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Abstract: Knowing the number of Litopenaeus vannamei post-larvae fry (PL) is vital in the proliferation process. 

Traditional methods employ a small spoon for counting which is labor-intensive and has poor accuracy resulting in an 

uncertain number of biomasses. Slow counting process also contributes to fry hypoxia due to excessive fry contact. 

This underscores the needs of a compact, high-speed and high-accuracy PL counting network. This paper introduces 

an Optimized Scale Aggregation Network (OSA-Net), a compact fry counting network based on density map 

regression, designed for edge devices with a small parameter size of 660 KB. Squeeze-and-Excitation Network embeds 

the channels pruned network backbone to compress less contributed channels. The model trained with Local Pattern 

Consistency Loss combined with Euclidean Loss to enhance predicted density map quality. Trained on the Politeknik 

Elektronika Negeri Surabaya Litopenaeus Vannamei one (PENSLV-1) dataset, proposed model obtained high 

accuracy with Mean Absolute Error (MAE) of 1.99 and Mean Squared Error (MSE) of 2.69 which indicate superior 

counting effectiveness in under different density levels and PL sizes. 

 

Keywords: Density maps estimator, Automatic fry counting, Channel attention mechanism, Scale aggregation 
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1. Introduction 

In recent years, the demand for precise and rapid 

fry counting equipment has significantly increased 

among various aquaculture operations, particularly in 

white leg shrimp PL hatcheries [1, 2]. This is 

primarily driven by the small size of PL, which 

typically ranged from 0.45 to 0.55 cm for PL aged 5 

days [3]. Traditionally in Indonesia, small hatcheries 

have relied on manual methods, such as using small 

ladles to count fry in batches, often measured in 

ethnomathematics unit called “rean,” where one rean 

is roughly equivalent to 5,000 fries [4-6]. However, 

such methods are prone to inaccuracies and potential 

fraud, as the actual number of fries per rean can vary 

significantly. This variability can lead to inaccurate 

biomass estimations, resulting in overfeeding, 

deteriorating water quality, and increased operational 

inefficiencies [7]. Moreover, manual counting is 

labour-intensive, time-consuming, and can cause 

significant mortality due to hypoxia from excessive 

handling of PL [8]. Consequently, there is an urgent 

need for high-accuracy, non-invasive, and high-speed 

counting methods to address these challenges. 

The computer vision approach strategically 

solved the challenges, providing a middle range 

pricing, easy to apply, and applicable to different 

platforms [9, 10]. However, the approaches may 

struggle to handle the small size of PL and occlusion 

scenarios in dense settings. Density maps regression 

methods have proven to solve counting small object 

challenges in fry counting applications by 

representing features in density distribution offering 

simpler deep learning networks and enabling overlap 

tolerance capabilities [11-14]. Several fry counting 

methods incorporating deep learning and density 

maps have been employed prior to this research.  Li 
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et al [8], introduced MSENet that utilizes multi-

column convolutional neural networks (MCNN) [14] 

incorporated with squeeze and excitation networks 

(SE-Net). Multiple SE-Nets are embedded in every 

branch of MCNN to enhance extraction features 

while keeping the model lightweight. Multi-column 

architecture addressed a variety of sizes of fries in 

real applications achieving 3.33 in MAE and 0.1 MB 

of parameters. Qu et al [15], proposed shrimp larvae 

counting network with overlapping splitting and 

Bayesian-dm-count loss (SLCOBNet). Two vision 

transformer architecture (Twin-SVT) embeds with 

feature pyramid aggregation for richer context of 

information are employed. The feature inputs are 

through overlapping splits operation into fixed-shape 

size blocks. Bayesian-DM-Count-Loss is used for 

training the models and achieved 3.27, 3.61, and 1.28 

in MAE for slight noise, turbid, and dark lighting 

counting conditions respectively. Liu et al [16], 

modify Congested Scene Recognition (CSRNet) to 

achieve highly accurate PL counting called 

Shrimpseed_Net. Six large 512512 convolutional 

layers in the CSRNet are removed, 128 dilated 

convolutional layers are added at the back end to 

tolerate layer removal. Layers modifications 

resulting 133% inference speed compared to original 

CSRNet while maintaining counting performance. 

