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Abstract: Uncertainty triggers everyone involved in activities in this world to adapt well, including visually impaired 

people. Therefore, this paper proposed a smart glasses model based on the Self-Adaptive Cyber-Physical System to 

help visually impaired people live their days. This model was equipped with object recognition capabilities as an 

extension of YOLOv10m and Relative Positional Encoding (RPE) where it was placed in the attention module and 

subsequently combined with Partial Self-Attention (PSA) to create a better understanding of spatial features compared 

to the attention module previously. Therefore, we introduced a new variant called Relative Partial Self-Attention 

(RPSA) YOLOv10. Our model indicated adaptability based on contextual knowledge, such as calculating object 

distances and the ability to work at low light intensity. Additionally, our model also operates through voice commands 

and voice notifications. The evaluative results of the model trained with the MS COCO dataset signified mAP50, 

mAP75, and mAP50-95 values of 67.3%, 54.5%, and 50.2% respectively with an inference speed of 8.4 ms/image. 

These results demonstrated better performance compared to other versions of the YOLO model, notably in evaluations 

using small datasets with an increase in mAP50-95 of 30.8% compared to the YOLOv10 model. In addition, our 

designed adaptive system can handle the problem of estimating object distances with an average error of 15.95%. 

Further, it can work on light intensity problems with a stable increase in average brightness reaching 95.65. 

Keywords: Contextual knowledge, RPSA-YOLOv10, Self-adaptive cyber-physical system, Smart glasses. 

 

 

1. Introduction 

The rapid development of technology requires 

everyone to be able to adapt, including visually-

impaired people. These demands make it quite 

challenging for visually impaired people to even get 

through their days [1]. World Health Organization 

(WHO) reported that around 2.2 billion worldwide 

experience visual impairment, including blindness 

[2]. This proves that many people suffering from eye 

problems require a solution. Myriad investigative 

results offer assistant devices as a solution to this 

problem [3, 4], and can be divided into two types, 

namely wearable devices and non-wearable devices. 

Wearable devices are often selected by researchers 

because they provide better practical functions 

compared to non-wearable devices [4]. Another 

factor is that wearable devices are more flexible when 

combined with artificial intelligence (AI) [1]. 

Moreover, one type of assistant device (smart 

glasses) is the wearable device most widely 

developed by researchers [5, 6]. 

Generally speaking, the advancement of smart 

glasses is equipped with object detection/recognition 

features as replacement eyes for impaired people [5, 

7]. This feature is considered the most effective in 

smart glasses architecture. However, most of them 

still apply old models, such as YOLOv3, Faster-

RCNN, SSD MobileNet v2, ResNet, etc. [1, 6, 8]. 

Apart from that, other features can be added, such as 

voice feedback, speech recognition, and distance 

estimation to enhance the functionality of smart 

glasses. Unfortunately, the speech recognition and 

distance estimation features still receive less attention 

from researchers, notably the distance estimation 

feature [6]. In this feature, the calculation process is 

generally focused on the employment of sensor 
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modules [9, 10]. This can reduce the practicality of 

smart glasses devices. 

Based on this description, there are still gaps 

providing opportunities for our research. One of them 

is fostering object detection capabilities on smart 

glasses with YOLOv10 [11] and modifying the 

attention mechanism to boost model performance. 

This modification was performed by combining the 

Partial Self-Attention (PSA) module used in 

YOLOv10 with Relative Positional Encoding (RPE). 

The addition of RPE was undertaken so that the 

attention module embedded in YOLOv10 was able to 

extract spatial features better than before. As a result, 

this modification was expected to help improve the 

performance of the object detection model in 

conducting its task of recognizing various objects and 

obstacles for visually impaired people. Besides, we 

included adaptability by developing object distance 

estimates without sensors and adaptive light 

detection to overcome uncertainty caused by an 

extension of the Self-Adaptive Cyber Physical 

System (SACPS) rule [12]. Moreover, we also 

targeted the addition of voice feedback and speech 

recognition features to raise the functionality of the 

smart glasses. 

This paper consists of several main parts, namely 

introduction (first part), related works explaining the 

latest studies related to smart glasses for the visually 

impaired people (second part), proposed method 

containing our proposed methods and novelties (third 

part), experiments undertaken to validate the results 

of our designed method and novelty (fourth section), 

and conclusion from the entire research (fifth section). 

2. Related works 

2.1 Based on deep learning 

Currently, the employment of deep learning-

based object detection is a predominant component 

of environmental recognition in smart glasses. For 

instance, Islam et al. [13] cultivated object detection 

with the SSDLite MobilNet v2 model and trained 

with the Microsoft Common Object in Context (MS 

COCO) dataset and hyperparameter optimization 

with particle swarm optimization (PSO). The model 

produced 88.89% accuracy with a real-time 

processing speed of 2.15 FPS on a Raspberry Pi 4B 

system. Also, the device was equipped with voice 

feedback. In a similar vein, Mukhiddinov and Cho 

[14] applied deep learning embedded in smart glasses 

with Detection Transformer (DETR) for object and 

text recognition functions trained on the Ms COCO, 

ExDark, and LOL datasets. As a result, the mAP50 

value was 63.5% for object detection and 92.8% for 

text detection. The model also handled light intensity 

and voice feedback. Leong and Ramasamy [15] 

created smart glasses with object and distance 

detection based on SSD MobileNet v1 and 

EfficientDet which were quite light and performed 

extremely well on the MS COCO and PASCAL VOC 

datasets. The device comprised audio and vibration 

feedback controlled via voice commands. 

