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Abstract: Network botnet attacks have been increasing rapidly because of the widespread use of interconnected 

Internet of Things (IoT) devices. These devices can be used for many malicious actions, such as phishing, fraud, data 

theft, and distributed computing attacks against IoT networks. The traditional methods of botnet detection fail to 

capture the relationships between network nodes that exhibit coordinated behavior. In this paper, we introduce a novel 

Graph-based Modified Attention with Convolutional Neural Network (GrMA-CNN) for the effective detection of 

botnet attacks. The novelty of GrMA-CNN lies in its integration of spectral and spatial layers within a Graph 

Convolutional Network (GCN). It combines the GCN with a modified attention mechanism to effectively capture 

relationships and coordinated behaviours among IoT devices in graph-structured data. The approach extract features 

from network flow traffic using hybrid feature selection techniques, which include mutual information, correlation 

analysis, and principal component analysis. The extracted features are then processed through a GCN, with spectral 

and spatial layers that operates directly on graph-structured data. In this context, each IoT device and its associated 

features are represented as nodes, while the relationships between these devices are modelled as edges in the graph. 

The robustness of the model is verified on different datasets, such as N-BaIoT, BoT-IoT, CTU-13, and CICIDS. The 

proposed model obtained an accuracy of 99.1% on N-BaIoT, 99.2% on BoT-IoT, 99.15% on CTU-13, and 99.3% on 

CICIDS datasets. Further the model has achieved an average precision of 98.82%, a recall of 99.02%, and F1-score of 

98.51%. The performance comparison demonstrates that the proposed model outperforms state-of-the-art botnet 

detection methods, including DNN, SGDC, WCC, and IHHO-NN with high detection rate. 
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1. Introduction  

There has been tremendous growth in the 

Industrial sector led by the Industry 4.0 revolution, in 

the last decade. The adoption of the IoT has been vital 

to this industrial revolution. The IoT devices are used 

in a diverse array of applications, such as warehouse 

management, logistics management, energy systems, 

healthcare, agriculture, smart cities, traffic 

management [1-2] etc. According to the study 

presented in [3], the authors predicted that by 2050, 

over 100 billion devices will be online. Consequently, 

attacks on these IoT networks are also increasing. 

Hence, there is a need to identify malicious botnet 

attacks [4]. Several categories of attacks have been 

identified, such as ransomware attacks, physical 

attacks, data breaches, and exploiting vulnerabilities.  

A ‘Botnet’ refers to a group of compromised 

systems under the control of a hacker, termed a 

botmaster, operating remotely. Combining the terms 

‘robot’ and ‘network’ illustrates how the botnet 

serves as a collective entity at the botmaster’s 

command. Essentially, the botnet is tasked with 

executing various attacks according to the directives 

provided by its botmaster [5]. In general, 

compromised IoT devices operate inconspicuously, 

revealing no external signs of being hacked, and 

essentially function as zombies at the command of the 

botmaster, facilitating the execution of attacks [6]. 

Until the command is received from the botmaster, 

bots hide themselves by remaining inactive and not 
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performing any attacks [7]. This behavior of bots 

increases the difficulty of identifying infected 

systems.  

Although there has been significant development 

in the utilization of deep learning (DL) and machine 

learning (ML) algorithms [8] to identify botnet 

through network traffic analysis, a gap still exists in 

the complete understanding of the relationships 

among botnet entities. These relationships provide 

significant insight into how bot activities can be 

differentiated from normal patterns of 

communication. Graph convolutional networks 

(GCNs) have shown potential in capturing structural 

dependencies in networks [9], yet they remain largely 

unexplored for detecting botnet traffic. The GCN 

processes a node based on its neighbourhood, 

capturing the inherent relationships exhibited by the 

nodes in the network graph. Botnet has a coherent 

relationship among the participating bots, making it 

suitable for applying a GCN-based method in 

detecting them. 

1.1 Problem statement 

The rapid proliferation of interconnected IoT 

devices has led to an alarming increase in botnet 

attacks, enabling malicious activities such as 

phishing, data theft, and distributed computing 

assaults. Traditional botnet detection methods 

struggle to effectively capture the complex 

relationships between IoT devices exhibiting 

coordinated behaviour. There is a need for advanced 

detection techniques that incorporates both structural 

and feature-based relationships in network traffic to 

identify and mitigate botnet threats with higher 

accuracy and reliability. The primary contributions of 

the research are as follows: 

• A hybrid feature extraction model is employed, 

which combines mutual information, correlation 

analysis and principal component analysis (PCA) 

to derive the most relevant features. 

• A graph convolutional method integrated with a 

modified attention mechanism, the GrMA-CNN, 

is introduced to enhance the learning of spatial 

and spectral patterns for effective botnet 

detection. 

• The performance of the proposed botnet 

detection system is evaluated on standard 

benchmark datasets, and the performance is 

compared against other state-of-the-art methods. 

The rest of the article is organized as: Section 2 

presents a review of the related works; the proposed 

GrMA-CNN model is described in Section 3; Section 

4 presents the results obtained; and Section 5 offers 

the concluding remarks. 

