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Abstract: With the rise of the Internet of Things (IoT) and Fifth Generation (5G) networks, real-time health monitoring 

has become more efficient, enabling continuous tracking of cardiac health. Electrocardiograms (ECG) are essential for 

diagnosing cardiovascular diseases, but classifying ECG signals presents challenges due to their high-dimensional 

features. Standard machine learning classifiers often struggle to achieve high accuracy, and IoT devices face resource 

constraints that hinder real-time processing. This paper introduces a novel methodology that combines Particle Swarm 

Optimization (PSO)-based feature selection with machine learning classifiers, such as K-Nearest Neighbors (KNN), 

Random Forest (RF), Decision Trees (DT), and Support Vector Machines (SVM). The proposed method uses the 

accuracy of the machine learning classifiers as the fitness function in the PSO algorithm. This ensures that the selected 

features are optimal and well-suited for the classifier, improving both classification accuracy and computational 

efficiency. The approach was validated using the MIT-BIH Arrhythmia dataset, achieving 98% accuracy with PSO-

SVM and 84% without PSO-based feature selection. The dimensionality of the ECG dataset is reduced from 4000 

features to 888, improving classification accuracy and computational efficiency. These results outperform current 

machine learning and deep learning methods, demonstrating the effectiveness of the proposed approach for arrhythmia 

detection. This research provides a scalable solution for IoT-enabled, 5G-powered health monitoring systems, 

enhancing both classification performance and real-time processing in resource-constrained environments. 

Keywords: Arrhythmia detection, Machine learning classifier, Feature selection, IoT-5G, Healthcare systems, ECG 

classification. 

 

 

1. Introduction  

Cardiovascular diseases are the most common 

cause of death worldwide, resulting in millions of 

deaths annually [1]. Early identification and 

continuous monitoring of the condition of the heart, 

such as arrhythmias, are very critical in further 

improving the outcomes for patients and lessening 

the burden on healthcare systems [2, 3]. 

Electrocardiogram (ECG) monitoring is a very 

critical tool in capturing the electrical activity of the 

heart for the early detection of life-threatening 

conditions [4].  

In recent years, the Internet of Things (IoT) has 

increased drastically and revolutionized health care 

by allowing real-time and remote monitoring and also 

enabling the continuous collection of physiological 

data from patients even outside clinical settings [5-6]. 

This paradigm shift toward IoT-enabled health 

monitoring offers enhanced patient mobility, timely 

interventions, and a drastic reduction in healthcare 

costs [7]. With the increasing application of IoT 

devices, the rapid growth of ECG data has brought 

about the challenge of how efficiently analyzing and 

classifying the data in real time [8].  

The high-dimensional nature of ECG signals 

combined with large volumes of data strains 
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traditional machine learning models that have to 

make a tradeoff between good classification accuracy 

and computational efficiency. The commonly used 

classifiers, such as K-nearest neighbor (KNN), 

random forest (RF), decision tree (DT), and support 

vector machine (SVM), usually suffer from reduced 

accuracy or slower processing times when applied to 

large datasets. This is particularly critical in IoT-

enabled systems, given that computational resources 

are generally constrained and fast, accurate decision-

making is critical for early medical intervention [9]. 

Despite the advancements in machine learning, 

traditional feature selection methods, such as Mutual 

Information [10] and Chi-Square [11], often fail to 

address the unique challenges posed by high-

dimensional ECG data, especially in real-time 

applications. These methods rely on statistical 

measures to rank features independently of the 

classifier, neglecting important feature interactions 

and the classifier's specific requirements for optimal 

performance. As a result, static methods may select 

suboptimal features that degrade classification 

accuracy. In contrast, metaheuristic feature selection 

algorithms, like Particle Swarm Optimization (PSO), 

typically use default fitness functions that do not 

account for the classifier’s accuracy [12-13]. This 

approach leads to ineffective feature selection, as it 

does not adapt the feature set to the classifier’s 

specific needs.  

To address these challenges, this study introduces 

a novel approach that combines PSO with machine 

learning classifiers to achieve dynamic feature 

selection and dimensionality reduction. Unlike 

traditional filter-based methods and traditional 

metaheuristic feature selection, the proposed PSO-

based feature selection process is adaptive, 

dynamically adjusting to the classifier’s specific 

needs. The PSO fitness function evaluates the 

classifier’s accuracy and optimizes the selection of 

features, ensuring that only the most relevant and 

effective features are chosen. This dynamic selection 

process enhances the classification performance 

while reducing the dimensionality of the ECG dataset 

to low dimensions, thus improving computational 

efficiency without sacrificing diagnostic accuracy. 

The proposed method is particularly well-suited for 

IoT-enabled and Fifth Generation (5G)-powered 

healthcare systems, where real-time, resource-

efficient decision-making is essential. By improving 

both the speed and accuracy of ECG classification, 

the proposed solution offers a scalable and effective 

framework for timely arrhythmia detection and real-

time cardiac health monitoring. 

