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Abstract: Brain tumors are among the most prevalent tumor types worldwide. When tissues grow abnormally, they 

form a tumor. It is classified according to its anatomical location and dimensions. Positron Emission Tomography 

(PET) scans, Magnetic Resonance Imaging (MRI), biopsies, Computerized Tomography (CT) scans, lumbar punctures, 

myelograms, Electroencephalograms (EEG), and other methods are available for the diagnosis of brain tumors. The 

existing approaches are non-invasive but constrained by cost and reliability concerns. The diagnostic procedures are 

inadequate for detecting tumors beyond a depth of 20% and raise significant concerns about the consequences of 

ionizing radiation. The radiative effect of the microwave imaging system could serve as a beneficial way to find brain 

tumors early on because it makes up for the problems with current diagnostic methods for ionizing effects. The 

proposed work’s main goal is to design an effective deep learning approach for identifying brain tumors from 

microwave brain images. The proposed approach mainly consists of two phases. During the initial phase, an Ultra-

Wide Band (UWB) circular monopole patch antenna has been designed for microwave imaging of brain tumors. The 

generated microwave brain images are fed into the proposed hybrid inception- CNN based brain tumor detection 

system in the second phase. These extracted features using the inception- CNN model is passed through the fully 

connected layer for efficient brain tumor classification. The simulation results indicates that the proposed brain tumor 

detection model using microwave brain images attained better detection performance, with an accuracy of 99.48 %. It 

also emphasizes how effectively medical imaging techniques can improve detection performance by incorporating 

artificial intelligence. 

Keywords: Brain tumors, Microwave imaging, Ultra-wide band antenna, Patch antenna, Artificial intelligence, Deep 

learning, Convolutional neural network, Inception network. 

 

 

1. Introduction 

A brain tumor is an aggregation of abnormal brain 

cells. A primary brain tumor initiates within the brain, 

whereas a secondary or metastatic brain tumor arises 

from cancer that has disseminated to the brain from 

other regions of the body [1]. The brain tumour’s 

increasing size and position demonstrates its impact 

on the functions of the nervous system. According to 

the type, location, and size of the brain tumor, 

advanced technological procedures are used for both 

diagnosis and therapy. Microwave Imaging (MI) is 

utilized to identify hidden objects within the human 

body using electromagnetic (EM) waves in the 

frequency range of 300 MHz to 300 GHz. MI is a 

technique where the EM wave interfaces with a 

suspected body part, and the performance parameters 

of the reflected wave, such as Specific Absorption 

Rate (SAR), Return Loss (RL), and current density, 

are compared with the parameters. Environmental 

factors, including temperature, humidity, and other 

factors, can effectively impact the characteristics of 

reflected signals [2], so these factors should also be 

considered. 

The MI method is introduced as a substitute to X-

ray, MRI, CT scan, PET scan, and other modalities 

because of its non-invasive nature.  
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Figure. 1 Principle of sensing based on the contrast of dielectric characteristics utilizing microwaves [4] 

 

 

The MI method uses the scattering principle, which 

said that waves are scattered or reflected because 

benign and malignant brain tumors have different 

dielectric properties. This approach identifies the 

differential water content levels in soft tissues with 

and without tumors. In this method, Ultra-Wide Band 

(UWB) antennas send short pulses of low-power 

microwave energy into the brain [3]. The brain uses 

the backscattered energy to figure out where the 

antenna is and turn the signal into a 3D image. The 

greater water content in the tissue’s accounts for the 

dielectric characteristics of tumors compared to 

normal tissue. 

The UWB antenna is a crucial component of the 

MI technique. The MI device frames the organ under 

study, such as the brain, with a single antenna or an 

array of antennas. One antenna function as a 

transmitter, while others serve as receiver antennas, 

facilitating the scattering of signals from the brain, 

including blood, tumors, and tissues. When 

electromagnetic waves interact with the human body, 

they alter the permittivity and conductivity of the 

brain’s medium, providing the basis for MI-based 

tumor detection in the brain. Fig. 1 shows the general 

idea behind employing microwaves to detect the 

dielectric variation between healthy and abnormal 

tissues depending on water content. 

Microstrip Patch Antennas (MPAs) have very 

simple geometric configurations [5, 6]. It comprises 

four components: (i) a radiating element or patch, (ii) 

a ground plane, (iii) a dielectric substrate, and (iv) a 

feeding network, displayed in Fig. 2. 

 

Figure. 2 General Configuration of MPA 
 

The microstrip patch comprises of a conductive patch 

attached to a dielectric substrate, with the reverse side 

grounded. When current flows through a feed line to 

the antenna strip, it produces electromagnetic waves. 

The propagation of waves from the patch’s edges 

forms a radiation pattern. If the substrate is too thin, 

the waves reflect off its edges. Patch antennas are 

inefficient because they only radiate a part of energy. 

It functions more as a cavity than as a transmitter. 

Artificial Intelligence (AI) holds significant 

potential for enhancing the reliability and accuracy of 

brain tumor detection. AI systems are more accurate 

than traditional approaches at analysing complex 

medical images [7]. This leads to more accurate 
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tumor type identification and earlier detection, which 

is effective for timely and effective treatment. 

Therefore, AI has the potential to transform brain 

tumor diagnostics and enhances patient outcomes. 

This paper proposes an effective brain tumor 

detection system using AI from microwave brain 

images incorporated with UWB circular monopole 

patch antenna. The major objectives of the proposed 

methodology include: 

➢ Development of UWB circular monopole 

patch antenna for microwave imaging. 

➢ Generation of new microwave brain image 

dataset for brain tumor detection.  

➢ Implementation of brain tumor detection 

framework employing hybrid Inception- 

CNN model from microwave images. 

The suggested strategy primarily consists of two 

stages. An ultra-wideband (UWB) circular monopole 

patch antenna was created in the first phase for the 

purpose of imaging brain tumors using microwaves. 

In the second phase, the generated microwave brain 

images are fed into the suggested hybrid inception-

CNN-based system for detecting brain tumors. For 

effective brain tumor classification, these features, 

which were extracted using the Inception-CNN 

model, are sent through the fully connected layer. 