2. Literature survey  

A brief discussion of existing ML and DL-based 

botnet detection approaches is presented in this 

section. The ensemble approaches using ML 

algorithms are presented in [4]. The methods, such as 

random forest and logistic regression [5] are used to 

detect botnets. However, these methods suffer from 

overfitting problems and fail to capture complex 

patterns and correlations between the features in 

network traffic. The sequential activity mining [6] is 

based on packet inspection. The method fails when 

packets are encapsulated and is resource intensive. 

The nearest neighbour method employed in [7] has a 

high false-negative rate and suboptimal detection 

efficiency. 

In [10], a sequential architecture considers a 

hybrid feature selection model with time gap analysis 

using ML classifiers to process the obtained features. 

The ML approach in [11] is a two-fold method to 

identify and isolate botnet attacks. It includes a 

scanning mode to detect DDoS attacks, and the 

ResNet-18 model to make predictions. The 

traditional methods fail because of their poor 

generalization ability, which degrades their ability to 

learn complex patterns [12]. Hence, these models 

suffer from model drift. To overcome these problems, 

the authors in [13] used an autoencoder-based DL 

approach to detect bots using packet length sequence. 

Srinivasan et al. [14] developed an ensemble 

classification-based approach; these protocols do not 

support the detection of these botnets in their early 

stages. Popoola et al. [15] used a recurrent neural 

model for botnet identification with imbalanced 

traffic data. To solve class imbalance difficulties, Xu 

et al. [16] modelled an autoencoder utilizing cosine 

loss. Furthermore, bi-directional long short-term 

memory (LSTM) for attack identification was used in 

[17] for IoT networks.  

In [18], a stochastic gradient descent classifier 

with reduced dimensions was utilized for botnet 

detection, but the method was weak in detecting 

minority samples. The Federated Deep Learning 

method was used in [19], but it suffers from backdoor 

and poisoning attacks. The fuzzy method employed 

in [20] is complex with a high number of detection 

rules. The method results in lower detection rates and 

higher false positive rates. 

The authors in [21] merged clustering with SVM 

for botnet identification. The method relies on 

previous communication data from senders and 

receivers to differentiate traffic. The decision tree 

combined with the SVM classifier [22] and C4.5 [23] 

are less efficient than the other models. The filter and 

wrapper methods are employed in [24] to extract the 
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features with unsupervised clustering. Wrapper 

methods [25] and self-training neural models [26] are 

used to select features from network traffic. It suffers 

from computational complexity, as the model is 

trained on multiple subsets of features multiple times.  

The work presented in [27] uses a CNN combined 

with flow features to detect bots. However, CNN and 

LSTM were used to detect specific botnets in [8], 

with a focus on IoT camera systems. The method in 

[28] uses an RNN to detect bots from traffic flow data, 

but the method is less accurate, with higher false 

positive rates. These methods do not capture the long-

range dependencies in network flow between the 

entities. The real-world botnet datasets are highly 

imbalanced, with very little bot traffic compared with 

normal traffic; hence, botnet detection models must 

consider approaches to handle imbalances in the data. 

The dung beetle optimizer with genetic algorithms 

[29] and the Adaboost classifier [30] with an 

improved grey wolf optimizer perform poorly when 

dealing with imbalanced datasets. To address this 

issue, Generative Adversarial Networks (GAN) were 

used to generate the synthetic samples in [31-32]. 

The current botnet detection methods that use 

network traffic flow methods rely on flow-based 

statistics to identify the botnet. The dynamic 

behaviour of bots can modify the flow characteristics, 

which bypasses traffic flow-oriented signature-based 

detection methods. These detection methods can be 

easily evaded by bots with encrypted traffic. The bots 

launch a coordinated attack from multiple 

compromised devices. The existing methods focus on 

individual devices and lack the visibility and 

scalability needed to identify distributed attacks.  

Existing botnet detection methods face several 

limitations that hinder their effectiveness. Packet 

inspection-based methods are resource-intensive and 

ineffective against encapsulated packets, while 

techniques like nearest neighbours and clustering 

exhibit high false-negative rates and suboptimal 

detection efficiency. Deep learning models, including 

CNNs, LSTMs, and autoencoders, often struggle 

with handling class imbalances, learning long-range 

dependencies, and generalizing to diverse botnet 

patterns. Flow-based and signature-based detection 

approaches are easily bypassed by bots using 

encrypted traffic, and they lack the scalability needed 

to identify distributed attacks across multiple devices. 

Moreover, these methods generally overlook the 

inherent relationships within the nodes of the network, 

which are crucial for detecting coordinated bot 

actions. Recent research has leveraged advanced 

methods like Transformers [37-39] and Graph 

Attention Networks (GAT) [40] for IoT security by 

analysing network traffic. Transformers excel at 

capturing temporal dependencies, while GATs 

effectively model communication structures. 

However, both Transformers and GAT suffer from 

high computational complexity on large datasets and 

are prone to overfitting. In contrast, GCN overcomes 

these limitations with localized aggregation, offering 

computational efficiency and robustness to noise. 

To address these challenges, the proposed 

approach employs a graph-based representation that 

captures the inherent relationships among devices in 

the network. A network graph is constructed with 

nodes representing devices and edges signifying 

communication links, allowing for the identification 

of coordinated bot actions through relational analysis. 