The main key contributions of this study are: 
• The study utilizes PSO to enhance the feature 

selection process, achieving dimensionality 

reduction of the ECG dataset from 4000 features to 

888. This reduction ensures that only the most vital 

features necessary for identifying various 

arrhythmias are retained. As a result, the approach 

improves computational efficiency, reduces 

processing time, and enhances classification 

accuracy. 

• The proposed framework is optimized to work in 

IoT and 5G integrated health monitoring areas, as 

highlighted in Fig. 1. They discuss the 

computational complexity for real-time processing 

on these devices and show the suitability of such a 

system for remote health monitoring. 

• When using the SVM, the system provides a 

maximum accuracy of 98% when integrating PSO 

with machine learning classifiers. This result 

shows that the proposed framework outperforms 

the existing approaches and ensures accurate and 

efficient diagnosis of arrhythmias in IoT-

integrated healthcare systems. 
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Figure. 1 Overview of IoT-assisted ECG monitoring framework 
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The flow of this proposed work is constructed as 

follows: Section 2 includes earlier research on 

medical prediction and classification. Section 3 

discusses the Methodology, PSO-based feature 

selection, and machine-learning classifier. Section 4 

presents the outcomes and discusses Efficient ECG 

Classification. Finally, section 5 concludes the paper. 

2. Related works  

Artificial intelligence (AI) is important for 

medical prediction and classification in clinical 

settings. This technology largely assists medical 

personnel in dealing with data in clinical practice. All 

these strategies can improve the timely identification 

and diagnosis of diseases. Metaheuristic feature 

selection algorithms were applied with both deep 

learning and machine learning techniques. For 

instance, Rangappa et al. [14] have proposed a hybrid 

approach that uses the new feature selection called 

infinite feature selection with RF for earlier 

arrhythmia detection based on ECG signal. The 

proposed approach was tested on the MIT-BIH 

Arrhythmia dataset and achieved an accuracy of 

94.32% with feature selection and 93.29% without 

feature selection. However, the proposed feature 

selection method improved classifier accuracy by 

only 1.03%. In general, the accuracy that was 

achieved is moderate and needs improvement. Al-

Shammary et al. [15] have proposed a novel approach 

that utilized the PSO as feature selection and the 

Kullback-Leibler classifier (KLC) as classifier to 

classify the ECG signal. Their approach integrates 

feature optimization and probabilistic classification 

to handle the complex and noisy nature of ECG data. 

The use of PSO for selecting optimal features and KL 

divergence for assessing distributional differences 

results in an accuracy rate exceeding 86.67% on the 

MIT-BIH arrhythmia dataset. However, the proposed 

approach has low rate of accuracy and need more 

improvement. Baños et al. [16] proposed a 

computational model called Hybrid-PSO-CNN, 

which integrates PSO with Convolutional Neural 

Networks (CNN) to classify cardiac arrhythmias. The 

model automatically optimizes CNN 

hyperparameters, achieving 97% accuracy during 

testing on the arrhythmia dataset. This approach 

reduced the time spent on manual hyperparameter 

selection and lowered computational costs. However, 

H-PSO-CNN model is that it is currently restricted to 

a four-dimensional PSO population, limiting its 

ability to fully optimize additional hyperparameters 

for more complex classification tasks. 

Soman and Sarath. [17] have introduced a novel 

strategy that used the Sparrow Search Algorithm 

(SSA) feature selection with Deep CNN for 

arrhythmia classification. The authors have 

employed many steps in the suggested approach, 

beginning with preprocessing, feature extraction then 

feature selection, and finally classifiers (such as CNN, 

CNN-SVM). On the MIT-BIH arrhythmia dataset, 

the hybrid approach that utilized the Deep-CNN with 

SSA achieved moderate accuracy. However, the 

suggested approach has a low rate of accuracy 

compared with recent studies and needs improvement 

in accuracy.  

Dhiah et al. [18] have proposed a novel classifier 

called Chi-square distance supported by feature 

selection based on PSO to select optimal features 

from the ECG signal. The authors also used the other 

machine learning classifier with the proposed 

classifier (Chi-square distance). The proposed 

approach achieved a notable accuracy of 98%. 

Nevertheless, the other standard classifiers such as 

RF and DT with PSO-based feature selection 

achieved an accuracy of 93% and 91% respectively. 

In [19], the study proposed a novel method that 

enhances PSO by using Hellinger distance (HD) for 

clustering the dataset into highly similar and 

harmonious groups. This clustering technique aims to 

improve the feature selection process, which is 

critical for disease detection, especially in complex 

medical datasets like the MIT-BIH Arrhythmia 

dataset. The authors apply this improved PSO 

method in conjunction with traditional machine 

learning algorithms such as KNN, DT, SVM, RF, 

Minkowski, and NB. The results demonstrate 

significant improvements in classification accuracy, 

with the Minkowski classifier achieving the highest 

accuracy of 97.5%. However, the proposed approach 

needs testing to optimize the size of cluster size and 

this increases the complexity and computational. 