The remaining portions of the paper are 

structured as follows: Section 2 offers an overview of 

the existing research, emphasizing areas 

necessitating further exploration. Section three offers 

a comprehensive explanation of the methodology. 

Section 4 presents the findings derived from the 

proposed methodology in detail. The study concludes 

by summarizing and evaluating the results in Section 

5. 

2. Literature review 

Niloy Goswami and Md. Abdur Rahman [8] 

designed patch antennas, which are particularly 

useful for employing the monostatic technique to 

identify brain tumors inside a human head phantom. 

These antennas are simple to fabricate and function 

effectively across a broad frequency range. The study 

examined all relevant factors for the four stages of the 

proposed antenna’s modelling, which used FR 4 as 

the substrate material. The investigation used a 

human head phantom framework to evaluate 

important performance metrics. The most notable 

finding indicated that the antenna was capable of 

accurately detecting tumors because it showed a 

significant difference in S_11 and SAR when tumors 

are present. The major limitation of the proposed 

study is that the variation in tissue composition, 

density and electrical property, which could affect the 

accuracy of tumor detection. Md. Samsuzzaman et al. 

[9] used a defected grounded low SAR monopole 

patch antenna to make a circular slotted patch that 

could be used for biomedical imaging and micro-

wave-based object identification. Prototype antennas 

were constructed and experimentally validated to 

evaluate design accuracy on FR 4 substrates. The 

fidelity factors of the antenna were calculated for 

three potential configurations. A 9-antenna array 

positioned around a 3-D; realistic Hugo-head 

structure was subjected to behaviour analysis using 

the 3D electromagnetic CST simulator. The analysis 

produced acceptable findings and demonstrated the 

usefulness of the suggested antenna in the designed 

MI application. But the major drawback is that the 

substrate has relatively high loss at microwave 

frequencies. Musa N. Hamza et al. [10] proposed an 

enhanced sensor and microstrip antenna architecture 

for non- invasive brain cancer and breast cancer 

diagnostics. The antenna’s design incorporated a 

hybrid configuration of microstrip patches and a 

Vivaldi-like structure. The base antenna, located 3 

mm from the main radiator on a different substrate, 

connects to the Artificial Magnetic Conductor 

(AMC) unit to implement the sensor. According to 

the simulation results, tumors of different sizes, 

including those as small as 0.5 mm, can be identified 

by the MI system using the suggested sensor. But the 

performance of the system is limited for detecting 

tumors located deeper within tissues. H. Vinod 

Kumar and T.S. Nagaveni [11] developed a MPA for 

breast cancer detection. The patch antenna’s 

rectangular form placed it 1.5 cm away from the 

phantom. The acquired experimental data 

demonstrated the efficiency of the suggested design, 

closely matching both the simulated outcomes and 

the theoretical models. But due to the placement of 

antenna, it cannot replicate the exact conditions of in- 

vivo tissue conditions.  

Ahasan Kabir and Ishrat Jahan [12] developed 

two different kinds of 3D breast phantoms and a 

MPA that operated in the Industrial Scientific 

Medical (ISM) frequency spectrum. The goal of this 

research was to employ SAR analysis and variance 

analysis of S_11 parameters to identify malignant 

tumors within a breast phantom. The simulation 

results demonstrated that the antenna can detect 

cancerous tumors in a simulated breast phantom. The 

applicability in clinical diagnostics can be limited due 

to strict safety standards and regulations related to 

energy depositions in human tissue. Rakesh Singh et 

al. [13] developed a small antenna that could work 

with a breast phantom and in the frequency range of 

1 to 6 GHz, in order to find the dielectric contrast 

between healthy and cancerous tissue. This study 
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illustrated the importance of considering the 

permittivity of phantom when designing the sensor. 

The simulation results indicated that the suggested 

sensor and the breast phantom are compatible, 

emphasizing the sensor’s potential importance for 

microwave imaging system. The study only 

discussed about the dielectric contrast. Devendra 

Kumar and Dhirendar Mathur [14] developed an 

inexpensive and discrete antenna operating in the 

ISM band. It has been clearly shown that using a soft 

surface can effectively reduce back radiation. The 

inherent properties of the flexible Ethylene Vinyl 

Acetate (EVA) foam substrate encompassed 

waterproofing, UV resistance, and mechanical 

stability. The physical characteristics of the substrate 

material, along with its low SAR and broadside 

radiation pattern oriented away from the body, make 

it a viable option for data communications in the 

healthcare industry. The limited frequency band 

restricted its applicability in situations requiring 

multiband or wide band operation. Sadiq Alhuwaidi 

and Tanghid Rashid [15] developed and fabricated a 

wearable pentagon MPA in the ISM band. The first 

phase involved a simulation of the redesigned 

pentagon MPA. The second step involved using 

simulations of microwave computer-aided design 

software to create comprehensive field theory 

solutions. Finally, the third stage focused on the 

fabrication of the proposed antenna. At this stage, 

simulations were conducted to evaluate the spectrum 

of electromagnetic wave absorption by a human head 

model by calculating the SAR at different locations. 

Various environmental factors affect the antenna 

performance. 

Abdul Wajid et al. [16] offered a performance 

comparison between an electromagnetic bandgap 

(EBG)-based dual-band design and a split-ring 

resonator (SRR)-based dual-band antenna 

functioning at 2.4 GHz and 5.4 GHz. A dielectric 

material used in garments was combined with 

metamaterial surfaces to provide protection against 

electromagnetic radiation hazards. A bending test 

was performed to measure the performance of three 

suggested antennas. The outcomes showed that the 

design exhibited exceptional flexibility and resilience 

against bending without compromising antenna 

performance. The major drawback of the proposed 

antenna design are limited frequency range and 

specific material dependency. Pillalamarri Laxman 

and Anuj Jain [17] proposed an antenna configuration 

of four fundamental components arrayed 

orthogonally in opposition to one another. The 

proposed antenna functions securely even close to the 

human body, with no negative radiation-related 

health impacts. The orthogonal composition of 

antenna could complicate the proposed design. 

Mohammed E. Yassin et al. [18] designed a strip 

antenna, which is G- shaped, fabricated on a flexible 

substrate for off-body biomedical communication. 

