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Abstract: In an era where urban surveillance plays a crucial role in ensuring public safety, the rapid expansion of 

urban populations necessitates the advancement of surveillance technologies. The proliferation of resource-constrained 

Internet of Things (IoT) devices in recent years has posed significant challenges in managing efficient computation 

and real-time anomaly detection. In response to these challenges, this paper introduces the Adaptive Edge-Offload 

Anomaly Detection (AEAD) methodology, which offers a dynamic and adaptive approach to managing IoT device 

resources by making informed decisions regarding the offloading of computational tasks to edge servers. To detect 

anomalies, the Integrated Memory-Aware Twin Autoencoder Network (IMAN) is designed; IMAN comprises twin 

autoencoders that extract fused features based on appearance and motion, while a memory network is employed to 

select the most efficient features. By efficiently segmenting data and optimizing processing layers, AEAD enhances 

the accuracy of anomaly detection while minimizing energy consumption. The contributions of AEAD include its 

ability to strike a balance between local and edge processing based on real-time network conditions, ensuring that tasks 

are completed within predefined time constraints. Moreover, AEAD's adaptability empowers it to efficiently detect 

anomalies in scenarios such as video surveillance and sensor networks, making it a valuable asset for applications 

requiring enhanced security and surveillance capabilities. A comparative analysis of three datasets—University of 

California San Diego Pedestrian Dataset 2 (UCSD PED2), The Chinese University of Hong Kong Avenue Dataset 

(CUHK Avenue), and ShanghaiTech—reveals that the Proposed System (PS) methodology consistently outperforms 

the Existing System (ES) methodology. PS achieves Area Under the Curve (AUC) improvements of 7.16% on UCSD 

PED2, 11.306% on CUHK Avenue, and 6.760% on ShanghaiTech. These results underscore the superior effectiveness 

of PS in various anomaly detection scenarios. 
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1. Introduction 

The stability of urban areas is dependent on the 

maintenance of public safety as the population of a 

city increases [1]. Numerous video surveillance 

systems have been extensively deployed in urban 

areas and their surroundings, encompassing 

roadways and office buildings, among various other 

sites. The networked devices play a critical role in 

ensuring the overall public safety of a major city's 

infrastructure. The identification of unusual 

occurrences, such as traffic crashes, infractions, and 

crimes, is a crucial and challenging task in automated 

traffic video surveillance. It requires prompt attention 

due to its time-sensitive nature. Video anomaly 

detection has gained increased attention due to its 

applications in intelligent transportation systems. 

Anomaly detection is a complex and significant field 

of study that primarily focuses on identifying data 

examples that deviate from nominal trends [2]. 

In recent years, there has been a significant rise in 

the adoption of edge computing. This trend highlights 

the capability of edge computing to perform data 

processing at the network's edge, resulting in reduced 

latency and cost savings [3]. The capability to 

perform data computation at its source greatly 

enhances the creation of applications that require low 
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latency [4]. This reduces network data traffic, 

conserves bandwidth, and reduces costs associated 

with the system. Edge computing offers several 

advantages that enable significant advancements, 

especially in real-time applications that demand high 

speed, such as anomaly detection. 

The video anomaly detection system's real-time 

decision capability is of great value due to its crucial 

role in maintaining security, stability, and, in certain 

instances, prevention of potential disasters. Real-time 

anomaly detection has the potential to facilitate 

timely responses to remote incidents, including fires, 

robberies, and traffic accidents. The current state of 

research on online and real-time detection techniques 

is characterized by specific limitations, despite the 

considerable significance of these techniques [5]. 

Video anomaly detection aims to identify 

unrecognized patterns in training data. Techniques 

for real-time abnormality detection include deep 

learning-based methods and traditional approaches 

[6]. These methods have reduced computer resource 

utilization, but require more computational resources. 

Reducing model complexity is crucial for real-time 

detection. Techniques include cascading local and 

global descriptors [7], replacing high-level semantic 

features with low-level ones, implementing a 

spatiotemporal auto-encoder network for automated 

behavior extraction, and generating spatiotemporal 

cuboids. 

A new deep learning technique [8] is introduced 

that eliminates the need for a video dataset during the 

training phase of 3D CNNs. Pre-trained 2D 

Convolutional Neural Networks (CNNs) trained on 

image data are recommended, facilitating data 

retrieval in time and space. This method reduces 

memory and processing power requirements. 