Additionally, the proposed approach with some 

standard classifiers such as KNN, RF, DT, and SVM 

achieved low accuracy. Hassaballah et al. [20] 

presented new is metaheuristic optimization (MHO) 

is called Marine Predator Algorithm (MPA) with 

machine learning classifier namely: SVM, RF, 

GBDT, and KNN to classify the ECG signals. The 

authors also used the parameters optimization to find 

optimal parameter for the classifiers. The suggested 

approach testing on the divers’ datasets, such as MIT-

BIH Arrhythmia dataset and achieved high accuracy 

up to more 99%. However, the proposed approach 

depending on the parameter’s optimization process 

and also the proposed approach achieved moderate 

accuracy of 96.44% in KNN classifier. 

Unlike previous studies that used Metaheuristic 

algorithms like PSO for feature selection without  
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Figure. 2 Proposed workflow of ECG arrhythmia 

healthcare system's early diagnosis and classification 

 

considering classifier accuracy, this study uniquely 

incorporates the classifier’s accuracy as the fitness 

function. This allows for the selection of the most 

effective feature subset tailored to each classifier, 

thereby enhancing performance and improving ECG 

signal classification accuracy. Previous approaches 

focused on optimizing feature selection, but did not 

account for classifier accuracy, a crucial factor for 

achieving high performance in practical applications. 

3. Methodology  

The smart healthcare system has several sub-parts, 

discussed below: health record sensors for pulse 

records, electrodes for heartbeat records, data 

analysis of heartbeat records, a system mainly 

designed for pulse measuring, and a pulse measuring 

system in healthcare practice. This paper presents an 

early diagnosis and categorization model of ECG 

arrhythmia for healthcare. It has three primary stages: 

preprocessing, feature selection, and classification. 

The detection or classification process is one aspect 

of the system; hence, the main areas of this research 

are presented in the classification, as indicated below 

in Fig. 2. 

3.1 Description of dataset 

The MIT-BIH Arrhythmia Dataset 

(https://www.physionet.org/content/mitdb/1.0.0/) 

includes 48 thirty-minute parts of two-channel 

ambulatory ECG from 47 individuals investigated in 

the BIH Arrhythmia Laboratory through 1975-1979. 

The MIT-BIH dataset is widely used in research and 

diagnostics worldwide. Any gains in forecasting its 

utilization will, therefore, be of great value to several 

clinics and hospitals in the improvement of ECG 

monitoring and detection. This data set is crude and 

rudimentary because the researchers require 

compiling and purifying it before evaluating it. This 

has resulted in unfair assessment, as the researchers 

with variably ranked status and characteristics may 

employ a number of components. The collected MIT-

BIH arrhythmia dataset was obtained from the MIT-

BIH Arrhythmia dataset. The recording was digitized 

at thirty samples of 360 samples per second, so thirty 

samples were obtained for each ten seconds. The 

segments were defined as such because there appear 

to be no recurring statuses, meaning that each 

segment is uniquely labelled and categorized with 

regard to signal cycles. Records were grouped into 

five classes per class 100, as shown below in Table 1. 

3.2 Preprocessing dataset 

At the first preprocessing stage, the signal 

undergoes scaling to conform to the range of 0–1. The 

mathematical expression for the min-max scaler is 

 

𝑆𝑖 =
𝑋𝑖−𝑚𝑖𝑛(𝑋𝑖)

𝑚𝑎𝑥(𝑋𝑖)−𝑚𝑖𝑛(𝑋𝑖)
                                          (1) 

 

In this respect, 𝑺𝒊 represents the normalized signal, 

which is the output after scaling the raw input 

signal. 𝑿𝒊 represents the raw signal, which is the 

signal free from noise before the preprocessing 

step. 

 
Table 1. Details of classes in the dataset 

Class Description Included beats Number of extracted records 

N 
Non-ectopic 

beats 

Regular beats, left bundle branch block, right bundle branch 

block, nodal (junctional) escape beat, and atrial escape beat 
100 

S 
Supraventricular 

ectopic beats 

Aberrated atrial premature beat, supraventricular premature 

beat, atrial premature beat, and 

nodal (junctional) premature beat 

100 

V 
Ventricular 

ectopic beats 

Ventricular escape beat and premature ventricular 

contraction 
100 

F Fusion beats Fusion of ventricular and normal beat 100 

Q Unknown beats 
Paced beat, unclassified beat, and fusion of paced and 

normal beats 
100 
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𝒎𝒂𝒙(𝑿𝒊) and 𝒎𝒊𝒏(𝑿𝒊) refer to the minimum and 

maximum values of the raw signal. The purpose of 

this normalization process is to scale the signal within 

the range of 0 to 1. This scaling step improves the 

accuracy and efficiency of the classification process 

by eliminating large differences in the values of the 

data [21]. The normalization is performed by 

calculating the minimum and maximum values of the 

raw signal 𝑿𝒊 , then adjusting all the values of the 

signal to fall within the normalized range. During the 

preprocessing, challenges arose in selecting an 

optimal normalization range. Negative ranges were 

found to produce suboptimal results, and data overlap 

within the dataset created further complications. 