The antenna’s design achieved circular polarization 

within frequency range of 5 to 6 GHz, enabling 

communication with WiMAX/WLAN antennas. The 

design features created a distinctive ‘G’ or inverted 

‘G’ configuration. The design parts are made up of a 

semicircular strip that is horizontally extending at the 

bottom, connected at the top by a corner-shaped strip 

extension, and topped with a small circular patch. 

According to the simulation findings, the antenna 

reached a 3 dB axial ratio (AR) Bandwidth (BW) of 

18% in the 5 to 6 GHz frequency range. The study is 

limited to antenna size and design complexity. 

Mohammed Saif ur Rahman et al. [19] proposed 

microwave non-destructive testing (NDT) for 

composite structures incorporated with antennas. A 

high-resolution image of a C-band patch antenna 

mounted on an aramid paper-based honeycomb 

substrate shielded in a GFRP sheet was produced 

using a low-frequency planar resonator probe. The 

study focused on NDT’s MI capabilities and benefits 

when looked at structures. It compared the results to 

those of a K-band rectangular aperture probe to show 

how useful it could be for smart structure inspection. 

The study limited to its applicability in complex 

structures.  

In medical and microwave NDT, patch antenna 

designs have several drawbacks. Their inadequate 

resolution and susceptibility to dielectric fluctuations 

limit an analysis of the interior structure of composite 

materials beyond a certain depth. Because of 

interference from the antennas themselves, detecting 

defects and evaluating the material state of structures 

with embedded antennas may become more 

challenging. Despite having a large BW, these 

antennas could not offer the breadth required for 

some medical applications. Their functionality is 

very dependent on the surroundings when it comes to 

being on or near the human body. These elements can 

cause signal attenuation and distortion, and they 

include proximity to clothing, other objects, and body 

tissues. Furthermore, variations in object emissivity 

based on material, surface finish, and circumstances 

pose challenges to accurate antenna design and 

simulation. Miniature antennas usually compromise 

efficiency and BW, making them unsuitable for 

covering a large frequency range. 

3. Materials and methods 

The suggested approach comprises two different 

phases. During the initial phase, the microwave brain 
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images are acquired with the help of the designed 

UWB circular monopole patch antenna. The 

generated microwave brain images are fed to the 

proposed hybrid Inception- CNN framework for 

brain tumor detection. The thorough framework of 

the suggested brain tumor detection model is 

described below. 

3.1 Design of ultra-wide band (UWB) circular 

monopole patch antenna for microwave brain 

imaging 

The slotted UWB circular monopole patch 

antenna is specifically designed for microwave brain 

imaging applications. This antenna incorporates an 

inverted U-shaped Defected Ground Structure (DGS) 

into its construction on the ground plane. The 

antenna’s design allows for resonance at both 

7.68GHz and 4.6GHz, resulting in a directivity of 

6.69 dB and a gain of 5.52 dB. At the higher 

frequency of 7.68 GHz, the antenna displays a RL of 

-48.3 dB, suggesting effective impedance matching is 

appropriate for high-resolution imaging. The 

simulated antenna design’s construction and 

evaluation validate its functional effectiveness across 

a wide range of frequencies. The antenna is designed 

to achieve compact size. The design of the UWB 

circular patch antenna aims to improve directivity.  

UWB circular patch antennas are designed and 

optimized with the aid of ANSOFT HFSS. The 

suggested antenna has dimensions of 65 x 50 x 1.6 

mm³.The evaluation is performed on a FR4 substrate 

considered by a dielectric constant of 4.4, a loss 

tangent of 0.025, and a thickness of 1.6 mm. This 

antenna was created using mathematical modelling 

techniques. Eq. (1) is employed to compute the 

antenna’s resonance frequency.  

 

𝐹𝑟 =
1.841𝜈0

2𝜋𝑟√𝛿
       (1) 

 

Where the speed of light in free space is represented 

by 𝜈0. 

Eq. (2) is employed to compute the radius of the 

circular patch.  

 

𝑎 =
𝐹

√[1+
2ℎ 

𝜖𝑟𝜋𝐹
 [ln(

𝜋𝐹

2ℎ
)+1.7726]]

     (2) 

 

The directivity of the circular patch antenna in 

terms of function parameter 𝛾 is given as in Eq. (3). 

 

𝐷(𝛾) = 4.77142 − 0.12087𝛾 + 2.9853𝛾2 −
1.25954𝛾3 + 1.25337𝛾4 − 0.50481𝛾5 𝑑𝐵  (3) 

 

The physical dimensions of the fabricated 

antenna are tabulated in Table 1. The substrate, 

serving as the antenna’s basis, measures 50 mm in 

length and 65 mm in width. The circular patch, which 

has an 11 mm radius and is a critical component of 

the design, affects the antenna’s radiation 

characteristics. 

The defected ground plane, a critical component 

for enhancing BW and impedance matching, 

measures 24.5 mm in length. The feed line, which is 

responsible for signal transmission to the antenna, 

measures 37 mm in length and has a width that varies 

by 1.6 mm. The structure of top part of proposed 

circular antenna and structure of bottom part of 

proposed circular antenna is shown in Fig. 3 and Fig. 

4 respectively. 

The radio frequency Surface Mount Adapter 

(SMA) is utilized to excite the slotted circular 

monopole patch antenna, which was successfully 

constructed according to the simulated design. This 

procedure required connecting the SMA adapter to 

the antenna to enable signal transmission. In order to 

guarantee stability and appropriate grounding, the 

upper and lower pins of the five-pin connector were 

carefully placed on the ground plane. The central pin 

of the connector was carefully imprinted onto the 

conductive strips of the antenna, ensuring a strong 

and effective connection. The performance of the 

antenna was maximized, and dependable signal 

propagation was ensured. The top part and bottom 

part of fabricated antenna is visualized in Fig. 5 and 

Fig. 6 respectively. Fig. 7 illustrates the 9- antenna 

array system. 