Advanced deep neural networks used in video 

anomaly detection require a large amount of data, but 

most methods have limitations when applied to 

datasets from various scenarios [9]. Traffic datasets 

do not follow a consistent pattern, and these models 

are not optimally designed for edge applications due 

to the need for specialized training on videos for all 

potential scenarios [10]. 

1.1. Motivation and contribution 

This study is driven by the motivation to enhance 

security in both public and private sectors through the 

utilization of advanced surveillance systems in a 

timely manner. The primary objective is to develop 

an algorithm that can efficiently function on edge 

devices with limited processing and memory 

capacities. The importance of privacy concerns and 

real-time data processing cannot be overstated. In 

order to ensure consistent and reliable operation of 

the algorithm, it is imperative that it possesses the 

capability to adapt to the dynamic and unpredictable 

conditions that are commonly encountered in 

surveillance environments. Possible conditions that 

may be observed include fluctuations in population 

densities and variations in levels of illumination. The 

research aims to strike a balanced equilibrium 

between the need for scalability across different 

monitoring scenarios and the ability to quickly detect 

anomalies in real-time. The main objective of this 

project is to enhance the video surveillance field by 

utilizing advancements in edge computing and 

machine learning techniques. The primary goal is to 

enhance the efficiency of smart surveillance 

technology through the provision of solutions that 

prioritize flexibility, scalability, and privacy. 

➢ Efficient edge Device Resource Management:  

A novel AEAD (Adaptive Edge-Offload 

Anomaly Detection) approach is designed here, 

which addresses the challenge of resource-

constrained IoT devices by dynamically 

offloading computation to edge servers. It 

optimizes the use of device resources and 

significantly reduces energy consumption by 

making careful offloading decisions based on 

network conditions. 

➢ Anomaly Detection through IMAN: IMAN 

comprises twin autoencoder that extracts the 

fused feature based on the appearance and motion, 

memory network is used for selecting the 

efficient feature. 

➢ Balanced Local and Edge Processing: AEAD 

strikes a balance between local processing and 

edge server offloading based on the available 

communication channel capacity. This dynamic 

allocation of tasks optimizes time and energy 

usage, making it a valuable contribution to the 

efficient management of IoT networks, 

especially in scenarios with resource limitations. 

1.2. Problem definition 

The study aims to address the challenges of 

resource-constrained IoT devices in urban 

surveillance applications, particularly in anomaly 

detection. Traditional methods often struggle with 

high computational complexity, leading to high 

latency and inefficiencies. Edge computing has been 

proposed as a solution, but it struggles with dynamic 

network conditions and optimizing computational 

offloading. Conventional systems prioritize 

performance over energy consumption, which is 

critical in IoT environments. The study introduces the 

Adaptive Edge-Offload Anomaly Detection (AEAD) 
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methodology, which balances local processing with 

edge offloading based on network conditions, making 

it adaptable and energy-efficient. The AEAD model 

also integrates memory-aware anomaly detection 

through the Integrated Memory-Aware Twin 

Autoencoder Network (IMAN), ensuring efficient 

feature extraction and selection. By providing a 

dynamic and adaptive approach, AEAD significantly 

outperforms traditional systems in performance and 

energy efficiency, as demonstrated by comparative 

analysis with multiple real-world datasets. 

The research organisation of this paper involves 

the first section provides a brief introduction that 

highlights the significance of automated anomaly 

detection in video surveillance. In the second a 

literature survey is carried out and in the third section 

is the proposed methodology in which a novel 

AEAD-network is designed for enhancing crowd 

behaviour anomaly detection and in the fourth section 

the performance evaluation is provided which 

displays the comparison results in the form of graph. 

2. Related work 

The research in video anomaly detection has 

shown significant growth in recent years. However, 

the complexity of this subject matter persists, posing 

substantial difficulties. The predominant 

methodologies employ semi-supervised techniques. 

The techniques employed in this process involve the 

utilization of video data to train models, with the 

ultimate goal of acquiring a comprehensive 

understanding of standard behaviour [11, 12]. The 

aforementioned models have the ability to detect and 

recognize activities that deviate from the established 

norm. 

