
Received: November 2, 2024. Revised: December 16, 2024. 1107

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.80

RPSA-YOLOv10: Relative Partial Self-Attention for Object Recognition in

Smart Glasses Based on Contextual Adaptation

Aradea1* Irfan Darmawan2 Rianto1 Ghatan Fauzi Nugraha1

1Department of Informatics, Faculty of Engineering University of Siliwangi, Indonesia

2Department of Information System, Telkom University, Bandung, Indonesia

* Corresponding author’s Email: aradea@unsil.ac.id

Abstract: Uncertainty triggers everyone involved in activities in this world to adapt well, including visually impaired

people. Therefore, this paper proposed a smart glasses model based on the Self-Adaptive Cyber-Physical System to

help visually impaired people live their days. This model was equipped with object recognition capabilities as an

extension of YOLOv10m and Relative Positional Encoding (RPE) where it was placed in the attention module and

subsequently combined with Partial Self-Attention (PSA) to create a better understanding of spatial features compared

to the attention module previously. Therefore, we introduced a new variant called Relative Partial Self-Attention

(RPSA) YOLOv10. Our model indicated adaptability based on contextual knowledge, such as calculating object

distances and the ability to work at low light intensity. Additionally, our model also operates through voice commands

and voice notifications. The evaluative results of the model trained with the MS COCO dataset signified mAP50,

mAP75, and mAP50-95 values of 67.3%, 54.5%, and 50.2% respectively with an inference speed of 8.4 ms/image.

These results demonstrated better performance compared to other versions of the YOLO model, notably in evaluations

using small datasets with an increase in mAP50-95 of 30.8% compared to the YOLOv10 model. In addition, our

designed adaptive system can handle the problem of estimating object distances with an average error of 15.95%.

Further, it can work on light intensity problems with a stable increase in average brightness reaching 95.65.

Keywords: Contextual knowledge, RPSA-YOLOv10, Self-adaptive cyber-physical system, Smart glasses.

1. Introduction

The rapid development of technology requires

everyone to be able to adapt, including visually-

impaired people. These demands make it quite

challenging for visually impaired people to even get

through their days [1]. World Health Organization

(WHO) reported that around 2.2 billion worldwide

experience visual impairment, including blindness

[2]. This proves that many people suffering from eye

problems require a solution. Myriad investigative

results offer assistant devices as a solution to this

problem [3, 4], and can be divided into two types,

namely wearable devices and non-wearable devices.

Wearable devices are often selected by researchers

because they provide better practical functions

compared to non-wearable devices [4]. Another

factor is that wearable devices are more flexible when

combined with artificial intelligence (AI) [1].

Moreover, one type of assistant device (smart

glasses) is the wearable device most widely

developed by researchers [5, 6].

Generally speaking, the advancement of smart

glasses is equipped with object detection/recognition

features as replacement eyes for impaired people [5,

7]. This feature is considered the most effective in

smart glasses architecture. However, most of them

still apply old models, such as YOLOv3, Faster-

RCNN, SSD MobileNet v2, ResNet, etc. [1, 6, 8].

Apart from that, other features can be added, such as

voice feedback, speech recognition, and distance

estimation to enhance the functionality of smart

glasses. Unfortunately, the speech recognition and

distance estimation features still receive less attention

from researchers, notably the distance estimation

feature [6]. In this feature, the calculation process is

generally focused on the employment of sensor

Received: November 2, 2024. Revised: December 16, 2024. 1108

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.80

modules [9, 10]. This can reduce the practicality of

smart glasses devices.

Based on this description, there are still gaps

providing opportunities for our research. One of them

is fostering object detection capabilities on smart

glasses with YOLOv10 [11] and modifying the

attention mechanism to boost model performance.

This modification was performed by combining the

Partial Self-Attention (PSA) module used in

YOLOv10 with Relative Positional Encoding (RPE).

The addition of RPE was undertaken so that the

attention module embedded in YOLOv10 was able to

extract spatial features better than before. As a result,

this modification was expected to help improve the

performance of the object detection model in

conducting its task of recognizing various objects and

obstacles for visually impaired people. Besides, we

included adaptability by developing object distance

estimates without sensors and adaptive light

detection to overcome uncertainty caused by an

extension of the Self-Adaptive Cyber Physical

System (SACPS) rule [12]. Moreover, we also

targeted the addition of voice feedback and speech

recognition features to raise the functionality of the

smart glasses.

This paper consists of several main parts, namely

introduction (first part), related works explaining the

latest studies related to smart glasses for the visually

impaired people (second part), proposed method

containing our proposed methods and novelties (third

part), experiments undertaken to validate the results

of our designed method and novelty (fourth section),

and conclusion from the entire research (fifth section).

2. Related works

2.1 Based on deep learning

Currently, the employment of deep learning-

based object detection is a predominant component

of environmental recognition in smart glasses. For

instance, Islam et al. [13] cultivated object detection

with the SSDLite MobilNet v2 model and trained

with the Microsoft Common Object in Context (MS

COCO) dataset and hyperparameter optimization

with particle swarm optimization (PSO). The model

produced 88.89% accuracy with a real-time

processing speed of 2.15 FPS on a Raspberry Pi 4B

system. Also, the device was equipped with voice

feedback. In a similar vein, Mukhiddinov and Cho

[14] applied deep learning embedded in smart glasses

with Detection Transformer (DETR) for object and

text recognition functions trained on the Ms COCO,

ExDark, and LOL datasets. As a result, the mAP50

value was 63.5% for object detection and 92.8% for

text detection. The model also handled light intensity

and voice feedback. Leong and Ramasamy [15]

created smart glasses with object and distance

detection based on SSD MobileNet v1 and

EfficientDet which were quite light and performed

extremely well on the MS COCO and PASCAL VOC

datasets. The device comprised audio and vibration

feedback controlled via voice commands.

Lee and Cho's scrutiny [16] integrated object

recognition, object extraction, outlining, and braille

conversion in smart glasses. YOLOv3 [17] was

employed to handle multi-class problems at that time

[18]. The model was highly efficient with an average

braille conversion accuracy of 85% and detection

accuracy of 90%. The use of YOLOv3 has proven to

be considerably good when applied to smart glasses.

As evidence, YOLOv3 was embedded in smart

glasses [9, 19, 20], these three studies combined

YOLOv3 with voice feedback generated by a text-to-

speech (TTS) model. Xia et al. [21] adapted

YOLOv3-Tiny for the detection model. The model

applied speech commands through the ConvT model

combined with a Transducer and Weak-Attention

Suppression (WAS). Hence, it was able to provide a

good device and user interaction experience. Other

results covered obstacle detection, navigation, traffic

light detection, NFC payment, emergency calls, and

guardian monitoring.

Different from smart glasses in general, Chang et

al. [22] proposed IoT-based smart glasses to

recognize medicines in pill form. This device was

remote via smartphone and integrated with the cloud.

