs 

from other neurons and a weighted sum is computed. 

The result is then processed through a ReLU 

activation function. Convolution layers apply filters 

to the input images which generate feature maps. 

In deeper models, convolution layers are closer to 

the input for learning lower-level features such as 

edges and lines. Layers further down the model learn 

higher-level features such as shapes and specific 

objects. The layers get more information as it 

combines to produce complex patterns. The output 

neuron is given into the convolution layer as shown 

in Eq. (7). 

 

𝑧𝑖,𝑗,𝑘 = 𝑏𝑘 + ∑ ∑ ∑ 𝑥𝑖′,𝑗′,𝑘′ ∙
𝑓

𝑛′−1

𝑘′
𝑓𝑤−1
𝑣=0

𝑓ℎ−1
𝑢=0

𝑤𝑢,𝑣,𝑘′,𝑘                                                                        (7) 

 

Where, 𝑧𝑖,𝑗,𝑘 is a neuron output at row 𝑖, column 

𝑗 and feature map 𝑘 of convolution layer 𝑙, 𝑓ℎ and 𝑓𝑤 

are height and width of relevant fields, 𝑓𝑛′  is the 

number of features inside the layer. The 𝑥𝑖′,𝑗′,𝑘′ is a 

neuron output at row 𝑖, column 𝑗 and feature map 𝑘 

of previous convolution layer 𝑙 − 1, 𝑏𝑘 is a bias for 𝑘, 

the 𝑤𝑢,𝑣,𝑘′,𝑘 is a connection weight among neuron 𝑘 

on layer 𝑙 and its input is positioned at row 𝑢, column 

𝑣 and feature map 𝑘′. 

In CNN, the activation function is highly required 

which is applied before the pooling layer. The 

MPELU activation function is applied which aims to 

generalize and unify the ReLU and Exponential 

Linear Unit (ELU). Moreover, the MPELU is capable 

to adaptively switching between ReLU and ELU 

which is given in Eq. (8). The cross-entropy loss 

function is given in Eq. (9), 

 

𝑀𝑃𝐸𝐿𝑈(𝑥) = 𝜆 {
𝑥                             𝑥 > 0
𝛼(𝑒𝛽𝑥 − 1)          𝑥 ≤ 0         (8) 

 

𝑆 = − ∑ 𝑝(𝑥)𝑥 𝑝(𝑥)                                              (9) 

 

Where, 𝛼  is a hyperparameter learnable to 

improve its representation ability, 𝛽 > 0, 𝑆 is cross-

entropy loss, 𝑥 is a discrete random variable, 𝑝(𝑥) is 

a probability distribution function. The high entropy 

loss provides more uncertain distributions whereas 

less entropy loss provides definite distribution of 

variables. The overall pseudocode is given as 

follows:  

Pseudocode: 

Initialize input liver CT scan image 

Preprocess the image using a wiener filter to remove 

noise and enhance the quality 

Apply data augmentation to expand the training 

dataset 

for each encoder block in the Multi-Encoder 

Network: 

    for each DDSC layer in the block: 

        Perform depthwise convolution on spatial 

dimensions 

        Perform pointwise convolution to combine 

channels 

        Apply Batch Normalization 

        Apply ReLU activation function 

        Use skip connection to transfer features to the 

corresponding decoder block 

    Down-sample using DDSC with stride = 2 

    Add ResNet shortcut to avoid gradient issues 

for each down-sampling stage: 

    Integrate feature maps from corresponding stages 

of all encoders using skip connections 

    Fuse the feature maps to combine multi-scale and 

multi-modal information 

for each decoder block: 

    for each DDSC layer in the block: 

        Perform up-sampling using deconvolution with 

stride = 2 

        Apply Batch Normalization 

        Apply ReLU activation function 

    Fuse feature maps from encoder to corresponding 

decoder stage via skip connection 

Apply 1 × 1  convolution to predict output 

segmentation map (number of channels equals 

number of classes) 

Apply SoftMax to normalize pixel-wise classification 

Output segmented liver tumor regions 

Feed the segmented images into the CNN-MPELU 

classifier 

for each layer in CNN:  