Hsieh et al [17], utilize modified Scale Aggregation 

Networks architecture to count PL called 

ShrimpCountNet. Since scale aggregation network 

(SANet) [18] applications are focused on crowd 

counting, modification of the network to adapt with 

PL features is employed. Tensor decomposition 

networks (TedNet) are applied prior to each scale 

aggregation module (SA-Module) operations in 

ShrimpCountNet feature map encoder. The addition 

enables the network to extract deeper features in PL 

counting scenarios achieving performance of 6.54 

points MAE improvement compared to SANet. 

The research surveys explore deep learning 

techniques for fry counting scenarios, demonstrating 

their applicability and drawbacks. SLCOBNet [15], 

being not explicitly designed as a compact model, 

may face challenges in running efficiently on 

portable devices due to its inherently complex 

architecture. The Shrimpseed_Net [16] also has a 

long architecture. Moreover, they did not account for 

variations in PL sizes and density levels. MSENet [8] 

is not specifically designed for vannamei PL counting 

and the MCNN backbone architecture may limit the 

ability of multi scale leads to reduce in counting 

performance. The ShrimpCountNet [17] does not 

account for different sizes of post-larvae (PL). 

Additionally, the dataset is limited to 159 fries, which 

does not adequately represent dense counting 

scenarios. 

Density maps regression method is widely used 

in crowd counting scenarios. CMTL [11], (CNN-

based Cascade Multi-task Learning) integrates two 

tasks within a unified deep learning framework. The 

high-level prior task performs classification that 

enables the network to group features based on crowd 

density levels. Therefore, global features can be 

distinct based on coarse counting generated by the 

high-level prior. The high-level prior task is 

integrated with the density map estimator through a 

cascaded CNN architecture, enabling the network to 

effectively address a wide range of crowd density 

levels. Li et al [12], proposed CSRNet which consists 

of a front-end network to extract 2D features using 

architecture of Visual Geometry Group (VGG16), 

and dilated CNN layers for the back-end network. 

Dilated CNN enables the network to generate high 

quality density maps and expand the receptive field 

without losing resolution caused by the front-end 

network. SFCN [13], is built on top of ResNet101 and 

VGG as backbone before the regression layer. The 

approach improves crowd counting performance in 

challenging, real-world scenarios by incorporating 

supervised learning into the backbone architecture. 

Leveraging a mainstream backbone allows the 

network to be fine-tuned effectively for unseen data, 

enhancing its adaptability and generalization 

capabilities. MCNN [14], utilizes multi-column 

convolutional network architecture to extract multi-

scale features on one single Image, so a lightweight 

model can easily be achieved. 

Counting small objects such as PL and human 

heads in crowds may face many challenges, a density 

maps method found to be successful in crowd 

counting settings. However, in PL counting scenarios 

MCNN [14] will struggle with overlapping of PL and 

inaccurate counting in a variety of PL sizes due to its 

lack’s aggregation architecture. CMTL [11] and 

SFCN [13], require a sufficient quality of datasets to 

enable effective learning, which is not applicable to 

fine-grained objects such as PL where underwater 

environments may vary significantly. CSRNet [12] 

and SFCN [13] architectures are utilizing complex 

backbones which increase computational complexity. 

This paper introduces a PL counting network 

called optimized scale aggregation network (OSA-

Net) based on density maps regression techniques. 

Designed for edge devices, OSA-Net addresses real 

application challenges such as fry adhesion and 

variety of density levels while keeping the 

compactness of the model. OSA-Net also considered 
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Figure. 1 PENSLV-1 dataset samples with PSNR and SSIM similarity value 

 

 
Figure. 2 Dataset capture scenario in custom made basin.  

 

different fry sizes for training which are beneficial in 

counting different ages of PL. The main contributions 

can be shortened as: 

1. A compact network called OSA-Net, designed 

for edge devices to count Litopenaeus Vannamei 

post-larvae (size of parameter: 0.66 MB). 

2. Optimized scale aggregation module (OSA-

Module) with few numbers of channels and 

squeeze-and-excitation networks embedding to 

generate more overlapping tolerance density 

maps (MAE: 1.99 and MSE: 2.69). 