 
Table 1. Physical Dimension of Proposed Antenna 

Parameter Label Design Value (mm) 

Substrate Length 𝐿 50 

Width of substrate 𝑊 65 

Circle Radius 𝑅 11 

Length of defected ground plane 𝐿𝑔 24.5 

Length of Feed Line 𝐿𝑓 37 

Width of Feed Line 𝑊𝑓 1.6 
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Figure. 3 Structure of Top Part of Proposed Circular 

Antenna 

Figure. 4 Structure of Bottom Part of Proposed Circular 

Antenna 
 

 

  
Figure. 5 Top Part of Fabricated Antenna Figure. 6 Bottom Part of Fabricated Antenna 

 

 

  
Figure. 7 9- antenna array System Figure. 8 Overall Imaging Framework 
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(a) (b) 

Figure. 9 Microwave Brain Images: (a)Healthy and (b)Tumor 

 

 

The suggested system consisted of PNA E8358A 

transceivers, a microprocessor, a stepper motor, a 

portable platform, an RF switch, nine antenna arrays, 

and a specially designed half-elliptical helmet. The 

overall imaging framework is shown in Fig. 8. 

The portable platform fixes the stepper motor, 

enabling it to cover the entire 360° surface by rotating 

clockwise at an angle of 7.2° with each step. The 

motor shaft connects the motor and the helmet. The 

helmet has a diameter of 250 mm. As the transmitting 

antenna rotates, the receiving antenna collects signals 

that enter the brain. The signals are reconstructed to 

provide microwave brain images. Fig. 9 displays the 

microwave brain images generated with the 

fabricated patch antenna. 

3.2 Brain tumor detection from microwave brain 

images using hybrid inception-cnn model and 

hyper parameter tuning 

The suggested brain tumor detection model uses 

CNN as its base model. The Inception network 

captures multi-scale features by employing 

convolution with varying kernel sizes. Batch 

normalization, regularization, and dropout optimize 

the model. Fig. 10 illustrates the comprehensive 

block diagram of the suggested brain tumor detection 

framework. 

 

 
Figure. 10 Block Diagram of Suggested Brain Tumor Detection System 
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3.2.1. Dataset description 

The images are acquired using patch antennas 

from the proposed imaging system. It is essential to 

implement a non-invasive and simple diagnostic 

method to minimize costs. A new dataset is generated 

utilizing microwave brain imaging for tumor 

detection. This dataset comprises two categories: 

tumor and healthy, displayed in Fig. 11. All image 

classes are in.png format. The images are 256 ×256 

in size. 

The dataset contains 1,282 images, with 672 

classified as tumors and 610 as normal. A total of 

1,026 images are preferred for training, while the 

remaining 256 images are allocated for testing. This 

proportional splitting provides an extensive training 

set while preserving an adequate quantity of images 

for testing and assessing the model. Fig. 12 depicts 

the distribution of classes within the dataset. 

3.2.2. Data preprocessing and data splitting 

Data preprocessing techniques can enhance the 

quality and applicability of image data. This study 

used a range of data preprocessing techniques, 

including cropping, image augmentation, and image 

normalization. Cropping an image involves removing 

unnecessary background elements to emphasize the 

central region. Fig. 13 illustrates the microwave brain 

images before and after cropping. 

Normalization improves the model’s 

convergence and performance by standardizing pixel 

values to a uniform range. Image augmentation 

techniques such as rotation, flipping, shear 

transformations, brightness adjustments, and width 

and height shifts increase the dataset’s diversity. 

Lastly, the data is divided into a 75:15:10 ratio, in 

which training uses 75 percent of the data, validation 

uses 15 percent, and testing uses 10 percent. 

 

 

  
(a) (b) 

Figure. 11 Sample Microwave Brain Images from dataset: (a)Tumor and (b)Healthy 

 

 

 
  

(a) (b) 

Figure. 12 Class Distribution Figure. 13 Microwave Brain Images: (a)Before Cropping and 

(b)After Cropping 
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3.2.3. Proposed hybrid inception- CNN model for brain 

tumor detection 

The input layer of this CNN model processes 

images with dimensions of 256 × 256 × 3 for image 

classification. It consists of many convolutional 

blocks, each incorporating convolutional layers with 

Rectified Linear Unit (ReLU) activation, batch 

normalization, max pooling, and dropout layers to 

mitigate overfitting. The model has inception 

modules that combine several convolutional 

pathways to gather a wide range of spatial data, which 

makes it better at detecting complex patterns. The 

model employs regularization strategies like L2 

regularization and higher dropout rates to improve 

generalization and reduce the likelihood of 

overfitting. The network ends with a Fully Connected 

(FC) layer that outputs the final classification by 

sigmoid activation. 

The primary objective of CNN is feature 

extraction, followed by feature fusion and 

classification [20]. CNN generates feature 

classifications based on sample data that it collects, 

as well as distinguishing properties. The CNN 

approach employs a series of processing layers, each 

of which advances from low to high complexity by 

learning new representational abilities. By offering 

information that may subsequently be utilized to find 

higher-level features, these characteristics allow the 

CNN to operate as an independent feature extractor. 

The convolutional layer, activation function layer, 

pooling layer, and FC layer are the four main types of 

layers in the basic CNN framework, illustrated in Fig. 

14. 

The convolutional layer is an essential element of 

the CNN architecture. This layer calculates the dot 

product between two matrices: the set of learnable 

parameters, often known as a kernel, and a limited 

subset of the provided image pixels. The kernel is 

spatially lesser than the image, but it has more depth. 

This signifies that the kernel’s height and width will 

be limited, whereas the depth will include all 3 RGB 

channels [21]. A convolution operation that applies a 

kernel to input images directs forward propagation in 

CNN, as shown by Eq. (4). 

 

(𝐼 ∗ 𝐾) [𝑖, 𝑗] = ∑ ∑ 𝐼[𝑖 − 𝑝, 𝑗 −𝑛−1
𝑞=0

𝑚−1
𝑝=0

𝑞] 𝐾 [𝑝, 𝑞]       (4) 

 

Here, I represent the input, while K is the filter with 

dimensions m × n. 

The convolution process is illustrated in Fig. 15. 

After obtaining the feature maps, pooling (sub-

sampling) layer and a convolution layer added to the 

CNN. The pooling layer must reduce the convolved 

feature’s spatial size. A reduction in dimensionality 

results in a decrease in the computational power 

required for data processing. This preserves the 

model’s practical training and facilitates the 

extraction of positional and rotational invariant 

leading features. 