    Perform 𝑧𝑖,𝑗,𝑘 = 𝑏𝑘 +

∑ ∑ ∑ 𝑥𝑖′,𝑗′,𝑘′ ∙ 𝑤𝑢,𝑣,𝑘′,𝑘

𝑓
𝑛′−1

𝑘′
𝑓𝑤−1
𝑣=0

𝑓ℎ−1
𝑢=0  

    Perform 𝑀𝑃𝐸𝐿𝑈(𝑥) = 𝜆 {
𝑥                             𝑥 > 0
𝛼(𝑒𝛽𝑥 − 1)          𝑥 ≤ 0 

    Calculate 𝑆 = − ∑ 𝑝(𝑥)𝑥 𝑝(𝑥)  

Output final classification result (tumor class) 

4. Result analysis 

The proposed DDSC-MENet is simulated in 

Python with the following system configurations: 

RAM 8GB, windows 10 OS and Intel i5 processor. 

The dice, Volumetric overlap error (VOE) and 

Relative volume difference (RVD) metrics are 

applied for calculating the segmentation performance 

of DDSC-MENet for the LiTS2017 and 3DIRCADB 
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datasets. The precision, f1-score, accuracy and 

sensitivity metrics are applied for calculating 

classification performance for LiTS2017 and 

3DIRCADB datasets. The formula for all the metrics 

is given in Eqs. (10)- (16). 

 

𝐷𝑖𝑐𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
× 100                                  (10) 

 

𝑉𝑂𝐸 = 1 −
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
× 100                            (11) 

 

𝑅𝑉𝐷 =
𝐹𝑃

𝑇𝑃+𝐹𝑁
× 100                                           (12) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100                                 (13) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
               (14) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100                    (15) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100                              (16) 

 

Where, 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 are true positive, true 

negative, false positive and false negatives 

respectively.  

 
Table 1. Segmentation results for both datasets 

Dataset Methods Dice 

(%) 

VOE 

(%) 

RVD 

(%) 

LiTS2017 SENet 87.31 46.77 21.82 

U-Net 89.47 43.20 17.29 

RU-Net 91.66 41.86 14.38 

CU-Net 92.15 37.64 11.51 

DDSC-

MENet  

94.58 34.51 8.64 

3DIRCADB  SENet 84.29 39.87 23.58 

U-Net 87.46 36.29 20.17 

RU-Net 89.53 33.52 16.36 

CU-Net 90.19 31.47 13.64 

DDSC-

MENet  

92.62 28.34 11.57 

 

Table 1 and Fig. 7 denote the segmentation result 

for both LiTS2017 and 3DIRCADB datasets in terms 

of dice, VOE and RVD metrics. The existing state-

of-art methods such as Squeeze-and-Excitation 

Network (SENet), U-Net, Recurrent U-Net (RU-Net) 

and Cascaded U-Net (CU-Net) are evaluated for both 

LiTS2017 and 3DIRCADB datasets. The DDSC-

MENet achieves dice 94.58%, VOE 34.51% and 

RVD 8.64% for the LiTS2017 dataset which is better 

than SENet, U-Net, RU-Net and CU-Net. Similarly, 

the DDSC-MENet achieves dice 92.62%, VOE 

28.34% and RVD 11.57% for the 3DIRCADB 

dataset which is better than SENet, U-Net, RU-Net 

and CU-Net. 

Table 2 and Fig. 8 denote the activation function 

result for both LiTS2017 and 3DIRCADB datasets in 

terms of precision, f1-score, accuracy and sensitivity 

metrics. The existing state-of-art methods such as 

ELU, ReLU, Leaky ReLU (LreLU) and PELU are 

evaluated for both LiTS2017 and 3DIRCADB 

datasets. The CNN-MPELU achieves 96.32% 

precision, 96.03% f1-score, 97.48% accuracy and 

95.76% sensitivity for LiTS2017 dataset which is 

better than ELU, ReLU, LreLU and PELU. Similarly, 

the CNN-MPELU achieves 94.66% precision, 

94.08% f1-score, 96.25% accuracy and 93.51% 

sensitivity for 3DIRCADB dataset which is better 

than ELU, ReLU, LreLU and PELU. 