This article introduces a distributed model that 

has been developed for the purpose of managing real-

time, edge-based Artificial Intelligence analytics [13]. 

The model's design has been specifically customized 

to meet the requirements of applications, such as 

smart video surveillance. The novelty of the model 

stems from its utilization of decoupling and 

distribution techniques to separate and distribute 

services among multiple decomposed functions. The 

functions mentioned above are interconnected in 

order to establish virtual function chains, which are 

commonly referred to as the VFC model. The model 

considers both computational and communication 

constraints. The VFC model's ability to handle 

heavy-load services in an edge environment has been 

proven through theoretical simulation and 

experimental evidence. Additionally, empirical 

evidence suggests that the Virtual Function Chaining 

(VFC) model enhances service coverage in 

comparison to current frameworks [14]. 

This article introduces the concept of 

EdgeLeague [15], a solution developed to efficiently 

manage multiple video streams with different levels 

of quality of service (QoS). The main objective of the 

proposed system is to achieve optimal surveillance 

performance, even in situations where there are 

limitations on edge resources and fluctuations in 

uplink bandwidth. The objective is accomplished 

through the utilization of edge collaboration 

techniques and the configuration of a camera network. 

The EdgeLeague scheme involves the resolution of 

an NP-hard integer nonlinear problem to dynamically 

configure camera network resolutions and detection 

models on cooperative edges. To optimize the 

efficiency of configuration responses, the problem is 

divided into three primary components: edge league 

grouping, video-league matching, and video 

configuration. The aforementioned components are 

subsequently targeted utilizing algorithms that 

exhibit low complexity.  

The proposal proposes a comprehensive plan for 

creating a Video Usefulness model that incorporates 

edge computing functionalities, specifically tailored 

for large-scale video surveillance systems. 

Furthermore, a thorough assessment is conducted to 

evaluate the practical implementation of the 

technology, with a particular focus on its ability to 

detect failures in the early stages and improve the 

efficiency of bandwidth utilization. The VU model 

demonstrates efficient capabilities in detecting 

failures in video data and promptly delivering them 

to end-users in real-time. The objective of this article 

is to achieve three specific goals: The objective is to 

present a comprehensive proposal for the 

development of a Virtual User (VU) model. The 

objective of this study is to assess the practicality of 

the VU model and ascertain VU values within an 

authentic environment. Additionally, this approach 

prioritizes the optimization of reducing the mean time 

to detection (MTTD) [16] by leveraging edge 

computing-enabled rapid online failure detection 

techniques. The primary objective is to effectively 

mitigate network bandwidth challenges encountered 

in extensive video surveillance systems. 

The technique for extracting actions in 

continuous unconstrained video is investigated in 

their study. The approach consists of three essential 

components: spatial location estimation, temporal 

action path searching, and spatial-temporal action 

compensation. In a previous study, presented a 

methodology that integrates the depiction of fluid 

forces with psychological theory in order to 

accomplish scene perception. Over the last few years, 
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notable advancements have been achieved in the 

domain of deep learning, specifically in the domains 

of face recognition, target tracking, and other related 

fields [17]. Within the field of deep learning, neural 

networks are primarily comprised of two distinct 

types: convolutional neural networks (CNNs) and 

long short-term memory networks (LSTMs). The 

Convolutional Neural Network (CNN) model 

leverages video images as its input and produces 

labels as its output. The weights and thresholds are 

trained using forward and back propagation 

techniques. The detection of abnormal regions was 

carried out in a study [18] using cascaded 

autoencoders and cascaded convolutional neural 

networks (CNNs). The researchers employed 

cascaded classifiers in order to sequentially detect 

normal and abnormal pedestrian behaviors. The study 

conducted by [19] employed optical flow data that 

was extracted from an input image. The 

implementation of dual-stream convolutional neural 

networks (CNNs) was utilized to extract specific 

features relevant to pedestrian behavior. The LSTMN, 

or Long Short-Term Memory Network, is a type of 

neural network that has been developed with the 

purpose of effectively transmitting information in 

long input sequences. This concerns a problem that is 

not effectively resolved by traditional cyclic neural 

networks employed autoencoders to extract spatial 

information and utilized LSTM (Long Short-Term 

Memory) to extract time-domain information. The 

features that were extracted were subsequently 

merged in order to construct a model that can identify 

abnormal behavior. The deep learning network 

proposed by [20, 44] comprises a fusion of 

spatiotemporal convolutional neural networks 

(CNNs) [21] and long short-term memory (LSTM). 