 

 

 
Figure. 14 Basic CNN Architecture 

 

 

 
Figure. 15 Visualization of Convolution Operation 
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Figure. 16 Visualization of Max-pooling Operation 

 

 

 
Figure. 17 Visualization of ReLU Activation Function 

 

 

Pooling minimizes overfitting and reduces training 

time. Max pooling refers to the pooling method that 

chooses the maximum value from the area of the 

feature map enclosed by the filter [22]. Thus, the 

feature map generated by the max-pooling layer 

includes the most salient characteristics from the 

preceding feature map. The max- pooling process is 

visualized in Fig. 16.  

The activation function is crucial in CNN layers. 

The activation function, a distinct mathematical 

function, receives the filter’s output. ReLU is the 

most often utilized activation function in CNN 

feature extraction [23]. The main goal of using the 

activation function is to determine the NN’s output, 

specifically whether it is yes or no. The activation 

function changes the output values from 0 to 1, or 

from 1 to 1. The ReLU function can be 

mathematically represented as in Eq. (5). Fig. 17 

represents the graphical representation of ReLU 

function.  

 

𝑓(𝑥) = max (0, 𝑥)      (5) 

 

The inception module in the suggested system 

comprises a combination of various convolutional 

layers to capture spatial features. This module 

processes the input through multiple concurrent 

channels: a max pooling layer with a 3 × 3  filter, 

followed by a 1 × 1  convolution; a direct 1 × 1 

convolution; and a 1 × 1   convolution to reduce 

dimensionality, followed by another 1 × 1, 3 × 3, or 

5 × 5  convolution. Each of these steps utilizes L2 

regularization and ReLU activation. The Inception 

module then concatenates the outputs from all 

pathways to form the final output, which it then 

passes on to the following layer. This multi-path 

technique lowers the computational cost while 

enabling the network to capture spatial data at various 

scales and enhance the model’s detection 

performance of intricate patterns. Fig. 18 shows the 

block diagram for the inception block. 

In the suggested model, batch normalization is 

employed after each convolutional layer to stabilize 

the learning process by normalizing the layer inputs. 

The normalization is performed by calculating the 

mean ( 𝜇) and variance (𝜎2) of the mini- batch and 

then scaling and shifting the normalized output using 

learnable parameters 𝛾  and 𝛽  [24]. The normalized 

output 𝑥 is computed as in Eq. (6). 
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Figure. 18 Block Diagram of Inception Block 

 

 

 

𝑥 =
𝑥−𝜇

√𝜎2+𝜖
        (6) 

 

Where ϵ is a minor constant introduced for numerical 

stability.  

This normalized output is then scaled and shifted, 

expressed in Eq. (7). 

 

𝑦 = 𝛾𝑥 + 𝛽       (7) 

 

Batch normalization in the proposed model helps 

in reducing internal covariate shift, which allows for 

higher learning rates and faster convergence. It serves 

as a kind of regularization, reducing the dependence 

on dropout layers and enhancing the model’s 

generalization to new data. L2 regularization is a 

method employed to mitigate overfitting in neural 

networks by incorporating a penalty into the loss 

function that is dependent upon the squared 

magnitude of the model’s weights [25]. This 

regularization method inhibits complex models that 

might overfit the training set by keeping the weights 

minimal. In the proposed model, L2 regularization is 

applied to the convolutional and dense layers by 

adding the term 𝜆 ∑ 𝑤𝑖
2

𝑖  to the loss function, where 

𝑤𝑖  are the weights and 𝜆  is the regularization 

parameter. This can be mathematically expressed as 

in Eq. (8). 

 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝜆 ∑ 𝑤𝑖
2

𝑖     (8) 

 

By adjusting large weights, L2 regularization helps 

the model to achieve a compromise between fitting 

the training data and preserving simpler weight 

values. This regularization method complements 

other techniques like dropout and batch 

normalization, further boosting the model’s 

capability to generalize well to new data. In the 

proposed approach, L2 regularization helps to 

improve robustness and performance by preventing 

the network from relying too heavily on any single 

feature.  

The final layer of the proposed approach is a FC 

layer. In general, a FC layer is a feed-forward neural 

network. The final pooling or convolution layer’s 

output layer sends flattened data as input to a FC layer. 

Pooling or a convolutional layer forms the output, 

then flattening separates and converts all values into 

vectors. Adding a FC layer with a sigmoid activation 

function creates a binary classification result that 

shows whether a brain tumor is present or not. The 

detailed algorithm of the suggested brain tumor 

detection model is explained below. 

 

Algorithm: Brain Tumor Detection Model Using 

Hybrid Inception- CNN model with 

Hyperparameter Tuning from Microwave Brain 

Images 

Input: Microwave Brain Images 

Output: Efficient Brain Tumor Detection Model 

Begin: 

Load and preprocess data: 

➢ Collect dataset: 𝐷= {(𝑋𝑖 , 𝑦𝑖), where 𝑋𝑖  is the 

microwave brain images and 𝑦𝑖∈ {0,1} 𝑦𝑖i∈ 

{0,1} (1: Tumor, 0: Healthy). 

➢ Preprocess: 
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• Normalize: 𝑋𝑖
′ →

𝑋𝑖
′−𝜇

𝜎
 

• Cropping 

• Augmentation: 𝑋𝑖
′ → {𝑋𝑖

′′} (Rotation, 

Shift, Shear, Flip) 

Define Inception Module: 

branch1 = Conv2D () (x) 

branch3 = Conv2D () (x) 

branch3 = Conv2D () (branch3) 

branch5 = Conv2D () (x) 

branch5 = Conv2D () (branch5) 

branch_pool = MaxPooling2D () (x) 

branch_pool = Conv2D () (branch_pool) 

x = concatenate ([branch1, branch3, 

branch5, branch_pool] 

Define Hybrid Inception- CNN Module: 

 inputs = Input () 

x = Conv2D () (inputs) 

x = BatchNormalization () (x) 

x = MaxPooling2D () (x) 

x = Dropout () (x) 

 x = Inception_model (x, 32) 

 x = MaxPooling2D () (x) 

x = Dropout () (x) 

x = Conv2D () (x) 

x = MaxPooling2D () (x) 

x = Dropout () (x) 

x = Conv2D () (x) 

x = MaxPooling2D () (x) 

x = Dropout () (x) 

 x = Flatten () (x) 

x = Dense () (x) 

x = Dropout () (x) 

outputs = Dense (1, activation=‘sigmoid’) 

