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Abstract: Sleep Spindles contribute to diagnosing several brain-related diseases like sleep apnea, major depression, 

etc. Hence, sleep spindle detection from Electroencephalogram (EEG) has gained significant research interest in the 

bio-medical signaling field. Existing methods use template matching and machine learning algorithms for spindle 

detection. In the template matching methods, the additional and continuous tuning of the threshold creates an 

unnecessary computational burden. In the machine learning-based method, significant problems such as data 

imbalance and less discrimination due to fewer and inappropriate features are addressed. To address these issues, this 

research presents a novel automatic spindle recognition approach that uses the Synthetic Minority Oversampling 

Technique (SMOTE) to balance the dataset and integrates time-domain and frequency-domain information for 

effective feature extraction. The Synchrosqueezed Wavelet Transform (SWT) is utilized for accurate frequency 

domain feature extraction, while the Adaboost(Adaptive Boosting)algorithm is implemented for classification. This 

method, evaluated using the publicly accessible Montreal Archives of Sleep Studies Cohort 1 (MASS-C1) dataset, 

significantly outperforms existing methods like as SpindleU-Net, Convolutional MIL (Multiple Instance Learning), 

SST-RUSBoost (Synchrosqueezed Transform - Random Under-Sampling Boosting), and MuFF-E(Multi-Feature 

Fusion and Ensemble), with an F-score of 75%, Sensitivity of 78%, and Positive Predictive Value of 73%. The findings 

illustrate the superiority of the proposed method in addressing data imbalance and improving detection accuracy. 

Keywords: Electroencephalogram, Sleep spindles, Synchrosqueezed wavelet transform, Sigma ratio, Sigma index, 

SMOTE, Adaboost. 

 

 

1. Introduction  

 

Sleep spindles are rhythmic bursts of oscillatory 

brain activity observed during stage NREM2 of sleep 

and are considered crucial for cognitive functions 

such as memory consolidation and neurocognitive 

performance [1, 2]. These spindles, characterized by 

frequencies ranging from 11-17 Hz and durations 

between 0.5-2 seconds, are often used as biomarkers 

for various neurological and psychiatric conditions, 

including autism, schizophrenia, epilepsy, and 

Parkinson’s disease [3, 4]. Detecting these spindles 

accurately is essential in sleep studies and clinical 

applications, where they provide critical insights into 

sleep architecture and brain health. 

Electroencephalogram (EEG) signals are widely 

regarded as the gold standard for capturing such 

events due to their ability to monitor electrical 

activity in the brain with high temporal resolution [5, 

6]. 

Traditional approaches to sleep spindle detection 

have evolved from manual to automated methods. 

Manual detection, which involves visual inspection 

of EEG signals by experts, is still regarded as reliable 

but suffers from significant limitations, such as 

subjectivity, inconsistency, and time-intensive 

processes [7]. Automated methods such as template 

matching, signal thresholding, and feature-based 
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classification have been introduced to overcome 

these limitations [8]. Template-based methods 

segment EEG signals and classify spindles by 

matching their morphology to predefined templates, 

but their reliance on fixed thresholds often results in 

a lack of adaptability to individual variability [9]. 

More recently, machine learning approaches such as 

Random Forests, Support Vector Machines, and 

convolutional neural networks (CNNs) have been 

employed for spindle detection, leveraging large 

datasets and advanced algorithms [10, 11]. However, 

while these methods show promise, their practical 

application faces significant challenges [12]. 

Despite advancements, traditional and modern 

methods face persistent limitations. Manual detection 

is prone to inter-observer variability and is 

impractical for large-scale studies [13]. Template-

based methods require extensive parameter tuning to 

accommodate the variability in EEG signals across 

individuals and experimental setups [14]. Machine 

learning methods, while powerful, suffer from 

imbalanced datasets, where spindles are often 

underrepresented compared to non-spindle events, 

leading to biased models and reduced sensitivity [15]. 

Moreover, existing feature extraction techniques 

often fail to fully capture the subtle time-frequency 

characteristics of spindles, which are critical for 

accurate classification [16]. Computational 

inefficiencies in many advanced models also hinder 

their use in real-time applications and resource-

constrained environments, such as wearable devices 

[17, 18]. 

To address these challenges, this paper introduces 

a novel sleep spindle detection framework, SST-

SMOTE-Adaboost, which integrates Synthetic 

Minority Oversampling Technique (SMOTE) for 

balancing imbalanced datasets, Synchrosqueezed 

Wavelet Transform (SWT) for precise time-

frequency feature extraction, and the Adaboost 

algorithm for robust classification. SMOTE enhances 

the representation of minority spindle events by 

generating synthetic samples, mitigating the impact 

of class imbalance. SWT provides sharper time-

frequency representations, allowing for better 

discrimination between spindles and other signal 

components. Finally, Adaboost combines multiple 

weak classifiers into a strong classifier, effectively 

handling complex decision boundaries in the data. 

The framework captures both time-domain features 

(e.g., RMS, TKE) and frequency-domain features 

(e.g., Sigma Index, Spindle Band Ratio), ensuring a 

comprehensive feature set for accurate detection. 

The main contributions of the study as follows, 

•  Proposes a novel spindle detection framework 

combining SMOTE, SWT, and Adaboost. 

•  Introduces an enhanced feature extraction 

method integrating time-domain and 

frequency-domain features. 

•  Addresses the dataset imbalance issue using 

SMOTE for minority spindle class 

oversampling. 

•  Demonstrates superior performance on the 

MASS-C1 dataset compared to existing 

methods. 

•  Highlights practical implications for clinical 

and real-world EEG applications. 

The rest of the paper is organized as follows: 

Section II reviews the related works on sleep spindle 

detection, highlighting traditional manual methods, 

template-based approaches, and recent advancements 

in machine learning techniques. Section III provides 

an in-depth description of the proposed SST-

SMOTE-Adaboost framework, detailing the 

preprocessing steps, feature extraction methodology, 

and classification process. Section IV discusses the 

experimental setup, including the dataset, evaluation 

metrics, and results, presenting a comprehensive 

analysis of the framework's performance. Section V 

offers a detailed discussion of the findings, 

addressing the framework's strengths, limitations, 

and potential directions for future research. Finally, 

Section VI concludes the paper by summarizing the 

key contributions and the broader implications of the 

proposed method for sleep spindle detection and 

clinical applications. 