A hybrid feature extraction model combining mutual 

information, correlation analysis, and PCA ensures 

the selection of the most relevant features, enhancing 

detection accuracy. The GrMA-CNN model further 

improves botnet detection by integrating a graph 

convolutional method with a modified attention 

mechanism, enabling the detection of spatial and 

spectral patterns while mitigating class imbalance 

issues. This method provides scalability and visibility 

to detect distributed attacks, even in the presence of 

encrypted traffic, and cannot be bypassed by 

modifying packet statistics, thus making it a robust 

solution to the shortcomings of existing techniques.

 

 

 
Figure. 1 Overview of the proposed botnet detection model 
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Table 1. Notations List 

 

 

3. The proposed method  

This section presents the proposed GrMA-CNN, 

a deep learning approach for botnet detection on IoT 

networks. Fig. 1 shows an overview of the botnet 

detection system. It involves feature selection using 

hybrid approach and GrMA-CNN model is applied to 

detect the botnets. Table 1 presents the various 

notations used in representing the proposed model. 

3.1 Preprocessing and feature extraction 

This phase considers the data loading, missing 

value handling, and label encoder tasks. The issue of 

missing values is overcome by applying the k-nearest 

neighbour imputation mechanism. However, network 

traffic data exhibit the problem of data class 

imbalance; therefore, the SMOTE approach is used 

to produce synthetic instances. The new instances are 

generated by expanding the minority class, increasing 

the size of the dataset, and not resorting to the 

repetitive nature of conventional oversampling 

techniques. This methodology entails crafting 

synthetic instances belonging to the minority class 

within the feature space of existing minority 

examples.  

The feature space is represented as 𝑋  and 𝑋 ∈
𝑅𝑚×𝑛, where 𝑅 represents the set of real numbers, 

the number of features is n and 𝑚  is the instance 

count. Similarly, the target variables are denoted by 

𝑦, 𝑦𝑖 ∈ {0,1}. The dominant class in these samples is 

denoted by 0, and the minority class is denoted by 1. 

The distribution of 𝑦  is changed to have 𝑦′  in a 

uniform distribution to balance the entire dataset. 

SMOTE helps in estimating the k-nearest minority 

class, and one neighbor value is chosen to generate 

the synthetic instance; the new instance can be 

expressed as: 
 

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝛽 ∗ (𝑥𝑛𝑛 − 𝑥𝑖)                                 (1) 
 

Here, the random value 𝛽 ranges from 0 to 1. This 

process of generating synthetic instances is repeated 

until the appropriate class balance is obtained in the 

dataset. 

The dataset is processed using missing value 

imputation and the synthetic minority oversampling 

technique to avoid class imbalance issues. The 

complete balanced dataset is processed to extract the 

features. In this stage, data normalization is 

performed by applying a standard scalar mechanism. 

It rescales the values to have a mean of 0 and a 

standard deviation of 1. 

To obtain the most relevant features, a hybrid 

approach using PCA, correlation analysis and mutual 

information is performed. The hybrid feature 

extraction process is presented in Algorithm 1. Each 

method ranks the features based on their ability to 

distinguish the samples as normal or botnet. The top 

k-ranked features obtained by the three methods are 

selected with a majority vote to generate the final 

feature vector.  

 

Algorithm 1: Pseudocode for feature extraction 

Input: Node features for each node: X 

Target values: 𝑌 

No. of features: k 

Output: Set of features: 𝐹 

Stage 1: Apply Mutual Information Analysis 

1.   Calculate mutual information values: 

  𝐼(𝑥𝑖, 𝑦)

= ∑ ∑ 𝑃(𝑥𝑖 , 𝑦𝑖) 𝑙𝑜𝑔 (
𝑃(𝑥𝑖, 𝑦𝑖)

𝑃(𝑥𝑖)𝑃(𝑦𝑖)
) , 𝑃(𝑥𝑖, 𝑦𝑖)

𝑦𝑖∈𝑌 𝑥𝑖∈𝑋

 

2.   Assign 𝐹𝑀𝑢𝑡𝑢𝑎𝑙 with top 𝑘 features from step 

1 

Stage 2: Apply Principal Component Analysis 

3.   Standardize the features: 

Symbol Meaning 

𝐺 (𝑉, 𝐸) Graph with vertex (V) and edges (E) 

A Adjacency matrix 

D Degree matrix 

L Laplacian matrix 

U Eigenvectors 

Θ Filter in spectral domain 

X Features of node 

Y Target value 

k Number of features 

F Set of features 

𝐼(𝑥𝑖 , 𝑦) Mutual information of feature 𝑥𝑖 and y 

CM Covariance matrix 

𝜌𝑋,𝑌 Correlation between X and Y 

𝐹𝑀𝑢𝑡𝑢𝑎𝑙 Features selected by Mutual Information  

𝐹𝑃𝐶𝐴 Features selected by PCA 

𝐹𝐶𝑜𝑟𝑟  Features selected by Correlation Analysis 

𝒩 Neighborhood of a node 

Q Queries of attention mechanism 

K Keys of attention mechanism 

V Values of attention mechanism 

𝑆ℎ𝑒𝑎𝑑 Attention head size 

𝐴ℎ Prediction from attention head 

𝑅𝑒𝐿𝑈 Rectified Linear Unit 

Softmax Softmax activation function 

Acc Accuracy 

Pr Precision 

Re Recall 

F1 F1-score 
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𝐹𝑆 =

𝐹𝑣 − 𝜇

𝜎
 

4.   Compute the covariance matrix and extract 

eigenvalues and eigenvectors from 𝐹𝑆: 