Lee and Cho's scrutiny [16] integrated object 

recognition, object extraction, outlining, and braille 

conversion in smart glasses. YOLOv3 [17] was 

employed to handle multi-class problems at that time 

[18]. The model was highly efficient with an average 

braille conversion accuracy of 85% and detection 

accuracy of 90%. The use of YOLOv3 has proven to 

be considerably good when applied to smart glasses. 

As evidence, YOLOv3 was embedded in smart 

glasses [9, 19, 20], these three studies combined 

YOLOv3 with voice feedback generated by a text-to-

speech (TTS) model. Xia et al. [21] adapted 

YOLOv3-Tiny for the detection model. The model 

applied speech commands through the ConvT model 

combined with a Transducer and Weak-Attention 

Suppression (WAS). Hence, it was able to provide a 

good device and user interaction experience. Other 

results covered obstacle detection, navigation, traffic 

light detection, NFC payment, emergency calls, and 

guardian monitoring. 

Different from smart glasses in general, Chang et 

al. [22] proposed IoT-based smart glasses to 

recognize medicines in pill form. This device was 

remote via smartphone and integrated with the cloud. 

The detection model was built by a combination of 

SSD, ResNet-50, and FPN and voice feedback. As a 

result, the mAP50 value was 35% with an inference 

speed of 76 ms/image when trained on the MS COCO 

dataset. Similar to Chang et al. [22], Li et al. [23] 

proposed artificial IoT-based and multi-functional 

smart glasses. This device was equipped with object 

detection, object distance measurement, and text 

recognition. YOLOv5 and Optical Character 

Recognition (OCR) were adopted through the 

Convolutional Recurrent Neural Networks (CRNN) 

[24] architecture to reach extremely high accuracy 

when detecting characters [25]. The results reported 

that object and text detection accuracy reached 

92.16% and 99.91%. 

Zhu et al. [26] utilized deep learning and acoustic 

touch as a substitute for voice feedback in smart 

glasses. This combination created convenience for 

users without significantly increasing cognitive load. 

The acoustic touch technique changed objects 

entering the field device of view into diverse sound 

icons [26]. Converting objects into sound icons had 

been conducted previously through YOLOv5. This 
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model produces better smart glasses than traditional 

smart glasses. 

2.2 Based on sensor 

The use of sensors is another alternative to smart 

glasses. Faster reception of information becomes the 

primary reason [8]. Busaeed et al. [27] created the 

LidSonic system which is a machine learning-based 

device with LiDAR and ultrasonics for visually-

impaired people. This system adopted an HC-SR04 

ultrasonic sensor, TFmini-s LiDAR, laser, servo, and 

Bluetooth module connected to an Arduino Uno 

microcontroller and smartphone. This method 

offered a cost-effective, easy-to-use solution to 

enhance mobility and independence for visually 

impaired people. Bouteraa [28] proposed smart 

navigation for visually impaired people by adopting 

a Robot Operating System (ROS), ultrasonic sensors, 

and LIDAR to detect obstacles. The data were 

processed by the Raspberry Pi 4 and classified by a 

fuzzy classifier. The results were conveyed via a 

haptic and voice interface to the users. The results 

revealed that this system was effective in navigating 

indoor and outdoor environments with high accuracy, 

responsive feedback, and increasing movement 

independence for visually impaired people. 

2.3 Comparison of related research 

The development of smart glasses in this paper is 

based on related research as presented in Table 1. Our 

research adapted YOLOv10 with additional 

modifications in the form of a combination of Partial 

Self-Attention (PSA) and Relative Positional 

Encoding (RPE) to be applied as an object detection 

model on our developing device. As a result, it 

indicates more accurate object detection with support 

for adaptability. Our model is capable of operating in 

indoor-outdoor environments with low light intensity. 

Apart from that, there are navigating and object 

search modes to be adjusted via voice commands.  

 

 
Table 1. Comparison of smart glasses models 

Auth

or 

Model/ 

Sensor 

Object 

Recogniti

on 

Voice 

Feedbac

k 

Speech 

Comma

nd 

Object 

Distance 

Estimati

on 

Determini

ng Object 

Location 

Low 

Light 

Intensit

y 

Indoo

r 

Outdo

or 

Navigati

on Mode 

Objec

t 

Searc

h 

Mode 

Ability to 

Address 

Contextu

al 

Knowled

ge 

[13] 

SSDLite 

MobileNet 

v2 

√ √ √ - - - √ √ √ - - 

[14] 

DETR-

DC5-

R101 

√ √ - - - √ √ √ √ - - 

[15] 

SSD 

MobileNet 

v1 and 

EfficientD

et 

√ √ √ √ - - √ √ √ - - 

[16] YOLOv3 √ √ - - - - √ √ √ - - 

[19] YOLOv3 √ √ - - - - √ √ √ - - 

[9] YOLOv3 √ √ - √ - - √ √ √ - - 

[20] YOLOv3 √ √ - √ - - √ √ √ - - 

[21] 
YOLOv3-

tiny 
√ √ √ - - √ - √ √ - - 

[22] 

SSD-

ResNet50-

FPN 

√ √ - - - - √ - - - - 

[23] YOLOv5 √ √ - √ - - √ √ √ - - 

[26] 
YOLOv5

m 
√ √ - √ √ - √ - - √ - 

[27] LiDAR - √ √ √ - √ √ √ √ - - 

[28] LiDAR - √ - √ √ √ √ √ √ - - 

Our 

Mode

l 

RPSA-

YOLOv10 
√ √ √ √ √ √ √ √ √ √ √ 
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Implementing the voice feedback feature as an output 

can enhance the functionality of our smart glasses. 