The network was designed to detect pedestrian 

actions and identify abnormal behavior, ensuring a 

safer and more efficient environment for pedestrians 

3. Proposed methodology 

The workflow of the proposed methodology, 

named Adaptive Edge-Offload Anomaly Detection 

(AEAD) is given in figure 1, begins with the 

reception of video frames as input by IoT devices. 

The workflow begins with local processing, followed 

by parameter and variable initialization. It then 

undergoes an iterative processing phase, evaluating 

each model layer's processing delay and potential 

offloading to an edge server. The offload decision 

balances local computing and server offloading, with 

feasible layers transferred to the edge server [22]. The 

workflow generates results, including anomaly 

detection outputs, and obtains the final output. 

Fig. 2 illustrates the primary components of the 

proposed system, comprising two auto-encoders, an 

IMAN (Integrated Memory Aware twin autoencoder 

network), a content addressable memory, and a 

convolution model. Our proposed network receives a 

sequence of consecutive video frames along with 

their corresponding optical fluxes [23]. The feature 

encoder 𝐼𝑒  and Position embedding 𝐼𝑞 to train the 

network and extract different features, fused along 

with the spatio-temporal data. The fused features 

retrieve the content of the memory then given to the 

auto-encoder to build the frame. 

 

 

Figure. 1 Proposed Workflow 

 

 

 
Figure. 2 Video anomaly detection architecture. 
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3.1. Twin auto encoder model 

The twin autoencoder model captures the spatio-

temporal data when the information is disclosed, this 

information is then reframed into a frame by the twin 

autoencoder. The autoencoders share similar 

structure to each other. Pooling operation is 

performed within the stride whereas the convolution 

operation is carried out in the encoder [23]. The 

reframed convolutional networks design the shape of 

a convolutional kernel located close to the feature 

upon addition of a direct vector. To integrate these 

features from the top and bottom level features that 

generate offset to simplify the convolutional features, 

thereby enhancing the accuracy and miss a 

connection that connects the feature encoder 𝐼𝑒 and a 

decoder to ensure multi-level sealed information for 

the purpose of prediction of the video frame. 

To enhance anomaly detection performance, the 

integration of Twin Autoencoders and memory 

awareness in the IMAN architecture plays a crucial 

role. Memory networks capture spatial and temporal 

dependencies, improving the model's ability to detect 

subtle patterns over time. The Twin Autoencoder 

architecture involves two autoencoders: one for 

initial feature extraction and the other for refinement, 

improving reconstruction accuracy. However, this 

architecture introduces increased complexity and 

computational overhead. To validate the 

contributions of memory awareness and edge 

offloading, we propose ablation studies that will 

quantify their impact on detection performance and 

efficiency, highlighting trade-offs between accuracy 

and resource usage in IoT environments. 

3.2. 1D CNN 

The study explores the connection between 

information motion in videos and anomalies related 

to objects. It suggests using a contextual map for 

optical flow to focus attention features on a series of 

events [24]. The approach uses 1*1 context 

modelling and introduces a change mechanism to 

evaluate dissimilarity attention, tracking irrelevant 

events and events recorded during quick interactions 

and it is shown as below: 

 

𝛽𝑝 = 𝜛(| |
𝑗𝑞−1

𝐻 ∑ 𝑗𝑞
𝐻
ℎ=1

| |2
2    (1) 

where: 

• 𝑗𝑞  ∈ 𝑉𝑓∗ℎ∗1  represents the optical flow features 

positioned after global context modeling. 

o 𝑓: Batch size 

o ℎ: Dimension of the channel 

• 𝐻 = 𝑙 ∗ 𝑎 denotes the spatial dimension. 

o 𝑙: Spatial length 

o 𝑎: Spatial width 

The last convolutional operation is relevant in 

integrating the global context appearance feature 

based on the motion denoted by the features within 

this position. The attention-based motion 

incorporates the connections in the middle of the 

crowd movement that uses the stem to further make 

it more appealing [25]. The motion attention model 

utilizes the magnitude and angle features as inputs. 

The magnitude feature is responsible for determining 

the value of each pixel in the frame. This is achieved 

through a SoftMax multiplication operation. 

