
Received:  November 30, 2024.     Revised: December 17, 2024.                                                                                  1151 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.83 

 

 
Epileptic Seizure Classification Based on Enhanced State Refinement Gated 

Recurrent Unit with Temporal Activation Regularization 

 

Cholleti Sathyanarayana1*          Yerravelli Raghavender Rao2 

 
1Department of Electronics and Communication Engineering, 

JNTUH and Sreenidhi Institute of Science and Technology, India 
2Department of Electronics and Communication Engineering, JNTUHUCES, India 

* Corresponding author’s Email: sathyacholleti@gmail.com 

 

 
Abstract: The neural activity in the brain is detected through Electroencephalography (EEG) which enables the 

analysis and classification of epileptic disorder. The epileptic classification is challenging due to the presence of noise 

and artifacts in the EEG signal which increases the False Positive Rate (FPR) and minimizes the classification 

performance. Therefore, this research proposes an Enhanced State Refinement Gated Recurrent Unit with Temporal 

Activation Regularization (ESRGRU-TAR) for epileptic seizure classification. The ESRGRU optimizes the gating 

mechanism to enhance the capability to capture long-term dependencies in the data. Particularly, refinements are 

capable of quality of interactive models that reveal interactions among sample points thereby enhancing interpretability. 

The message-passing mechanism is developed to highlight useful feature representations between sample points. TAR 

is beneficial for controlling overfitting because it moderates the model’s activation by adding temporal consistency to 

the learning process. The BONN and CHB-MIT datasets are used to estimate the proposed ESRGRU-TAR 

performance based on the classifier. The ESRGRU-TAR achieves better accuracy of 99.91% and 99.89% for BONN 

and CHB-MIT datasets which is better than existing techniques such as Bidirectional Long Short-Term Memory (Bi-

LSTM). 

Keywords: Electroencephalography, Epileptic seizure classification, Enhanced state refinement gated recurrent unit, 

False positive rate, Temporal activation regularization. 

 

 

1. Introduction 

Epilepsy is a nervous disorder which affects 

around 1% of global population caused by the 

abnormal activity in group of nerve cells in the brain 

that resultant in epileptic seizures. Rapid changes in 

EEG signals are considered as a significant indicator 

in detection and classification of epileptic seizures [1]. 

The seizures in epileptic patients leads to severe 

clinical symptoms like abnormal behavior, loss of 

consciousness, muscle contractions, weird ambiences 

and so on [2]. Epileptic seizures are characterized by 

abnormal activities in brain which suffers from 

momentary and unnatural fluctuations in electrical 

activity [3]. Although most of the seizures are 

successfully managed using drug therapy, anti-

epileptic medications and surgery give only partial 

relief and fail in 30% of the cases [4]. EEG gives 

instant information of the electrical output produced 

by nerve cells in the cerebral cortex which has great 

temporal resolution in the order of 10ms [5]. It also 

emerged that applying manual interventions to 

patients before the start of seizures greatly minimize 

patient anxiety, and positively influence the overall 

treatment process [6]. Hence, it is important to create 

a high precision epilepsy prediction by EEG to 

predict occurrence of seizure in patients [7, 8]. 

Early research on EEG signal analysis indicates 

that the signals generated by the brain are noisy and 

created from a chaotic dynamical system [9]. 

Determination of seizures in the epilepsy population 

is critical to correct diagnosis and developing 

personalized treatment strategies. This is because 

early diagnosis and regular follow-ups of seizure 

cases lead to better living quality and reduced life-



Received:  November 30, 2024.     Revised: December 17, 2024.                                                                                  1152 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.83 

 

threatening complications [10, 11]. Recent research 

techniques for predicting seizures include time -

frequency analysis, non-linear dynamics and Deep 

Learning (DL) networks [12]. While applying DL 

algorithms in different healthcare interventions, the 

same has also been incorporated in cloud-based 

seizure detection to enhance classification [13]. 

Many features are investigated via linear and non-

linear techniques and integrated to characterize brain 

activity and dynamics for further higher dimensional 

analysis [14, 15]. The existing research uses DL 

algorithms like Convolutional Neural Networks 

(CNN) and Long Short-Term Memory (LSTM) for 

epileptic seizure classification. Generally, these 

algorithms were structured in a layered format, 

enabling the development of effective prediction 

models with less classification time for real-time 

applications [16, 17]. The research contributions are 

summarised as follows: 

• The ESRGRU optimizes the gating 

mechanism to improve the capability of 

capturing long-term dependencies in data. 

The TAR is used to manage overfitting 

because it controls the model’s activation by 

adding temporal consistency to the learning 

process.  