The detection model was built by a combination of

SSD, ResNet-50, and FPN and voice feedback. As a

result, the mAP50 value was 35% with an inference

speed of 76 ms/image when trained on the MS COCO

dataset. Similar to Chang et al. [22], Li et al. [23]

proposed artificial IoT-based and multi-functional

smart glasses. This device was equipped with object

detection, object distance measurement, and text

recognition. YOLOv5 and Optical Character

Recognition (OCR) were adopted through the

Convolutional Recurrent Neural Networks (CRNN)

[24] architecture to reach extremely high accuracy

when detecting characters [25]. The results reported

that object and text detection accuracy reached

92.16% and 99.91%.

Zhu et al. [26] utilized deep learning and acoustic

touch as a substitute for voice feedback in smart

glasses. This combination created convenience for

users without significantly increasing cognitive load.

The acoustic touch technique changed objects

entering the field device of view into diverse sound

icons [26]. Converting objects into sound icons had

been conducted previously through YOLOv5. This

Received: November 2, 2024. Revised: December 16, 2024. 1109

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.80

model produces better smart glasses than traditional

smart glasses.

2.2 Based on sensor

The use of sensors is another alternative to smart

glasses. Faster reception of information becomes the

primary reason [8]. Busaeed et al. [27] created the

LidSonic system which is a machine learning-based

device with LiDAR and ultrasonics for visually-

impaired people. This system adopted an HC-SR04

ultrasonic sensor, TFmini-s LiDAR, laser, servo, and

Bluetooth module connected to an Arduino Uno

microcontroller and smartphone. This method

offered a cost-effective, easy-to-use solution to

enhance mobility and independence for visually

impaired people. Bouteraa [28] proposed smart

navigation for visually impaired people by adopting

a Robot Operating System (ROS), ultrasonic sensors,

and LIDAR to detect obstacles. The data were

processed by the Raspberry Pi 4 and classified by a

fuzzy classifier. The results were conveyed via a

haptic and voice interface to the users. The results

revealed that this system was effective in navigating

indoor and outdoor environments with high accuracy,

responsive feedback, and increasing movement

independence for visually impaired people.

2.3 Comparison of related research

The development of smart glasses in this paper is

based on related research as presented in Table 1. Our

research adapted YOLOv10 with additional

modifications in the form of a combination of Partial

Self-Attention (PSA) and Relative Positional

Encoding (RPE) to be applied as an object detection

model on our developing device. As a result, it

indicates more accurate object detection with support

for adaptability. Our model is capable of operating in

indoor-outdoor environments with low light intensity.

Apart from that, there are navigating and object

search modes to be adjusted via voice commands.

Table 1. Comparison of smart glasses models

Auth

or

Model/

Sensor

Object

Recogniti

on

Voice

Feedbac

k

Speech

Comma

nd

Object

Distance

Estimati

on

Determini

ng Object

Location

Low

Light

Intensit

y

Indoo

r

Outdo

or

Navigati

on Mode

Objec

t

Searc

h

Mode

Ability to

Address

Contextu

al

Knowled

ge

[13]

SSDLite

MobileNet

v2

√ √ √ - - - √ √ √ - -

[14]

DETR-

DC5-

R101

√ √ - - - √ √ √ √ - -

[15]

SSD

MobileNet

v1 and

EfficientD

et

√ √ √ √ - - √ √ √ - -

[16] YOLOv3 √ √ - - - - √ √ √ - -

[19] YOLOv3 √ √ - - - - √ √ √ - -

[9] YOLOv3 √ √ - √ - - √ √ √ - -

[20] YOLOv3 √ √ - √ - - √ √ √ - -

[21]
YOLOv3-

tiny
√ √ √ - - √ - √ √ - -

[22]

SSD-

ResNet50-

FPN

√ √ - - - - √ - - - -

[23] YOLOv5 √ √ - √ - - √ √ √ - -

[26]
YOLOv5

m
√ √ - √ √ - √ - - √ -

[27] LiDAR - √ √ √ - √ √ √ √ - -

[28] LiDAR - √ - √ √ √ √ √ √ - -

Our

Mode

l

RPSA-

YOLOv10
√ √ √ √ √ √ √ √ √ √ √

Received: November 2, 2024. Revised: December 16, 2024. 1110

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.80

Implementing the voice feedback feature as an output

can enhance the functionality of our smart glasses.

Eventually, we have added contextual knowledge

handling (e.g. the form of variability in light intensity

and object dimensions). This function can increase

the adaptability of smart glasses to their

environmental context.

3. Proposed method

The smart glasses architecture proposed by us

(Fig.1) consisted of two components, namely

physical and cyber systems based on processes

undertaken at run-time [12, 29]. In the physical

system section, interaction occurred between the

users and the smart glasses hardware via voice

commands, and the results were returned to the users

in the form of sounds. Processing commands from

users was performed in the cyber system section

consisting of three models, namely the detection and

distance estimation model, speech recognition model,

and text-to-speech (TTS) model. In the speech

recognition model, we employed the Speech

Recognition module. For the TTS model, we utilized

the gTTS module in Python. We designed the

detection and distance estimation model with

adaptability to handle context uncertainty [30]. In

addition, we modified YOLOv10 to boost the

performance of the object detection model. The

created modifications took place in the attention

mechanism section, namely by combining

convolution, attention mechanism [31], and feed-

forward network (FFN).

The partial Self-Attention module (PSA) in Fig. 2

was designed to overcome computational complexity

and high memory usage [11]. After 1x1 convolution,

the feature was partitioned into two. Only one part

was processed through the NPSA block, namely

Multi-Head Self-Attention (MHSA) and FFN. Both

were combined and fused with 1x1 convolution. PSA

applied BatchNorm which was faster than

LayerNorm. It was situated after Stage 4 with the

lowest resolution to avoid computational overhead.

In this way, PSA enhanced model learning for global

representation with low computational cost. Hence, it

was able to boost the performance of YOLOv10 [11].

Unfortunately, traditional self-attention in PSA often

faced challenges in capturing relative position

information between elements in pivotal data for

visual tasks. For this reason, we proposed Relative

Partial Self-Attention (RPSA) embedded in

YOLOv10. In particular, we modified PSA with

relative positional encoding (RPE) [32] allowing the

model to understand spatial context better with high

accuracy. We also added new layers in the form of

Dropout and BatchNorm2D for training

regularization and stabilization to improve model

generalization and faster convergence. Fig. 3

signifies the modified PSA module. First, the data

went through 1x1 convolution to change the feature

dimensions. Then, it was divided into two equal parts.

Figure. 1 Smart glasses architecture

Received: November 2, 2024. Revised: December 16, 2024. 1111

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.80

Figure. 2 Partial self-attention module (PSA) [11]

Figure. 3 PSA Improvements on YOLOv10

The first part was processed through MHSA [33]

which is equipped with relative positional encoding

to understand the spatial context better. The results

went to the normalization layer to stabilize the

activation distribution. This part was passed to FFN

possessing dropout to reduce overfitting. The two

parts were recombined before going through a final

1x1 convolution for output. With this structure, PSA

had a more efficient and stable global representation.