Eventually, we have added contextual knowledge 

handling (e.g. the form of variability in light intensity 

and object dimensions). This function can increase 

the adaptability of smart glasses to their 

environmental context. 

3. Proposed method 

The smart glasses architecture proposed by us 

(Fig.1) consisted of two components, namely 

physical and cyber systems based on processes 

undertaken at run-time [12, 29]. In the physical 

system section, interaction occurred between the 

users and the smart glasses hardware via voice 

commands, and the results were returned to the users 

in the form of sounds. Processing commands from 

users was performed in the cyber system section 

consisting of three models, namely the detection and 

distance estimation model, speech recognition model, 

and text-to-speech (TTS) model. In the speech 

recognition model, we employed the Speech 

Recognition module. For the TTS model, we utilized 

the gTTS module in Python. We designed the 

detection and distance estimation model with 

adaptability to handle context uncertainty [30]. In 

addition, we modified YOLOv10 to boost the 

performance of the object detection model. The 

created modifications took place in the attention 

mechanism section, namely by combining 

convolution, attention mechanism [31], and feed-

forward network (FFN). 

The partial Self-Attention module (PSA) in Fig. 2 

was designed to overcome computational complexity 

and high memory usage [11]. After 1x1 convolution, 

the feature was partitioned into two. Only one part 

was processed through the NPSA block, namely 

Multi-Head Self-Attention (MHSA) and FFN. Both 

were combined and fused with 1x1 convolution. PSA 

applied BatchNorm which was faster than 

LayerNorm. It was situated after Stage 4 with the 

lowest resolution to avoid computational overhead. 

In this way, PSA enhanced model learning for global 

representation with low computational cost. Hence, it 

was able to boost the performance of YOLOv10 [11]. 

Unfortunately, traditional self-attention in PSA often 

faced challenges in capturing relative position 

information between elements in pivotal data for 

visual tasks. For this reason, we proposed Relative 

Partial Self-Attention (RPSA) embedded in 

YOLOv10. In particular, we modified PSA with 

relative positional encoding (RPE) [32] allowing the 

model to understand spatial context better with high 

accuracy. We also added new layers in the form of 

Dropout and BatchNorm2D for training 

regularization and stabilization to improve model 

generalization and faster convergence. Fig. 3 

signifies the modified PSA module. First, the data 

went through 1x1 convolution to change the feature 

dimensions. Then, it was divided into two equal parts.  

 

 

 
Figure. 1 Smart glasses architecture 
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Figure. 2 Partial self-attention module (PSA) [11] 

 

 

 
Figure. 3 PSA Improvements on YOLOv10 

 

 

The first part was processed through MHSA [33] 

which is equipped with relative positional encoding 

to understand the spatial context better. The results 

went to the normalization layer to stabilize the 

activation distribution. This part was passed to FFN 

possessing dropout to reduce overfitting. The two 

parts were recombined before going through a final 

1x1 convolution for output. With this structure, PSA 

had a more efficient and stable global representation. 

Also, PSA improved model performance. We 

formulated handling uncertainty by contextual 

knowledge supported with contextual acceptance 

before variability enters the machine. As a result, the 

model could adapt to changing light intensity and 

calculate approximate object distances under 

conditions of diverse object dimensions, as 

represented in Table 2. 

The adaptative pattern illustrated in Table 2 is an 

algorithm aimed at performing context-based 

adaptation by taking into account the variability  

 

Table 2. Algorithm for receiving contextual knowledge 

Smart glasses adaptive pattern 

I ← C1, C2, C3 

do 

let 

I ← inference model 

// Monitoring (M) // receiving contextual knowledge 

for I in the run-time artifact, do 

     if (C2) or (C1 and C2) in run-time artifact, then 

          send information C2 to analyzer_manager 

     else if (C1 and C3) or (C1 and C2 and C3) in run-time 

artifact, then 

          send information C3 to analyzer_manager 

     endif 

endfor 

// Cognition (CG) 

for each Ci in analyzer_manager, do 

    if C2 is True, then 

       increase brightness for I 

    if C3 is True, then 

       O ← predict_object(C1) 

       if O is in C1, then 

          calculate w and h in O 

          if w is True, then 

            calculate D from the camera to O 

          endif 

       else 

          O ← empty_set 

       endif 

    endif 

endfor 

// Configuration (CF) 

if O is empty_set and C2 is True, then 

   system ← increase brightness for I 

else if O is not empty_set and LI is True, then 

   system ← increase brightness for I 

   system ← calculate D from camera to O 

   system ← release voice feedback 

endif 

for each system in run-time artifact, do  

   send information to M 

endfor 

 

 

contained in the image (I) represented by parameters 

C1, C2, and C3. The algorithm was adapted from our 

previous research by focusing on three main 

components [12]. To illustrate, the first was the 

Monitoring (M) section where the system detected 

run-time artifacts (I) to determine whether certain 

contextual parameters (C1, C2, C3) were detected by 

setting the rule scheme subsequently: 

Rule-1: 𝑖𝑓(𝐶2 ∨ (𝐶1 ∧ 𝐶2)   
𝑡ℎ𝑒𝑛 𝑠𝑒𝑛𝑑 𝐶2 𝑡𝑜 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑟_𝑚𝑎𝑛𝑎𝑔𝑒𝑟  

Rule-2: 𝑖𝑓((𝐶1 ∧ 𝐶3) ∨ (𝐶1 ∧ 𝐶2 ∧ 𝐶3))  

𝑡ℎ𝑒𝑛 𝑠𝑒𝑛𝑑 𝐶3 𝑡𝑜 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑟_𝑚𝑎𝑛𝑎𝑔𝑒𝑟  

Where C1 was the object detected in the image as 

a result of inference with 𝐶1 =  𝑓(𝐼)  and where 
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𝑓(𝐼) = {𝑂1,  𝑂2, … ,  𝑂𝑛},  𝑂𝑛 ∈  detected objects, 𝐶2 

was the low light intensity calculated based on the 

average pixel intensity using Eq. (1). 