2. Related work  

The accurate identification of sleep spindles is 

crucial for diagnosing numerous neurological 

disorders. The landscape of spindle detection has 

evolved significantly, moving from manual methods 

to automated techniques, each with distinct 

advantages and shortcomings. 

 

Manual Detection: Historically, spindle 

detection was predominantly manual, relying on 

visual inspection by experts, which was labor-

intensive and subject to considerable variability. 

Wendt et al. [19] highlighted the limitations of this 

method, reporting inter-expert and intra-expert 

reliability F-measures of 61.6% and 72.7%, 

respectively. These discrepancies underscore the 

need for more consistent and automated methods. 

 

Template-Based Detection: The first generation 

of automated spindle detection, entail segmenting the 

EEG signal and aligning each segment with a 

predetermined spindle template. Each segment is 

subsequently categorized as either spindle or non-
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spindle according to a predetermined threshold, 

which frequently necessitates human modification 

owing to the distinctive properties of EEG signals 

[20]. This strategy, albeit a progression towards 

automation, had considerable obstacles. The primary 

research gap identified was the necessity for frequent 

threshold modifications, which may add subjectivity 

and diminish reproducibility. 

 

Adaptive Methods: To address the limitations of 

template-based methods, adaptive approaches were 

developed. These methods utilize historical 

knowledge of spindles to automate threshold 

adjustments [21, 22]. However, they often fail to fully 

account for the inherent variability in spindle 

morphology across individuals, which limit their 

effectiveness. 

 

Recent Techniques: Recent advancements in 

sleep spindle detection have focused on enhancing 

the accuracy and efficiency of automated methods 

using various signal processing techniques and 

machine learning models. Kinoshita et al. [23] 

proposed an approach that integrates random under-

sampling boosting (RUSBoost) with 

Synchrosqueezed Wavelet Transform (SWT) to 

mitigate data imbalance without necessitating further 

threshold adjustment. This strategy enhanced the 

management of imbalanced data; nevertheless, 

employing under-sampling may result in the loss of 

significant data, hence constraining the classifier's 

efficacy. Patti et al. [24] utilized a Multivariate 

Gaussian Mixture Model (MVGMM) for spindle 

detection, tailored to individual subject factors. This 

methodology sought to guarantee reliable, subject-

agnostic detection; nevertheless, it frequently 

necessitated substantial parameter adjustment to 

optimize for various subjects, rendering it less 

feasible for widespread application. Wei L et al. [25, 

26] developed Spindle-AI, employing a Random 

Forest algorithm to detect spindles in newborn EEG 

signals. Although it evaluates multiple features per 

epoch, the complexity of the model can result in 

computational inefficiencies and potential overfitting. 

Tsanas et al. [27] proposed a new methodology for 

the detection of sleep spindles from EEG signals. 

They used an intuitive appealing continuous wavelet 

transform (CWT) using the Morlet mother wavelet 

function. The CWT identifies the spindles based on 

the theory that the spindle frequency is significant in 

CWT coefficients. Further, a local weighted 

smoothing method was employed to refine the 

spindle signal segment. 

J. You et al. [28] developed SpindleU-Net, an 

adaptive U-Net framework specifically designed for 

spindle detection in single-channel EEG, which 

includes an attention module to enhance feature 

extraction capabilities. This framework, however, 

may not fully leverage the spatial information 

available in multi-channel EEG, suggesting a 

potential area for further research. X. Sun et al. [29] 

introduced a convolutional multiple instance learning 

framework for sleep spindle detection, incorporating 

a label refinement strategy to improve spindle 

identification accuracy, though it relies heavily on the 

initial label accuracy. Z. Yang and J. Pan [30] focused 

on using CNNs for the automatic detection of sleep 

spindles to assess patients with acute disorders of 

consciousness, highlighting the need for further 

validation across diverse clinical conditions. Xian 

Zhao et al. [31] introduced a hybrid expert scheme for 

the automatic identification of micro-sleep event K-

complexes, leveraging energy screening and 

morphology characterization techniques. This 

innovative approach was tested using the MASS-C1 

dataset, which includes EEG recordings from 19 

healthy adults. The evaluation of the system showed 

promising results, with the scheme achieving an 

average F-measure of 0.63, accompanied by a recall 

of 0.81 and a precision of 0.53. These metrics indicate 

the effectiveness of the hybrid approach in detecting 

sleep-specific EEG patterns. F. Andreotti et al. [32] 

examined the application of CNNs for automated 

sleep stage classification using polysomnographic 

signals such as EEG, EMG, and EOG. The research 

demonstrated that CNN models performed well, 

achieving a Cohen's Kappa score of 0.75 for healthy 

subjects and 0.64 for patients with sleep disorders. 

The study also addressed the challenge of limited data 

availability for rare conditions by implementing a 

transfer learning strategy, which involved pretraining 

on a large public dataset and fine-tuning on a smaller 

dataset specific to REM Behavior Disorder, resulting 

in a 24.4% improvement in classification accuracy. 

2.1 Problem definition and novel approach 

clarification 

The precise identification of sleep spindles is 

essential for diagnosing and understanding 

neurological diseases, yet current detection 

techniques face significant challenges. Automated 

methods, such as those proposed by Kinoshita et al. 

using RUSBoost combined with Synchrosqueezed 

Wavelet Transform, strive to manage data imbalance 

but risk losing crucial data which may diminish 

classifier effectiveness [23]. Patti et al.'s use of a 

Multivariate Gaussian Mixture Model aims for 

subject-agnostic detection but often requires 

extensive parameter tuning, making it impractical for 
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broad application [24]. Methods incorporating 

complex algorithms like the Random Forest in 

Spindle-AI by Wei L et al. evaluate numerous 

features but suffer from potential computational 

inefficiencies and overfitting [25, 26]. Additionally, 

J. You et al.’s SpindleU-Net, though innovative with 

its attention module for enhanced feature extraction, 

does not fully exploit spatial information from multi-

channel EEG, indicating a gap for further 

enhancement [28]. These varied approaches 

underscore the need for developing more efficient, 

accurate, and universally applicable methods for 

spindle detection in diverse clinical and research 

settings. The novel approach presented in this work 

addresses the limitations of existing sleep spindle 

detection methods by integrating SMOTE, 

Synchrosqueezed Wavelet Transform (SWT), and 

the Adaboost classifier to effectively manage data 

imbalances and enhance feature extraction without 

the loss of significant information. Unlike other 

methods that suffer from overfitting, require 

extensive parameter tuning, or fail to exploit multi-

channel EEG data fully, this method maintains a 

balance between simplicity and performance, 

simplifying the detection process while ensuring high 

accuracy and robustness. By leveraging 

comprehensive time and frequency domain features 

and an adaptive classification strategy, this approach 

offers a scalable and effective solution for spindle 

detection in various clinical and research settings. 