Also, PSA improved model performance. We

formulated handling uncertainty by contextual

knowledge supported with contextual acceptance

before variability enters the machine. As a result, the

model could adapt to changing light intensity and

calculate approximate object distances under

conditions of diverse object dimensions, as

represented in Table 2.

The adaptative pattern illustrated in Table 2 is an

algorithm aimed at performing context-based

adaptation by taking into account the variability

Table 2. Algorithm for receiving contextual knowledge

Smart glasses adaptive pattern

I ← C1, C2, C3

do

let

I ← inference model

// Monitoring (M) // receiving contextual knowledge

for I in the run-time artifact, do

 if (C2) or (C1 and C2) in run-time artifact, then

 send information C2 to analyzer_manager

 else if (C1 and C3) or (C1 and C2 and C3) in run-time

artifact, then

 send information C3 to analyzer_manager

 endif

endfor

// Cognition (CG)

for each Ci in analyzer_manager, do

 if C2 is True, then

 increase brightness for I

 if C3 is True, then

 O ← predict_object(C1)

 if O is in C1, then

 calculate w and h in O

 if w is True, then

 calculate D from the camera to O

 endif

 else

 O ← empty_set

 endif

 endif

endfor

// Configuration (CF)

if O is empty_set and C2 is True, then

 system ← increase brightness for I

else if O is not empty_set and LI is True, then

 system ← increase brightness for I

 system ← calculate D from camera to O

 system ← release voice feedback

endif

for each system in run-time artifact, do

 send information to M

endfor

contained in the image (I) represented by parameters

C1, C2, and C3. The algorithm was adapted from our

previous research by focusing on three main

components [12]. To illustrate, the first was the

Monitoring (M) section where the system detected

run-time artifacts (I) to determine whether certain

contextual parameters (C1, C2, C3) were detected by

setting the rule scheme subsequently:

Rule-1: 𝑖𝑓(𝐶2 ∨ (𝐶1 ∧ 𝐶2)
𝑡ℎ𝑒𝑛 𝑠𝑒𝑛𝑑 𝐶2 𝑡𝑜 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑟_𝑚𝑎𝑛𝑎𝑔𝑒𝑟

Rule-2: 𝑖𝑓((𝐶1 ∧ 𝐶3) ∨ (𝐶1 ∧ 𝐶2 ∧ 𝐶3))

𝑡ℎ𝑒𝑛 𝑠𝑒𝑛𝑑 𝐶3 𝑡𝑜 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑟_𝑚𝑎𝑛𝑎𝑔𝑒𝑟

Where C1 was the object detected in the image as

a result of inference with 𝐶1 = 𝑓(𝐼) and where

Received: November 2, 2024. Revised: December 16, 2024. 1112

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.80

𝑓(𝐼) = {𝑂1, 𝑂2, … , 𝑂𝑛}, 𝑂𝑛 ∈ detected objects, 𝐶2

was the low light intensity calculated based on the

average pixel intensity using Eq. (1).

𝐶2 =
1

|𝐼𝑛𝑡|
∑ 𝐼𝑛𝑡𝑖

|𝐼𝑛𝑡|
𝑖=1 (1)

Where Int was the light intensity value in pixels

based on the RGB color channel value, 𝐶3 was the

object dimension in pixels (w, h) based on the size of

the bounding box surrounding the detected object.

The second stage in this adaptative pattern was the

Cognition (CG) part aimed to analyze information

from the monitoring stage and take action based on

parameter values , 𝐶2 and, 𝐶3. If the condition where,

𝐶2 was sent to the analyzer manager and the, 𝐶2

value was smaller than the threshold, then the system

increased the brightness via Eq. (2).

𝐵 = 𝐶2 ∙ 𝐹 (2)

Where B was the new light intensity value

resulting from the increase and F was a multiplier

factor which must be 𝐹 > 1. Next, if an object (O)

was detected then the system calculated (𝑤, ℎ)

dimensions and distance based on the object distance

calculation method in Table 3. However, if no object

was found then 𝑂 = ∅ .. Finally, the adaptative

pattern would go through the Configuration (𝐶𝐹)

section aimed to execute actions based on the analysis

results. Similar to part M, (𝐶𝐹) applied a rules

scheme in carrying out its execution with the

following rules:

Rule-3: 𝑖𝑓(𝑂 = ∅ 𝑎𝑛𝑑 𝐶2 𝑖𝑠 𝑇𝑟𝑢𝑒)
𝑡ℎ𝑒𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠: 𝐵 →
𝐼

Rule-4: 𝑖𝑓(𝑂 ≠ ∅ 𝑎𝑛𝑑 𝐶2 𝑖𝑠 𝑇𝑟𝑢𝑒)
𝑡ℎ𝑒𝑛 𝑆𝑦𝑠𝑡𝑒𝑚 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠,
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝐷 𝑎𝑛𝑑 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑣𝑜𝑖𝑐𝑒 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

All information from this CF was sent back to the

monitoring stage to ensure real-time system

adaptation. In order to clarify our adopted distance

calculation method, we display the method in Table

3. Table 3 demonstrates the object distance

calculation method extended from [34, 35].

Calculation of object distance required initialization

in the form of O. The result of object detection by the

system and focal length (𝑓𝑥, 𝑓𝑦) from the calibration

of the camera was adopted. The process began by

calculating each dimension of 𝑂𝑖 in 𝐶1 detected by

the system. The object dimension value was obtained

from the bounding box created for each Oi with

corner points marked by 𝑡𝑙 (top-left), 𝑡𝑟 (top-right),

𝑏𝑙 (bottom-left), and 𝑏𝑟 (bottom-left). The

Table 3. Method for calculating object distance

Distance Calculation Pattern

O ← predict_object(C1)

get the focal length (𝑓𝑥, 𝑓𝑦) from camera calibration

// Pixel to cm conversion factor

𝑓 =
𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑏𝑗𝑒𝑐𝑡 𝑡ℎ𝑒

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑏𝑗𝑒𝑐𝑡

// Calculate object dimensions

for O in C1, do

 create bounding_box for Oi with point (tl, tr, bl, br)

 if Oi has bounding_box, then

 determine midpoint:

 top:

 (𝑡𝑝𝑋, 𝑡𝑝𝑌) = (
𝑡𝑙0+𝑡𝑟0

2
,

𝑡𝑙1+𝑡𝑟1

2
) (3)

 bottom:

 (𝑏𝑚𝑋, 𝑏𝑚𝑌) = (
𝑏𝑙0+𝑏𝑟0

2
,

𝑏𝑙1+𝑏𝑟1

2
) (4)

 Left:

 (𝑙𝑡𝑋, 𝑙𝑡𝑌) = (
𝑡𝑙0+𝑏𝑙0

2
,

𝑡𝑙1+𝑏𝑙1

2
) (5)

 right:

 (𝑟𝑡𝑋, 𝑟𝑡𝑌) = (
𝑡𝑟0+𝑏𝑟0

2
,

𝑡𝑟1+𝑏𝑟1

2
) (6)

 if midpoint is not empty, then

 calculate the height and width of OCi in pixels:

 ℎ𝑝𝑖𝑥𝑒𝑙 = √(𝑡𝑝𝑋 − 𝑏𝑚𝑋)2 + (𝑡𝑝𝑌 − 𝑏𝑚𝑌)2 (7)

 𝑤𝑝𝑖𝑥𝑒𝑙 = √(𝑙𝑡𝑋 − 𝑟𝑡𝑋)2 + (𝑙𝑡𝑌 − 𝑏𝑚𝑌)2 (8)

 calculate the height and width of OCi in cm:

 ℎ𝑐𝑚 =
ℎ𝑝𝑖𝑥𝑒𝑙

𝑓
 (9)

 𝑤𝑐𝑚 =
𝑤𝑝𝑖𝑥𝑒𝑙

𝑓
 (10)

// Calculate the object distance to camera

if Oi has dimensions, then

 if use height for reference, then

 𝐷 =
𝑓𝑦×ℎ𝑐𝑚

ℎ𝑝𝑖𝑥𝑒𝑙
 (11)

 else if use width for reference, then

 𝐷 =
𝑓𝑥×𝑤𝑐𝑚

𝑤𝑝𝑖𝑥𝑒𝑙
 (12)

dimensions of the obtained object were dimensions in

2D space. As a result, there were two values to be

searched for, namely height (ℎ) and width (𝑤) .

These values were gained from each side of the

bounding box and the middle value should be

identified first via Eq. (2) – Eq. (5). Given this fact,

the coordinates of the points on each side of the

bounding box were obtained, namely (𝑡𝑝𝑋, 𝑡𝑝𝑌) for

the top side, (𝑏𝑚𝑋, 𝑏𝑚𝑌) for the bottom side,
(𝑙𝑡𝑋, 𝑙𝑡𝑌)for the left side, and (𝑟𝑡𝑋, 𝑟𝑡𝑌) for the right

side. Next, calculating the height and width of the Oi

in pixels (ℎ𝑝𝑖𝑥𝑒𝑙 dan 𝑤𝑝𝑖𝑥𝑒𝑙) with the Euclidean

distance equation in Eq. (6) and Eq. (7). (ℎ𝑝𝑖𝑥𝑒𝑙 dan

𝑤𝑝𝑖𝑥𝑒𝑙) should be converted first to cm units to get

dimensional values in a real-world representation.

Where ℎ𝑐𝑚 is the estimated height of the 𝑂𝑖 in cm

Received: November 2, 2024. Revised: December 16, 2024. 1113

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.80

Table 4. Notations used in the table 3

Variables Descriptions

𝑂 Predictive results of objects

detected by the system based on

parameter C1

𝑓𝑥, 𝑓𝑦 Camera focal length in pixels on the

x and y axes as a result of camera

calibration.

𝑓 Pixel to cm conversion factor is

calculated based on the reference

size of the object.

𝑡𝑙, 𝑡𝑟, 𝑏𝑙, 𝑏𝑟 Corner points of the bounding box:

top-left, top-right, bottom-left,

bottom-right.

𝑡𝑝𝑋, 𝑡𝑝𝑌 Coordinate of the center point of the

top side of the bounding box.

𝑏𝑚𝑋, 𝑏𝑚𝑌 Coordinate of the center point of the

bottom side of the bounding box.

𝑙𝑡𝑋, 𝑙𝑡𝑌 Coordinate of the center point of the

left side of the bounding box.

𝑟𝑡𝑋, 𝑟𝑡𝑌 Coordinate of the center point of the

right side of the bounding box.

ℎ𝑝𝑖𝑥𝑒𝑙 Object height in pixels calculated

through the Euclidean distance

formula between the top and bottom

sides.

𝑤𝑝𝑖𝑥𝑒𝑙 The width of the object in pixels,

calculated through the Euclidean

distance formula between the left

and right sides.

ℎ𝑐𝑚 Object height in cm, obtained from

ℎ𝑝𝑖𝑥𝑒𝑙 conversion through

conversion factor 𝑓.

𝑤𝑐𝑚 Object width in cm, obtained from

𝑤𝑝𝑖𝑥𝑒𝑙 conversion through

conversion factor f.

𝐷 The estimated distance between

object 𝑂 and the camera is

calculated through the height or

width as a reference.

and 𝑤𝑐𝑚 is the estimated height of the 𝑂𝑖 in cm. After

that, ℎ𝑐𝑚 and 𝑤𝑐𝑚 become references for calculating

the estimated distance 𝐷 between 𝑂𝑖 and the camera.

To clarify all the equations used in Table 3, every

variable utilized has been defined in Table 4.

4. Experiment(s)

The experimental instrument in this study

adopted Wohlin et al. [36] and extended the research

model of Aradea et al. [12, 37, 38]. Table 5 presents

the experimental design aimed at developing

solutions to problematic variability in uncertain real-

world objects characterized by adaptative strategies

Table 5. Experimental Design

No Descriptions

1 Purposes:

a. Developing smart glasses with self-

adaptation capabilities in handling contextual

uncertainty

b. Evaluating the performance of smart glasses

2 Domain:

Smart glasses for the visually-impaired people

3 Evaluative Questions (PE):

a. PE1-How do object recognition models

handle contextual variability?

b. PE2-What is the performance measure of

each element of the object recognition system

artifact?

4 Variables (V):

a. Response (V1-failure; V2- functional and

non-functional systems; V3-new stimulus)

b. Measurement of object recognition system

performance (V4-mAP; V5-inference speed;

V6-object distance estimation; V7-light

intensity)

to enhance performance. Performance encompasses

the ability to recognize objects with the RPSA-

YOLOv10 model, namely measuring distance based

on the variability of object dimensions, light

adjustments, user voice commands, and voice

notifications for users. Model evaluation was

conducted by evaluating mean average precision

(mAP), inference speed, frame rate, measuring the

estimated distance of the object to the actual distance,

and adaptability of light intensity.

On the object recognition model side, we

modified the YOLOv10 architecture, specifically in

the PSA section to produce a new model in the form

of RPSA-YOLOv10 (Fig. 3). As a form of validation,

we tested the performance of our model (RPSA-

YOLOv10) by training it on the MS COCO dataset to

compare with other models with similar datasets.

The MS COCO dataset contained approximately

330,000 image data employed for object detection,

segmentation, and captioning tasks [39]. Apart from

that, MS COCO had 80 classes creating good data

diversity. Our experiments were begun by training an

object detection or recognition model. To prove that

the model improves, we adapted the same

hyperparameters as employed by Wang et al. [11].

This hyperparameter consisted of involving 500

epochs, the SGD optimizer, weight decay of 5 × 10-

4, learning rate of 10-2, and momentum of 0.9. The

training process utilized a GeForce RTX 4090 24 GB

GPU with a training time of around 7 days.