Despite these challenges, this preprocessing step is 

essential for preparing the data for the next stages of 

analysis and classification. 

3.3 PSO-based feature selection 

Feature selection is performed before the 

classifying and can be considered an important 

prerequisite. In other words, the primary goal is to 

remove all the unrelated characteristics and choose 

some of the set as crucial features. This can reduce 

the number of dimensions in the classification 

problem while maintaining the same classification 

accuracy. 

The conventional term used for any of the 

constituents of the swarm in PSO is a particle [22]. 

Every particle denoted by 𝑷𝒊 (where 𝒊 takes values in 

the range (𝟏, 𝑲)) , is associated with a position 

𝑳𝒊(𝒕)in a multi-dimensional search space mentioned 

as 𝒕. These particles have 𝑽𝒊(𝒕) velocity and possess 

information about their best position found so far or 

“pbest”. The variable “gbest” represents the position 

of the best-found particle till now. Eqs. (2) and (3) are 

used to update the positions and velocities of all the 

particles within the various population. 

 

      𝐿𝑖(𝑡 + 1) = 𝐿𝑖(𝑡) + 𝑉𝑖(𝑡)                                (2) 
 
𝑉𝑖(𝑡 + 1) = 𝑤𝐿(𝑡) + 𝐶1𝑅1 (pbest − 𝐿𝑖) +
𝐶2𝑅2( gbest − 𝐿𝑖)                                                  (3) 
 

The inertia weight 𝒘, which controls the balance 

between exploration and exploitation, is set to 0.5 in 

this study, whereas its default value is typically 

within the range of [0.1 1.0]. The acceleration 

coefficients 𝑪𝟏  and 𝑪𝟐 , which influence the 

attraction towards the personal best and global best 

positions, are set to 2, as is standard in PSO. The 

random values 𝑹𝟏  and 𝑹𝟐 , which introduce 

randomness into the search process, are set to 0.5 in 

this study, though they are typically random values 

between 0 and 1. 

The fitness function 𝒇(𝒙)  in this study is the 

accuracy of the machine learning classifier after 

selecting a subset of features using PSO. The fitness 

function is given by Eq. (4). 

 

𝑓(𝑥) = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑋))                 (4) 

 

Where 𝒙  represents the selected features, and the 

accuracy measures the performance of the classifier 

using that feature subset. This approach contrasts 

with previous studies, as it directly optimizes feature 

selection based on the classifier's performance. 

3.4 Classifiers 

The supervised machine learning classifiers used 

for diagnosing rhythm disorders, which were tuned 

by the developed artificial intelligence PSO 

algorithm, are support vector machines, random 

forests, gradient-boosting decision trees, and K-

nearest neighbors. 

3.4.1. Support vector machine 

The experiences of the SVM in practical 

application and practical guidance provide a useful 

reference for improving efficiency and increasing 

efficiency by a large margin [23]. SVM operates by 

mapping the input data into a high-dimensional 

feature space and determining the optimal hyperplane 

that divides the data into distinct classes. Its goal is to 

divide the training vectors into clusters to find a 

maximum margin hyperplane. 

In SVM, each data point 𝑿𝒊 from the training set 

is associated with a label 𝒚𝒊 ∈ {+𝟏, −𝟏}, where +𝟏 

represents one class and −𝟏 represents the other class. 

The hyperplane that separates the classes is defined 

by the Eq. (5). 

 

𝑤 ⋅ 𝑧𝑖 + 𝑏 = 0                                                     (5) 

 

Here, 𝒘 is the weight vector, 𝒛𝑖 represents the feature 

vector for the input 𝑿𝒊, and 𝒃 is the bias term. The 

actual classification of the input 𝑿𝒊  is done by 

calculating the output function 𝒇(𝒙𝒊) is given by the 

Eq. (6). 

 

𝑓(𝑥𝑖) = 𝑠𝑖𝑔𝑛(𝑤 ⋅ 𝑧𝑖 + 𝑏) =  

{
1,      if 𝑥𝑖 = 1
−1,      if 𝑥𝑖 = −1

                                            (6) 

 

SVM classifier aims to find a hyperplane that 

maximizes the margin between the two classes, while 
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minimizing the classification error. For a linearly 

separable case, the condition given by Eq. (7). 

 

{

(𝑤 ⋅ 𝑧𝑖 + 𝑏) ≥ 1,      if 𝑥𝑖 = 1
(𝑤 ⋅ 𝑧𝑖 + 𝑏) ≤ −1,      if 𝑥𝑖 = −1,

,

 where 𝑖 = 1, … , 𝑙

                  (7) 

 

holds true for all training samples 𝑿𝒊. In cases where 

the data is not linearly separable, SVM allows for a 

soft margin classification by introducing slack 

variables �̃�𝒊, which measure the degree of violation 

for each sample. The optimization problem is given 

by Eq. (8). 