 

𝐶2 =
1

|𝐼𝑛𝑡|
∑ 𝐼𝑛𝑡𝑖

|𝐼𝑛𝑡|
𝑖=1       (1) 

  

Where Int was the light intensity value in pixels 

based on the RGB color channel value, 𝐶3 was the 

object dimension in pixels (w, h) based on the size of 

the bounding box surrounding the detected object. 

The second stage in this adaptative pattern was the 

Cognition (CG) part aimed to analyze information 

from the monitoring stage and take action based on 

parameter values , 𝐶2 and, 𝐶3. If the condition where, 

𝐶2  was sent to the analyzer manager and the, 𝐶2 

value was smaller than the threshold, then the system 

increased the brightness via Eq. (2). 

 

𝐵 = 𝐶2 ∙ 𝐹       (2) 

  

Where B was the new light intensity value 

resulting from the increase and F was a multiplier 

factor which must be 𝐹 >  1. Next, if an object (O) 

was detected then the system calculated (𝑤, ℎ)   

dimensions and distance based on the object distance 

calculation method in Table 3. However, if no object 

was found then  𝑂 = ∅ .. Finally, the adaptative 

pattern would go through the Configuration (𝐶𝐹) 

section aimed to execute actions based on the analysis 

results. Similar to part M,  (𝐶𝐹)  applied a rules 

scheme in carrying out its execution with the 

following rules: 

Rule-3: 𝑖𝑓(𝑂 = ∅ 𝑎𝑛𝑑 𝐶2 𝑖𝑠 𝑇𝑟𝑢𝑒)   
𝑡ℎ𝑒𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠: 𝐵 →
𝐼  

Rule-4: 𝑖𝑓(𝑂 ≠ ∅ 𝑎𝑛𝑑 𝐶2 𝑖𝑠 𝑇𝑟𝑢𝑒)  
𝑡ℎ𝑒𝑛 𝑆𝑦𝑠𝑡𝑒𝑚 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠,   
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝐷 𝑎𝑛𝑑 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑣𝑜𝑖𝑐𝑒 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘   

All information from this CF was sent back to the 

monitoring stage to ensure real-time system 

adaptation. In order to clarify our adopted distance 

calculation method, we display the method in Table 

3. Table 3 demonstrates the object distance 

calculation method extended from [34, 35]. 

Calculation of object distance required initialization 

in the form of O. The result of object detection by the 

system and focal length (𝑓𝑥, 𝑓𝑦) from the calibration 

of the camera was adopted. The process began by 

calculating each dimension of 𝑂𝑖 in 𝐶1 detected by 

the system. The object dimension value was obtained 

from the bounding box created for each Oi with 

corner points marked by 𝑡𝑙 (top-left), 𝑡𝑟 (top-right), 

𝑏𝑙  (bottom-left), and 𝑏𝑟  (bottom-left). The  

 

Table 3. Method for calculating object distance 

Distance Calculation Pattern 

O ← predict_object(C1) 

get the focal length (𝑓𝑥, 𝑓𝑦) from  camera calibration 

// Pixel to cm conversion factor 

𝑓 =
𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑏𝑗𝑒𝑐𝑡 𝑡ℎ𝑒 

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑏𝑗𝑒𝑐𝑡
 

// Calculate object dimensions 

for O in C1, do 

   create bounding_box for Oi with point (tl, tr, bl, br) 

   if Oi has bounding_box, then 

     determine midpoint: 

         top:  

             (𝑡𝑝𝑋, 𝑡𝑝𝑌) = (
𝑡𝑙0+𝑡𝑟0

2
,

𝑡𝑙1+𝑡𝑟1

2
)                              (3) 

         bottom: 

              (𝑏𝑚𝑋, 𝑏𝑚𝑌) = (
𝑏𝑙0+𝑏𝑟0

2
,

𝑏𝑙1+𝑏𝑟1

2
)                     (4) 

         Left: 

              (𝑙𝑡𝑋, 𝑙𝑡𝑌) = (
𝑡𝑙0+𝑏𝑙0

2
,

𝑡𝑙1+𝑏𝑙1

2
)                             (5) 

         right: 

              (𝑟𝑡𝑋, 𝑟𝑡𝑌) = (
𝑡𝑟0+𝑏𝑟0

2
,

𝑡𝑟1+𝑏𝑟1

2
)                          (6) 

     if midpoint is not empty, then 

       calculate the height and width of OCi in pixels: 

          ℎ𝑝𝑖𝑥𝑒𝑙 = √(𝑡𝑝𝑋 − 𝑏𝑚𝑋)2 + (𝑡𝑝𝑌 − 𝑏𝑚𝑌)2   (7) 

          𝑤𝑝𝑖𝑥𝑒𝑙 = √(𝑙𝑡𝑋 − 𝑟𝑡𝑋)2 + (𝑙𝑡𝑌 − 𝑏𝑚𝑌)2      (8) 

        calculate the height and width of OCi in cm: 

          ℎ𝑐𝑚 =
ℎ𝑝𝑖𝑥𝑒𝑙

𝑓
                                                         (9) 

          𝑤𝑐𝑚 =
𝑤𝑝𝑖𝑥𝑒𝑙

𝑓
                                                       (10) 

// Calculate the object distance to camera 

if Oi has dimensions, then 

   if use height for reference, then 

      𝐷 =
𝑓𝑦×ℎ𝑐𝑚

ℎ𝑝𝑖𝑥𝑒𝑙
                                                              (11) 

   else if use width for reference, then 

      𝐷 =
𝑓𝑥×𝑤𝑐𝑚

𝑤𝑝𝑖𝑥𝑒𝑙
                                                             (12) 

 

 

dimensions of the obtained object were dimensions in 

2D space. As a result, there were two values to be 

searched for, namely height (ℎ)  and width (𝑤) . 