Received: November 2, 2024. Revised: December 16, 2024. 1114

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.80

Table 6. Comparison of performance of object

recognition models

Model #param mAP50 mAP75 mAP50-

95

YOLOv6m[40] 34.3 M 66.8% - 49.5%

YOLOv7 [41] 36.9 M 69.7% 55.5% 51.2%

YOLOv8m [42] 25.9 M 66.7% 54.7% 50.2%

YOLOv9m [43] 20 M 68.1% 56.1% 51.4%

YOLOv10m[11] 15.4 M 68.1% 55.8% 51.1%

Our Model 17.4 M 67.3% 54.5% 50.2%

Table 6 deciphers a comparison of our model

(RPSA-YOLOv10) with other versions of the YOLO

model. In this case, our model underwent degradation

in the overall mAP evaluation with mAP50, mAP75,

and mAP50-95 values of 67.3%, 54.5%, and 50.2%.

This was caused by adaptative performance affecting

detection quality. However, by employing a self-

attention mechanism designed by combining RPE

and PSA, we were able to reduce this impact very

well. Furthermore, we compared the performance of

our object recognition model with the performance of

models applied in various related studies based on the

similarity of using datasets, namely, the MS COCO

dataset.

The comparative results (Table 7) indicate that

our model is very superior to other models although

the number of parameters displayed in Fig. 4 remains

larger than the SSDLite MobileNet v2 model. In

other words, if inference testing is conducted,

SSDLite MobilNet v2 [13] will have the highest

speed even though it has the worst accuracy.

Nevertheless, our model's size is not excessively

large, with the number of parameters only slightly

exceeding that of the SSDLite MobileNet model.

This is demonstrated in the parameter comparison

column in Table 7 and the graph in Fig. 4 illustrating

Table 7. Comparison of the performance of object

recognition models used in smart glasses in existing

research within the related work section, based on the use

of the MS COCO dataset.

Author Model mAP50 mAP50-

95

Number

of

Classes

[13] SSDLite

MobileNet v2

- 23.4% 80

[14] DETR-DC5-

R101

64.7% 44.9% 80

[16] YOLOv3 57.9% 33% 80

[22] Faster-RCNN-

ResNet50

- 30% 80

Our

Model

RPSA-

YOLOv10

67.3% 50.2% 80

Figure. 4 Comparison of the number of parameters for

each model

the parameter comparison. As a result, our model

achieves reasonably good inference speed when

performing object detection on images. Apart from

utilizing benchmark datasets, we also applied custom

datasets to enable the system to better recognize the

environment where the device was employed. This

custom dataset consisted of 1000 images containing

15 object classes.

Table 8 delineates the performance of our model

(RPSA-YOLOv10) compared to other versions of

YOLO models that can be trained using custom

datasets. Testing was performed through the same

device, namely the device applied for the RPSA-

YOLOv10 training process on the MS COCO dataset.

In particular, for testing the mAP metric, our model

could produce more value than other YOLO versions

with mAP50 at 73.1% and mAP50-95 at 48.3%.

Conversely, for inference speed, the performance

was lower than YOLOv10. This took place because

the size of our model model was slightly larger than

the YOLOv10 model [11]. Therefore, it caused the

speed of object detection and recognition to operate

Table 8. Performance comparison of various YOLO

models trained on custom datasets

Model mAP50 mAP50-95 Inference Speed

YOLOv3m 61.7% 37.3% 8.3 ms/image

YOLOv5m 61.5% 37.4% 7 ms/image

YOLOv6m 53.7% 32.1% 8.2 ms/image

YOLOv8m 64.3% 40.1% 5.5 ms/image

YOLOv9m 65.4% 40.6% 8.5 ms/image

YOLOv10m 57.9% 35.8% 7 ms/image

Our model 73.1% 48.3% 8.4 ms/image

Received: November 2, 2024. Revised: December 16, 2024. 1115

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.80

more slowly. After successfully developing the

object recognition model, we subsequently

developed adaptative artifacts based on the

adaptative patterns in Tables 2 and 3.

The first adaptative feature is calculating the

distance of the detected object based on assorted

object dimensions. This feature is an extension of our

previous papers [37, 38]. The estimated distance

calculation undertaken through the adaptative pattern

in Table 2 will occur if the conditions (I = C1 ˄ C3) ˅

(I = C1 ˄ C2 ˄ C3) are met. To validate the adaptability

of the designed patterns, we utilized Eq. (12) – (14)

to test how accurate the object distance estimation

results were. Where 𝑑𝑖𝑓𝑖 was the value of the

difference between the actual distance and the

estimated distance in percent, 𝑑 was the actual

distance, 𝑑′ was the estimated distance, 𝜀�̅� was the

average value of error for one class in one

experimental period, n was the number of

experiments, 𝜀 was the average value of the overall

class error in percent and c is the number of classes

in the dataset.

𝑑𝑖𝑓𝑖 =
|𝑑−𝑑′|

𝑑
 × 100% (13)

𝜀�̅� =
∑ 𝑑𝑖𝑓𝑖

𝑛
𝑖=0

𝑛
 (14)

𝜀 =
∑ �̅�𝑖

𝑛
𝑖=0

𝑐
 (15)

Table 9 illustrates the results of testing object

distance estimates. The results of estimating object

distances at original distances of 0.5 meters, 1 meter,

and 2 meters demonstrated that the average error rate

for the entire class was 15.95%. On the one hand, the

smallest average error was located in the book class

with an error of 8%. On the other hand, the largest

average error was located in the ladder class with an

error of 42.3%. This contributed to a distance

estimation accuracy of 84.05%. This value described

a fairly high success rate for adaptation. Further, this

distance estimation only relied on a camera with only

one viewing angle (monocular). Consequently, this

test can validate the ability of the system to estimate

object distances.

The second adaptative feature is handling low

light intensity. The adaptative process operated when

the light intensity was below 50 (C2 < 50). This

number came from the average value of the RGB

color combination in the frame captured by the

camera. The increase in new brightness (Bnew) came

from the base value of the old brightness (Bold)

multiplied by the light intensity multiplier factor (F).