3. PENSLV-1 dataset consists of varied age and 

density of Litopenaeus Vannamei post-larvae to 

train model, and additional PENSLV-2 dataset to 

test model on unseen data. 

The structure of this paper is as follows: Section 

2 outlines the network architecture and describes the 

experimental configuration; Section 3 reports the 

results and provides a detailed discussion; and 

Section 4 concludes with a summary of the study. 

2. Methodology 

2.1 Dataset and device settings 

This paper introduces Politeknik Elektronika 

Negeri Surabaya Litopenaeus vannamei one 

(PENSLV-1) dataset, consisting of 306 images of 

real living PL from small scale local hatcheries in 

Tuban, Indonesia. A custom basin was created using 

acrylic material to capture from a single top-down 

angle and additional backlight to address PL 

transparency, as shown in Fig. 2. The dataset includes 

real living PL fries of varying sizes and densities, 

ranging from 123 to 217 fries, aged 5 and 8 days, to 

simulate different counting scenarios under fixed 

camera conditions as shown in Fig. 1. Images are 

captured at a resolution of 960 × 540 pixels, down 

sampled from the original 1920 × 1080 pixels 

captured by a Logitech c920e camera. Variations in 

sunlight penetration and water turbidity can 

adversely affect the model's performance. To address 

the issue, data augmentation techniques such as 

Gaussian blur, Gaussian noise, contrast adjustment, 

and brightness modification are applied as illustrated 

in Fig. 1. The Structural Similarity Index Measure 

(SSIM) [19] and noise levels are assessed using the 

Peak Signal-to-Noise Ratio (PSNR) are employed to 

evaluate augmentation. The samples of PENSLV-1 

provided at github.com/FIKARDAVBI/OSA-NET. 

2.2 Proposed model 

Number of factors are considered to design the 

model, first the speed of counting which requires a 

compact or lightweight model, second is 

generalization under different density levels and PL 

sizes. Lastly, fry adhesion that requires high quality 

predicted density maps. 

Deep learning backbones such as AlexNet [20], 

VGG [21], ResNet [22], MCNN [14] and Scale 

Aggregation Networks (SANet) [18] combine 

various architectural improvements for image feature 

extraction and analysis. MCNN [14] utilizes multi-

column CNNs architecture to scale features, so it 

covers a wide range of feature resolutions. AlexNet 

[20] introduced ReLU activation, GPU-accelerated 
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training, and massive convolutional filters, marking a 

breakthrough in deep learning applications. VGG 

[21], uses a stack of 16 layers including small 3×3 

convolutional filters and max-pooling layers, 

enabling hierarchical and fine-grained feature 

extraction while keeping simplicity in design. ResNet 

[22] exploits residual connections to ease gradient 

flow and enable the training of very deep networks, 

ensuring efficient feature representation through 

residual learning. SANet [18] combines scale 

aggregation modules to capture and combine multi-

scale features, effectively solving the issues of 

various object scales by combining local and global 

spatial information. Mentioned backbone 

architectures collectively provide powerful tools for 

applications needing robust image representation, 

such as density map regression. 

Shrimp fry counting using density map regression 

requires a backbone capable of handling multi-scale 

and fine-grained features due to the varying size, 

orientation, and distribution of fry in images. 

Traditional architectures like AlexNet, VGG, and 

ResNet, while foundational in computer vision, face 

limitations in this context. AlexNet's limited depth 

and large filters hinder precise feature extraction, 

while VGG improves detail capture with smaller 

filters but suffers from high computational costs and 

lack of scale adaptability. ResNet addresses training 

challenges in deep networks with residual 

connections but struggles to effectively capture 

multi-scale features needed for accurate density maps. 

MCNN and SANet overcome these limitations by 

utilizing multi-scale inception architecture However, 

MCNN scaling is limited by the number of 

convolutional columns and makes the model less 

perform in unsupervised data. SANet integrates scale 

aggregation modules (SA-Module) that adaptively 

combine local and global features across multiple 

spatial scales, ensuring precise and robust density 

estimation. This makes SANet a superior choice for 

shrimp fry counting, as it excels in addressing the 

specific challenges of size variability and density 

distribution compared to traditional backbones with 

parameters only 0.91MB. 