5.   Assign 𝐹𝑃𝐶𝐴  with top 𝑘  features 

corresponding to 𝑘 largest eigenvalues  

Stage 3: Apply Correlation Analysis 

6.   Find correlation between each pair of feature 

variable and target variable over matrix X 

as: 

   𝜌𝑋,𝑌

=
∑  (𝑋𝑖 − 𝜇𝑋)(𝑌𝑖 − 𝜇𝑌)𝑖 ∈ 𝒩

√∑ (𝑋𝑖 − 𝜇𝑋)2  ∑ (𝑌𝑖 − 𝜇𝑌)2 𝑖 ∈ 𝒩𝑖 ∈ 𝒩

 

   Where, 𝜌𝑋,𝑌 is correlation between X and 

Y 

𝑋𝑖  and 𝑌𝑖 are individual data points  

𝜇𝑋 and 𝜇𝑌 are mean values 

𝒩 is set of sample instances 

7.   Assign 𝐹𝐶𝑜𝑟𝑟  with top 𝑘  features with large 

correlation coefficients 

Stage 4: Select the Features 

8.   Select top k features with majority vote from 

{𝐹𝑀𝑢𝑡𝑢𝑎𝑙, 𝐹𝑃𝐶𝐴,  𝐹𝐶𝑜𝑟𝑟} 𝑎𝑠 𝐹 

9.  return 𝐹 

 

3.2 Detection engine 

This section presents the proposed approach, 

GrMA-CNN, for predicting botnet attacks. In order 

to construct the graphs, the multigraph structure 

method is adopted, which is denoted as 𝐺𝑚 =
(𝑉, 𝐸, 𝐹𝑣 , 𝐹𝑒); Where, 𝑉 represents the set of nodes, 𝐸 

is the set of edges representing network traffic flow 

between nodes, 𝐹𝑣 is a feature matrix for nodes and, 

𝐹𝑒  is feature vector for edges. Fig. 2 depicts the 

proposed, GrMA-CNN with spectral and spatial 

layers to detect botnets.  

The input graph passes through multiple spectral 

and spatial layers repeatedly to learn the relationships 

between the nodes. The spectral layers perform 

convolution to capture smooth variation in graph data 

detecting global patterns and structures. The spatial 

layers define convolutions directly by aggregating 

the features from neighbouring nodes. The final layer 

of the GCN maps the aggregated and transformed 

node features to the desired output.  

To increase the detection accuracy, the GrMA-

CNN architecture combines spatial and spectral 

layers. Algorithm 2 depicts the spectral convolution 

layer that performs the following operations: 

 

A) Graph Laplacian (L): Given an undirected 

graph 𝐺 = (𝑉, 𝐸)  with 𝑁  nodes and adjacency 

matrix 𝐴, 𝐿 = 𝐷 − 𝐴, with degree matrix D. The 

Laplacian encapsulates the graph's structural 

properties and is essential for spectral graph 

analysis. 

 

B) Spectral Transformation: The spectral 

convolution operates in the spectral domain by 

transforming the input signal 𝑋 into the Fourier 

basis of the graph. This transformation is achieved 

using the eigenvectors 𝑈  of the graph laplacian 

matrix 𝐿. The transformed signal is computed as 

𝑋 = 𝑈𝑇   ∗  X. 

 

C) Filter Operation: After transforming the signal 

into the spectral domain, a convolution operation 

is applied using a learnable filter Θ. Here, Θ is 

learned to optimize the loss during training using 

Chebyshev polynomial approximation. The 

filtered signal is computed as �̂� = Θ �̂� .  
 

D) Inverse Transformation: To return the filtered 

signal to the original domain, an inverse spectral 

transformation is performed. This involves 

projecting the filtered signal back using the 

eigenvectors 𝑈, resulting in the output: 𝑌 = 𝑈 �̂�. 