Table 9. Adaptative results for object distance estimates

Object Original

Distance

Estimation Difference Average

Error

People

0.5 m 0.79 m 58% 29%

1 m 1.12 m 12%

2 m 2.34 m 17%

Table

0.5 m 0.77 m 44% 16.8%

1 m 1.04 m 4%

2 m 2.05 m 2.5%

Chair

0.5 m 0.58 m 16% 14.5%

1 m 0.76 m 24%

2 m 1.93 m 3.5%

Door

0.5 m 0.61 m 22% 16%

1 m 1.24 m 24%

2 m 2.06 m 3%

Seat

0.5 m 0.63 m 26% 12.8%

1 m 0.89 m 11%

2 m 2.03 m 1.5%

Plate

0.5 m 0.46 m 8% 6.5%

1 m 1.03 m 3%

2 m 2.17 m 8.5%

Glass

0.5 m 0.51 m 2% 8.8%

1 m 1.09 m 9%

2 m 1.69 m 15.5%

Bottle

0.5 m 0.54 m 8% 7.2%

1 m 1.11 m 11%

2 m 2.05 m 2.5%

Bag

0.5 m 0.65 m 30% 14.3%

1 m 0.88 m 12%

2 m 1.98 m 1%

Laptop

0.5 m 0.58 m 16% 8.8%

1 m 1.01 m 1%

2 m 1.81 m 9.5%

Telephone

0.5 m 0.34 m 32% 21%

1 m 1.11 m 11%

2 m 2.4 m 20%

Television

0.5 m 0.68 m 36% 19.5%

1 m 1.09 m 9%

2 m 2.27 m 13.5%

Projector

0.5 m 0.37 m 26% 13.8%

1 m 0.95 m 5%

2 m 1.79 m 10.5%

Book

0.5 m 0.53 m 6% 8%

1 m 1.06 m 6%

2 m 2.24 m 12%

Stairs

0.5 m 0.85 m 70% 42.3%

1 m 1.31 m 31%

2 m 2.54 m 26%

Total of Average Error 15.95%

Changes in image brightness could be undertaken

with Eq. (1). Table 10 outlines the results of light

intensity adaptation based on C2. In particular, the

increase in light intensity was always based on the

Bold value. Thus, it appears that the Bnew values did

Received: November 2, 2024. Revised: December 16, 2024. 1116

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.80

Table 10. Results of adaptation to increasing light

intensity

No.

Sample

Light Intensity

Before (Bold)

Light Intensity

After (Bnew)

1 49.37781944444 118.55763136574

2 46.74598292824 112.22711516204

3 44.08877285879 105.84925231481

4 41.38748003472 99.35508709491

5 40.057916666666 96.16702054398

6 38.721634548611 116.29317650463

7 36.050922743056 108.24479745370

8 33.384502025463 100.20943489583

9 30.723147280093 92.17820486111

10 28.06607378472 112.40079571759

11 26.72938252314 107.06316203703

12 25.37549074074 101.65819849537

13 24.05037442129 96.35608304398

14 22.72607291666 91.06828269675

15 21.41800491898 85.84278067129

16 20.1047265625 80.59685098379

17 18.77662789351 112.75285098379

18 17.44593547453 104.75996788194

19 16.12916059027 96.84081626157

20 14.82116348379 88.97579861111

21 13.50285127314 81.05487760416

22 12.17291608796 73.06952430555

23 10.81183738425 64.90382667824

24 9.46547106481 94.53855815972

25 8.08814525462 80.77312586805

26 6.72029571759 100.82346614583

27 5.35742129629 80.32760271990

28 4.02175636574 80.60934866898

29 2.66026909722 106.51936458333

30 1.32229166666 79.35144560185

not have the same value. This means that when the

light intensity increases, the process does not damage

the feature information contained in the image. From

the test scenario, it was discovered that the average

increase in light intensity by the system adaptive

process was 328.16% with the final result being an

average Bnew of 95.65.

Fig. 5 showcases the comparative results of Bold

and Bnew light enhancement adaptation. To illustrate,

the produced a light increase always adjusted to Bold.

This occurred because of the ability of the system to

adapt to the intensity of light received. Hence, it

indirectly provided an increase in light without

excessively damaging image features. However, this

does not guarantee complete protection for images

with very low light intensity. Occasionally, this

increase in light intensity causes damage to images.

Figs. 6 and 7 are representative samples tested in

Table 10. These images indicate examples of images

before and after changes in light intensity as a result

Figure. 5 A Comparative Chart for Bold and Bnew

of system adaptation. As an example, in the 24th

sample with Bold < 10 even though it had increased,

the results of this increase were not as large as in the

3rd sample. This occurred due to the adjustment of the

increase in light intensity based on the Bold value. In

other words, the smaller the Bold value, the darker

the light intensity would tend to be. This took place

to maintain the quality of the images captured by the

camera to be readable for the object recognition

model.

The final stage is to integrate the previously

created model with the speech recognition and text-

to-speech (TTS) models. In this case, we adapted

Python modules, namely the SpeechRecognition

module for speech recognition and the gTTS and

(a)

(b)

Figure. 6: (a) Image of the 3rd sample with a light

intensity value of 44,089 and (b) Image of the 24th sample

with a light intensity value of 9,465

Received: November 2, 2024. Revised: December 16, 2024. 1117

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.80

(a)

(b)

Figure. 7 System adaptation results: (a) Increase in

light intensity in the 3rd sample and (b) Increase in light

intensity in the 24th sample

pygame modules for TTS. The integration of this

module enabled our smart glasses to have two modes,

namely navigation and object search modes. In

navigation mode, smart glasses automatically

provided a sound notification to users if there was an

object 5 meters in front of the camera. In object

search mode, smart glasses waited for the

instructional voices of users to search for objects. An

example of implementing this mode can be viewed in

Fig. 8 and Table 11. The notification results

contained information on the names of the objects,

the directions of the objects based on clockwise

directions, and the distances of the objects to the

camera. The two modes (navigation and object

search) could be switched from each other through

voice commands. Further, the system embedded in

our smart glasses supports two languages, namely

Indonesian and English.

Table 11. Voice commands and notifications

Commands Voice Notifications

Please find a cup! The cup is at 7 o'clock. At a

distance of 0.42 meters from you.

Find me a book! The book is at 6 o'clock, at a

distance of 0.61 meters from you.

Get me a laptop! The laptop is at 10 o'clock, at a

distance of 0.97 meters from you.

Find me a bottle! - The bottle is at 8 o'clock, 0.61

meters away from you.

- The bottle is at 4 o'clock, 0.71

meters away from you.

Find me a chair! Please give me another order!

Figure. 8 System detection results

Figure. 9 Utilization of smart glasses

Fig. 9 designates the results of the physical

development of smart glasses. The applied main

components consist of a microcontroller, glasses with

a camera, and headphones. We utilized Jetson Nano

with 128-core NVIDIA Maxwell™ architecture GPU

specifications, Quad-core ARM® Cortex®-A57

MPCore processor, and AI performance of 472

GFLOPS. As a result, it is appropriate with every

process executed by the device. Apart from that, we

employed a camera embedded in the glasses with 8

MP specifications to stream video as input to the

system. Each of these components supported the

performance of the SACPS adaptative system

designed in Fig. 1. With this in mind, it can be an

alternative solution for visually impaired people to

undergo their daily activities more comfortably.

5. Conclusion

This study has successfully developed a model

for smart glasses based on the Self-Adaptive Cyber

Physical System (SACPS) artifact [12]. The model is

formulated with object recognition capabilities and

Received: November 2, 2024. Revised: December 16, 2024. 1118

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.80

adaptability regarding calculating object distance,

and light intensity, receiving voice commands, and

issuing voice notifications. The object recognition

model embedded in the device is the result of a

modification of the YOLOv10m model [11] named

RPSA-YOLOv10 and an extension of the model [37,

38]. In some test scenarios, our object recognition

model performs better than previous models.