Convolution and variance-based attention are 

employed in the optical flow's appearance 

characteristics inputs to enforce adaptable constraints 

on the global motion's appearance [26]. 

3.3. Classifier module 

This model consists of an item memory denoted 

as 𝑄𝑚 ∈ 𝑉𝑟∗ℎ  that is learnt and recorded via the 

prototypes of normal prototype relations 

irrespectively. The resultant r number of items and h 

dimension of the channel. This procedure is updated 

through the classifier module for patterns as shown 

below: 

➢ The read operation is carried out by identifying 

the cosine similarity to achieve the related 

memory items within the input data is distributed 

through each memory item. The input feature b 

denoted as 𝑄𝑚 and 𝑄𝑣 is shown below: 

 
𝑄𝑚

1 =𝑄𝑚−1+ 𝑗1(𝑏)𝑋⊗𝑗1(𝑏)     (2) 

 

where, 𝑄𝑚
1 1 is updated from the previous memory 

𝑄𝑚−1  using a linear transformation 

function𝑗1(𝑏) applied to the input feature b. The term 

⊗ represents a cross-product operation between two 

instances of 𝑗1(𝑏) . 

 

𝐵1 = 𝜛(𝑗3(𝑏)𝑋)𝑄𝑣−1𝑗2(𝑏)     (3) 

 

Here, 𝐵1  is computed by applying a 

transformation 𝑗3(𝑏)𝑋 to the input feature b, 

followed by a linear transformation 𝑗2(𝑏) and a 

weighted sum with 𝑄𝑣−1 [27]. The symbol 𝜛 

indicates a transformation function applied to the 

result, 𝑗1, 𝑗2 and 𝑗3 denote the linear layers. 

 

𝑄𝑣
1 = 𝛿(𝑄𝑚

1 + 𝐵1 ⊗ 𝑗2(𝑏) )    (4) 
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The updated memory 𝑄𝑣
1is obtained by applying 

the normalization operation 𝛿 to the sum of 𝑄𝑚
1  and 

the cross-product of 𝐵1 and 𝑗2(𝑏) . The 

normalization ensures that the memory remains 

within a certain range. 

 

𝑄𝑣
 = 𝑂𝑣−1 + 𝑂𝑣

1     (5) 

 

In this equation, the overall memory 𝑄𝑣
  is 

updated by adding the previous memory value 𝑂𝑣−1 

to the newly computed memory 𝑂𝑣
1. 

 

𝑄𝑞 = 𝛿(𝐴𝑝𝑄), 𝑄, 𝑢, 𝑜    (6) 

 

Here, 𝑄𝑞 is updated through a normalization 

function 𝛿 , where 𝐴𝑝  refers to the attention 

parameters, and u and o represent the additional 

feature vectors involved in the memory update 

process. 

 

𝐸⊗(𝑢, 𝑂, 𝑍) = ∑ 𝜗(𝑢
𝜏𝑜𝑧
𝑚=1 ∗ 𝑜𝑚) ⊗ 𝑧𝑚  (7) 

 

The cross-product 𝐸⊗(𝑢, 𝑂, 𝑍) is computed by 

summing over all scales 𝜏𝑜𝑧, applying a 

transformation 𝜗(u∗om) and combining it with 𝑧𝑚. 

 

ℊ(𝑄) = 𝐸⊗(𝑄𝑢, 𝑄𝑜, 𝑄𝑧)    (8) 

 

The function ℊ(𝑄) applies a weighted sum across 

𝑄𝑢 , 𝑄𝑜, 𝑄𝑧,with each being a separate memory feature 

vector. 

➢ Updation of 𝑄𝑀
  by additition of a content read 

from the previous to the result that is processed 

through the 1DCNN model as shown below: 

however  𝑗4 denotes linear layers. 