• The integration of ESRGRU-TAR makes it 

possible to filter complex and noisy EEG 

data when increasing robustness against 

signal variation, which facilitates quicker 

generalization for various seizure patterns.  

• Feature extraction techniques such as Short-

Time Fourier Transform (STFT) and 

Discrete Wavelet Transform (DWT) capture 

temporal and frequency features of EEG 

signals which are used to distinguish seizure 

and non-seizures effectively. 

This research paper is arranged as follows: 

Section 2 explains literature review, and Section 3 

describes a proposed method in detail. Section 4 

gives result analysis on BONN and CHB-MIT 

datasets. The conclusion of this research is provided 

in Section 5.  

2. Literature review 

Recently, DL algorithm have been extensively 

applied for epileptic seizure classification due to 

efficiency and its performance is analyzed in this 

section.  

Zaid [18] suggested preprocessed and integrated 

EEG data for epileptic seizure classification by 1D-

Convolution Neural Network original with Fast 

Fourier Transform (1D-CNN original + FFT). The 

preprocessed signals are given to the DL model but 

the EEG signals are combined into their original form. 

The 1D-CNN original + FFT method provided 

adequate prediction with a smaller number of nodes. 

Nevertheless, this only captured temporal 

information and did not suppose the rhythmic 

fluctuations of EEG signals which limits its 

discriminant ability to differentiate among seizure 

and non-seizure.  

Jemal [19] introduced a CNN inspired by Filter 

Bank Common Spatial Pattern (FBCSP) for 

predicting epileptic seizures by EEG data. The CNN 

was interpretable due to the layer was visualized as 

result where learned weights flow from signal 

processing like spatial and sub-band filters. 

Subsequently, extracted features are no longer to 

commonly applied features for EEF data decoding. 

The CNN inspired by FBCSP achieved better 

performance in EEG predictions. However, hand-

crafted features are extracted due to the limited 

representation capabilities which are not suitable for 

correctly classifying the EEG signals. 

Voruganti and Gurrala [20] developed a 

Hierarchical LSTM (H-LSTM) with Skip Connection 

for epileptic seizure classification. The H-LSTM 

captures short and long-term dependence among 

nearest sequences for high-dimensional data. Skip 

connections are added between two consecutive H-

LSTM layers to facilitate the data from one sequence 

to another for improving the classification accuracy 

of epileptic seizures. However, H-LSTM with skip 

connection has less temporal communication in 

subsequent sequence which lead to loss in important 

features required for accurate seizure classification.  

Kumar [21] implemented a Bi-LSTM for 

epileptic seizure classification in EEG data. The Bi-

LSTM reserves non-stationary nature of EEG data 

when minimizing processing costs through Local 

Mean Decomposition (LMD) and statistical feature 

extraction. A dual LSTM with an opposite 

propagation way was integrated which utilized data 

from before and after present time to determine 

output state. The Bi-LSTM effectively captured the 

long-term dependence both in forward and reverse 

direction on EEG signals. However, it did not 

suppose the rhythmic fluctuations of EEG signals 

which limits its discriminant ability to differentiate 

seizure and non-seizure patterns.  

Daftari [22] presented a DL algorithm that 

involved two parallel processes of analyzing EEG 

signals for epileptic seizure activity. Time-frequency 

images of EEG data and raw waveforms were 

mandatory input features for CNN and RNN-LSTM.  
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Figure. 1 Process of the proposed methodology 

 

The spectrogram and scalogram image 

processing were developed using two signal 

processing methods such as STFT and CWT. 

However, the PCNN-LSTM has challenges in 

capturing high dimensional data between the 

consecutive sequences which affects the classifier 

performance. 

From the above analysis, various issues are 

addressed in existing approaches such as the problem 

of modelling high dimensional features between 

adjacent sequences, high classification error rate due 

to concentration only on time-based features, weak 

flow of information across sequences and 

dependency on handcrafted features. To overcome 

these issues, this research proposes an ESRGRU-

TAR to enhance capability to capture long-term 

dependencies in data. Moreover, STFT and DWT are 

to capture temporal and frequency features of EEG 

signals which are used to distinguish seizure and non-

seizures effectively. 

3. Proposed methodology 

This research proposed an ESRGRU-TAR for 

epileptic seizure classification. Initially, BONN and 

CHB-MIT datasets are considered in this research, 

which is preprocessed by 8th order BWF filter and z-

score normalisation to remove noise and normalise 

the data. Then, the preprocessed data is fed as input 

into the STFT and DWT to extract features from time 

and frequency domains. Fig. 1 denotes the process of 

epileptic seizure. 