 

 

 
Figure. 2 GrMA-CNN Architecture 
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Algorithm 2: Pseudocode for spectral layer 

Input: Node features for each node: X 

  Network Graph: G(V, E) 

Degree Matrix: D 

Adjacency Matrix: A 

Output: Node outputs: 𝑌 

1.  Compute symmetric normalized Laplacian 

matrix: 

  𝐿 = 𝐼 − 𝐷−
1

2 𝐴𝐷−
1

2 

𝑈 = eigen vectors of L  

𝛻 = eigen values of L 

2.  Perform eigen decomposition: 

  𝐿 = 𝑈 𝛻 𝑈𝑇 

3.   Apply spectral transformation: 

   �̂� = 𝑈𝑇   ∗  𝑋 

4.  Compute Chebyshev polynomial 

approximation: 

  

𝑔𝜃(𝛻)  ≈ ∑ 𝜃𝑖𝑇𝑖(𝛻)

𝐾

𝑖=0

 

Where, K is polynomial order 

 𝑇𝑖(𝛻) is the Chebyshev polynomial of L 

𝑔𝜃(𝛻)  is spectral filter with learnable 

parameter 𝜃 

5.  Perform spectral filter operation: 

  �̂�𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 =  𝑔𝜃(𝛻) �̂� 

6.  Apply inverse transformation: 

  𝑌 = 𝑈 �̂�𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 

7.  Apply a nonlinear activation function: 

  𝑌 = 𝑅𝑒𝐿𝑈(𝑌) 

8.  return 𝑌 

 

The spatial layer operations are shown in 

Algorithm 3. The steps involved in spatial layer are: 

 

A) Weighted Aggregation and Normalization: In 

spatial graph convolution, convolutional filters 

are applied directly to the local neighborhood of 

each node in the graph. Let, 𝒩(𝑖) represent the 

neighborhood of node 𝑖. The output feature 𝑌 of 

node 𝑖 is computed using Eq. (2). 

 

𝑌𝑖 = 𝜎 (∑
1

𝑐𝑖𝑗
𝑋𝑗𝑊𝑗∈𝑁(𝑖) )                                     (2) 

 

Where, 𝑋𝑗 is the input feature of node 𝑗, 𝜎 is an 

activation function, 𝑊  is the weight matrix, and 

normalization factor 𝑐𝑖𝑗. 

 

B) Parameter Sharing: Spatial Graph 

Convolutional filters share weights across 

different node neighborhoods. This allows the 

model to learn from the entire graph structure and 

generalize better. 

 

C) Aggregation Function: To aggregate the 

information from neighboring nodes, different 

aggregation functions such as simple averaging, 

weighted sum, or more complex attention 

mechanisms, can be used. 

 

D) Activation Function: Softmax activation 

function is applied to have non-linearity in the 

model. 

 

Algorithm 3: Pseudocode for spatial layer 

Input: Node features for each node: X 

  Neighbourhood: 𝒩 

Network Graph: G(V, E) 

Output

: 
Node outputs: 𝑌 

1.  for each node 𝑖  
2.   for each node 𝑗 ∈ 𝒩(𝑖) 

3.    𝑌𝑖 = weighted_aggregation(𝑋𝑖, 𝑋𝑗) 

4.    𝑌𝑖 = normalize(𝑌𝑖𝑖
) 

5.   end 

6.   𝑌𝑖 = activation(𝑌𝑖) 

7.   propagate updated 𝑌𝑖 with 𝒩(𝑖) 

8.  end 

9.  repeat until 𝑌 values stabilize 

10.  return 𝑌 
 

In order to capture diverse and complex patterns 

in botnet activity, an attention mechanism is modified 

by applying a linear transformation to the input data 

𝑋, which generates a transformed matrix of 𝑋 into 

queries (Q), keys (K), and values (V).  

 

 
Figure. 3 Modified Attention Block 
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Table 2. Botnets used for generating real-world datasets 

Dataset Botnet Used 

N-BaIoT [33] BASHLITE and Mirai  

BoT-IoT [34] Tool Generated  

CTU-13 [35] Neris, NSIS.ay, Menti, Murlo, 

Sogou, Rbot and Virut 

CICIDS [36] ARES 

 

 

The proposed attention mechanism is presented in 

Fig. 3. In a multi-head attention mechanism, each 

head independently learns different aspects of the 

input data by applying separate linear 

transformations and attention processes. The linear 

transformation for Q, K, and V can be expressed in 

Eq. (3): 

 

𝑄 = 𝑋𝑊𝑄 + 𝑏𝑄; 𝐾 =  

𝑋𝑊𝐾 + 𝑏𝐾; 𝑉 = 𝑋𝑊𝑣 + 𝑏𝑣                                  (3) 

 

Where, b is bias vector and 𝑊 is weight matrix. 

  

The layered GrMA-CNN architecture is 

mathematically denoted in Eq. (4). 

 

𝑔(𝐹𝑣 , 𝐹𝑒, 𝐴) =  

𝐴 ̂ 𝑈 (𝐴 𝐹𝑒  𝑈 (𝐴 ̂𝐹𝑣  𝑊1
𝑔

)𝑊2
𝑎𝑡𝑡)𝑊3

𝑔
                     (4) 

 

Here, 𝑊1
𝑔

 𝑊2
𝑎𝑡𝑡  and 𝑊3

𝑔
 are hidden layer 

weights. �̂� is the normalized Laplacian matrix of 𝐴. 

Furthermore, a non-linear activation, ReLU, is 

employed to learn complex patterns and relationships. 

It is shown in Eq. (5): 

 

𝑅𝑒𝐿𝑈(𝐻) = 𝑚𝑎𝑥(0, 𝐻) = {
 𝐻𝑖𝑗, 𝑖𝑓 𝐻𝑖𝑗 > 0

0, 𝑖𝑓 𝐻𝑖𝑗 ≤ 0
    (5) 

 

In the proposed approach, the first layer focuses 

on learning the graph structure with the help of the 

eigen decomposition of the graph Laplacian matrix. 