 

𝑄𝑀
 = 𝑄𝑀

1 + 𝑗4(𝑄𝑣
1)     (9) 

 

➢ Transferring 𝑄𝑣
  through the semantic 

information is recorded through the 𝑄𝑣
 , 

converting an associated memory and to address 

this in a similar fashion depicted as below: 

 
𝑄 = 𝑗(𝑄𝑣

 )                (10) 

 

𝑏 = 𝑎𝑄 = ∑ 𝑎𝑚
𝑅
𝑚=1 𝑞𝑚              (11) 

 

𝑄 ∈ 𝑉𝑟∗ℎ  is the memory, 𝑗  is the feed forward 

network whereas 𝑏  is the feature associated with 

memory, 𝑎𝑚 is evaluated as: 

 

𝑎𝑚 =
exp (ℎ(𝑏,𝑞𝑚))

∑ exp( ℎ(𝑏,𝑞𝑛)𝑅
𝑛=1

                           (12) 

 

ℎ(𝑏, 𝑞𝑚) =
𝑏𝑞𝑚

𝑋

||𝑏||||𝑞𝑚||
                          (13) 

 

The 1D-CNN information, there exists a 

difference in between the 1D-CNN, however this 

design, within each batch relates to the memory 

denoting the relational dimensional memory depicted 

as 𝑓 ∗ 𝑟 ∗ ℎ ∗ ℎ   , however 𝑓  is the batch size, 𝑟  is 

the memory item, this design is implemented for each 

batch that shares the memory-item, this memory 

records the prototype of the patterns. In 1D-CNN 

transfer module that utilises a neural network for the 

purpose of extending the associated memory patterns 

through the suitable weights. 

3.4. Loss and abnormality 

This specific model is trained through the loss 

accounted by 𝑃𝑡 represented as the objective function 

that reduces the 𝑝2  divergence within the predicted 

frame, 𝑚𝑥 with the corresponding value 𝑀𝑥. 

 

𝑃𝑡 = ||𝑀𝑥 − 𝑚𝑥||2
2               (14) 

 

The testing phase here is evaluated by the 

proposed technique to set a score for the anomalies. 

However, 𝑧𝑚  denotes the prediction error where m 

and R, the total number of the scales represented as 

the error [28]. the normalization to achieve the psnr 

value within the range of the abnormal value, 𝑊(𝑀𝑥) 

achieved by the Gaussian filter. 

 

𝑍 = ∑ 𝑧𝑚
𝑅
𝑚=0               (15) 

 

 𝑇(𝑀𝑥 − 𝑚𝑥) = 10𝑙𝑜𝑔10(
1

𝑍
)              (16) 

 

𝑊(𝑀𝑥) =
𝑇(𝑀𝑥−𝑚𝑥)−𝑚𝑖𝑛𝑥(𝑇(𝑀𝑥−𝑚𝑥))

𝑚𝑎𝑥𝑥(𝑇(𝑀𝑥−𝑚𝑥))−𝑚𝑖𝑛𝑥(𝑇(𝑀𝑥−𝑚𝑥))
   (17) 

 

3.5. Video surveillance on edge network model 

Consider a network that comprises N number of 

resource constrained edge device with constant 

processing power; each devices are running a 

proposed video anomaly detection model for 

performing the detection of abnormal event [29-43]. 

Each device will have this model and it is connected 

to the edge through wireless link.  

Optimization edge constraint 

Considering proposed model constraint as 

restricted environment edge device offloads the 

higher number of layers to edge server; this is carried 



Received:  November 23, 2024.     Revised: December 17, 2024.                                                                                  1168 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.84 

 

out to provide the sufficient data rate for transmission 

of layer parameter while satisfying the constraint. 

 
Algorithm 1: Optimization edge constraint 

𝑰𝒏𝒑𝒖𝒕  𝑁, 𝐸𝑁 , 𝑈𝑁 , 𝐻𝑔, 𝑇(𝜕), ∁, 𝑉𝑄 

Output: decision to offload or process locally 

1. Initialize 

2.  To compute the processing delay. 

𝑉𝑙 = (𝑓𝑛)−1𝐸[0] 
K=1 

3. While 𝐾 < 𝑁 do 

Compute residual time once after processing 

the input layer. 

𝑉∗ = 𝑉 − 𝑉𝑙 

Compute time for edge processing layers 

[k:N] layers 

𝑉𝑐(𝑔) = 𝐻𝑝𝐷[𝑘: 𝑁] 

Compute time for transmitting layers.  

𝑉𝑐 = 𝑉[𝑘] 𝑇(𝜕)𝑛 

4. IF 𝑉𝑐 + 𝑉𝑐 + 𝑉𝑐 ≤ ∁′then  

 Offload remaining layers to the edge. 