This research proposed optimized scale 

aggregation networks (OSA-Net) with SANet as the 

backbone as shown in Fig. 4. OSA-Net consists of 

two parts: Feature Map Encoder (FME) consists of 

Optimized SA Module (OSA-Module) and Density 

Map Estimator (DME). FME module is designed to 

capture a diverse range of feature resolutions, 

enabling it to effectively address variations of PL 

sizes and density levels. The DME module generates 

high-dimensional and high-resolution density maps 

to mitigate feature loss, particularly in scenarios 

where fry adhesion occurs. First, second, and third 

SA-Modules after input in SANet have 64, 128, and 

128 channels respectively. However, In OSA-Net 

structure, OSA-Module channels are 32, 64, and 64 

for first, second, and third respectively to reduce 

model complexity. Therefore, squeeze-and-

excitation network (SE-Net) [23] introduced to OSA-

Module to compensate channels trimmed which 

strengthen channels weight that have more feature 

information and compress channels weight with less 

contributions as shown in Fig. 4. Instance 

Normalization (IN) is used to enhance gradient 

descent of the model as SANet suggests. IN layers 

applied in each convolution and transposed 

convolutional layers. 

2.2.1. Feature map encoder 

FME employed stacking OSA-Modules 

separated by 22 max pooling layer as shown in Fig. 

4. This design reduces the spatial dimensions by half 

at each pooling stage, which helps in downsampling 

the feature maps while preserving key information. 

OSA-Module is based on the inception network 

introduced by Szegedy et al [24], where branched 

convolutional columns as shown in Fig. 4 are stacked 

into one kernel with the number of channels that are 

equal between input and output. OSA-Modules 

utilize 11, 33, 55, and 77 convolutional layer 

branches to add more future dimension diversity as 

shown in Fig. 4. The inclusion of a 1×1 convolutional 

layer serves a dual purpose. First, it ensures that the 

information from the previous SA module is 

efficiently compressed and passed on, which helps in 

maintaining the feature contribution from earlier lay- 

 

 
Figure. 3 Architecture of Squeeze-and-Excitation Network (SE-Net) 
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Figure. 4 OSA-Net architecture, convolutional layers dictate as “Conv(kernel size)_(channel size) 

 

 
Figure. 5 Network architecture of optimized scale aggregation module (OSA-Module) 

 

 

-ers. Second, it allows the network to maintain a 

consistent number of channels between the input and 

output of each OSA-Module. This design strategy is 

highly effective in increasing the receptive field 

under different PL sizes and density levels while 

keeping the computation efficient
 

𝑧𝑐 = 𝐹𝑠𝑞(𝑢𝑐) =
1

𝐻𝑊
∑ ∑ 𝑢𝑐(𝑖, 𝑗)

𝑊

𝑗=1

𝐻

𝑖=1

 (1) 

  

  

𝑠 = 𝐹𝑒𝑥(𝑧, 𝑾) = σ(𝑾𝟐γ(𝑾𝟏𝑧)) (2) 

  

𝑋̃𝐶 = 𝐹𝑠𝑐𝑎𝑙𝑒(𝑢𝑐 , 𝑠𝑐) = 𝑢𝑐𝑠𝑐 (3) 

2.2.2. Attention mechanism 

OSA-Net is applied with Squeeze-and-Excitation 

Network (SE-Net) depicted by Fig. 5 to reinforce 

channel wise information specifically to enhance 

model robustness under different density levels in 

PENSLV-1 dataset. It can increase generalization and 

feature learning without substantially increasing 

computational costs. 

The "squeeze" operation (Fsq ) captures global 

spatial information 𝑧 ∈ ℝ𝐶  by applying global 

average pooling in each channel as explained by Eq. 
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(1). The "excitation" ( Fex ) step learns the 

relationships and interdependencies between 

channels as explained by Eq. (2). First, transform 

each feature in z to 𝑾𝟏 ∈ ℝ(𝐶 𝑟)⁄ ×𝐶  dimensional. 