Furthermore, the mean aggregation of edge weights 

is used to update the graph nodes. In the next stage, a 

non-linear activation function is applied after the 

aggregation operation. The attention mechanism 

concurrently processes all heads, determining the 

attention of each head. The final prediction of an 

attention head, 𝐴ℎ, is derived using Eq. (6). 

 

𝐴ℎ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥  (
𝑄×𝐾𝑇

√𝑑𝑞
) × 𝑉                                     (6) 

 

4. Results  

4.1 Experimental setup 

The proposed GrMA-CNN model is developed 

using Python 3.9.7 along with the Pandas, Numpy, 

Sciki-Learn, Network, TensorFlow, and Keras 

libraries, which are installed on Windows 11 OS. The 

performance of the model is evaluated on a wide 

range of real-world botnets shown in Table 2. The top 

features extracted by the proposed hybrid feature 

extraction method is presented in Table 3. For 

training 70% of the samples are used, and the 

remaining 30% are reserved for testing.  

CTU-13: It includes the logs of botnet traffic that 

were obtained in 2011 at the Czech University of 

Technology [35]. Real botnet traffic was seen in this 

dataset, intermingled with background and regular 

traffic. In CTU- 13 dataset, the traffic flow is labelled 

into three classes: normal, background, and botnet 

traffic. It has 20,643,076 traffic flows, of which 

369,806 are normal flow, 19,829,404 are background 

flow, and 443,866 flows are botnet traffic. 

 
Table 3. List of top features extracted and their rationale 

for botnet detection 

Feature Rationale 

Node Degree  Botnet devices often establish 

numerous connections having high 

degrees. 

Source- 

Destination Pair 

Frequency  

Botnets often communicate 

frequently between a small set of 

devices. Hence exhibits high 

Source- Destination Pair Frequency. 

Edge Weight  High-weight edges indicate 

frequent or long-lasting 

communication between nodes, 

indicating botnet-controlled 

devices. 

Betweenness 

Centrality  

Nodes with high betweenness 

centrality facilitate connection 

between other nodes acting as 

botnet controllers. 

Flow Duration  Botnet traffic often exhibits 

abnormal session durations, either 

very short or very long. 

Community 

Identification 

Botnets often form isolated 

communities of devices that 

communicate more frequently 

within the group. 

Node Feature 

Similarity 

Bots in a botnet often exhibit similar 

behavioural patterns across devices. 

Bytes 

Transferred  

Abnormal data flows, such as large-

scale exfiltration or DDoS attacks, 

indicate botnet activity. Monitoring 

byte transfers helps in detecting 

unusual traffic patterns. 
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Table 4. Performance metrics and their descriptions for evaluating the proposed model 

Metric Description Formula 

Accuracy It is the proportion of instances that are correctly identified 

by the model as either bot or normal. 
𝐴𝑐𝑐 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (7) 

Precision It is the fraction of samples correctly identified as bot to the 

overall samples classified as bot by the model.  
𝑃𝑟 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (8) 

Recall It is the fraction of the bot instances in the dataset that are 

correctly identified as bot by the model. 
𝑅𝑒 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (9) 

F1-score It is the harmonic mean of recall and precision. It is useful 

when the class distribution is imbalanced. 
𝐹1 =  

2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
 (10) 

 
Table 5. Hyperparameters used in Implementation and 

Simulation of the proposed approach 

 
Table 6. Performance of the proposed GrMA-CNN 

Metric N-BaIoT BoT-

IoT 

CTU-13 CIC-

IDS 

Acc 99.1 99.2 99.15 99.3 

Pr 98.5 98.8 99.3 98.5 

Re 99.2 99.25 99.85 97.8 

F1 98.6 98.75 98.5 98.2 

 

 

N-BaIoT: This dataset [33] was generated by 

considering the attacks of Mirai and Bashlite botnets 

in IoT devices. It has 116 distinct features providing 

significant information. The N-BaIoT dataset has 

7,062,606 instances and is labelled into two classes, 

i.e., normal and botnet instances. It has 555,932 

normal instances and 6,506,674 bot instances. 

Bot-IoT: The Cyber Range Lab created this 

dataset [34] to simulate an authentic network 

environment for IoT. There are 46 features which 

includes parameters unique to IoT devices and their 

framework. The BoT-IoT dataset has 72,000,000 

records belonging to two classes. Here, 9,543 records 

are normal flows and the remaining are botnet attack 

flows that performs various malicious activities. 

CICIDS: The Canadian Institute generated the 

CICIDS dataset [36] for cybersecurity, which 

consists of a large volume of network traffic, with the 

most recent prevalent attacks representing real-world 

data. It contains both malicious and benign records of 

network traffic. The CICIDS dataset has 529,918 

normal records and 191,033 bot attack records. 

4.2 Metrics for performance measurement 

The true positive (TP), false positive (FP), true 

negative (TN), and false negative (FN) values are 

used to measure the performance of the model. The 

statistical performance metrics like F1-score, 

accuracy, recall, and precision, of the proposed 

GrMA-CNN approach are measured using the Eq. 