3.1 Dataset 

Two widely accessible EEG datasets such as 

BONN [23] and CHB-MIT [24] are utilized in 

epileptic seizure prediction. A brief description of 

these datasets is given as follows: 

3.1.1. BONN dataset 

The BONN dataset contains five subsets, that are 

labelled as A, B, C, D and E. Each subset has a signal 

channel of EEG data by precise characteristics. The 

A and B subsets have scalp EEG data from healthy 

volunteers and subsets, whereas C and D subsets have 

intracranial EEG data from focal and non-focal 

patients. Lastly, the E subset has appropriate 

intracranial EEG signals. Every subset has 100 files, 

in which every file has 4096 samples with a recording 

of 23.6s and a sampling rate of 173.61Hz.  

3.1.2. CHB-MIT dataset 

The CHB-MIT dataset is gathered from Boston 

Children’s Hospital, which includes data attained 

from interictal and seizure periods with 10-20 

international standard electrode placement system. 

This dataset has numerous channels of EEG records 

by 256Hz sample rate and 23 records from 22 

subjects.  

3.2 Preprocessing 

The EEG signal is preprocessed for attaining 

significant features with higher possibilities of 

interictal and ictal correlation portions. The 

preprocessed techniques such as 8th order BWF and 

z-score normalization are used in this research.  

3.2.1. 8th order Butter worth filter  

The EEG signals are preprocessed at 60Hz 

frequency using 8th order BWF to remove two types 



Received:  November 30, 2024.     Revised: December 17, 2024.                                                                                  1154 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.83 

 

of irrelevant noises such as mechanical and electrical 

[25]. The highest-order filter is applied because of its 

ability to gain bandwidth. The continuous value of 

8th order BWF is calculated by Eq. (1). 

 

𝐺2(𝑊) =
𝐺0

2

1+(
𝑗𝑤

𝑗𝑤𝑐
)

2𝑛                                                (1) 

 

Where, the direct present gain is presented 

through 𝐺0, the cut-off frequency is provided through 

𝑤𝑐 and filter order is 𝑛.  

3.2.2. Z-score normalization 

Normalization is performed by dual signals for 

predefined or same series [20]. The predefined series 

samples are statistical discernment of normalization 

that converts signal where mean and standard 

deviations are 1. The Z-score normalization is 

performed for normalization which exposes 

classification performance through signal flattening. 

The mathematical expression of the z-score value is 

provided in Eq. (2). 

 

𝑧 − 𝑠𝑐𝑜𝑟𝑒 =
𝑠𝑐𝑜𝑟𝑒−𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
                            (2) 

 

The 𝑠𝑐𝑜𝑟𝑒  is the data point, the 𝑚𝑒𝑎𝑛  is the 

average of every data point and 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛  is the number of data 

variations. The normalization process preserves the 

correlation among actual and normalized EEG 

signals which minimizes the bias selection. The z-

score normalization standardizes EEG data and 

improves discriminative features.  

3.3 Feature Extraction 

The preprocessed signals are provided as input to 

feature extraction to extract time and frequency 

features. The STFT and DWT are used in this 

research to extract time and frequency domains. 

3.3.1. Short-Time Frequency Transform (STFT) 

The STFT extracts a representation of time-

frequency in EEG signals which provide important 

features for epileptic seizure classification [20]. The 

time-frequency features capture spectral variations 

over a short period and generate discriminative 

features that differentiate between seizure and non-

seizure. In STFT, non-stationary signals are 

separated into small segments and those segments are 

taken as sequential. These portions are attained by 

windowing function and this technique is known as 

windowing signals. The time-dependent signals are 

stated in time and frequency axes by using the STFT 

method. The STFT (𝛾(𝑤, 𝜏))  is numerically 

provided in Eq. (3). 

 

𝛾(𝑤, 𝜏) = 𝑆𝑇𝐹𝑇{𝑓(𝑡)} = ∫ 𝑓(𝑡)𝑊(𝑡 −

𝜏)𝑒−𝑗𝑤𝑡 𝑑𝑡            (3) 

 

Here, 𝑓(𝑡), 𝑊, 𝑤  and 𝑡  are time domain signal, 

windowing function, frequency parameters and time 

parameter. The 𝛾(𝑤, 𝜏) is a result of SIFT, 𝑒−𝑗𝑤𝑡 is 

an exponential function and 𝜏  is a slow time 

parameter. Here, the hamming is applied as a 

windowing function in STFT. For BONN and CHB-

MIT datasets, the window size is determined as 

4128.64 and its parameter has some points for 

overlapping between windows which is utilized and 

decided 2,64,32. 