Likewise, our model has adaptability designed based

on contextual knowledge to handle context

uncertainty. The speech recognition and text-to-

speech modules add convenience and functionality

where these smart glasses can be activated via voice

commands through two modes, namely navigation

and object search modes.

Conversely, behind the attained success, there are

still shortcomings. As an example, although the mAP

value is better than the previous version of the model,

the RPSA-YOLOv10 model signifies an increase in

the number of parameters supporting it heavier than

other models. Moreover, the limitations of

calculating object distances with only a monocular

camera make distance estimates less accurate due to

limited viewing angles. Future work is expected to be

able to overcome this problem by modifying the

architecture without leaving side effects on other

elements. By doing so, it can support the concept of

Green AI. The use of other object distance estimation

techniques requires to take into account to boost

accuracy in predicting object distances better.

Conflicts of Interest

The authors declare that there is no conflict of

interest in this paper.

Author Contributions

Conceptualization, Aradea and Ghatan Fauzi

Nugraha; methodology, Aradea; formal analysis,

reviewing & supervision, Aradea; Investigation,

Aradea; formal analysis, Aradea; data curation, Irfan

Darmawan, validation, Irfan Darmawan and Rianto;

Resources, Rianto, writing—review and editing,

Rianto; Investigation, Rianto; software, Ghatan Fauzi

Nugraha; visualization, Ghatan Fauzi Nugraha;

writing—original draft preparation, Ghatan Fauzi

Nugraha.

Acknowledgments

The present study is supported by the Institute for

Research and Community Services of Siliwangi

University, and the Research Group of Intelligent

Systems and Informatics (ISI) at the University of

Siliwangi. Likewise, this study is a manifestation of

the strategic program of the Ministry of Research,

Technology and Higher Education of the Republic of

Indonesia (No. No.289/UN58.06/PM.00.00/2024)

related to the research developments in Indonesia.

References

[1] J. Wang, S. Wang, and Y. Zhang, “Artificial

intelligence for visually impaired”, Displays,

Vol. 77, No. February, p. 102391, 2023, doi:

10.1016/j.displa.2023.102391.

[2] R. R. A. Bourne et al., “Causes of blindness and

vision impairment in 2020 and trends over 30

years, and prevalence of avoidable blindness

concerning VISION 2020: The Right to Sight:

An analysis for the Global Burden of Disease

Study”, Lancet Glob Health, Vol. 9, No. 2, pp.

e144-e160, 2021, doi: 10.1016/S2214-

109X(20)30489-7.

[3] K. C. Shahira and A. Lijiya, “Towards Assisting

the Visually Impaired: A Review on Techniques

for Decoding the Visual Data from Chart

Images”, IEEE Access, Vol. 9, pp. 52926-52943,

2021, doi: 10.1109/ACCESS.2021.3069205.

[4] M. Mashiata et al., “Towards assisting visually

impaired individuals: A review on the current

status and prospects”, Biosens Bioelectron X,

Vol. 12, No. August, p. 100265, 2022, doi:

10.1016/j.biosx.2022.100265.

[5] H. Walle, C. De Runz, B. Serres, and G.

Venturini, “A Survey on Recent Advances in AI

and Vision-Based Methods for Helping and

Guiding Visually Impaired People”, Applied

Sciences (Switzerland), Vol. 12, No. 5, 2022,

doi: 10.3390/app12052308.

[6] G. F. Nugraha, Aradea, Rianto, and R. Mardiati,

“Object Detection for the Visually Impaired: A

Systematic Literature Review”, In: Proc. of

2024 10th International Conference on Wireless

and Telematics (ICWT), pp. 1-16 2024, doi:

10.1109/ICWT62080.2024.10674727.

[7] M. M. Valipoor and A. de Antonio, “Recent

trends in computer vision-driven scene

understanding for VI/blind users: a systematic

mapping”, Univers Access Inf Soc, Vol. 22, No.

3, pp. 983-1005, 2023, doi: 10.1007/s10209-

022-00868-w.

[8] K. Manjari, M. Verma, and G. Singal, “A survey

on Assistive Technology for visually impaired”,

Internet of Things (Netherlands), Vol. 11, 2020,

doi: 10.1016/j.iot.2020.100188.

[9] R. C. Joshi, S. Yadav, M. K. Dutta, and C. M.

Travieso-Gonzalez, “Efficient multi-object

detection and smart navigation using artificial

intelligence for visually impaired people”,

Received: November 2, 2024. Revised: December 16, 2024. 1119

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.80

Entropy, Vol. 22, No. 9, 2020, doi:

10.3390/e22090941.

[10] M. Noman, V. Stankovic, and A. Tawfik,

“Portable offline indoor object recognition

system for the visually impaired”, Cogent Eng,

Vol. 7, No. 1, 2020, doi:

10.1080/23311916.2020.1823158.

[11] A. Wang et al., “YOLOv10: Real-Time End-to-

End Object Detection”, arXiv preprint

arXiv:2405.14458, pp. 1-18, 2024, [Online].

Available: http://arxiv.org/abs/2405.14458

[12] Aradea, I. Darmawan, Rianto, H. Mubarok, and

G. F. Nugraha, “Object Recognition Model for

Smart Glasses Based on Self-Adaptive Cyber-

Physical System”, Technical Report, Research

Group of the Intelligent Systems and Informatics

(ISI), Department of Informatics, Siliwangi

University, 2023.

[13] R. Bin Islam, S. Akhter, F. Iqbal, M. Saif Ur

Rahman, and R. Khan, “Deep learning based

object detection and surrounding environment

description for visually impaired people”,

Heliyon, Vol. 9, No. 6, p. e16924, 2023, doi:

10.1016/j.heliyon.2023.e16924.

[14] M. Mukhiddinov and J. Cho, “Smart glass

system using deep learning for the blind and

visually impaired”, Electronics (Switzerland),

Vol. 10, No. 22, 2021, doi:

10.3390/electronics10222756.

[15] X. Leong and R. Kanesaraj Ramasamy,

“Obstacle Detection and Distance Estimation

for Visually Impaired People”, IEEE Access,

Vol. 11, pp. 136609-136629, 2023, doi:

10.1109/ACCESS.2023.0322000.

[16] D. Lee and J. Cho, “Automatic Object Detection

Algorithm-Based Braille Image Generation

System for the Recognition of Real-Life

Obstacles for Visually Impaired People”,

Sensors, Vol. 22, No. 4, 2022, doi:

10.3390/s22041601.

[17] J. Redmon and A. Farhadi, “YOLOv3: An

Incremental Improvement”, 2018, [Online].

Available: http://arxiv.org/abs/1804.02767

[18] J. Terven, D. M. Córdova-Esparza, and J. A.

Romero-González, “A Comprehensive Review

of YOLO Architectures in Computer Vision:

From YOLOv1 to YOLOv8 and YOLO-NAS”,

Mach Learn Knowl Extr, Vol. 5, No. 4, pp.

1680-1716, 2023, doi: 10.3390/make5040083.