3. Proposed approach  

3.1 Overview 

This work proposed a new spindle detection 

mechanism that can improve detection performance 

and also solve the data imbalance problem in machine 

learning methods. It derives a new set of features to 

identify the sleep spindles from EEG signals. Two 

sets of features are derived from both time and 

frequency domains. Totally 12 features are used to 

describe each epoch, among which seven features 

belong to the time domain, and the remaining five 

features belong to the frequency domain. For 

classification, we employed a simple Adaboost 

algorithm and classified each epoch into two classes; 

a spindle and a non-spindle. Fig. 1 illustrates the 

proposed spindle detection framework, detailing 

preprocessing with SMOTE, feature extraction using 

SWT, and classification with the Adaboost algorithm. 

3.2 Smote 

Generally, the data imbalance problem occurs in 

datasets when they have imbalanced data, i.e., too 

much deviation between the number of samples of 

different classes. In such a dataset, the probability of 

output distribution induces a bias problem which 

results in poor detection performance. To sort out this 

problem, the dataset needs to be balanced before 

processing it for training. Towards such contribution, 

here we employed the most popular Synthetic 

Minority Oversampling Technique (SMOTE). When 

compared to the non-spindle events number in EEG 

signals the spindle events are lower, so the problem 

of class imbalance improves at learning algorithm 

and makes the detection task challenging. SMOTE 

addresses this problem and balances the dataset. 

SMOTE is an over-sampling method that induces 

extra samples for minor classes by creating some 

additional samples into the sample space. 

Additionally, the random number generator uses the 

random state as a seed. The working of SMOTE 

algorithm can be explored as follows. 

 

 
Figure. 1 Detailed schematic of working of the proposed spindle detection framework 
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Step 1: Consider the minority class set as M for 

each, the K-nearest neighbors of m derived by 

computing the Euclidean distance between m and 

every other sample in the set M. 

Step 2: Consider N to be the sampling rate for 

every N example (i.e.,) randomly chosen for 

construction of a new set M1 using its K-nearest 

neighbor. 

Step 3: For each sample, the below formula 

generates a new example that signifies the random 

number between 0 and 1. 

3.3 Features extraction 

After the completion of pre-processing through 

SMOTE, our method extracts two sets of features 

from each epoch, and they are namely time and 

frequency domain features. Under the time domain, 

we considered the epoch as direct input. In contrast, 

in the frequency domain, the epoch is initially 

transformed into the frequency domain through 

Synchrosqueezed Wavelet Transform (SWT), and 

then features are extracted. Here the size of each 

epoch is maintained at 0.5 seconds because the range 

of the Spindle lies between 0.5 seconds and 1.5 

seconds. So to cover each epoch in the EEG signal, 

the size is fixed to 0.5 seconds. For a given EEG, the 

segmentation is done through a sliding window with 

an overlapping of 0.25 seconds between two 

successive epochs. The details of the feature are 

explored in the following sub-sections; 

3.3.1. Time domain features 

In the time domain, we extract totally seven 

features; they are namely Root Mean Square (RMS), 

Mean of Absolute Amplitude, Maximum Absolute 

Amplitude, Minimum Absolute Amplitude, Teager-

Kaiser Energy (TKE), symmetry, and Anti-symmetry. 

Among these features, the first of four features are 

common features, and they can be extracted very 

easily. Next, the TKE is regarded as a nonlinear 

feature that can estimate the non-stationary signal’s 

spontaneous energy. Generally, the TKE is applied to 

identify the sudden changes in the biological signals. 

The mathematical expression for TKE is shown asin 

Eq. (1). 

 

𝑇𝐾𝐸[𝑛] = 𝑥[𝑛]2 − 𝑥[𝑛 − 1]𝑥[𝑛 + 1]                  (1) 

 

Where 𝑥[𝑛] is regarded as the nth sample in the epoch 

and 𝑥[𝑛 − 1]  and 𝑥[𝑛 + 1]  are (𝑛 − 1)𝑡ℎ  and (𝑛 +
1)𝑡ℎ  samples of the Pre-processed epoch of EEG 

signal. Next, symmetry ( 𝑆 ) and Anti-symmetry 

(�̂�) of a signal signify the distribution along vertical 

or horizontal axes. If a signal is symmetrical about 

either the vertical axis or time origin, then it is called 

an even signal or symmetrical signal. Here, we use 

symmetry and Anti-symmetry properties to describe 

the Spindle and non-spindle events. Mathematically, 

they are expressed asin Eq. (2) 

 

𝑆 =
∑ 𝑝+[𝑖]

𝑁 2⁄
𝑖=0

𝑁(𝑚𝑎𝑥𝑖=0
𝑁 2⁄ (𝑝+[𝑖]))

2                                                    (2) 

 

Where 𝑝+[𝑖]  represents the average of symmetric 

pairs of samples about the center of the epoch, 

calculated asin Eq. (3) and (4). 

 

𝑝+[𝑖] =
𝑥[𝑁 2⁄ +𝑖]+𝑥[𝑁 2⁄ −𝑖]

2
                                            (3) 

And  

�̂� =
∑ 𝑛−[𝑖]

𝑁 2⁄
𝑖=0

𝑁(𝑚𝑎𝑥𝑖=0
𝑁 2⁄ (𝑛−[𝑖]))

2                                                     (4) 

 

Where 𝑛−[𝑖] is the difference between symmetric 

pairs of samples, defined asin Eq. (5).. 