(x) 

model = Model (inputs, outputs) 

Model Compilation and Training: 

➢ Compile each model M: 

               optimizer=Adam (learning_rate) 

              loss=binary_crossentropy 

              metrics=[accuracy] 

➢ Train: M.fit ( 𝑋𝑡𝑟𝑎𝑖𝑛  , 
𝑦𝑡𝑟𝑎𝑖𝑛 ,validation_data= (𝑋𝑣𝑎𝑙, 𝑦𝑣𝑎𝑙)) 

Model Evaluation and Comparison: 

➢ Evaluate:  

           metrics=M.evaluate(𝑋𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡) 

➢ Adjust Hyperparameters 

Save the Model:  

End 

 

3.2.4. Simulation setup and hyperparameter tuning 

The Google Collaboratory platform has been 

utilized to train and evaluate the proposed framework  

Table. 2 Hyperparameters 

Hyperparameters Values 

Batch Size 32 

Activation Function Sigmoid 

Optimizer Adam 

Dropout Rate 0.5, 0.6, 0.7, 0.8 

Number of Epochs 20 

Learning Rate 0.0001 

Loss Function Binary Cross Entropy 

 

using Python. Adam serves as the optimization 

algorithm for training, while binary crossentropy 

functions as the loss metric. The loss function 

quantifies the disparity between the true ground truth 

labels and the anticipated outputs produced by the 

network. It quantifies the alteration between the 

anticipated probability and the actual binary labels (0 

or 1) for each data point. The training takes place over 

20 epochs, with each epoch comprising iterations 

over batches of 32 samples at the same time. Table 2 

tabulates various hyperparameters used in the 

proposed study. 

CNN modifies several hyperparameters that 

influence the model’s efficacy, including the number 

of epochs, selected batch size, activation function, 

learning rate and dropout rate. The hyperparameter 

tuning method involves repeated experiments with 

different quantities of hidden layers, epochs, 

activation functions, and learning rates. Adjusting 

these parameters enhances the accuracy of CNN 

models. 

4. Results and discussion 

4.1 Performance evaluation of suggested UWB 

circular monopole patch antenna 

Transmission line discontinuities always reflect 

or return a portion of the signal power to the source 

when it travels over a transmission line. The 

connector, transmission line, or system connection 

could be the source of the discontinuity. This 

reflected power measurement is known as RL. The 

RL is mathematically expressed as in Eq. (9). 

 

𝑅𝐿 = 10 log10
𝑃𝑖

𝑃𝑟
      (9) 

 

The measured and simulated RL of the fabricated 

antenna is visualized in Fig. 19. The fabricated 

antenna shows a RL of -20.24 dB at 4.6 GHz, -48.3 

dB at 7.68 GHz, and -26.3 dB at 10.46 GHz. It was 

able to reach 4.6GHz-10.6GHz UWB BW. The 

changes in measured RL are due to errors in SMA 

connector in the feed line. 

Fig. 20 illustrates the variation in RL with respect 

to DGS. The DGS has a partial ground plane with two 



Received:  October 28, 2024.     Revised: December 18, 2024.                                                                                      1228 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.88 

 

inverted U-slots that make the circular monopole 

antenna with a microstrip feed work with a wider 

range of frequencies. This design modification 

reduces the surface current distribution on the patch 

antenna due to the presence of the DGS at the current 

plane. The integration of DGS enhances impedance 

matching, leading to improved RL. The DGS 

enhances the antenna’s overall performance by 

modifying the existing routes and redistributing the 

surface currents. 

As a result, the circular monopole antenna’s 

operating BW increases and becomes more efficient. 

The antenna with DGS exhibited superior reflection 

coefficients of 24.56 dB at 4.7 GHz, 31.98 dB at 7.7 

GHz, and -21.8 dB at 10.5 GHz. Fig. 21 visualizes the 

variation in RL with respect to square slot. The design 

of a slotted antenna underwent an experimental study 

that showed significant effects on RL, BW, and 

impedance matching. The suggested design 

incorporates a circular monopole antenna with a 

central square slot in the patch. The square slot 

modified the current distribution on the patch antenna, 

resulting in enhanced RL, signifying higher signal 

efficiency. The improved design improves 

impedance matching, ensuring excellent performance 

across a wider frequency range. The circular 

monopole antenna has a superior RL of 48.5 dB with 

a square slot and 41.2 dB without a square slot. 

Fig. 22 illustrates the variation in RL with respect 

to the length of ground plane. The ground length has 

been tuned by shifting between 𝐿𝑔 = 23.5 mm and 𝐿𝑔 

= 25.5 mm, with a step size of 1 mm, to get UWB 

impedance matching properties for MI in brain tumor 

detection. This optimization technique ensures the 

antenna functions effectively across an extensive 

frequency range, essential for precise imaging. 

Optimizing the ground length improves impedance 

matching, resulting in better signal transmission and 

reception. In MI applications, the optimized ground 

length enhances detection capability. Enhancing this 

ground length results in improved impedance 

matching at the frequency of 7.68 GHz at -48.3 dB 

for 𝐿𝑔= 24.5 mm. Fig. 23 illustrates the variation of 

RL with respect to radius of circular patch. 

Optimizing the patch radius results in improved 

impedance matching and a high gain of -41.3dB at a 

frequency of 7.68GHz for a radius of 11mm. This 

finding demonstrated that reaching impedance 

matching depends on the patch variation’s radius. Fig. 

24 illustrates the variation of RL with respect to feed 

length. By improving the patch’s feed length, the 

frequency of 7.68 GHz at -41.3 dB for 𝐿𝑓 = 37 mm 

yields better impedance matching and high gain. 

The voltage standing wave ratio (VSWR) 

measures the radio frequency power transmission 

efficiency from a power source over a transmission 

line. VSWR is mathematically expressed as in Eq. 

(10), where Γ is the reflection coefficient. 