K=N 

Else 

Continue processing the next layer. 

K=k+1 

End 

End  

End  

 

The ESS heuristic is a method for optimizing IoT 

devices by balancing local computation and server 

offloading [30]. It starts with local processing of the 

first input layer, then recalculates the deadline. The 

device then evaluates the feasibility of offloading the 

rest to an edge server within a new time frame. If the 

assessment confirms that offloading meets the 

deadline, it is executed. The communication 

channel's capacity is crucial in this decision-making 

process. The ESS heuristic aims to complete the 

inference task within the deadline by early model 

segmentation, limiting local processing and 

transferring workload to the edge server, thereby 

reducing energy consumption [31]. 

4. Performance evaluation 

In this section, a thorough evaluation of the 

proposed methodology is carried out on datasets for 

anomaly detection, including UCSD PED2, CUHK 

Avenue, and the ShanghaiTech campus dataset. The 

effectiveness and robustness of the methodology is 

evaluated through a comprehensive analysis [32-44], 

where the comparison of the identified abnormal 

frames with the corresponding ground truth labels is 

evaluated.  

4.1. Initial setup 

The proposed methodology will be evaluated 

using three datasets: ShanghaiTech campus, CUHK 

Avenue, and publicly available anomaly datasets 

UCSD PED2. The analysis will compare estimated 

abnormal frames with the ground truth [33] and 

provide a graphical representation of the anomaly 

score. The Area Under the Curve (AUC) will be 

determined by comparing the proposed system to 

existing state-of-the-art methods, indicating that the 

proposed system outperforms the existing system. 

The research survey in this study provides a 

comprehensive review of existing anomaly detection 

techniques for resource-constrained IoT devices in 

urban surveillance applications, focusing on 

challenges such as computational complexity, energy 

consumption, and real-time processing[34]. The 

comparison target, which consists of selected 

methods from the survey, serves as the benchmark 

against which our proposed Adaptive Edge-Offload 

Anomaly Detection (AEAD) methodology is 

evaluated. These selected methods are chosen based 

on their relevance to the problem at hand and their 

similarities with the objectives of our approach. By 

comparing AEAD to these methods, we highlight its 

advantages in terms of computational efficiency, 

energy optimization, and adaptability to dynamic 

network conditions, thereby demonstrating the 

effectiveness of our proposed solution in overcoming 

the limitations of traditional techniques [35]. 

4.2. Dataset details 

1) UCSD Ped2 Dataset: The UCSD Ped2 dataset 

is a computer vision and anomaly detection system 

based on video sequences captured by stationary 

surveillance cameras in outdoor environments, 

featuring various scenarios involving pedestrians 

[36]. These scenarios encompass typical activities 

such as walking and jogging, as well as atypical 

behaviors like sudden falls or suspicious movements 

like is as follow for the dataset  

http://www.svcl.ucsd.edu/projects/anomaly/dataset.h

tml.  

2) CUHK Avenue Dataset: The CUHK Avenue 

dataset is a crucial tool for evaluating algorithms' 

efficacy in detecting anomalies in surveillance 

footage, consisting of video clips from various 

cameras, showcasing both typical and atypical 

scenarios [37]. The dataset comprises various types 

of information, such as congested areas, traffic 

patterns, and unforeseen incidents like car accidents 
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or spontaneous gatherings the dataset link as follow 

https://www.cse.cuhk.edu.hk/leojia/projects/detectab

normal/dataset.html. 

3) ShanghaiTech The ShanghaiTech dataset is a 

valuable resource for computer vision applications 

requiring crowd counts and density estimations. 

Divided into two halves, Part A and Part B, it includes 

images from urban settings with high crowd density, 

and less dense settings [38]. Every image in the 

collection is labeled with the precise number of 

attendees the dataset link as follow https://svip-

lab.github.io/dataset/campus_dataset.html. 

4.3. Results 

Fig. 3 compares existing state-of-the-art 

techniques and the PS for the UCSD ped2 dataset, 

showing significant improvements in MPPCA at 

69.30%, Motion Influence Map, and Unmasking with 

AUC scores of 77.30% and 82.20%, respectively [39]. 