3.3.2. Discrete Wavelet Transform (DWT) 

The spectral analysis is used for analyzing non-

stationary signs and transforms them into time-

frequency domain. The DWT decomposes a signal 

into a group of sub-bands named as a coefficient 

approximation 𝐴𝑖(𝑘)  and coefficient detail 𝐷𝑖(𝑘) 

through high and low-pass filters respectively. The 

𝐴𝑖(𝑘) and 𝐷𝑖(𝑘) in 𝑖th level is defined in Eq. (4) and 

(5). 

 

𝐴𝑖 = {
1

√𝑀
∑ 𝑓(𝑥)𝑥 ∙ 𝜑𝑗,𝑘(𝑥)}                                (4) 

 

𝐷𝑖 = {
1

√𝑀
∑ 𝑓(𝑥)𝑥 ∙ ψ𝑗,𝑘(𝑥)}                               (5) 

 

Where, high-pass filter is named as 𝑔 respective 

to discrete function 𝜑𝑗,𝑘(𝑥) as shown in the Eq. (6) 

and low-pass filter named as ℎ is minor version using 

scaling function 𝜑𝑗,𝑘(𝑥) as shown in Eq. (7). 

 

𝜑𝑗,𝑘(𝑥) = 2𝑗 2⁄ ℎ ((2𝑗𝑥 − 𝑘))                             (6) 

 

ψ𝑗,𝑘(𝑥) = 2𝑗 2⁄ 𝑔 ((2𝑗𝑥 − 𝑘))                            (7) 

 

The DWT is efficient in capturing both time and 

frequency information which enables for isolation of 

relevant features related to seizures thereby 

enhancing classification performance.   

3.4 Classification 

The ESRGRU is developed in this research which 

leverages temporal interaction data among signal 

points in EEG signals. The traditional GRU gathers 

the input sample points individually without taking 
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interactions among them. For signal point 𝑖 , 

presentations of 𝑡th step is embedded as vector form 

𝑒𝑡
𝑖 = 𝜙𝑒(𝑥𝑡

𝑖 , 𝑦𝑡
𝑖; 𝑊𝑒) , where, 𝜙𝑒  is an embedding 

function which is parameterized by 𝑊𝑒, 𝑒𝑡
𝑖 is applied 

as input to GRU as Eqs. (8)- (11). 

 

𝑔𝑧,𝑡
𝑖 = 𝜎(𝑊𝑧𝑒𝑡

𝑖 + 𝑈𝑧ℎ𝑡−1
𝑖 + 𝑏𝑧)                        (8) 

 

𝑔𝑢,𝑡
𝑖 = 𝜎(𝑊𝑢𝑒𝑡

𝑖 + 𝑈𝑢ℎ𝑡−1
𝑖 + 𝑏𝑢)                       (9) 

 

𝐶𝑡
𝑖 = 𝑡𝑎𝑛ℎ(𝑊𝐶𝑒𝑡

𝑖 + 𝑈𝐶𝑔𝑢,𝑡
𝑖 ℎ𝑡−1

𝑖 + 𝑏𝐶)         (10) 

 

𝐻𝑡
𝑖 = (1 − 𝑔𝑧,𝑡

𝑖 ) ∙ 𝐻𝑡−1
𝑖 + 𝑔𝑧,𝑡

𝑖 ∙ 𝐶𝑡
𝑖                    (11) 

 

Where, 𝑔  is a GRU gate function and its 

respective superscripts such as 𝑧 and 𝑢 are reset and 

update gate. 𝐶𝑡
𝑖  and 𝐻𝑡

𝑖  are unit and hidden state of 

GRU, 𝑊  and 𝑈  are respective weight matrices. 

Particularly, each sample point is taken as an 

individual object when applying the GRU with all 

parameters transformed among sample points. Based 

on derivative of hidden state 𝐻𝑡
𝑖 from GRU, states at 

sample point 𝑖 + 1 are directly determined using Eq. 

(12). 

 

[𝑥𝑡
𝑖+1, 𝑦𝑡

𝑖+1]
𝑇

= 𝑊𝑑𝐻𝑡
𝑖                                        (12) 

 

Where, 𝑊𝑑 is a learned hyperparameters through 

reducing loss function. During inference phase, 

earlier space state is applied as inputs to the present 

space step. The traditional GRU is applied to extract 

features from the meaningful representation of every 

sample point individually. The ESRGRU is applied 

to improve unit states 𝐶𝑡
𝑖  through passing messages 

among sample points in EEG. The ESRGRU has 

three information sources for all sample points as 

inputs such as present representation of sample points, 

hidden state and unit state of GRU. The result of 

ESRGRU are refined unit states and its numerical 

formula is provided in Eq. (13). 