 

𝑉𝑆𝑊𝑅 =
1+|Γ|

1−|Γ|
               (10) 

 

The measured and simulated VSWR of the 

fabricated antenna is shown in Fig. 25. Both curves 

exhibit similar patterns, with a VSWR that remains 

below 2.0 for the majority of the frequency spectrum, 

indicating excellent impedance matching. Overall, 

the alignment of the two results demonstrates the 

antenna design’s correctness and dependability. But 

there are a few minor variations between the 

measured and simulated data, particularly in the area 

of the resonance peaks. 

 

 

  
Figure. 19 Simulated and Measured RL of Fabricated 

Antenna 

Figure. 20 Variation of RL with respect to DGS 
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Figure. 21 Variation of RL with respect to Square Slot Figure. 22 Variation of RL with respect to Length of 

Ground Plane 

 

 

  
Figure. 23 Variation of RL with respect to Radius of 

Circular Patch 

Figure. 24 Variation of RL with respect to Feed Length 

 

 

 
Figure. 25 Simulated and Measured VSWR of Fabricated 

Antenna 

 

Fig. 26 illustrates the current distribution of the 

fabricated antenna. The circular disc monopole 

antenna’s middle section has a lower current density; 

therefore, cutting it out doesn’t have a big impact on 

the current flow overall. The longer effective route of 

the surface current ensures stable performance.  
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(a) (b) (c) 

Figure. 26 Current Distribution of the Fabricated Antenna: (a)4.6 GHz, (b)7.7 GHz, and (c)10 GHz 

 

 

This antenna design enhances BW by etching a 

square slot in the middle of the monopole antenna. 

This deliberate adjustment increases BW without 

disrupting the existing distribution, therefore 

preserving the antenna’s efficiency and performance. 

At 4.6 GHz, the current is primarily localized around 

the circular patch and the feedline, indicating robust 

resonance at this frequency. As the frequency rises to 

7.7 GHz, the current distribution broadens and 

intensifies, encompassing a greater expanse of the 

circular patch and the feedline. At 10 GHz, the 

current intensity peaks, especially around the feedline 

and the outer edges of the circular patch, indicating 

substantial energy radiation at this frequency. The 

changes in current distribution at various frequencies 

underscore the antenna’s capability to function 

efficiently throughout an extensive frequency range. 

The E- plane and H- plane radiation pattern of 

fabricated antenna is shown in Figs. 27 and 28 

respectively. The E-plane’s radiation pattern 

resembles a butterfly, exhibiting strong nulls at 

specific angles. This means that there is strong 

directivity in two opposite directions. Similar to the 

E-plane, the H-plane pattern exhibits directivity, but 

it is a little more omnidirectional. 

The gain plot and directivity plot of antenna is 

shown in Figs. 29 and 30 respectively. Within the 

UWB frequency range of 3-10 GHz, the proposed 

circular monopole patch antenna’s simulated design 

achieved a gain of around 5.32 dBi and a directivity 

of 6.52 dB. 

 

 

  
Figure. 27 E-plane Radiation Pattern at 7.7GHz Figure. 28 H-plane Radiation Pattern at 7.7 GHz 

 



Received:  October 28, 2024.     Revised: December 18, 2024.                                                                                      1231 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.88 

 

 
Figure. 29 Gain Plot 

 

 

 
Figure. 30 Directivity Plot 

 

 

4.2 Performance evaluation of proposed brain 

tumor detection model 

Figs. 31 and 32 respectively illustrates the 

accuracy and loss plots of the suggested brain tumor 

detection model. The proposed model undergoes 

training for 20 epochs. The model initially exhibits a 

substantial improvement, with accuracy increasing 

from 54.10 % to 95.85 % and training loss decreasing 

from 12.4 to 5.4. The validation accuracy begins from 

74.57% to 99.42 %.  

Table 3 presents the evaluation measures that 

have been employed to assess the performance of the 

suggested brain tumor detection approach. Table 4 

tabulates the classification report of the suggested 

brain tumor detection model. The model accurately 

classifies brain tumor cases, with a 99.48% accuracy 

rate. The model accurately detects all positive and 

negative cases, with no false positives or false 

negatives, as evidenced by the recall and specificity 

both reaching 1.0000. 

The model ensures both high sensitivity and 

precision by maintaining a strong balance between 

recall and precision, as seen by the precision of 

0.9900 and the high F1-score of 0.9950. The Cohen’s 

Kappa score of 0.9896 indicates the near-perfect 

agreement between the true and predicted 

classifications, supporting the model’s reliability. 

The ROC AUC value of 0.9950 indicates the model’s 

exceptional capability to distinguish between classes. 

The classification report of individual classes is 

illustrated in Fig. 33. 

Fig. 34 displays the confusion matrix of the 

suggested brain tumor detection system.  
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Figure. 31 Accuracy Plot of Proposed Brain Tumor Detection Model 

 

 

 
Figure. 32 Loss Plot of Proposed Brain Tumor Detection Model 

 

 
Table 3. Evaluation Metrics Utilized for Brain Tumor Detection System 

Performance Parameters Equation 

Accuracy 
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 

Precision 
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑠𝑙𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 

Recall 
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 

F1- Score 2 × (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) 

Specificity 
(𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
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Table. 4 Classification Report of Proposed Brain Tumor 

Detection Model 

Performance Metrics Obtained Results 

Accuracy 0.9948 

Recall 1.0000 

Precision 0.9900 

F1- Score 0.9950 

Cohens Kappa 0.9896 

ROC AUC 0.9950 

Specificity 1.0000 

 

 

 
Figure. 33 Classification Report of Individual Classes 

 

 

 
Figure. 34 Confusion Matrix of Proposed Brain Tumor 

Detection Model 

 

 

 
Figure. 35 ROC Curve of the Suggested Brain Tumor 

Detection Model 

The suggested approach successfully classified all 92 

of the true negative cases as negative, meaning there 

were no false positives among the 92 cases. 

Furthermore, out of 101 positive cases, the model 

accurately recognized 100 as positive, resulting in a 

single false negative. This yields a high true negative 

rate (specificity) and a high true positive rate (recall), 

underscoring the model’s exceptional ability to 

successfully discriminate between the presence and 

absence of a brain tumor. 