(7)-(10) mentioned in Table 4. 

4.3 Performance analysis 

The implementation and simulation parameters 

used in this research work are studied using grid 

search. The parameter values that provide optimal 

performance are presented in Table 5. 

The proposed model demonstrated 99.10%, 

99.20%, 99.15%, and 99.30% accuracy on the N-

BaIoT, BoT-IoT, CTU-13, and CICIDS datasets, 

respectively. The performance of GrMA-CNN on 

different datasets is mentioned in Table 6. 

 

 

 
Figure. 4 Performance of the proposed GrMA-CNN on 

different datasets 

Parameter Value 

Activation Function ReLU 

Attention Dropout 0.1 

Attention Mechanism Multi-head 

Batch Size 64 

Correlation Method Pearson 

Dropout 0.5 

Epochs 50 

Hidden Units [64, 32] 

Learning Rate 0.001 

Loss Method Cross-entropy 

Message Aggregation Mean 

Number of Neighbors 5 

Number of heads 8 

Number of Layers 8 

Number of Neurons 64 

Optimizer Adam 

Testing Samples 30% 

Training Samples 70% 

Weight Decay 0.0001 
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Figure. 5 The ROC curve obtained the proposed model on 

different datasets 

 

 
Table 7. Performance of proposed approach with different 

resampling methods on CTU-13 for 100K samples 

Method Class Acc F1 

GrMA-CNN  

+ SMOTE 

Normal 99.23 98.62 

Botnet 99.10 98.44 

GrMA-CNN  

+ GAN 

Normal 98.66 97.16 

Botnet 97.22 95.86 

GrMA-CNN  

+ Cost-Sensitive 

Normal 98.92 98.36 

Botnet 97.56 97.26 

GrMA-CNN  

(No resampling) 

Normal 96.25 95.16 

Botnet 93.65 93.15 

 

 

The Fig. 4 demonstrates the model’s 

effectiveness in stopping and identifying IoT botnet 

attacks. The model achieves an average precision rate 

of 98.8%, a recall rate of 99%, and an F1-score of 

98.5% on all the datasets. 

The ROC curve obtained at multiple thresholds 

that represent the range of TPR and FPR values is 

displayed in Fig. 5. The area under the curve (AUC) 

of the ROC curve indicates the effectiveness of the 

model. The proposed model has obtained an AUC of 

0.96 on N-BaIoT, 0.94 on BoT-IoT, 0.97 on CTU-13, 

and 0.95 on CICIDS datasets. The suggested model 

has strong discriminatory strength in separating bots 

from normal traffic, as indicated by the ROC curve. 

Table 7 compares the performance of GrMA-

CNN with various resampling techniques on the 

imbalanced CTU-13 dataset. Among the methods, 

SMOTE achieves the best overall results, 

significantly enhancing Accuracy and F1-score for 

both majority normal and minority botnet classes, 

followed closely by GAN. In contrast, the model 

without balancing struggles with class imbalance, 

demonstrating the necessity of resampling techniques 

for robust botnet detection. 

Table 8 presents the performance metrics of the 

proposed method on the CTU-13 dataset across 

varying numbers of nodes, highlighting its scalability 

and efficiency. The performance of the model 

remains consistently high, with a slight decline as the 

number of nodes increases. Training time and 

memory usage grow proportionally with dataset size, 

reflecting the computational demands of larger 

graphs. Inference time per node remains manageable, 

demonstrating the method's suitability for real-world 

applications with substantial data volumes. 

4.4 Comparative analysis 

The Table 9 highlights the superiority of the 

proposed GrMA-CNN compared to advanced models 

on the CTU-13 dataset. GrMA-CNN achieves the 

highest accuracy (99.15%) and F1 score (98.52%) 

while maintaining efficient training time, lower 

memory consumption, and linear scalability up to 1M 

nodes. In contrast, Transformer and GAT models 

exhibit significantly lower performance, higher 

resource demands, and limited scalability, 

particularly struggling with larger datasets.  

 

 
Table 8. Performance of the proposed method on different numbers of nodes on CTU-13 dataset 

Nodes Acc Pr Re F1 Training Time Inference Time (per node) Memory 

1K 99.28 99.18 99.18 98.84 2 min 5 s 0.21 GB 

10K 99.25 99.15 99.14 98.83 9 min 7 s 0.35 GB 

100K 99.22 99.10 99.09 98.75 39 min 11 s 0.73 GB 

1M 99.18 99.04 99.05 98.72 92 min 19 s 1.19 GB 

 
Table 9. Performance comparison of proposed method with advanced models on CTU-13 dataset for 100K nodes 

Method Acc F1 Training 

Time 

Inference Time 

(per node) 

Memory 

Consumed 

Scalability (Devices) 

GrMA-CNN 99.15 98.52 39 min 11 s 0.73 GB Linear scaling up to 1M 

Transformer 89.32 89.32 56 min 22 s 1.34 GB Sub-linear scaling, 

struggles > 500K 

GAT 85.62 85.62 72 min 35 s 1.03 GB Poor scaling > 100K 
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Table 10. Performance comparison of GrMA-CNN with existing state-of-the-art works 