 

�̂�𝑡
𝑖,𝑙+1 = ∑ 𝐺𝑘𝑘∈𝑇(𝑡) (�̂�𝑘

𝑖,𝑙 , �̂�𝑡
𝑖,𝑙) + �̂�𝑡

𝑖,𝑙              (13) 

 

Where, 𝐺 is a message passing function and 𝑇(𝑡) 

is an EEG sample episode of 𝑇  length. At step 𝑡 , 

hidden state �̂�𝑘
𝑖,𝑙

 from adjacent sample point with 

𝑘 ∈ 𝑇(𝑡) are combined through passing function and 

integrated by unit state of 𝑡 for obtaining refined unit 

states. The message-passing process is achieved for 

various iterations and 𝑙 is a message passing iteration 

index. After 𝑙 = 0 , states are adjusted through 

traditional GRU in Eqs. (8)- (11). Second, the unit 

state is refined through 𝐿 alteration iterations in the 

ESRGRU module and utilized for deriving 

subsequent states as Eqs. (14)- (16). 

 

�̂�𝑡
𝑖 = 𝐶𝑡

𝑖,𝐿                                    (14) 

 

�̂�𝑡
𝑖 = 𝑔𝑢,𝑡

𝑖 ∙ 𝑡𝑎𝑛ℎ (�̂�𝑡
𝑖)                                          (15) 

  

[𝑥𝑡
𝑖+1, 𝑦𝑡

𝑖+1]
𝑇

= 𝑊𝑑�̂�𝑡
𝑖                                        (16) 

 

Where, 𝑔𝑢,𝑡
𝑖  is derivative from traditional GRU. 

Particularly, refinements are proficient quality of 

interactive model which revealing interactions 

among sample points thereby enhancing 

interpretability.  To adaptively select valuable feature 

representation from adjacent sample points and allow 

message passing, this research introduces a message 

passing term 𝐺  by-feature representation screening 

framework as Eq. (17). 

 

�̂�𝑡
𝑖,𝑙+1 =

{
∑ 𝐺𝑘𝑘∈𝑇(𝑡) (�̂�𝑘

𝑖,𝑙 , �̂�𝑡
𝑖,𝑙) + �̂�𝑡

𝑖,𝑙                        

∑ 𝑊𝑚𝑑
𝑘∈𝑇(𝑡) 𝛼𝑡,𝑘

𝑖,𝑙 ∙ (𝑔𝑡,𝑘
𝑚,𝑖,𝑙 ⊙ �̂�𝑘

𝑖,𝑙) + �̂�𝑡
𝑖,𝑙             (17) 

 

Where, ⊙, 𝑊𝑚𝑑 , 𝛼𝑡,𝑘  and 𝑔𝑡,𝑘  are element-wise 

product, transform parameters, sample point-wise 

attention and gate representation respectively. The 

𝛼𝑡,𝑘  is a scalar and this attention for sample point 

with 𝑘 ∈ 𝑇(𝑡) is determined by Eqs. (18) and (19). 

 

𝑢𝑡,𝑘
𝑖,𝑙 = 𝑊𝛼𝑇

[𝑟𝑡,𝑘
𝑖,𝑙 ; ℎ̂𝑘

𝑖,𝑙; ℎ̂𝑡
𝑖,𝑙]                                  (18) 

 

𝛼𝑡,𝑘
𝑖,𝑙 =

exp(𝑢𝑡,𝑘
𝑖,𝑙 )

∑ 𝑢𝑡,𝑑
𝑖,𝑙

𝑑

                                                      (19) 

 

Where, 𝑟𝑡,𝑘
𝑖,𝑙

 is a relative temporal state for 

empowering feature information screening which is 

embedded through its function ∅𝑟 as Eq. (20). 

 

𝑟𝑡,𝑘
𝑖,𝑙 = ∅𝑟(𝑥𝑡

𝑖 − 𝑥𝑘
𝑖 , 𝑦𝑡

𝑖 − 𝑦𝑘
𝑖 ; 𝑊𝑟)                      (20) 

 

Where, (𝑥𝑡
𝑖 , 𝑦𝑡

𝑖) is a sample point representation 𝑖 

at step 𝑡 , similarly for (𝑥𝑘
𝑖 , 𝑦𝑘

𝑖 )  and 𝑊𝑟  is a 

parameter for ∅𝑟 . The 𝑔𝑡,𝑘  is a vector and it is 

determined using Eq. (21). 