 

𝑚𝑖𝑛
1

2
𝑤 ⋅ 𝑤 + 𝐶 ∑  𝑙

𝑖=1 𝜉𝑖 ,

subject to 𝑦𝑖(𝑤 ⋅ 𝑧𝑖 + 𝑏) ≥
1 − 𝜉𝑖 , where 𝜉𝑖 ≥ 0, 𝑖 , … , 𝑙.

                                 (8) 

 

Here, 𝑪 is a regularization parameter that controls the 

trade-off between maximizing the margin and 

minimizing the classification error. 

3.4.2. Gradient boosting decision tree 

In decision trees, every node is termed as internal 

if it contains a particular input type. This is done by 

labeling the arcs that stem from the node representing 

the defined feature by each one of the feature values 

that it might assume. Any tree leaf can be described 

as having probability distribution concerning a range 

of types. In gradient boosting, the most basic concept 

behind the decision tree is to combine several fragile 

base classifiers into a single strong [24]. Unlike other 

methods of calculating examples to boost positive 

and negative weight, GBDT makes the algorithm 

globally converge by maintaining the negative 

gradient direction. The weak learner applies a test 

function to the fault at each splitting node. The 

weights 𝒘𝒊
𝒋
 and residuals 𝒓𝒊

𝒋
 are updated iteratively, 

as described in Eq. (9). This equation minimizes the 

weighted sum of squared errors, optimizing the 

model by adjusting the predictions from each weak 

learner. Specifically, the weights are updated based 

on the gradients, and the error correction is applied to 

the residuals, improving the model’s performance 

with each iteration. The equation for updating the 

weights and residuals is given by Eq. (9). 

 

𝜖(𝜏) = ∑  𝑖:𝑘(x𝑖)<𝜏 𝑤𝑖
𝑗
(𝑟𝑖

𝑗
−

𝜂𝑙)
2

∑  𝑖:𝜅(x𝑖)≥𝜏 𝑤𝑖
𝑗
(𝑟𝑖

𝑗
− 𝜂𝑟)

2
                            (9) 

 

Next, Eq. (10) defines the update rules for the weights 

𝒘𝒊
𝒋
 and residuals 𝒓𝒊

𝒋
. 

 

𝑤𝑖
𝑗

= exp (−𝑦𝑖𝑓𝑗(x𝑖)) ,

𝑟𝑖
𝑗

= 𝑔(x𝑖)/𝑤𝑖
𝑗

=

−𝑦𝑖exp (−𝑦𝑖𝑓𝑗(x𝑖)) /𝑤𝑖
𝑗

= −𝑦𝑖 

                    (10) 

 

In these equations, 𝒚𝒊 represents the true label, 

𝒇𝒋(𝐱𝒊) is the prediction of the 𝒋-th tree for the 𝒊-th 

sample, and 𝒈(𝐱𝒊) is the gradient at 𝒙𝒊. The weights 

𝒘𝒊
𝒋
 and residuals 𝒓𝒊

𝒋
 are updated during each iteration 

to minimize the residual errors, ultimately enhancing 

the accuracy of the model. 

3.4.3. Random forests 

RF is most similar to the Bayesian method and is 

used to find an ensemble using several hierarchical 

tree structure predictors. The basic concept of RF is 

that several learning tree models can make a 

combined performance greater than an individual 

decision tree, if errors are independent.  

In this context, instead of a single tree being 

constructed, we build multiple trees, each based upon 

values of independently and randomly distributed 

vectors that correspond to the entire forest. 

Combining several random decision trees, the RF is 

an ensemble classifier. A single classification output 

from these decision trees is generated and the values 

are summed up to give the final classifier outcome 

[25]. The RF, once set, runs at a very high speed due 

to the simple computation task needed to perform its 

functions. At the same time, it has a high level of 

obviousness, which allows its use to incorporate 

existing knowledge. Appropriate randomness means 

that we can obtain accurate regressors and classifiers. 

In addition, some research shows that random inputs 

generate better results in terms of classification [26]. 

3.4.4. K-Nearest neighbor 

KNN is one of the simplest and most essential 

categories of machine learning that uses supervised 

learning. It belongs to the category of non-parametric, 

which implies that the basic data do not have to be 

assumed to be classified. It provides the likeness of 

the new class with existing examples and assigns the 

new class the closest related feasible category. The 

estimations obtained using the KNN technique are 

influenced by local noise and are generally less than 

satisfactory [27]. A higher choice of k makes the 

classification boundaryless complex, while a small 

choice of k makes the boundary complex. As for the 

strengths of KNN, its disadvantage is that KNN is an 

algorithm with no training process required. 
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3.5 Evaluation metrics 

In this study, the given ECG heartbeat was 

categorized using ML techniques such as DT as a 

classifier with PSO feature selection, RF, KNN, and 

SVM. Before employing methods from the ML 

sphere, the paragraph briefly describes many 

measures, including the confusion matrix, recall, the 

F1-score, and accuracy. 