Dataset Work Year Accuracy Precision Recall F1-score 

N-BaIoT SGDC [18] 2024 98.42 98.43 98.42 98.41 

DNN [6] 2024 97.21 91.41 87.31 88.48 

IHHO-NN [24] 2023 98.07 97.04 98.73 97.87 

WCC [21] 2022 96.70 94.90 94.70 94.80 

GrMA-CNN - 99.10 98.50 99.20 98.60 

CTU-13 [10] 2024 96.73 92 91.03 84 

[26] 2024 91.73 89.73 94.69 92.14 

[22] 2023 92.21 92.21 92.21 92.21 

[4] 2021 97.00 98.10 99.60 98 

GrMA-CNN - 99.15 99.30 99.85 98.50 

CICIDS UNR-IDD [5] 2023 99.00 96.00 91.00 93.00 

[7] 2022 98.58 96.67 97.15 96.21 

GrMA-CNN - 99.30 98.50 97.80 98.20 

BoT-IoT SGDC [18] 2024 92.28 92.28 92.48 92.37 

Genetic [25] 2023 97 97 97 97 

DBO-Catboost [29] 2023 98.57 98.62 98.57 98.57 

Fuzzy [20] 2022 96.41 98.80 98.80 98.80 

GrMA-CNN - 99.20 98.80 99.25 98.75 

 

 

The performance comparison across N-BaIoT, 

CTU-13, CICIDS, and BoT-IoT datasets presented in 

Table 10 highlights the superiority of the GrMA-

CNN model. GrMA-CNN achieves the highest 

accuracy consistently surpassing other approaches. It 

also demonstrates strong precision, recall, and F1-

scores, reflecting its balanced and robust 

performance. Competing models like SGDC, DBO-

CatBoost, and IHHO-NN exhibit good results but fall 

short of GrMA-CNN's adaptability and effectiveness, 

particularly in datasets with complex patterns like 

BoT-IoT. For instance, on CTU-13, GrMA-CNN 

outperforms [4] (97.00% accuracy), and on CICIDS, 

it exceeds UNR-IDD ([5], 99.00%). Notably, the 

Fuzzy method ([20]) shows high precision and recall 

for BoT-IoT but lower accuracy (96.41%). GrMA-

CNN’s ability to generalize across diverse datasets 

establishes it as a state-of-the-art model for botnet 

detection, combining efficiency and scalability for 

real-world applications. 

4.5 Discussions 

The results obtained by the proposed GrMA-

CNN model are discussed here to present insights 

into the findings. In our research, the dimensionality 

challenge is mitigated by employing a hybrid feature 

selection method that selects only the most relevant 

features. SMOTE is then applied to this reduced 

feature set, ensuring that synthetic samples are 

generated in a compact feature space, thereby 

eliminating the impact of high dimensionality. The 

proposed model does not read the contents of network 

packets and is thus immune to encrypted botnet 

traffic, overcoming the drawbacks of existing 

methods. To verify the performance on a wide range 

of large-scale real-world botnets, the proposed 

method is evaluated on four different real-world 

network traffic flow datasets. The hyperparameters 

are tuned to provide optimal performance using a grid 

search. The GrMA-CNN model has obtained a mean 

accuracy of 99.2%, precision of 99.15%, recall of 

98.95%, and F1-score of 98.55% across all the 

datasets. This suggests that the model performs well, 

with lower false positive and false negative rates. The 

ROC curve indicates that the model converges during 

the training stage and has strong discriminatory 

power in detecting botnets. The class-wise 

performance obtained by the GrMA-CNN model 

shows the model's ability to detect minority classes. 

Futher, the experimental results shows that the 

proposed model is stable and scalable for large 

datasets.  

5. Conclusions and future work  

The attack detection in IoT environments is 

critical to many real-time applications, since the 

increased demand for IoT devices leads to an increase 

in vulnerability to different attacks. Many models 

have been suggested to enhance the performance of 

bot attack detection. However, traditional methods 

face several challenges due to imbalanced training 

data. In this work, a hybrid feature extraction is 

employed using PCA, correlation analysis and 

mutual information methods to extract robust 

features. Finally, the GCN based approach with 

modified attention block is implemented to enhance 

the ability of the learning process with spectral and 

spatial layers to capture complex information. The 
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performance of the GrMA-CNN is validated on 

benchmark datasets such as N-BaIoT, BoT-IoT, 

CTU-13, and CICIDS, which yield over a 99% 

detection rate with lower false positive rates. The 

proposed approach demonstrated better performance 

than other detection methods such as DNN, SGDC, 

WCC, and IHHO-NN. Future work on the proposed 

botnet detection model could focus on several areas 

to expand and enhance the security solution for IoT 

networks. The GrMA-CNN model can also be 

applied to detect other types of network attacks, such 

as intrusion detection, distributed denial-of-service 

(DDoS) attacks, and phishing attacks. Additional 

features beyond traffic flow data, such as device 

behaviour metrics, binary code analysis, and domain 

name server requests, to derive a holistic 

understanding of botnet activities. 
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