These values were gained from each side of the 

bounding box and the middle value should be 

identified first via Eq. (2) – Eq. (5). Given this fact, 

the coordinates of the points on each side of the 

bounding box were obtained, namely (𝑡𝑝𝑋, 𝑡𝑝𝑌) for 

the top side, (𝑏𝑚𝑋, 𝑏𝑚𝑌)  for the bottom side, 
(𝑙𝑡𝑋, 𝑙𝑡𝑌)for the left side, and (𝑟𝑡𝑋, 𝑟𝑡𝑌) for the right 

side. Next, calculating the height and width of the Oi 

in pixels ( ℎ𝑝𝑖𝑥𝑒𝑙  dan 𝑤𝑝𝑖𝑥𝑒𝑙)  with the Euclidean 

distance equation in Eq. (6) and Eq. (7). (ℎ𝑝𝑖𝑥𝑒𝑙 dan 

𝑤𝑝𝑖𝑥𝑒𝑙)  should be converted first to cm units to get 

dimensional values in a real-world representation. 

Where ℎ𝑐𝑚  is the estimated height of the 𝑂𝑖  in cm  
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Table 4. Notations used in the table 3 

Variables Descriptions 

𝑂  Predictive results of objects 

detected by the system based on 

parameter C1 

𝑓𝑥, 𝑓𝑦  Camera focal length in pixels on the 

x and y axes as a result of camera 

calibration. 

𝑓  Pixel to cm conversion factor is 

calculated based on the reference 

size of the object. 

 

𝑡𝑙, 𝑡𝑟, 𝑏𝑙, 𝑏𝑟  Corner points of the bounding box: 

top-left, top-right, bottom-left, 

bottom-right. 

𝑡𝑝𝑋, 𝑡𝑝𝑌  Coordinate of the center point of the 

top side of the bounding box. 

𝑏𝑚𝑋, 𝑏𝑚𝑌  Coordinate of the center point of the 

bottom side of the bounding box. 

𝑙𝑡𝑋, 𝑙𝑡𝑌  Coordinate of the center point of the 

left side of the bounding box. 

𝑟𝑡𝑋, 𝑟𝑡𝑌  Coordinate of the center point of the 

right side of the bounding box. 

ℎ𝑝𝑖𝑥𝑒𝑙   Object height in pixels calculated 

through the Euclidean distance 

formula between the top and bottom 

sides. 

𝑤𝑝𝑖𝑥𝑒𝑙   The width of the object in pixels, 

calculated through the Euclidean 

distance formula between the left 

and right sides. 

ℎ𝑐𝑚  Object height in cm, obtained from 

ℎ𝑝𝑖𝑥𝑒𝑙  conversion through 

conversion factor 𝑓. 

𝑤𝑐𝑚  Object width in cm, obtained from 

𝑤𝑝𝑖𝑥𝑒𝑙  conversion through 

conversion factor f. 

𝐷  The estimated distance between 

object 𝑂  and the camera is 

calculated through the height or 

width as a reference. 

 

 

and 𝑤𝑐𝑚 is the estimated height of the 𝑂𝑖 in cm. After 

that, ℎ𝑐𝑚 and 𝑤𝑐𝑚 become references for calculating 

the estimated distance 𝐷 between 𝑂𝑖 and the camera. 

To clarify all the equations used in Table 3, every 

variable utilized has been defined in Table 4. 

4. Experiment(s) 

The experimental instrument in this study 

adopted Wohlin et al. [36] and extended the research 

model of Aradea et al. [12, 37, 38]. Table 5 presents 

the experimental design aimed at developing 

solutions to problematic variability in uncertain real- 

world objects characterized by adaptative strategies 

 

Table 5. Experimental Design 

No Descriptions 

1 Purposes: 

a. Developing smart glasses with self-

adaptation capabilities in handling contextual 

uncertainty 

b. Evaluating the performance of smart glasses 

2 Domain: 

Smart glasses for the visually-impaired people 

3 Evaluative Questions (PE): 

a. PE1-How do object recognition models 

handle contextual variability? 

b. PE2-What is the performance measure of 

each element of the object recognition system 

artifact? 

4 Variables (V): 

a. Response (V1-failure; V2- functional and 

non-functional systems; V3-new stimulus) 

b. Measurement of object recognition system 

performance (V4-mAP; V5-inference speed; 

V6-object distance estimation; V7-light 

intensity) 

 

 

to enhance performance. Performance encompasses 

the ability to recognize objects with the RPSA-

YOLOv10 model, namely measuring distance based 

on the variability of object dimensions, light 

adjustments, user voice commands, and voice 

notifications for users. Model evaluation was 

conducted by evaluating mean average precision 

(mAP), inference speed, frame rate, measuring the 

estimated distance of the object to the actual distance, 

and adaptability of light intensity. 