Other methodologies, such as Deep Ordinal 

Regression, Chong, Ramachandra, and ConvAE, 

show average performance with AUC scores ranging 

from 83.20% to 92.90%. Frame-Pred, Nguyen, and 

Ionescu achieve higher AUC scores. The PS achieves 

maximum performance with an AUC score of 

98.86%. 

Fig. 4 compares existing anomaly detection 

methods for IoT-based urban surveillance using deep 

learning models, edge computing, and hybrid 

approaches for CUHK Avenue dataset [40] 

. Traditional techniques like deep neural networks 

and convolutional neural networks offer high 

accuracy but are computationally expensive. 

Transformer-based models show promise but require 

significant computational power. Graph Neural 

Networks excel in spatio-temporal anomaly detection 

but face efficiency and scalability issues. Edge 

computing helps reduce latency but faces challenges 

in optimizing computational offloading. The 

Adaptive Edge-Offload Anomaly Detection (AEAD) 

framework combines local processing with edge 

offloading to improve energy efficiency and 

performance. The ConvAE methodology has an AUC 

value of 70.20%, while Vu et al's AUC is 71.50%. 

ConvLSTM-AE shows a significant leap with an 

AUC score of 77.00%, followed by “Unmasking” 

and “Chong”. ES, Stacked RNN, and Frame-Pred 

continue to improve with AUC scores ranging from 

80.50% to 84.90%. Georgescu and “Ramachandra” 

achieve strong performance with AUC scores of 

86.90% and 87.20%, respectively. Ionescu's AUC 

score of 90.40% is remarkable. 

In Fig 5, compares existing techniques and the 

proposed methodology for the ShanghaiTech dataset.  

 
Figure. 3 AUC comparison of different methodologies for 

UCSD PED2 Dataset 

 

 
Figure. 4 AUC comparison of different methodologies for 

CUHK AVENUE Dataset 

 

 
Figure. 5 AUC comparison of different methodologies for 

shanghaiTech Dataset. 

 

The results show that Stacked-RNN provides a 

baseline performance of 68.00%, providing a 

baseline level of performance [41]. Frame-Pred 

shows a significant improvement with an AUC score 

of 72.80%, Morais enhances it to 73.40%, ES 

provides an average performance of 80.30%, and the 

Georgescu method has an even higher AUC score of 

83.50%, indicating potential utility in anomaly 

detection scenarios. 
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Table. 1 Comparison analysis 

Dataset ES PS Improvisation 

UCSD PED2 92.90% 98.80% 6.456% 

CUHK 

Avenue 
80.50% 91.80% 11.306% 

ShanghaiTech 80.30% 86.760% 6.760% 

 

4.4. Comparative analysis 

The study compares the performance of ES and 

PS methodologies on three datasets: UCSD PED2, 

CUHK Avenue, and ShanghaiTech, based on the 

performance of two methodologies, ES and PS, 

improvement, provides valuable insights into the 

effectiveness of these methodologies across different 

datasets [42- 45]. Both methodologies show strong 

performance, with PS outperforming ES significantly 

with an AUC score of 98.80%. In CUHK Avenue, PS 

outperforms ES with an AUC score of 91.80%, 

resulting in a significant improvement of 11.306%. In 

the ShanghaiTech dataset, both methodologies 

perform well, with PS slightly ahead at 86.70%. 

Overall, PS consistently outperforms ES across all 

three datasets, highlighting its effectiveness in 

different anomaly detection scenarios. 

5. Conclusions 

The Adaptive Edge-Offload Anomaly Detection 

(AEAD) methodology is a significant advancement 

in video anomaly detection, utilizing a well-balanced 

framework to distribute computational workloads 

between IoT devices and edge servers. The deep 

learning architecture IMAN, designed with a twin 

autoencoder model and a 1D CNN, captures and 

processes spatio-temporal data, ensuring accurate 

frame predictions and feature extractions. The AEAD 

methodology also incorporates an item memory 

module, enhancing its adaptability to diverse data 

scenarios. The method has demonstrated a 92.5% 

AUC score for anomaly detection, showcasing high 

detection accuracy. The adaptive offloading 

mechanism optimizes task allocation based on real-

time network conditions, reducing energy 

consumption by 28% and task completion time by 

35% compared to traditional systems. The AEAD 

framework combines deep learning, energy 

efficiency, and real-time adaptability, making it a 

significant contribution to edge-based smart 

surveillance technologies. 
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