𝑛−[𝑖] =
𝑥[𝑁 2⁄ +𝑖]−𝑥[𝑁 2⁄ −𝑖]

2
                                     (5) 

 

Where 𝑥[𝑁 2⁄ + 𝑖]  and 𝑥[𝑁 2⁄ − 𝑖]  are (
𝑁

2
+ 1)𝑡ℎ 

and (
𝑁

2
− 1)𝑡ℎ samples in the epoch of pre-processed 

EEG, and N is the total number of samples in each 

epoch. S 

3.3.2. Frequency domain features 

EEG signals are composed of several components, 

like sleep spindles, temporary waves, and 

background activities. Among these components, 

spindle waves are temporary waves that lie within the 

range of 11Hz and 16Hz. So, to determine the 

spindles from the EEG signal, we need to estimate the 

accurate frequency of spindles which is a challenging 

task. Towards such contribution several time-

frequency transformation techniques have been 

applied in the past, namely Wavelet Transform 

(W.T.), S-Transform, Continuous Wavelet 

Transform (CWT), and Empirical Mode 

Decomposition (EMD), etc. Among these 

transformations, CWT is one of the effective 

transformation techniques which can analyze the 

multi-resolution components of an EEG signal. CWT 

is regarded as an output of cross correlation between 

signal and mother wavelet as followsin Eq. (6). 

 

𝑊𝑠(𝑎, 𝑏) = ∫
1

√|𝑎|
𝑠(𝑡)𝜓∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡

∞

−∞
                   (6) 
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Where b signifies the translation parameter and 𝑎 

signifies the scaling parameter. 𝜓 is the mother 

wavelet, and 𝜓∗is a complex conjugate of 𝜓, t is the 

time, and 𝑊𝑠(𝑎, 𝑏) is the representation of a signal in 

time scale. The temporal length of wavelength used 

in the cross-correlation is different for different 

frequencies. To improve the frequency localization 

generally, longer wavelets are used frequencies 

which are low at the expense of time localization. On 

the other hand, shorter wavelets are used for high 

frequencies to enhance the time localization at the 

cost of frequency localization. We can use CWT to 

analyze a wide range of signals.SWT is an extended 

version of CWT that reduces the quantity of spectral 

smearing linked with the time-frequency transform 

such that it enhances the readability but no 

improvisation in the power of localization. For an 

SWT computation of a signal, starting with CWT, the 

next step is to compute Instantaneous Frequencies 

(I.F.s) and their reassignment. SWT assumes the 

representation of the signal as a sum of a finite 

number of harmonic components and some random 

noise, asin Eq. (7). 

 

𝑠(𝑡) = ∑ 𝐴𝑘(𝑡)cos (𝜃𝑘(𝑡) + 𝜂(𝑡))𝐾
𝑘=1                  (7) 

 

Where 𝜃𝑘 and 𝐴𝑘 are the phase and amplitude ofkth 

signal component, 𝜂  is some random noise, and K 

represents the total number of samples present in the 

signal. Then the instantaneous frequency (let it be𝑓𝑘) 

of each component is derived asin Eq. (8). 

 

𝑓𝑘(𝑡) =
1

2𝜋

𝑑𝜃𝑘(𝑡)

𝑑𝑡
                                                      (8) 

 

However, most of the smearing happens on the 

frequency axis, and the instantaneous frequency can 

be directly computed from CWT Time-scale 

representation as follows 

𝑓𝑠(𝑎, 𝑏) =
1

2𝜋𝑗𝑊𝑠(𝑎,𝑏)

𝜕

𝜕𝑏
𝑊𝑠(𝑎, 𝑏)                            (9) 

So the above Eq.(9) transforms the signal 

representation from Time-Scale to time-frequency. 

Based on the attributes, the SWT is computed asin Eq. 

(10). 

 

𝑆(𝑡, 𝑓) = ∫ 𝑊𝑠(𝑎, 𝑏)
1

𝛿
ℎ (

𝑓−𝑓𝑠(𝑎,𝑏)

𝛿
) 𝑑𝑎

∞

−∞
          (10) 

 

Where f denotes frequency, ℎ(𝑡) is a function with 

∫ ℎ(𝑡)𝑑𝑡 = 1  and 𝑆(𝑡, 𝑓)  is called the SWT 

coefficient. Squeezed CWT is produced out of this 

transformation as the rapid frequency bands will 

beallotted to the CWT time-frequency region 

Centroid. This reassignment of the frequency 

generates a structured output than the CWT.   

Once the SWT array is obtained for each epoch, 

then we compute totally five features, namely Sigma 

Index (S.I.) and Sigma Ratio (S.R.) Alpha Band Ratio 

(𝛼𝐵𝑅), Sleep Spindle Band Ratio (𝑆𝑆𝐵𝑅), and Relative 

Spindle Power (RSP). The definitions of these 

parameters or explode are as follows; 

 

A. Sigma Index (S.I.): S.I. is obtained by 

dividingthe mean power of the spindle range (11-

16Hz) with the frequency range average power 

around the frequency range of the spindle. The Sigma 

index is mathematically expressed asin Eq. (11). 

 

𝑆𝐼(𝑡) =
𝑚𝑒𝑎𝑛(|𝐹3(𝑥)|)

𝑚𝑒𝑎𝑛(|𝐹1(𝑥)|)+𝑚𝑒𝑎𝑛(|𝐹2(𝑥)|)
                   (11) 

 

Where 𝐹1(𝑥) , 𝐹2(𝑥) , and 𝐹3(𝑥)  are the frequency 

ranges of three bands of EEG signal such as 4-10 Hz, 

20-40Hz, and 11-16Hz respectively.    

 

B. Sigma Ratio (S.R.): S.R. is the proportion of 

maximum power of the range of frequency of the 

spindle (11-16Hz) to the frequency range maximum 

power around the range of spindle. S.R. is 

mathematically expressed as in Eq. (12). 

𝑆𝑅(𝑡) =
𝑚𝑎𝑥(|𝐹3(𝑥)|)

𝑚𝑎𝑥(|𝐹1(𝑥)|)+𝑚𝑎𝑥(|𝐹2(𝑥)|)
                     (12) 

 

Where |𝐹3(𝑥)| represents the absolute power within 

the spindle frequency range (11-16Hz), |𝐹1(𝑥)| and 
|𝐹2(𝑥)| are the absolute powers within the adjacent 

lower and higher frequency ranges, respectively. 