On the object recognition model side, we 

modified the YOLOv10 architecture, specifically in 

the PSA section to produce a new model in the form 

of RPSA-YOLOv10 (Fig. 3). As a form of validation, 

we tested the performance of our model (RPSA-

YOLOv10) by training it on the MS COCO dataset to 

compare with other models with similar datasets.  

The MS COCO dataset contained approximately 

330,000 image data employed for object detection, 

segmentation, and captioning tasks [39]. Apart from 

that, MS COCO had 80 classes creating good data 

diversity. Our experiments were begun by training an 

object detection or recognition model. To prove that 

the model improves, we adapted the same 

hyperparameters as employed by Wang et al. [11]. 

This hyperparameter consisted of involving 500 

epochs, the SGD optimizer, weight decay of 5 × 10-

4, learning rate of 10-2, and momentum of 0.9. The 

training process utilized a GeForce RTX 4090 24 GB 

GPU with a training time of around 7 days. 
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Table 6. Comparison of performance of object 

recognition models 

Model #param  mAP50  mAP75  mAP50-

95  

YOLOv6m[40] 34.3 M 66.8% - 49.5% 

YOLOv7 [41] 36.9 M 69.7% 55.5% 51.2% 

YOLOv8m [42] 25.9 M 66.7% 54.7% 50.2% 

YOLOv9m [43]  20 M 68.1% 56.1% 51.4% 

YOLOv10m[11] 15.4 M 68.1% 55.8% 51.1% 

Our Model 17.4 M 67.3% 54.5% 50.2% 

 

 

Table 6 deciphers a comparison of our model 

(RPSA-YOLOv10) with other versions of the YOLO 

model. In this case, our model underwent degradation 

in the overall mAP evaluation with mAP50, mAP75, 

and mAP50-95 values of 67.3%, 54.5%, and 50.2%. 

This was caused by adaptative performance affecting 

detection quality. However, by employing a self-

attention mechanism designed by combining RPE 

and PSA, we were able to reduce this impact very 

well. Furthermore, we compared the performance of 

our object recognition model with the performance of 

models applied in various related studies based on the 

similarity of using datasets, namely, the MS COCO 

dataset. 

The comparative results (Table 7) indicate that 

our model is very superior to other models although 

the number of parameters displayed in Fig. 4 remains 

larger than the SSDLite MobileNet v2 model. In 

other words, if inference testing is conducted, 

SSDLite MobilNet v2 [13] will have the highest 

speed even though it has the worst accuracy. 

Nevertheless, our model's size is not excessively 

large, with the number of parameters only slightly 

exceeding that of the SSDLite MobileNet model. 

This is demonstrated in the parameter comparison 

column in Table 7 and the graph in Fig. 4 illustrating 

 

 
Table 7. Comparison of the performance of object 

recognition models used in smart glasses in existing 

research within the related work section, based on the use 

of the MS COCO dataset. 

Author Model mAP50 mAP50-

95 

Number 

of 

Classes 

[13] SSDLite 

MobileNet v2 

- 23.4% 80 

[14] DETR-DC5-

R101 

64.7% 44.9% 80 

[16] YOLOv3 57.9% 33% 80 

[22] Faster-RCNN-

ResNet50  

- 30% 80 

Our 

Model 

RPSA-

YOLOv10 

67.3% 50.2% 80 

 

 
Figure. 4 Comparison of the number of parameters for 

each model 

 

 

the parameter comparison. As a result, our model 

achieves reasonably good inference speed when 

performing object detection on images. Apart from 

utilizing benchmark datasets, we also applied custom 

datasets to enable the system to better recognize the 

environment where the device was employed. This 

custom dataset consisted of 1000 images containing 

15 object classes. 

Table 8 delineates the performance of our model 

(RPSA-YOLOv10) compared to other versions of 

YOLO models that can be trained using custom 

datasets. Testing was performed through the same 

device, namely the device applied for the RPSA-

YOLOv10 training process on the MS COCO dataset. 

In particular, for testing the mAP metric, our model 

could produce more value than other YOLO versions 

with mAP50 at 73.1% and mAP50-95 at 48.3%. 

Conversely, for inference speed, the performance 

was lower than YOLOv10. This took place because 

the size of our model model was slightly larger than 

the YOLOv10 model [11]. Therefore, it caused the 

speed of object detection and recognition to operate 

 

 
Table 8. Performance comparison of various YOLO 

models trained on custom datasets 

Model mAP50 mAP50-95 Inference Speed 

YOLOv3m  61.7% 37.3% 8.3 ms/image 

YOLOv5m  61.5% 37.4% 7 ms/image 

YOLOv6m  53.7% 32.1% 8.2 ms/image 

YOLOv8m  64.3% 40.1% 5.5 ms/image 

YOLOv9m  65.4% 40.6% 8.5 ms/image 

YOLOv10m  57.9% 35.8% 7 ms/image 

Our model 73.1% 48.3% 8.4 ms/image 
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more slowly. After successfully developing the 

object recognition model, we subsequently 

developed adaptative artifacts based on the 

adaptative patterns in Tables 2 and 3. 