Fig. 35 illustrates the ROC curve produced by the 

suggested methodology, offering a visual depiction 

of the variations in true positive rate and true negative 

rate across different decision thresholds. 

Fig. 36 illustrates the random samples of 10 test 

images, along with their predicted and ground truth 

labels. The title exhibits the predicted label alongside 

the true label, with the text colour displayed in green 

when the prediction is accurate. 

Table 5 tabulates the performance comparison of 

the existing brain tumor detection system with the 

suggested model. The hybrid Inception-CNN model 

used in the suggested brain tumor detection system 

performs better than current techniques. With 

99.48% accuracy, 99% precision, 100% recall, 

99.50% F1-score, and 100% specificity, it surpasses 

methods such as MBINet, which achieved 96.97% 

accuracy and 96.93% precision, and the fine-tuned 

ResNet101 model, which obtained 95.90% accuracy. 

It also exceeds the fine-tuned EfficientNet, which 

achieved 98.8% accuracy and 99.4% precision, as 

well as the multiclass SVM method with an accuracy 

of 98.92%. While the Deep Neural Network 

Correlation Learning obtained excellent specificity 

(99.62%), its accuracy (97.5%) is considerably lower 

than the proposed method. Furthermore, techniques 

such as YOLO v5 and CNN consistently 

underperform across all critical measures, 

highlighting the exceptional robustness and 

efficiency of the proposed system. 

The visualization of the performance comparison 

is displayed in Fig. 37. The high accuracy of 

EfficientNet is a result of its scalability in balancing 

depth, width, and resolution. However, because of its 

wide range of parameters, the model might need a lot 

of processing power. It lacks interpretability in 

decision-making processes and is susceptible to 

overfitting if not properly adjusted. SVM is very 

good at classifying data into binary or multiclass 

categories, but it is not very good at handling big 

datasets or learning hierarchical features from data. 

SVM frequently requires manual feature engineering 

because it is unable to automatically extract features, 

in contrast to neural networks. MBINet is a 

lightweight, task-specific network that works well  
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Figure. 36 Detection Outputs of Random Images 

 

 
Table. 5 Performance Comparison 

Authors & 

Year 
Methodology 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1- Score 

(%) 

Specificity 

(%) 

Amran 

Hossain et al. 

[26], (2023) 

MBINet 96.97 96.93 96.85 96.83 97.95 

Usman Zahid 

et al. [27], 

(2022) 

Fine-tuned 

ResNet101 
95.90 95.96 95.89 95.86 95.89 

Hasnain Ali 

Shah et al. 

[28], (2022) 

Fine-tuned 

EfficientNet 
98.8 99.4 99.5 98.9 99.2 

Sarmad 

Maqsood et 

al. [29], 

(2022) 

Multiclass 

Support Vector 

Machine 

98.92 - 98.82 - 99.02 

Marcin 

Woz´niak et 

al. [30], 

(2023) 

Deep Neural 

Network 

Correlation 

Learning 

97.5 97.69 97.47 - 99.62 

Amran 

Hossain et al. 

[31], (2022) 

YOLO v5 96.32 95.17 94.98 95.53 95.28 

Suraj Patil 

and 

Dnyaneshwar 

Kirange [32], 

(2023) 

Ensemble 

DCNN 
97.77 96.66 98.30 97.47 98.33 

Mohamed 

Amine 

Mahjoubi et 

al. [33], 

(2023) 

CNN 95.44 - 95 95.36 - 

Proposed (Hybrid Inception- 

CNN) 
99.48 99 100 99.50 100 
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Figure. 37 Graphical Visualization of Performance Comparison in terms of Detection Accuracy 

 

 

but might not be generalizable to a variety of datasets. 

It may sacrifice feature extraction accuracy and depth 

in favour of faster processing times. Residual 

connections help ResNet101 overcome vanishing 

gradient problems. Its deep architecture, however, 

may result in overfitting and higher processing 

expenses. Although it works well for feature 

extraction, it might not be the best option for datasets 

that need highly localized or multi-scale feature 

analysis. By combining predictions from several 

models, the ensemble approach improves 

generalization. The rise in training complexity and 

computational overhead, however, may be a 

disadvantage. Ensemble models are less appropriate 

for real-time applications due to their high resource 

requirements. The goal of YOLO v5 is to detect 

objects quickly and accurately. Although efficient, it 

might have trouble with tasks that call for exact 

boundary delineation. It is not ideal for situations 

where fine-grained feature extraction is prioritized 

due to its emphasis on speed over accuracy. The 

model’s ability to recognize relationships in the data 

is enhanced by correlation learning. However, 

optimizing hyperparameters is necessary to achieve 

high performance. When dealing with noisy or 

unbalanced datasets, it might not be as robust. The 

best approach is the hybrid Inception-CNN because 

of its exceptional ability to balance F1-score, recall, 

specificity, accuracy, and precision. The strength of 

its architecture is its capacity to effectively handle 

multi-scale features while avoiding the problems of 

overfitting or excessive computational demands. 

5. Conclusion 

The proliferation of aberrant cells in brain tissue 

can become uncontrolled and lead to brain tumors. A 

benign brain tumor does not adversely affect 

surrounding healthy tissue, whereas a malignant 

tumor can inflict damage and could result in cerebral 

haemorrhage. Timely identification of brain tumors 

is critical for ensuring patient survival. In this paper, 

an effective DL-based method for microwave brain 

image-based brain tumor detection was proposed. It 

mostly consisted of two phases. Initially, an UWB 

circular monopole patch antenna and a head phantom 

model are developed for MI. In the second phase, a 

hybrid inception-CNN model for AI-based detection 

was implemented. The images obtained from the 

patch antenna system are fed into the hybrid 

inception-CNN to extract high-level features. The FC 

layer processed the collected features for effective 

brain tumor categorization. The simulation results 

exhibited outstanding performance, achieving an 

accuracy of 99.48%, precision of 100%, recall of 

99.00%, F1-score of 99.50%, and specificity of 100%. 

This method uses brain tissue’s electromagnetic 

properties and AI power to provide an alternative way 

to diagnose brain tumors in real time without surgery. 
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