• Confusion matrix: A confusion matrix is an 

illustration of the algorithm’s input and 

output. Confusion matrix is an effective way 

to represent error in prediction. The 

proportion of true negatives to the total 

number of true negatives and false positives 

defines the specificity of a test. For instance, 

based on [28], they explained that a matrix is 

made of the column expected class instances 

and row actual class instances. It is also 

possible to add more measurements of the 

analysis, such as F1 score, accuracy, or even 

recall, to the same confusion matrix. 

• Precision: a measure of the accuracy of a 

model, which is an evaluation of the 

correctness of predictions against the total 

number of predictions made. It means that TP 

is divided by TP and FP (if positive 

predictions = TP + FP). Specificity is 

measured mathematically by dividing TP by 

the overall number of TP and FP. It is 

computed as the ratio between true positive 

predictions that were made by the model and 

all the positive predictions that the model 

made, as given by Eq. (12) [29]. 

 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                           (11) 

 

• Recall: the specificity or the true positive (TP) 

rate is another key performance indicator [30]. 

It measures how many of all actual positive 

cases were successfully classified by the 

model as such. This measure offers an 

indication of the model’s failure to capture all 

the positive samples. In other words, recall 

can be defined mathematically as the fraction 

of actual positive instances that the model has 

correctly identified, and it is measured as a 

true positive out of total true positives plus 

false negatives, as given by Eq. (12). 

 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                               (12) 

 

• F1-score: Described as the average of 

precision and recall with the ratio 2:1, F1 – 

the F1-score is considered accurate when 

performing the comparison of classifiers, 

especially when working with an unbalanced 

database. This metric is quite helpful since it 

will give both the number of prediction errors 

and the kind of errors made by the model [31]. 

It is commonly used as a reliable measure of 

the accuracy of classifiers. The F1 score is 

defined mathematically in the formula below 

by Eq. (13). 

 

F1 − score = 2
 Recall × Precision 

 Recall + Precision 
                        (13) 

 

• Accuracy: Accuracy enjoys a wide 

application in the assessment of performance 

because it is easy to comprehend. That is the 

percentage of true positives divided by the 

total count of the instances. This measure 

speaks for the general performance of a model 

as the name, confusion matrix, suggests [32]. 

The formula for accuracy is defined by Eq. 

(14). 

 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
                              (14) 

 

4. Results analysis and discussion  

For the practical part that covers elementary 

programming concepts, Python 3.12 was used 

because of its versatility and because it is widely used 

for general programming. This aspect of Python 

makes it possible to design various applications 

across the desktop to web applications. Visual Studio 

Code was the primary IDE with better UI, improved 

output viewing, and tailored data manipulation 

actions.  

 
Table 2. Details of the implementation environment. 

Components Specifications 

Processor 6th Generation Intel® Core™ i7 

RAM 16 GB 

Editor Visual Studio Code 

Programming 

language 
Python 3.12 

Operating system Windows 10 Pro 

 
Table 3. Evaluation of the machine learning classifiers 

without feature selection. 

          Classifier 

Metrics 
DT SVM RF KNN 

Accuracy 81 84 83 84 

F1-score 88.05 89.87 89.44 90.12 

Precision 87.6 88.75 90 91.25 

Recall 87.5 91.03 88.89 89.02 
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Figure. 3 Classifier effectiveness across key evaluation 

 

The system configuration is described in Table 2, 

which contains detailed specifications of the chosen 

equipment.In the next section, we shall evaluate and 

describe the experimental outcomes performed on the 

MIT-BIH arrhythmia signal database. There will be a 

key emphasis on comparing and contrasting our 

classifier with other classifiers, as well as comparing 

feature selection techniques with no feature selection 

at all. 

4.1 Performance of machine learning classifiers 

without feature selection 

The performance of the classifiers that do not 

make use of feature selection was used for 

comparison. The classifiers used in the current study 

were KNN, RF, SVM, and DT. For evaluation, F1-

score, recall, precision, and accuracy measures were 

used in order to determine the efficiency of the 

methods depending on the data size. Using the MIT-

BIH arrhythmia dataset and without employing 

feature selection, the evaluation results of the 

proposed method are shown in Table 3 below. 

The results show that, without feature selection, 

RF and KNN have relatively higher accuracy, 

precision, recall, and F1-score than the DT and SVM 

models. Both RF and KNN score consistently and 

marginally higher than the other classifiers, and the 

features in each have to do with RF being an 

ensemble technique and KNN being capable of 

handling non-linear relationships. Hence, DT and 

SVM exhibit slightly lower classification accuracy, 

which again proves that all classifiers classified these 

MIT-BIH arrhythmia samples with reasonable 

features within the MIT-BIH arrhythmia dataset are 

already rich in information, as illustrated in Fig. 3. An 

even higher performance might be achieved by 

adding feature selection to the current solution in 

order to filter out noise.  