The first adaptative feature is calculating the 

distance of the detected object based on assorted 

object dimensions. This feature is an extension of our 

previous papers [37, 38]. The estimated distance 

calculation undertaken through the adaptative pattern 

in Table 2 will occur if the conditions (I = C1 ˄ C3) ˅ 

(I = C1 ˄  C2 ˄  C3) are met. To validate the adaptability 

of the designed patterns, we utilized Eq. (12) – (14) 

to test how accurate the object distance estimation 

results were. Where 𝑑𝑖𝑓𝑖  was the value of the 

difference between the actual distance and the 

estimated distance in percent, 𝑑  was the actual 

distance, 𝑑′  was the estimated distance, 𝜀�̅�  was the 

average value of error for one class in one 

experimental period, n was the number of 

experiments, 𝜀 was the average value of the overall 

class error in percent and c is the number of classes 

in the dataset. 

 

𝑑𝑖𝑓𝑖 =
|𝑑−𝑑′|

𝑑
 × 100%               (13) 

 

𝜀�̅� =
∑ 𝑑𝑖𝑓𝑖

𝑛
𝑖=0

𝑛
                (14) 

 

𝜀 =
∑ �̅�𝑖

𝑛
𝑖=0

𝑐
                 (15) 

 

Table 9 illustrates the results of testing object 

distance estimates. The results of estimating object 

distances at original distances of 0.5 meters, 1 meter, 

and 2 meters demonstrated that the average error rate 

for the entire class was 15.95%. On the one hand, the 

smallest average error was located in the book class 

with an error of 8%. On the other hand, the largest 

average error was located in the ladder class with an 

error of 42.3%. This contributed to a distance 

estimation accuracy of 84.05%. This value described 

a fairly high success rate for adaptation. Further, this 

distance estimation only relied on a camera with only 

one viewing angle (monocular). Consequently, this 

test can validate the ability of the system to estimate 

object distances. 

The second adaptative feature is handling low 

light intensity. The adaptative process operated when 

the light intensity was below 50 (C2 < 50). This 

number came from the average value of the RGB 

color combination in the frame captured by the 

camera. The increase in new brightness (Bnew) came 

from the base value of the old brightness (Bold) 

multiplied by the light intensity multiplier factor (F).  

 

Table 9. Adaptative results for object distance estimates 

Object Original 

Distance 

Estimation Difference Average 

Error 

People 

0.5 m 0.79 m 58% 29% 

1 m 1.12 m 12% 

2 m 2.34 m 17% 

Table 

0.5 m 0.77 m 44%  16.8% 

1 m 1.04 m 4% 

2 m 2.05 m 2.5% 

Chair 

0.5 m 0.58 m 16% 14.5% 

1 m 0.76 m 24% 

2 m 1.93 m 3.5%  

Door 

0.5 m 0.61 m 22% 16% 

1 m 1.24 m 24% 

2 m 2.06 m 3% 

Seat 

0.5 m 0.63 m 26% 12.8% 

1 m 0.89 m 11% 

2 m 2.03 m 1.5% 

Plate 

0.5 m 0.46 m 8% 6.5% 

1 m 1.03 m 3% 

2 m 2.17 m 8.5% 

Glass 

0.5 m 0.51 m 2% 8.8% 

1 m 1.09 m 9% 

2 m 1.69 m 15.5% 

Bottle 

0.5 m 0.54 m 8% 7.2% 

1 m 1.11 m 11% 

2 m 2.05 m 2.5% 

Bag 

0.5 m 0.65 m 30% 14.3% 

1 m 0.88 m 12% 

2 m 1.98 m 1% 

Laptop 

0.5 m 0.58 m 16% 8.8% 

1 m 1.01 m 1% 

2 m 1.81 m 9.5% 

Telephone 

0.5 m 0.34 m 32% 21% 

1 m 1.11 m 11% 

2 m 2.4 m 20% 

Television 

0.5 m 0.68 m 36% 19.5% 

1 m 1.09 m 9% 

2 m 2.27 m 13.5% 

Projector 

0.5 m 0.37 m 26% 13.8% 

1 m 0.95 m 5% 

2 m 1.79 m 10.5% 

Book 

0.5 m 0.53 m 6% 8% 

1 m 1.06 m 6% 

2 m 2.24 m 12% 

Stairs 

0.5 m 0.85 m 70% 42.3% 

1 m 1.31 m 31% 

2 m 2.54 m 26% 

Total of Average Error 15.95% 

 

 

Changes in image brightness could be undertaken 

with Eq. (1). Table 10 outlines the results of light 

intensity adaptation based on C2. In particular, the 

increase in light intensity was always based on the 

Bold value. Thus, it appears that the Bnew values did 
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Table 10. Results of adaptation to increasing light 

intensity 

No. 

Sample 

Light Intensity 

Before (Bold) 

Light Intensity 

After (Bnew) 

1 49.37781944444 118.55763136574 

2 46.74598292824 112.22711516204 

3 44.08877285879 105.84925231481 

4 41.38748003472 99.35508709491 

5 40.057916666666 96.16702054398 

6 38.721634548611 116.29317650463 

7 36.050922743056 108.24479745370 

8 33.384502025463 100.20943489583 

9 30.723147280093 92.17820486111 

10 28.06607378472 112.40079571759 

11 26.72938252314 107.06316203703 

12 25.37549074074 101.65819849537 

13 24.05037442129 96.35608304398 

14 22.72607291666 91.06828269675 

15 21.41800491898 85.84278067129 

16 20.1047265625 80.59685098379 

17 18.77662789351 112.75285098379 

18 17.44593547453 104.75996788194 

19 16.12916059027 96.84081626157 

20 14.82116348379 88.97579861111 

21 13.50285127314 81.05487760416 

22 12.17291608796 73.06952430555 

23 10.81183738425 64.90382667824 

24 9.46547106481 94.53855815972 

25 8.08814525462 80.77312586805 

26 6.72029571759 100.82346614583 

27 5.35742129629 80.32760271990 

28 4.02175636574 80.60934866898 

29 2.66026909722 106.51936458333 

30 1.32229166666 79.35144560185 

 

 

not have the same value. This means that when the 

light intensity increases, the process does not damage 

the feature information contained in the image. From 

the test scenario, it was discovered that the average 

increase in light intensity by the system adaptive 

process was 328.16% with the final result being an 

average Bnew of 95.65. 