 

C. Related Spindle Power (RSP):  RSP is 

obtained as the fraction of the power of the frequency 

of the spindle (11-16Hz) to the entire signal 

frequency. Mathematically it is expressed as 

followsin Eq. (13). 

 

𝑅𝑆𝑃(𝑡) =
∫ 𝑆(𝑡,𝑓)

16

11

∫ 𝑆(𝑡,𝑓)
40

0.5

                                                      (13) 

 

Where ∫ 𝑆(𝑡, 𝑓)
16

11
 is the power of the SWT 

coefficient of tth sample in the spindle frequency 

range and ∫ 𝑆(𝑡, 𝑓)
40

0.5
 is the power of the SWT 

coefficient of tth sample in the entire signal’s 

frequency range. 

 

D. Alpha band ratio (𝜶𝑩𝑹 ):  𝛼𝐵𝑅  issue is the 

ratio of root mean square (RMS)value of the 

amplitude in the band of Alpha (8-11Hz) to the 

overall RMS value of amplitude of the epoch in the 

pre-processed Epoch of EEG Signal. Mathematically, 

𝛼𝐵𝑅 is expressed as in Eq. (14). 
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𝛼𝐵𝑅 =
𝑅𝑀𝑆(𝑓𝛼(𝑡,𝑓))

𝑅𝑀𝑆(𝑓𝑠𝑝(𝑡,𝑓))
                                                (14) 

 

Where 𝑓𝛼(𝑡, 𝑓)  and 𝑓𝑠(𝑡, 𝑓)  are the amplitudes of 

samples in the alpha band and spindle band 

respectively.  
 

E. Sleep Spindle Band Ratio (𝑺𝑺𝑩𝑹):  The Sleep 

Spindle Band Ratio (𝑆𝑆𝐵𝑅) is defined as the ratio of 

the root mean square (RMS) value of the amplitude 

within the spindle frequency band (10.5-16Hz) to the 

RMS value of the amplitude across the entire 

frequency range of the EEG epoch. This ratio 

emphasizes the significance of spindle-specific 

activity relative to the overall EEG activity within an 

epoch, making it a valuable metric for identifying 

sleep spindles. Mathematically, 𝑆𝑆𝐵𝑅 is expressed as 

in Eq. (15): 

 

𝑆𝑆𝐵𝑅 =
𝑅𝑀𝑆(𝑓𝑠𝑝(𝑡,𝑓))

𝑅𝑀𝑆(𝑓𝑠(𝑡,𝑓))
                                                (15) 

 

Where 𝑓𝑠𝑝(𝑡, 𝑓)represents the amplitude of samples 

within the spindle frequency band (10.5-16Hz), and 

𝑓𝑠(𝑡, 𝑓)represents the amplitude of samples across the 

entire frequency range of the EEG. 

3.4 Classification 

For classification, we used an Adaboost 

algorithm which is simple and effective in nature. 

Initially, the detection system is trained and then 

subjected to testing. Algorithm 1 shows the process 

of training, and Algorithm 2 shows the process of 

testing. After segmenting the EGG into different 

epochs, each epoch is processed for feature extraction, 

and the obtained feature Vector is used to train the 

system. In algorithm 1, K represents the number of 

subjects used for training. For the EEG signal of the 

kth subject, the sliding window is applied to the 

segment and then the feature vector is constructed as 

𝑿(𝑘) ∈ ℛ𝑁𝑘×𝑞(𝑘 = 1,2, … , 𝐾) where q and  𝑁𝑘  are 

the number of input variables and features extracted 

from kth subject's EEG. Next, a label vector is 

formulated as 𝑦(𝑘) ∈ 𝒚𝑁𝑘(𝒚 ∈ {−1,1}) in which -1 is 

annotated for non-spindle and 1 is annotated for 

Spindle. Here the feature vector 𝑿(𝑘)and label vector 

𝑦(𝑘)  are merged into a single vector as 𝑫 = {𝑋, 𝑦} 

finally classified with the training D.  

Next, algorithm 2 shows the process of testing, 

i.e., the detection of spindles. Similar to training, 

initially, the EEG signal is segmented through a 

sliding window, and then features are extracted from 

each segment. Next, the labels are predicted using 

features of the test epoch and trained epochs. Further, 

the successive spindle candidates are marked, and 

then a search process is employed to find out the 

spindle candidate whose duration is more than 0.5 

seconds. 

 
Algorithm 1: Training of the Classifier  

Input: The EEG recordings acquired from K subjects  

Output: Trained Classifier C with data D 

1. for 𝑘 = 1,2, … , 𝐾 do 

2. Apply a sliding window to segment each EEG 

3. Extract time domain and frequency domain features 

from each epoch 

4. Formulate all features into a single feature vector 

𝑿(𝑘) 

5. Formulate a label vector 𝑦(𝑘) 

6. end for 

7. Form a new Feature matrix X by merging all feature 

vectors 𝑿𝑇𝑟
(𝑘)

 

8. Form a new Label matrix y by merging all label 

vector 𝑦𝑇𝑟
(𝑘)

 

9. Form a complete dataset as 𝑫 = {𝑋, 𝑦} 

10. Train the classifier C with D 
 

 
Algorithm 2: Testing the classifier   

Input: EEG recording acquired from one subject and 

trained classifier   

Output: Identified spindles  

1. Apply a sliding window to segment the EEG 

recording  

2. Extract time feature along with frequency domain 

from each epoch 

3. Formulate all features into a single feature vector 

𝑿.𝑇.𝑠 

4. Predict the label �̂� with the help of C and 𝑿.𝑇.𝑠 

5. Mark the duration of Spindles where the test result 

had shown +1. 

6. Search the spindles that successive duration is more 

than 0.5s.  

 

4. Simulation experiments  

This section explores the usefulness of the 

proposed method by validating it over a standard 

open-access database, Montreal Archives of sleep 

studies cohort 1 (MASS-C1) [31]. This dataset has a 

total of five subsets (S.S.) of PSG recordings. For the 

experimental validation of our proposed method, we 

used only one subset, i.e., SS2(Subset 2). In this 

section, first, we explore the details of the dataset and 

simulation setup. Next, the details of the evaluation 

and the obtained performance metrics are discussed. 

4.1 Classification 

The SS2 (Subset 2)of MASS-C1 consists of a 

total of 19 PSG (Polysomnography)recordings which 
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were acquired with the help of nineteen subjects, 

among which eight are male, and eleven are female. 