Fig. 4 shows the confusion matrices of four 

machine learning models (DT, SVM, RF, and KNN) 

concerning the classification of Arrhythmia and 

Healthy cases without the elimination of features. DT 

and SVM performed almost equally for both 

accuracy and Misclassification Rates, with slight 

variations, for 70-71 Arrhythmia and 11-13 healthy 

datasets. 
 

 
Figure. 4 Confusion matrix of the machine learning classifiers without using any feature selection 
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Table 4. Evaluation of the classifiers with feature 

selection. 

      Classifier 

 

Metrics 

DT SVM RF KNN 

Accuracy 95 98 97 97 

F1-score 96.86 98.77 98.14 98.11 

Precision 96.25 100 98.75 97.5 

Recall 97.47 97.56 97.53 98.73 

 

 
Figure. 5 Classifier effectiveness across key evaluation 

metrics with PSO feature selection. 

 

RF was slightly better at the identification of 

Arrhythmia with 72 cases, while the best accuracy 

was scored by KNN, which correctly classified 73 

cases of Arrhythmia. While, on average, KNN gave 

the best results, all the classifiers were wrong in some 

cases, thus increasing the potential for the best results. 

4.2 Performance of machine learning classifiers 

with feature selection 

The performance of the proposed approach was 

evaluated using various machine-learning classifiers, 

with feature selection implemented through PSO. 

Notably, rather than using a large set of 4000 features, 

as in many traditional methods, the PSO method 

effectively selected only 888 features. This reduction 

in the number of features enabled a more efficient and 

targeted learning process, contributing to the 

classifiers' improved accuracy. Table 4 summarizes 

the evaluation metrics for DT, SVM, RF, and KNN. 
The results indicate that SVM outperformed the other 

classifiers with the highest accuracy of 98%, the 

highest precision of 100%, and a robust F1-score of 

98.77%, reflecting its ability to balance precision and 

recall effectively. RF and KNN both achieved high 

accuracies of 97%, with KNN showing the highest 

recall at 98.73%, making it highly effective in 

detecting all relevant instances. These findings 

demonstrate that the combination of PSO for feature 

selection and machine learning classifiers is highly 

effective, with SVM emerging as the most robust and 

reliable model in terms of overall performance. The 

precision of SVM and the recall of KNN further 

underscore the flexibility of the proposed approach to 

optimize results across different performance metrics. 

The evaluation of four ML algorithms, namely 

DT, SVM, RF, and KNN, was performed with the 

help of feature selection in terms of Accuracy, F1-

score, Precision, and Recall, as shown in Fig. 5. All 

models show the tool’s very high efficacy in all 

categories, with results ranging from 96 to 99 percent 

in many instances. This indicates that the integration 

of feature selection enhanced the reliability and 

consistency of classification performance. With the 

classifiers, the differences in scores are small, 

meaning that all models under consideration are 

almost equally good. The increase in all the measures 

further affirms the effectiveness of feature selection 

in improving model genericity and classification. 

The feature selection solution results in confusion 

matrices of four machine-learning models, which 

include DT, SVM, RF, and KNN. The proposed DT 

model achieved 77 correct classifications for the 

Arrhythmia and 18 for the Healthy class, whereas it 

misclassified 3 Arrhythmia and 2 Healthy samples. 

SVM achieved a perfect result in the classification of 

Arrhythmia cases – 80 correct classifications out of 2 

Healthy cases misclassified. RF also performed well 

in identifying all arrhythmia; only 1 arrhythmia was 

mistaken as healthy, and only 2 healthy cases were 

misclassified as arrhythmia.  

KNN also gave good results, with 78 samples 

correctly classified as arrhythmia and 19 as healthy, 

with two arrhythmias and one healthy misclassified 

sample. Collectively, feature selection led to a 

qualitative enhancement of all models in terms of 

TPR and minimized misclassifications, as illustrated 

in Fig. 6. The performances for SVM were the best 

across the board, especially for perfect classification 

of the Arrhythmia cases and moderation in correctly 

sorting between Arrhythmia and Healthy cases, as 

was evident with KNN. These results imply that a 

proper selection of the features significantly 

improves the quality and stability of the model. 

4.3 Comparison proposed approach with similar 

works 

The proposed approach is compared with recent 

studies that used different feature selection 

algorithms with machine and deep learning 

classifiers on the MIT-BIH Arrhythmia dataset. 