  
 

 
Figure. 7 Segmentation results for both datasets 

 

 

Table 2. Activation function results for both datasets  

Dataset Methods Precision (%) F1-score (%) Accuracy (%) Sensitivity (%) 

LiTS2017 ELU 90.46 90.04 90.35 89.63 

ReLU 91.73 90.97 92.56 90.24 

LreLU 93.51 92.95 94.23 92.41 

PELU 95.65 95.01 96.67 94.38 

MPELU 96.32 96.03 97.48 95.76 

3DIRCADB  ELU 87.16 86.75 89.54 86.36 

ReLU 89.21 88.86 91.71 88.53 

LreLU 91.58 91.02 93.83 90.47 

PELU 92.34 92.50 94.38 92.68 

MPELU   94.66 94.08 96.25 93.51 
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Figure. 8 Activation function results for both datasets 

 

 
Figure. 9 Classification results for both datasets 

 

Table 3 and Fig. 9 denote the classification result 

for both LiTS2017 and 3DIRCADB datasets in terms 

of precision, f1-score, accuracy and sensitivity 

metrics. The existing state-of-art methods such as 

ResNet18, ResNet50, ResNet101 and CNN are 

evaluated for both LiTS2017 and 3DIRCADB 

datasets. The CNN-MPELU achieves 96.32% 

precision, 96.03% f1-score, 97.48% accuracy and 

95.76% sensitivity for LiTS2017 dataset which is 

better than ResNet18, ResNet50, ResNet101 and 

CNN. Similarly, the CNN-MPELU achieves 94.66% 

precision, 94.08% f1-score, 96.25% accuracy and 

93.51% sensitivity for the 3DIRCADB dataset which 

is better than ResNet18, ResNet50, ResNet101 and 

CNN. 

4.1 Comparative analysis 

The comparison of DDSC-MENet is given in this 

section for both LiTS2017 and 3DIRCADB datasets 

in terms of dice, VOE and RVD metrics. The existing 

methods such as SAA-Net [16], MS-FANet [17], 

MSA-TSA [18], S2DA-Net [19], 3D U-Net [20] and 

MAEG-Net [21] are compared with the proposed 

DDSC-MENet. The DDSC-MENet achieves dice 

94.58%, VOE 34.51% and RVD 8.64% for LiTS2017 

dataset. The DDSC-MENet achieves dice 92.62%, 

VOE 28.34% and RVD 11.57% for 3DIRCADB 

dataset. Table 4 denotes the comparative analysis for 

both datasets.  
 

 

Table 3. Classification results for both datasets  

Dataset Methods Precision (%) F1-score (%) Accuracy (%) Sensitivity (%) 

LiTS2017 ResNet18 91.09 89.71 90.36 88.38 

ResNet50 90.25 89.75 92.63 89.27 

ResNet101 92.38 92.01 93.57 91.65 

CNN 94.56 94.04 95.29 93.53 

CNN-MPELU 96.32 96.03 97.48 95.76 

3DIRCADB  ResNet18 88.71 88.02 89.67 87.36 

ResNet50 89.37 89.49 91.42 89.62 

ResNet101 91.62 91.57 93.68 91.54 

CNN 93.15 92.81 95.39 92.48 

CNN-MPELU   94.66 94.08 96.25 93.51 

Table 4. Comparative analysis for both datasets 

Dataset Methods Dice (%) VOE (%) RVD (%) 

LiTS2017 SAA-Net [16] 84.49 NA NA 

MS-FANet [17] 74.2 36.7 10.7 

MSA-TSA [18] 85.96 NA NA 

S2DA-Net [19] NA 44.87 44.11 

3D U-Net [20] NA 37 14 

MAEG-Net [21] 71.84 38.64 12.38 

DDSC-MENet  94.58 34.51 8.64 

3DIRCADB MS-FANet [17] 78 31.3 15.5 

MSA-TSA [18] 83.67 NA NA 

S2DA-Net [19] NA 38.29 34.66 

DDSC-MENet  92.62 28.34 11.57 
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4.2 Discussion 