The approximate age of subjects lies within the range 

of 18 to 33 years, and the collection is carried out 

according to the standard 10-20 system. Each PSG 

recording consists of totally five types of signals, 

namely Respiratory data, EMG (Electromyography), 

ECG (Electrocardiogram), EOG 

(Electrooculography), and EEG. The SS2 consists of 

sleep events marked by experts, such as k-complexes 

and sleep spindles. Experts 1 considered all the 

subjects and scored the k-complexes and sleep 

spindles, while Expert 2 considered only 15 out of 19 

subjects and scored only sleep spindles. Sleep stage 

scoring followed purely R&K rules and scored the 

every 20 seconds duration PSG.Table 1 presents the 

individual and common sleep spindles identified for 

each subject, showing the overlap between 

annotations by different experts and highlighting the 

distribution of spindles across subjects. 

In this dataset, two experts followed two different 

strategies for scoring the sleep spindles 

independently on channel C3. The first expert strictly 

followed R& K rules and annotated sleep spindles, 

while the second expert approached a wide frequency 

band-based scoring, which is different from R& K 

rule. Moreover, the recordings of the second expert 

are only 15 and excluded the recordings belonging to 

subjects 4, 8, 15, and 16.  

To avoid such confusion in the selection of 

recordings as ground truths, we considered the 

common recordings that were finalized by both 

experts. The summarized number of standard and 

individual sleep spindles is shown in table.1 where S1 

and S2 signify the sleep spindles scored by 1st and 

2nd experts, respectively, and signify the common 

sleep spindles of 1st and 2nd experts. Hence, the total 

number of common sleep spindles is observed as 

9066, and non-spindles are observed as 1,50,000, 

which declares a huge data imbalance between 

spindles and non-spindles. Fig. 2 presents an example 

of a sleep spindle waveform, showcasing its 

characteristic oscillatory pattern with frequencies 

ranging from 11 to 17 Hz and a duration of 0.5 to 2 

seconds. 

4.2 Performance analysis 

Under the performance assessment, this work is 

evaluated through the computation of spindle 

detection event-by-event [32]. 

Considering 𝑆𝑆𝑃 (detected sleep spindles) and 

𝑆𝑆𝐺(ground truth sleep spindles) as the sleep spindles 

detected by the proposed approach and ground truth, 

respectively, the performance is measured as an 

 
Figure. 2 Samples Sleep Spindle waveform 

 
Table. 1 Individual and Common sleep spindles in each 

subject 

Subje

ct 

D1 D2 𝑫𝟏
∩ 𝑫𝟐 

Subje

ct 

D1 D2 𝑫𝟏
∩ 𝑫𝟐 

S1 901 197

9 

980 S11 563 102

0 

557 

S2 109

5 

179

7 

108

4 

S12 655 923 620 

S3 130 246 128 S13 641 996 619 

S5 314 644 313 S14 666 113

3 

645 

S6 133 258 132 S17 428 700 422 

S7 840 129

1 

794 S18 107

5 

139

0 

984 

S9 765 129

8 

756 S19 294 475 294 

S10 748 140

6 

736     

 

 
Figure. 3 Spindle portion detected by proposed method 

and Ground Truth  

 

Overlap Score (O.S.). O.S. is defined as a ratio of the 

common intersected portion between  𝑆𝑆𝑃  and 𝑆𝑆𝐺 

and an overall portion of 𝑆𝑆𝑃and𝑆𝑆𝐺. Fig. 3 shows an 

example computation of O.S. Consider 𝑝(𝑆𝑆𝑃 ∩
𝑆𝑆𝐺) and 𝑝(𝑆𝑆𝑃 ∪ 𝑆𝑆𝐺) be the common intersected 

portion and overall spindle portion between𝑆𝑆𝑃and 

𝑆𝑆𝐺, respectively, and then the O.S. is measured as 

 

𝑂𝑆 =
𝑝(𝑆𝑆𝑃∩𝑆𝑆𝐺)

𝑝(𝑆𝑆𝑃∪𝑆𝑆𝐺)
                                                      (16) 

 

Fig. 3 illustrates the spindle portions detected by the 

proposed method compared to the Ground Truth, 

highlighting the overlap and differences in spindle 

detection accuracy. The detection performance is 
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evaluated by comparing the resulting O.S. with a 

predetermined threshold. If the overlap score of a 

spindle exceeds the established threshold, it is 

classified as a True Positive (T.P.); otherwise, it is 

categorized as a False Positive (F.P.) or False 

Negative (F.N.). The threshold value is established at 

0.2, drawing inspiration from previous 

methodologies [32]. The performance is evaluated 

using three metrics: Sensitivity (True Positive Rate), 

Positive Predictive Value, and F-score. They are 

mathematically represented as 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                      (17) 

 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                      (18) 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                    (19) 

 

Of the total available spindles, 70% of the spindles 

are used for training, and the remaining 30% are used 

for testing. So, out of 9066, 6300 are used for training, 

and 2766 are used for testing. The classification 

results are presented in Table 2 as a confusion matrix, 

summarizing the True Positives, False Negatives, and 

False Positives for spindle detection by the proposed 

method.On the basis of these results, the TPR, PPV 

(Positive Predictive Value), and F-score of spindles 

are identified as 83.1100%, 71.5700%, and 

77.2400%, respectively. In the confusion matrix, we 

didn't mention the True negatives because the non-

spindles count was enormous when compared with 

spindles.  

Figs 4-6 collectively compare the three methods 

based on Sensitivity, Positive Predictive Value, and 

F-score, respectively, demonstrating SWT's overall 

effectiveness in sleep spindle detection. In this case 

study, we considered the entire 12 features (features 

of the time and frequency domains). But, the 

frequency domain features are derived through 

different frequency domain transformation 

techniques such as Wavelet Transform (W.T.), CWT, 

and SWT. Among the three transformation methods, 

SWT had shown better performance than CWT and 

W.T. On average, the Sensitivity of SWT, CWT, and 

W.T. is observed as 78.90%, 74.37%, and 73.9%, 

respectively. Next, the average PPV of SWT, CWT, 

and W.T. is observed as 73.20%, 68.40%, and 

68.13%, respectively. Finally, the average F-score of 

SWT, CWT, and W.T. is observed as 75.2000%, 

70.8571%, and 70.4160%, respectively. Further, 

among the different subjects, the maximum detection 

performance is achieved in almost all subjects except 

at 3, 5, and 14. The minimum and maximum F-scores 

are attained by SWT at subject 3 and subject 9, 

respectively, as they are approximately 60.2000% 

and 88.9600%. The main reason we found behind the 

lower detection rate at the 3rd, 5th, and 14th subjects is 

the domination of the background signal’s amplitude 

over the sleep spindle signal’s amplitude. 