Table 5 provides a detailed comparison, highlighting 

differences in feature selection techniques, classifiers, 

and achieved accuracy. 
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Table 5. Comparison of the methodology defined in this study with recent studies based on the MIT-BIH arrhythmia 

dataset 

Ref. Year 

Feature 

selection 

technique 

Fitness 

Function 
Classifier Accuracy 

F1-

score 

Sensitivit

y 

Specificit

y 

[15] 2024 PSO 
Accuracy of 

KLC 
KLC 86.67 86.5 86.67 73.17 

[16] 2023 PSO 
Accuracy of 

CNN 
CNN 97 85.6 92.6 N/A 

[17] 2024 SSA 

Optimal Food 

in the search 

procedure 

Deep CNN 94.8 N/A 96.5 93 

[18] 2024 PSO 
Accuracy of 

Chi-square 

KNN 96 96.06 96 86.95 

RF 93 92.89 93 78.57 

SVM 95 94.92 95 85.71 

NB 82 83.26 82 54.54 

DT 91 91.11 91 68.75 

Chi-square 

classifier 
98 98.03 98 90.90 

[19] 2024 PSO 
Default fitness 

function  

KNN 90.0 87.05 84.63 N/A 

RF 90.0 87.46 81.81 N/A 

SVM 72.5 42.02 50.0 N/A 

NB 95.0 94.38 96.55 N/A 

DT 92.5 90.40 89.18 N/A 

Minkowski 

classifier 
97.5 96.87 95.45 N/A 

[20] 2024 MPA 

Accuracy of 

(KNN, GBDT, 

SVM, RF) 

KNN 96.44 92.73 92.55 97.73 

RF 99.67 99.34 99.27 99.8 

GBDT 99.61 99.23 99.15 99.77 

SVM 99.48 98.97 98.90 99.68 

 

Proposed 

 

PSO 

Accuracy of 

(DT, SVM, RF, 

KNN) 

DT 95 96.86 97.47 85.71 

RF 97 98.14 97.53 94.73 

KNN 97 98.11 98.73 90.47 

SVM 98 98.77 97.56 100 

 

The proposed method in this study outperforms 

several recent approaches that utilized PSO and other 

feature selection techniques on the MIT-BIH 

Arrhythmia dataset. Compared to studies such as [15], 

[16], and [17], which achieved accuracies ranging 

from 86.67% to 97%, the proposed approach 

achieves up to 98% accuracy across multiple metrics 

and classifiers. Additionally, the proposed method 

demonstrates superior performance in F1-score, 

sensitivity, and specificity, especially with the SVM 

classifier, which achieves 100% specificity.  

Reference [20] achieves remarkable results in 

some classifiers, particularly with RF (99.67% 

accuracy, 99.34% F1-score, and 99.8% specificity) 

and SVM (99.48% accuracy and 98.97% F1-score). 

However, the proposed method excels in others, such 

as KNN, where it achieves higher sensitivity (98.73% 

compared to 92.55%) and F1-score (98.11% 

compared to 92.73%). This comparison highlights 

how the proposed approach balances high 

performance across multiple classifiers and metrics, 

showcasing its robustness and adaptability.  

This consistent improvement in performance 

highlights the effectiveness of using accuracy as the 

fitness function in PSO for feature selection, 

optimizing the feature set for each classifier.  The 

high accuracy achieved in this study can be attributed 

to using the fitness function based on the machine 

learning classifier’s accuracy, as opposed to other 

methods that used Chi-square, KLC, or other generic 

fitness functions. This approach selects the most 

effective features tailored to each classifier, which 

results in notable accuracy improvements for each 

classifier. By focusing on optimizing feature sets 

specific to the classifiers' needs, the proposed method 

maximizes the performance of the classifiers on the 

dataset. 
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Figure. 6 Confusion matrix of the machine learning classifiers with PSO feature selection. 

 

5. Conclusion  

The paper presented a practical framework for 

ECG classification in IoT-enabled 5G-driven health 

monitoring systems for classifying ECG signals 

effectively by reducing high-dimensional data and 

overcoming the challenges related to the 

computational power of resource-constrained 

environments. The proposed approach combined 

PSO feature selection with the machine learning 

classifiers for utmost performance, where a 

maximum accuracy of 98% was achieved by SVM, 

thus outperforming state-of-the-art methods. Thus, 

feature selection has reduced the dimensionality of 

ECG data and enhanced computational efficiency 

without compromising the feasibility of the 

framework for real-time IoT and 5G applications. 

The findings proved that the utilization of PSO for 

feature selection significantly enhances the 

performance of the classifier based on different 

performance metrics such as accuracy, precision, 

recall, and F1-score. This underlines the robustness 

of the proposed framework in terms of removing 

noise and focusing the attention to the most salient 

features in the realization of valid and reliable 

arrhythmia classification. The review further brings 

to light the potential of traditional machine learning 

classifiers, such as KNN, RF, to match results using 

effective feature selection methods. Therefore, the 

scalability and practicality of the proposed 

framework provide a potentially effective solution 

for its real implementation in IoT-based healthcare 

systems, mainly for remote cardiac health monitoring. 

The future directions include scaling up this 

methodology to more medical data, advanced 

optimization techniques, and the use of edge 

computing for further relevance in shifting healthcare 

environments. 
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