 

𝑔𝑡,𝑘
𝑚,𝑖,𝑙 = 𝜎(𝑊𝑚[𝑟𝑡,𝑘

𝑖,𝑙 ; ℎ̂𝑘
𝑖,𝑙; ℎ̂𝑡

𝑖,𝑙] + 𝑏𝑚)              (21) 
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Figure. 2 Architecture of ESRGRU 

 

 

Where, 𝑔𝑡,𝑘
𝑚  is a feature screening, 𝜎 is a sigmoid 

function, 𝑊𝑚 and 𝑏𝑚 are respective parameters. It is 

required to recognize that the representation gate and 

signal point-wise attention operate in parallel to filter 

feature information from adjacent signal points 

which allows effective message exchange. The 

representation gate based on the following 

integration 𝑟𝑡,𝑘
𝑖 , ℎ̂𝑘

𝑖  and ℎ̂𝑡
𝑖  which implements on 

every hidden state ℎ̂𝑘
𝑖  to execute a pairwise feature 

screening thus it guarantees that current signal points 

have corresponding feature representations of sample 

point 𝑡  and 𝑘  and their relative temporal and their 

corresponding relative time, for feature screening are 

detected and combined simultaneously. Fig. 2 depicts 

the architecture of ESRGRU.  

However, sample point-wise attention enhances 

the dependencies among strongly related signal 

points and controls the exchange of intermediary 

messages between neighbouring nodes. To prevent 

any overshooting during imputation, the TAR is 

applied to the consecutive hidden layers. This 

regularization quantifies the sum of all the loss terms 

mathematically equal to the difference between the 

final and initial hidden layers. A small weight is 

assigned to this loss to ensure that the imputation 

results are still different over time. Thus, a weight 

value 𝛼 of 0.0001 is empirically selected as Eq. (22). 

 

𝑙𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑟𝑒𝑔 = 𝛼𝐿2(ℎ𝑡, ℎ𝑡−1)                          (22) 

 

The ESRGRU is uses a gating mechanism to 

enhance capability for capturing long-term 

dependencies when dealing with EEG signals with 

varying temporal structures. The TAR is beneficial to 

control overfitting because it moderates model’s 

activation by including temporal consistency in the 

learning process. The integration of ESRGRU-TAR 

makes it possible to filter complex and noisy EEG 

data when increasing robustness against signal 

variation which enables quicker generalization for 

several seizure patterns. 

4. Experimental results 

The ESRGRU-TAR is simulated in MATLAB 

software with system requirements of 6GB RAM, 

windows 10 OS and Intel i5 processor. The accuracy, 

specificity, precision, f1-score, sensitivity, AUC and 

FPR are taken as metrics to evaluate ESRGRU-TAR 

performance for BONN and CHB-MIT datasets. The 

mathematical representation for all these metrics is 

provided in Eqs. (23)- (29). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                              (23) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                         (24) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                             (25) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
          (26) 
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Figure. 3 TAR performance for BONN dataset 

 
Figure. 4 TAR performance for CHB-MIT dataset 

 
 

Table 1. ESRGRU-TAR performance for BONN dataset 

Method Accuracy 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1-score 

(%) 

Sensitivity 

(%) 

AUC 

(%) 

FPR 

(%) 

CNN 90.62 89.79 88.81 89.20 89.61 90.48 -88.79 

RNN 93.73 91.66 90.34 90.94 91.55 91.28 -90.66 

LSTM 94.71 93.47 92.52 92.98 93.46 94.67 -92.47 

GRU 96.58 95.75 95.56 95.11 94.68 95.62  -94.75 

ESRGRU-TAR 99.91 99.83 99.87 99.88 99.90 99.79 -98.83 

 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                          (27) 

 

𝐴𝑈𝐶 =
∑ 𝑅𝑖(𝐼𝐼)−𝐼𝐼(𝐼𝐼+𝐼)/2

𝐼𝐼+𝐼𝑓
× 100                          (28) 

 

𝐹𝑃𝑅 = 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦                                    (29) 

 

Where, 𝑇𝑃, 𝑇𝑁, 𝐹𝑃  and 𝐹𝑁  are True Positive, 

True Negative, False Positive and False Negative 

respectively. The 𝑅𝑖 is a 𝑖th signal point, 𝐼𝐼 and 𝐼𝑓 are 

the initial and final points of signal interval 

respectively.  

Fig. 3 indicates the TAR performance for BONN 

dataset with metrics of accuracy, specificity, 

precision, f1-score, sensitivity and AUC. The state-

of-art methods like Dropout Regularization (DR), L2 

Regularization (L2R), Max-norm Regularization 

(MR) and Elastic Net Regularization (ENR) are taken 

to compare the TAR performance. The TAR achieves 

accuracy 99.91%, specificity 99.83%, precision 

99.87%, f1-score 99.88%, sensitivity of 99.90% and 

AUC 99.79% for BONN dataset. 