 

 
Table. 2 Confusion matrix for the detected spindle results  

 Predicted 

Spindle  Non-

spindle  

 

Actual 

Spindle 2820 

(T.P.) 

573  

(F.N.) 

Non-Spindle 1120 

(F.P.) 

- 

(T.N.) 

 

 

 
Figure. 4 Sensitivity comparison between W.T., CWT, 

and SWT in different subjects  

 

 

 
Figure. 5 PPV comparison between W.T., CWT, and 

SWT in different subjects  
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Figure. 6 F-score comparison between W.T., CWT, and 

SWT in different subjects  

 

 

 
Figure. 7 Sensitivity comparison between subject 3 and 

subject 10 at different features 

 

 
Figure. 8 PPV comparison between subject 3 and subject 

10 at different features 

 
Figure. 9 F-score comparison between subject 3 and 

subject 10 at different features   

 
Table. 3 Performance comparison over the MASS-C1 

database 

Method  PPV (%) TPR 

(%) 

F-Score 

(%) 

SST-

RUSBoost 

[23] 

61.2000 77.0000 70.0000 

MVGMM 

[24] 

60.7800 74.0000 69.0000 

Hybrid 

Expert 

Scheme [31] 

53.0000 81.0000 63.0000 

SST-

SMOTE-

Adaboost 

(Proposed) 

73.2000 78.9000 75.9868 

 

Figs. 7-9 presents the impact of feature 

subjects on spindle detection through Sensitivity, 

PPV, and F-score, respectively. From the results, 

it was noticed that better performance was achieved 

for the recordings of subject 10 than for the 

recordings of subject 3. The average Sensitivity of 

subject 3 is noticed as 53.20%, while for subject 10, 

it is noticed as 72%. Similarly, the PPV is observed 

as 45.75% and 68.25% for subjects 3 and 10, 

respectively. Finally, the average F-score of subjects 

3 and 10 is noticed as 52% and 72.5%, respectively. 

Further, among the four features, better detection is 

observed at RMS. The average F-score attained when 

RMS is the only feature considered is noticed as 

68.50%, while for remaining features, it is observed 

as 49.1667%, 55.8333%, and 62.1667% for Sigma, 

RSP, and TKE, respectively in Table 3.  

Table 3 presents a comparative performance 

analysis of various sleep spindle detection methods 
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Figure. 10 Performance comparison of Sleep Spindle 

Detection Methods Using the MASS-C1 database 

 

validated on the MASS-C1 database, focusing on 

Positive Predictive Value (PPV), True Positive Rate 

(TPR), and F-Score metrics. The SST-RUSBoost 

method combines Synchrosqueezed Wavelet 

Transform with Random Under-Sampling Boosting 

to address data imbalances, achieving a PPV of 

61.2%, a TPR of 77.0%, and an F-Score of 70.0%. 

Despite its advancements, the reliance on under-

sampling can lead to significant data loss, potentially 

impacting overall accuracy. The MVGMM approach 

uses Multivariate Gaussian Mixture Models, records 

a PPV of 60.78%, a TPR of 74.0%, and an F-Score of 

69.0%, showing solid performance but potentially 

less effectiveness in highly imbalanced datasets. The 

Hybrid Expert Scheme demonstrates strong 

sensitivity with a TPR of 81.0% but achieves a lower 

precision at 53.0%, resulting in an F-Score of 63.0%, 

which indicates a propensity to identify more false 

positives while capturing true events. The proposed 

SST-SMOTE-Adaboost method integrates Synthetic 

Minority Over-sampling Technique (SMOTE) with 

Adaboost classification to balance imbalanced 

datasets and enhance detection accuracy. It 

outperforms other methods with a PPV of 73.2%, a 

TPR of 78.9%, and an F-Score of approximately 

76.0%, demonstrating its efficacy as a robust and 

reliable tool for sleep spindle detection, as shown in 

Fig. 10. Overall, the SST-SMOTE-Adaboost method 

demonstrates the highest performance in terms of F-

Score, indicating a well-balanced trade-off between 

precision and sensitivity. This superior performance 

illustrates the effectiveness of integrating advanced 

sampling techniques and ensemble learning in 

handling the challenges of sleep spindle detection in 

EEG analysis. 

Table. 4 Performance comparison over different database 
Method Dataset TPR F-

Score 

DOSED30 [33] Varies by age 

cohort 

- 0.567 

SpindleNet20 [34] DREAMS - 0.48 

CNN/RNN Model 

[35] 

MrOS Sleep 

Study 

- 0.77 

SpindleCatcher 

[36] 

MASS 

dataset 

0.707 0.681 

SpindleU-Net [37] DREAMS - 0.739 

Sparse 

Optimization 

Method [38] 

General EEG 

database 

- 0.633 

SST-SMOTE-

Adaboost 

(Proposed) 

MASS-C1 0.789 0.759 

 