[19] J. Y. Lin, C. L. Chiang, M. J. Wu, C. C. Yao,

and M. C. Chen, “Smart Glasses Application

System for Visually Impaired People Based on

Deep Learning”, In: Proc. of Indo-Taiwan 2nd

International Conference on Computing,

Analytics and Networks, Indo-Taiwan ICAN

2020 - Proceedings, pp. 202-206, 2020, doi:

10.1109/Indo-

TaiwanICAN48429.2020.9181366.

[20] G. D. V Cortez, J. C. D. Valenton, and J. B. G.

Ibarra, “Low-Cost Smart Glasses for Blind

Individuals using Raspberry Pi 2”, Journal of

Positive School Psychology, Vol. 6, No. 3, pp.

6081-6088, 2022.

[21] K. Xia, X. Li, H. Liu, M. Zhou, and K. Zhu,

“IBGS: A Wearable Smart System to Assist

Visually Challenged”, IEEE Access, Vol. 10, pp.

77810-77825, 2022, doi:

10.1109/ACCESS.2022.3193097.

[22] W. J. Chang, L. B. Chen, C. H. Hsu, J. H. Chen,

T. C. Yang, and C. P. Lin, “MedGlasses: A

wearable smart-glasses-based drug pill

recognition system using deep learning for

visually impaired chronic patients”, IEEE

Access, Vol. 8, pp. 17013-17024, 2020, doi:

10.1109/ACCESS.2020.2967400.

[23] J. Li et al., “An AIoT-Based Assistance System

for Visually Impaired People”, Electronics

(Switzerland), Vol. 12, No. 18, 2023, doi:

10.3390/electronics12183760.

[24] G. Keren and B. Schuller, “Convolutional RNN:

an Enhanced Model for Extracting Features

from Sequential Data”, ArXiv preprint arXiv:

1602.05875, 2016. Available:

http://arxiv.org/abs/1602.05875

[25] Y. Jiang, H. Dong, and A. El Saddik, “Baidu

Meizu Deep Learning Competition: Arithmetic

Operation Recognition Using End-to-End

Learning OCR Technologies”, IEEE Access,

Vol. 6, pp. 60128-60136, 2018, doi:

10.1109/ACCESS.2018.2876035.

[26] H. Y. Zhu et al., “An investigation into the

effectiveness of using acoustic touch to assist

people who are blind”, PLoS One, Vol. 18, No.

10 pp. 1-24, 2023, doi:

10.1371/journal.pone.0290431.

[27] S. Busaeed, R. Mehmood, I. Katib, and J. M.

Corchado, “LidSonic for Visually Impaired:

Green Machine Learning-Based Assistive

Smart Glasses with Smart App and Arduino”,

Electronics (Switzerland), Vol. 11, No. 7, 2022,

doi: 10.3390/electronics11071076.

[28] Y. Bouteraa, “Smart real-time wearable

navigation support system for BVIP”,

Alexandria Engineering Journal, Vol. 62, pp.

223-235, 2023, doi: 10.1016/j.aej.2022.06.060.

[29] M. K. Habib and C. Chimsom I, “CPS: Role,

Characteristics, Architectures and Future

Potentials”, Procedia Comput Sci, Vol. 200, pp.

1347-1358, 2022, doi:

10.1016/j.procs.2022.01.336.

Received: November 2, 2024. Revised: December 16, 2024. 1120

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.80

[30] E. Zavala, X. Franch, J. Marco, A. Knauss, and

D. Damian, “SACRE: Supporting contextual

requirements’ adaptation in modern self-

adaptive systems in the presence of uncertainty

at runtime”, Expert Syst Appl, Vol. 98, pp. 166-

188, 2018, doi: 10.1016/j.eswa.2018.01.009.

[31] D. Bahdanau, K. H. Cho, and Y. Bengio,

“Neural machine translation by jointly learning

to align and translate”, In: Proc. of 3rd

International Conference on Learning

Representations, ICLR 2015 - Conference Track

Proceedings, pp. 1-15, 2015.

[32] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-

attention with relative position representations”,

In Proc. of 2018 Conference of the North

American Chapter of the Association for

Computational Linguistics: Human Language

Technologies, Vol. 2, pp. 464-468, 2018, doi:

10.18653/v1/n18-2074.

[33] A. Vaswani et al., “Attention is all you need”,

Adv Neural Inf Process Syst, Vol. 2017-Decem,

No. Nips, pp. 5999-6009, 2017.

[34] A. Rosebrock, “Measuring the size of objects in

an image with OpenCV”, pyimagesearch.

Accessed: Jul. 28, 2024. [Online]. Available:

https://pyimagesearch.com/2016/03/28/measuri

ng-size-of-objects-in-an-image-with-opencv/

[35] A. Rosebrock, “Find the distance from camera

to object/marker using Python and OpenCV”,

pyimagesearch. Accessed: Feb. 10, 2024.

[Online]. Available:

https://pyimagesearch.com/2015/01/19/find-

distance-camera-objectmarker-using-python-

opencv/

[36] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,

B. Regnell, and A. Wesslén, Experimentation in

Software Engineering. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2012. doi:

10.1007/978-3-642-29044-2.

[37] Aradea, I. Supriana, and K. Surendro, “ARAS:

adaptation requirements for adaptive systems”,

Automated Software Engineering, Vol. 30, No.

1, p. 2, 2023, doi: 10.1007/s10515-022-00369-3.

[38] A. Aradea, R. Rianto, and H. Mubarok,

“Inference Model for Self-Adaptive IoT Service

Systems”, International Journal of Intelligent

Engineering and Systems, Vol. 14, No. 4, pp.

337-349, 2021, doi:

10.22266/ijies2021.0831.30.

[39] T. Y. Lin et al., “Microsoft COCO: Common

objects in context”, Lecture Notes in Computer

Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in

Bioinformatics), Vol. 8693 LNCS, No. PART 5,

pp. 740-755, 2014, doi: 10.1007/978-3-319-

10602-1_48.

[40] C. Li et al., “YOLOv6: A Single-Stage Object

Detection Framework for Industrial

Applications”, 2022, [Online]. Available:

http://arxiv.org/abs/2209.02976

[41] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M.

Liao, “YOLOv7: Trainable Bag-of-Freebies

Sets New State-of-the-Art for Real-Time Object

Detectors”, In: Proc. of 2023 IEEE/CVF

Conference on Computer Vision and Pattern

Recognition (CVPR), Vancouver, BC, Canada,

pp. 7464-7475, 2023, doi:

10.1109/cvpr52729.2023.00721.

[42] G. Jocher, A. Chaurasia, and J. Qiu, “YOLOv8

by Ultralytics”, Scientific Research, 2023.

Accessed: Feb. 02, 2024. [Online]. Available:

https://github.com/ultralytics/ultralytic

[43] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao,

“YOLOv9: Learning What You Want to Learn

Using Programmable Gradient Information”,

arXiv:2402.13616, pp. 1-18, 2024, [Online].

Available:

https://github.com/WongKinYiu/yolov9.