Table 1 indicates the ESRGRU-TAR 

performance for BONN dataset with metrics of 

accuracy, specificity, precision, f1-score, sensitivity, 

AUC and FPR. State-of-the-art methods like 

Convolution Neural Network (CNN), Recurrent 

Neural Network (RNN), Long Short-Term Memory 

(LSTM) and GRU are used to compare the ESRGRU-

TAR performance. The ESRGRU-TAR achieves 

accuracy of 99.91%, specificity of 99.83%, precision 

of 99.87%, f1-score of 99.88%, sensitivity of 99.90%, 

AUC of 99.79% and FPR of -98.83% for BONN 

dataset. 

Fig. 4 indicates the TAR performance for CHB-

MIT dataset with metrics of accuracy, specificity, 

precision, f1-score, sensitivity, and AUC. State-of-

the-art methods like DR, L2R, MR, and ENR are used 

to compare the TAR performance. The TAR achieves 

accuracy of 99.89%, specificity of 99.82%, precision 

of 99.78%, f1-score of 99.82%, sensitivity of 99.88%, 

and AUC of 99.67% for the CHB-MIT dataset. 

Table 2 indicates ESRGRU-TAR performance 

for the BONN dataset with metrics of accuracy, 

specificity, precision, f1-score, sensitivity, AUC and 

FPR. State-of-the-art methods like CNN, RNN, 

LSTM, and GRU are used to compare the ESRGRU-

TAR performance. The ESRGRU-TAR achieves 

accuracy of 99.89%, specificity of 99.82%, precision 

99.78%, f1-score 99.82%, sensitivity of 99.88%, 

AUC of 99.67% and FPR -98.82% for CHB-MIT 

dataset. The Fig. 5 and Fig. 6 shows the confusion 

matrix for BONN and CHB-MIT dataset respectively. 

The Fig. 7 and Fig. 8 shows the ROC-AUC curve for 

BONN and CHB-MIT datasets respectively. 

4.1 Comparative analysis 

The comparison of ESRGRU-TAR is provided in 

this section with metrics of accuracy, specificity, 

precision, f1-score, sensitivity and AUC for BONN 

and CHB-MIT datasets.  
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Figure. 5 Confusion matrix for BONN dataset 

 

 
Figure. 6 Confusion matrix for CHB-MIT dataset 

 

 
Figure. 7 ROC-AUC curve for BONN dataset 

 

 
Figure. 8 ROC-AUC curve for CHB-MIT dataset 

 

 

 

Table 2. ESRGRU-TAR performance for the CHB-MIT dataset 

Method Accuracy 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1-score 

(%) 

Sensitivity 

(%) 

AUC 

(%) 

FPR 

(%) 

CNN 92.56 91.74 91.62 91.16 90.71 91.51 -90.74 

RNN 94.54 94.36 93.58 93.10 92.64 94.13 -93.36 

LSTM 95.77 95.15 94.41 94.48 94.57 95.65 -94.15 

GRU 97.18 96.57 95.50 95.43 95.38 95.48 -95.57 

ESRGRU-

TAR 

99.89 99.82 99.78 99.82 99.88 99.67 -98.82 

Table 3. Comparison of ESRGRU-TAR for BONN dataset 

Method Accuracy 

(%) 

Specificity 

(%) 

F1-score 

(%) 

Sensitivity 

(%) 

AUC 

(%) 

1D-CNN original + FFT [18] 99.13 99.34 NA 98.32 NA 

H-LSTM with skip connection 

[20] 

99.81 99.75 99.79 99.87 NA 

PCNN-LSTM [22] 99.75 99.62 99.83 99.83 99.56 

ESRGRU-TAR 99.91 99.83 99.88 99.90 99.79 
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Table 4. Comparison of ESRGRU-TAR for CHB-MIT dataset 

Method Accuracy 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1-score 

(%) 

Sensitivity 

(%) 

AUC 

(%) 

CNN inspired by FBCSP 

[19] 

90.9 84.7 88.5 91.9 96.1 91.8 

H-LSTM with skip 

connection [20] 

99.34 99.62 NA 99.54 99.86 NA 

Bi-LSTM [21] 97.00 93.90 NA NA 95.70 NA 

PCNN-LSTM [22] 97.12 97.49 NA 97.27 96.75 96.72 

ESRGRU-TAR 99.89 99.82 99.78 99.82 99.88 99.67 

 

The ESRGRU-TAR performance is compared 

with 1D-CNN original + FFT [18], CNN inspired by 

FBCSP [19], H-LSTM with skip connection [20], Bi-

LSTM [21] and PCNN-LSTM [22] to show the 

effectiveness. The ESRGRU-TAR achieves accuracy 

of 99.91%, specificity 99.83%, precision of 99.87%, 

f1-score of 99.88%, sensitivity of 99.90% and AUC 

of 99.79% for BONN dataset. The ESRGRU-TAR 

achieves accuracy 99.89%, specificity 99.82%, 

precision 99.78%, f1-score 99.82%, sensitivity 

99.88% and AUC 99.67% for the CHB-MIT dataset. 