The comparative analysis presented in Table 4 

evaluates various sleep spindle detection methods 

across different datasets, primarily focusing on their 

TPR and F1 scores. Chambon et al. [33] introduced 

DOSED30, a deep learning model that achieved an 

F1 score of about 0.75, 0.50, and 0.45 across young, 

middle-aged, and older cohorts respectively, 

showcasing its performance variability across 

different age groups. Kulkarni et al. [34] developed 

SpindleNet20, which delivered an F1 score of 0.48 

when evaluated on the DREAMS dataset, indicating 

the model's capabilities and limitations in real-time 

spindle detection in a standardized setting. Carvelli et 

al. [35] presented a CNN/RNN-based model for leg 

movement (LM) detection, reporting an F1 score of 

0.77 on 348 PSGs from the MrOS sleep study, 

demonstrating the model's effectiveness in a specific 

sleep study context. Yang and Pan [36] explored the 

automatic detection of sleep spindles in patients with 

acute disorders of consciousness, achieving an F1 

score of 0.794 on the MASS2 dataset and 0.681 on a 

patient-specific dataset, suggesting potential clinical 

applications in prognostic contexts. You et al. [37] 

described SpindleU-Net, an adaptive U-Net 

framework for sleep spindle detection in single-

channel EEG, achieving an F1 score of 0.739 on the 

DREAMS dataset, illustrating the benefits of 

incorporating an attention module in spindle 

detection. Fang et al. [38] proposed a novel EEG 

signal decomposition approach using sparse 

optimization to detect sleep spindles, obtaining an 

average F1 score of 0.633, which highlights the 

potential of using advanced mathematical techniques 

in EEG analysis. Overall, these results demonstrate 

the varied efficacy of different detection methods 

across multiple datasets, underlining the ongoing 

advancements in the application of machine learning 

to sleep research. 
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Table. 5 Computational complexity and performance 

comparison of SWT/SMOTE with STFT/ROS 

Metric SWT STFT SMOT

E 

ROS 

Complex

ity 

𝑂(𝑁
⋅ 𝑙𝑜𝑔𝑁) 

𝑂(𝑁
⋅ 𝑙𝑜𝑔𝑁) 

𝑂(𝑁2 
⋅ 𝑑) 

𝑂(𝑁) 

Overhea

d 

High 

(Reassign

ment Step) 

Moder

ate 

High 

(Pairwis

e 

Distance

) 

Minim

al 

Accurac

y Impact 

High 

(Sharp 

Localizatio

n) 

Moder

ate 

(Coars

er) 

High 

(Synthet

ic 

Diversit

y) 

Low 

(Dupli

cate 

Risk) 

Suitabili

ty 

Best for 

small 

datasets 

Suitabl

e for 

quick 

analysi

s 

Best for 

imbalan

ced data 

Suitabl

e for 

small 

dataset

s 

 

4.3 Computational complexity 

The computational complexity of the proposed 

sleep spindle detection framework plays a crucial role 

in determining its scalability and applicability in real-

world scenarios, as shown in Table 5. While methods 

such as Synchrosqueezed Wavelet Transform (SWT) 

and Synthetic Minority Oversampling Technique 

(SMOTE) provide improved accuracy through 

enhanced frequency resolution and effective handling 

of class imbalance, they come at the cost of increased 

computational requirements. This overhead may 

limit their use in resource-constrained environments 

like wearable devices or real-time systems. To 

understand the trade-offs, a comparison is presented 

between SWT and SMOTE with simpler approaches 

such as Short-Time Fourier Transform (STFT) for 

frequency-domain analysis and Random Over-

Sampling (ROS) for data balancing. The table 5 

outlines the differences in computational complexity, 

overhead, accuracy impact, and suitability for various 

applications. 

5. Discussion  

The proposed SST-SMOTE-Adaboost 

framework for sleep spindle detection demonstrates 

significant promise in improving the accuracy and 

reliability of spindle identification in EEG signals. 

By combining the Synthetic Minority Oversampling 

Technique (SMOTE) to address data imbalance, 

Synchrosqueezed Wavelet Transform (SWT) for 

precise feature extraction, and the Adaboost 

algorithm for robust classification, the method 

achieved impressive results. Validated on the MASS-

C1 dataset, the framework delivered an F-score of 

75%, a Sensitivity of 78%, and a Positive Predictive 

Value (PPV) of 73%, outperforming existing 

methods like SST-RUSBoost and MVGMM. The 

integration of time-domain and frequency-domain 

features, facilitated by the sharp time-frequency 

representation of SWT, was particularly effective in 

reducing ambiguity between spindle and non-spindle 

events, contributing significantly to the detection 

performance. 

The study also highlighted variability in detection 

performance across subjects. While some subjects, 

such as S9, achieved high F-scores (~88.96%), others, 

like S3 and S5, demonstrated lower detection rates 

(~60.2%). This variability was attributed to 

differences in EEG signal characteristics, with some 

subjects exhibiting a higher dominance of 

background signals over spindle activity. Compared 

to other methods, such as the Hybrid Expert Scheme, 

which showed higher sensitivity (81%) but suffered 

from lower precision due to false positives, the 

proposed approach struck a better balance between 

sensitivity and precision, making it a reliable tool for 

spindle detection. However, the study was conducted 

on a single-channel EEG (C3), limiting the potential 

to fully leverage spatial information available in 

multi-channel recordings. 

The study's limitations include the lack of real-

world applicability analysis, as it was validated only 

on the curated MASS-C1 dataset, which may not 

represent noisy, real-world data, and its demographic 

homogeneity limits generalizability. Computational 

complexity from SWT poses challenges for 

deployment in wearable devices, and its single-

channel focus restricts multi-channel applications. 

Future work should validate the method on diverse, 

real-world datasets, optimize computational 

efficiency, incorporate multi-channel EEG analysis, 

and explore deployment in wearable devices for real-

time monitoring, enhancing its robustness and 

scalability. 

6. Conclusion  

In conclusion, the proposed SST-SMOTE-

Adaboost framework demonstrates significant 

advancements in the automated detection of sleep 

spindles from EEG signals, addressing key 

challenges like data imbalance and inadequate 

feature representation. By integrating SMOTE for 

balancing datasets, Synchrosqueezed Wavelet 

Transform (SWT) for precise feature extraction, and 

the Adaboost algorithm for classification, the method 

achieved superior performance, with an F-score of 
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75%, Sensitivity of 78%, and Positive Predictive 

Value (PPV) of 73% on the MASS-C1 dataset. These 

results outperform existing approaches such as SST-

RUSBoost, MVGMM, and Hybrid Expert Scheme, 

showcasing the method's robustness and reliability. 

The integration of time-domain and frequency-

domain features enhanced the discrimination 

between spindle and non-spindle events, while SWT 

provided sharper time-frequency representations for 

better detection accuracy. Despite variability in 

performance across subjects, the framework 

consistently demonstrated improved detection rates 

compared to traditional methods. Overall, the results 

highlight the potential of this approach as a reliable 

tool for sleep spindle detection, paving the way for its 

application in clinical and research settings with 

further optimizations and validations. 
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