Fig. 5 showcases the comparative results of Bold 

and Bnew light enhancement adaptation. To illustrate, 

the produced a light increase always adjusted to Bold. 

This occurred because of the ability of the system to 

adapt to the intensity of light received. Hence, it 

indirectly provided an increase in light without 

excessively damaging image features. However, this 

does not guarantee complete protection for images 

with very low light intensity. Occasionally, this 

increase in light intensity causes damage to images. 

Figs. 6 and 7 are representative samples tested in 

Table 10. These images indicate examples of images 

before and after changes in light intensity as a result  

 

 
Figure. 5 A Comparative Chart for Bold and Bnew 

 

 

of system adaptation. As an example, in the 24th 

sample with Bold < 10 even though it had increased, 

the results of this increase were not as large as in the 

3rd sample. This occurred due to the adjustment of the 

increase in light intensity based on the Bold value. In 

other words, the smaller the Bold value, the darker 

the light intensity would tend to be. This took place 

to maintain the quality of the images captured by the 

camera to be readable for the object recognition 

model. 

The final stage is to integrate the previously 

created model with the speech recognition and text-

to-speech (TTS) models. In this case, we adapted 

Python modules, namely the SpeechRecognition 

module for speech recognition and the gTTS and  

 

 

 
(a) 

 

 
(b) 

Figure. 6: (a) Image of the 3rd sample with a light 

intensity value of 44,089 and (b) Image of the 24th sample 

with a light intensity value of 9,465 
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(a) 

 

 
(b) 

Figure. 7 System adaptation results: (a) Increase in 

light intensity in the 3rd sample and (b) Increase in light 

intensity in the 24th sample 

 

pygame modules for TTS. The integration of this 

module enabled our smart glasses to have two modes, 

namely navigation and object search modes. In 

navigation mode, smart glasses automatically 

provided a sound notification to users if there was an 

object 5 meters in front of the camera. In object 

search mode, smart glasses waited for the 

instructional voices of users to search for objects. An 

example of implementing this mode can be viewed in 

Fig. 8 and Table 11. The notification results 

contained information on the names of the objects, 

the directions of the objects based on clockwise 

directions, and the distances of the objects to the 

camera. The two modes (navigation and object 

search) could be switched from each other through 

voice commands. Further, the system embedded in 

our smart glasses supports two languages, namely 

Indonesian and English. 

 

 
Table 11. Voice commands and notifications 

Commands Voice Notifications 

Please find a cup! The cup is at 7 o'clock. At a 

distance of 0.42 meters from you. 

Find me a book! The book is at 6 o'clock, at a 

distance of 0.61 meters from you. 

Get me a laptop! The laptop is at 10 o'clock, at a 

distance of 0.97 meters from you. 

Find me a bottle! - The bottle is at 8 o'clock, 0.61 

meters away from you. 

- The bottle is at 4 o'clock, 0.71 

meters away from you. 

Find me a chair! Please give me another order! 

 
Figure. 8 System detection results 

 

 

  
Figure. 9 Utilization of smart glasses 

 

 

Fig. 9 designates the results of the physical 

development of smart glasses. The applied main 

components consist of a microcontroller, glasses with 

a camera, and headphones. We utilized Jetson Nano 

with 128-core NVIDIA Maxwell™ architecture GPU 

specifications, Quad-core ARM® Cortex®-A57 

MPCore processor, and AI performance of 472 

GFLOPS. As a result, it is appropriate with every 

process executed by the device. Apart from that, we 

employed a camera embedded in the glasses with 8 

MP specifications to stream video as input to the 

system. Each of these components supported the 

performance of the SACPS adaptative system 

designed in Fig. 1. With this in mind, it can be an 

alternative solution for visually impaired people to 

undergo their daily activities more comfortably. 

5. Conclusion 

This study has successfully developed a model 

for smart glasses based on the Self-Adaptive Cyber 

Physical System (SACPS) artifact [12]. The model is 

formulated with object recognition capabilities and 
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adaptability regarding calculating object distance, 

and light intensity, receiving voice commands, and 

issuing voice notifications. The object recognition 

model embedded in the device is the result of a 

modification of the YOLOv10m model [11] named 

RPSA-YOLOv10 and an extension of the model [37, 

38]. In some test scenarios, our object recognition 

model performs better than previous models. 

Likewise, our model has adaptability designed based 

on contextual knowledge to handle context 

uncertainty. The speech recognition and text-to-

speech modules add convenience and functionality 

where these smart glasses can be activated via voice 

commands through two modes, namely navigation 

and object search modes. 

Conversely, behind the attained success, there are 

still shortcomings. As an example, although the mAP 

value is better than the previous version of the model, 

the RPSA-YOLOv10 model signifies an increase in 

the number of parameters supporting it heavier than 

other models. Moreover, the limitations of 

calculating object distances with only a monocular 

camera make distance estimates less accurate due to 

limited viewing angles. Future work is expected to be 

able to overcome this problem by modifying the 

architecture without leaving side effects on other 

elements. By doing so, it can support the concept of 

Green AI. The use of other object distance estimation 

techniques requires to take into account to boost 

accuracy in predicting object distances better. 
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