This section explains the existing method 

limitations and advantages of the proposed DDSC-

MENet for liver tumor segmentations. The existing 

method has limitations such as SAA-Net [16] 

struggled with tumor segmentation because of less 

contrast against liver tissue surroundings thereby 

reducing segmentation performance. MS-FANet [17] 

struggled with small and irregular tumor 

segmentation for accurate boundary detection. MSA-

TSA [18] was complex in interpreting attention 

weights that complicated the decision-making 

process thereby affecting performance. S2DA-Net 

[19] struggled with tumor variability and anatomical 

structures among various patients that affect 

generalizability. 3D U-Net [20] struggled with 

overfitting due to noise which affects the 

segmentation performance. MAEG-Net [21] 

struggled with high heterogeneous tumor 

generalization because of overfitting to edge features. 

To overcome these limitations, this research 

proposed a DDSC-MENet to enhance the capacity of 

segmentation by a huge number of skip connections. 

The MENet with a special down-sampling structure 

is developed for liver tumor segmentation in that 

whole down-sampling route is comprised of four 

encoders through same structure. The decoder 

connections in MENet allow the model to obtain 

feature representations from multiple encoder 

branches and perform integration of multi-scale and 

multi-modal information. The DDSC-MENet 

enhances the capacity of segmentation of tumours 

having different shapes, size or intensities to the 

existing regular model. Moreover, the DDSC-MENet 

contribute to preserving high-frequency information 

and preventing significant distortion of the image 

after down-sampling and enhancing the performance 

of the tumor boundary extraction.  

5. Conclusion 

The DDSC-MENet is proposed in this research 

for liver tumor segmentation which enhances the 

capacity of segmentation of tumors having different 

shapes, sizes or intensities to the existing regular 

model. Initially, the LiTS2017 and 3DIRCADB 

datasets are processed by wiener filter and data 

augmentation. The wiener filter is utilized to remove 

noise and artefacts in liver images which improves 

the reliability and quality of the image. The data 

augmentation is applied by replacing some training 

images with new images which enhances the training 

dataset to see the huge variety of liver tumors. The 

MENet is developed in this research with the down-

sampling structure for liver tumor segmentation in 

that the whole down-sampling route is comprised of 

four encoders along with the same structure. The 

decoder connections in MENet allow the model to 

obtain feature representations from multiple encoder 

branches and perform integration of multi-scale and 

multi-modal information. The CNN-MPELU is 

applied in the classification stage for classifying liver 

tumor, which helps to resolve the vanishing gradient 

issues and quickens the convergence. The DDSC-

MENet achieves dice of 94.58% and 92.62% for 

LiTS2017 and 3DIRCADB datasets, respectively. In 

future, clustering-based methods will be applied to 

further improve the segmentation performance. 
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Notation 

Notation Description  

𝑖 Highest integer 

𝐹 Output feature map 

𝐼 Input feature map 

𝐾 Convolution kernel size 

𝑧𝑖,𝑗,𝑘 Neuron output at row 𝑖, column 𝑗 and 

feature map 𝑘 of convolution layer 

𝑓ℎ and 𝑓𝑤 Height and width of relevant fields 

𝑓𝑛′ Number of features inside the layer 

𝑥𝑖′,𝑗′,𝑘′  Neuron output at row 𝑖, column 𝑗 and 

feature map 𝑘 of previous convolution 

layer 𝑙 − 1 

𝑏𝑘 Bias for 𝑘 

𝑤𝑢,𝑣,𝑘′,𝑘 Connection weight among neuron 𝑘 on 

layer 𝑙 
𝛼 Hyperparameter learnable 

𝑆 Cross-entropy loss 

𝑥 Discrete random variable 

𝑝(𝑥) Probability distribution function 

𝑇𝑃 True positive 

𝑇𝑁 True negative 

𝐹𝑃 Fase positive 

𝐹𝑁 False negative 
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