Table 3 and Table 4 indicate the comparison of 

ESRGRU-TAR for BONN and CHB-MIT datasets 

respectively. 

4.2 Discussion 

The section describes the results achieved from 

ESRGRU-TAR for improving classification 

performance of epileptic seizures. The 1D-CNN 

original + FFT [18] only captured temporal 

information and did not suppose the rhythmic 

fluctuations of EEG signals which limits its 

discriminant ability in differentiate among seizure 

and non-seizure. In CNN inspired by FBCSP [19], 

handcrafted features are extracted due to the limited 

representation capabilities which are not suitable for 

accurately classifying EEG signals. The H-LSTM 

with skip connection [20] has reduced temporal 

communication in subsequent sequences which leads 

to loss of important features required for accurate 

seizure classification. The Bi-LSTM [21] did not 

suppose the rhythmic fluctuations of EEG signals 

which limits its discriminant ability to differentiate 

among seizure and non-seizure. PCNN-LSTM [22] 

has challenges in capturing high dimensional data 

between consecutive sequences which affect the 

classifier performance. To overcome this drawback, 

the ESRGRU-TAR is proposed in this research which 

enhances the capacity to capture diverse temporal 

structures in EEG which are significance in accurate 

seizure classification. The TAR is used to manage 

overfitting because it controls the model’s activation 

by adding temporal consistency to learning process. 

The integration of ESRGRU-TAR makes it possible 

to filter complex and noisy EEG data when increasing 

robustness against signal variation which facilitates 

quicker generalization for various seizure patterns. 

5. Conclusion 

This research proposes an ESRGRU-TAR based 

classification for epileptic seizure which makes it 

possible to filter complex and noisy EEG data when 

improving robustness against signal variation. The 

ESRGRU optimizes the gating mechanism to 

enhance capability for capturing long-term 

dependencies in data. The state refinements are 

proficient for interactive model quality which 

exposes interactions among sample points thereby 

improving interpretability. The 8th order BWF filter 

and z-score normalization are considered 

preprocessing to remove noise and normalize the 

EEG data. Feature extraction techniques such as 

STFT and DWT capture temporal and frequency 

features of EEG signals which are used to distinguish 

seizure and non-seizures effectively. The ESRGRU-

TAR attains optimal accuracy of 99.91% and 99.89% 

for BONN and CHB-MIT datasets which is better 

than existing techniques. In future, optimization-

based feature selection can be used to remove 

irrelevant features to further enhance the 

classification performance. 

Notation list 

Notations Description 

𝐺0 Direct present gain 

𝑤𝑐 Cut-off frequency 

𝑛 Filter order 

𝑓(𝑡) Time domain signal 

𝑊 Windowing function 

𝑤 Frequency parameters 

𝑡 Time parameter 

𝛾(𝑤, 𝜏) Result of SIFT 

𝑒−𝑗𝑤𝑡  Exponential function 

𝜏 Slow time parameter 

𝐴𝑖(𝑘) Coefficient approximation 

𝐷𝑖(𝑘) Coefficient detail 
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𝑔 High-pass filter 

𝜑𝑗,𝑘(𝑥) Discrete function 

ℎ Low-pass filter 

𝜑𝑗,𝑘(𝑥) Scaling function 

𝑖 Signal point 

𝜙𝑒 Embedding function 

𝑊 and 𝑈 Weight matrices 

𝑧 and 𝑢 Reset and update gate 

𝐶𝑡
𝑖 and 𝐻𝑡

𝑖 Unit and hidden state 

𝑊𝑑 Learned hyperparameters 

𝐺 Message passing function 

𝑇(𝑡) EEG sample episode of 𝑇 length 

𝑙 Message passing iteration index 

𝐿 Alteration iterations 

⊙ Element-wise product 

𝑊𝑚𝑑 Transform parameters 

𝛼𝑡,𝑘 Sample point-wise attention 

𝑔𝑡,𝑘 Gate representation 

𝛼𝑡,𝑘 Scalar 

𝑟𝑡,𝑘
𝑖,𝑙

 Relative temporal state 

(𝑥𝑡
𝑖 , 𝑦𝑡

𝑖) Sample point representation 

𝑔𝑡,𝑘
𝑚  Feature screening 

𝜎 Sigmoid function 

𝑊𝑚 and 𝑏𝑚 Parameters 

𝑇𝑃 True Positive 

𝑇𝑁 True Negative 

𝐹𝑃 False Positive 

𝐹𝑁 False Negative 

𝑅𝑖 Signal point 

𝐼𝐼  and 𝐼𝑓 Initial and final points 
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