Second, apply nonlinearity γ and linearly transform it 

again to 𝑾𝟐 ∈ ℝ𝐶×(𝐶 𝑟⁄ ) dimensional, which is going 

to reduce the dimension by the factor of r. Lastly, 

apply sigmoid function σ to get values between 0 and 

1. Channel wise reweighting takes place by convolve 

𝑢𝑐 and 𝑠𝑐 as described in Eq. (3). The architecture of 

SE-Net illustrated by Fig. 3. 

2.2.3. Density Map Estimator 

Generated feature maps from FME have low 

resolution and lost detail features information, 

leading to low counting accuracy. OSA-Net utilizes 

original DME from SANet inspired by Sindagi and 

Patel [25] but adding more layers to increase its 

performance as shown in Fig. 4. Multiple transposed 

convolutions and convolutions with filter size: 99, 

77, 55, and 33 introduced to increase spatial 

resolutions by the factor of two in every layer. ReLU 

activation functions embed after every convolution, 

transpose convolution and at the end network layers 

since the value of density maps are always positive. 

Eventually, 11 convolutional layer take place as 

features fusion to predict density value at every point. 

High quality density maps generated by DME benefit 

dense PL counting which extracts futures more 

faithfully avoiding fail feature extractions. 

Ground truth density maps require converting 

dots annotation in the dataset into density maps using 

adaptive Gaussian kernels. Whenever there are dots 

in pixels xi, it is represented by Dirac’s delta function 

δ(x-xi) as described by Eq. (4). Then, each dot is 

convolved with adaptive Gaussian kernel G𝛽𝑖  to 

generate ground truth Y. G𝛽𝑖  can be determined by 

multiplying Gaussian kernels with the average 

distance 𝑑̅of the closest j fries relative to fry i as 

described by Eq. (5). Number the closest fries is 

limited by K. Empirically, α is equal to 0.1. The 

Integral of density maps result is the number of fries. 

This technique excels in situations where fry 

occlusion occurs by representing the fries as a 

continuous-valued density distribution, where the 

value of each pixel indicates clear likelihood of fries 

being present in that region as illustrated in Fig. 6. 

 

𝑌 = ∑ 𝛿(𝑥 − 𝑥𝑖)

𝐻

𝑖=1

∗ 𝐺𝛽𝑖(𝑥), 𝑤𝑖𝑡ℎ 𝛽𝑖 = α𝑑̅𝑖 (4) 

  

 
Figure. 6 Ground truth geometrically adaptive Gaussian 

kernel density maps 

 

𝑑̅𝑖 =
1

𝐾
∑ 𝑑𝑗

𝑖

𝐾

𝑗=1

 (5) 

2.3 Loss function 

Precise density map dot’s location representation 

enables the network to count better under different 

density levels avoiding fail features extraction where 

fry adhesion occurs. OSA-Net utilizes Local Pattern 

Consistency Loss (𝐿𝑐) combined with Euclidean Loss 

(𝐿𝐸), facilitating the network to evaluate based on 

statistics (mean, variance, and covariance). Those 

effective to evaluate the precision of generated 

density maps feature pattern structure. The total loss 

can be defined using Eq. (6), summing 𝐿𝐸  and tuned 

𝐿𝑐 . In OSA-Net case, the value of 𝜆𝐶  (Lambda) is 

0.0005 that will be discussed later. 

 

𝐿 = 𝐿𝐸 + 𝜆𝐶𝐿𝐶 (6) 

2.3.1. Euclidean distance 

For pixel wise error estimation, Euclidean Loss 

( 𝐿𝐸)  is used to compare predicted density maps 

pixels with ground truth pixels which are described 

by Eq.  (7). Where N is the number of pixels, 𝐹 is the 

predicted density map and 𝑌 is the associated ground 

truth density map. The calculated inaccuracy in each 

pixel is summed up and normalized by the number of 

pixels in the image since the dimension can be 

different. 

 

𝐿𝐸 =
1

N
∑(𝐹𝑖 − 𝑌𝑖)2

N

𝑖=1

 (7) 

2.3.2. Local pattern consistency loss 

Local Pattern Consistency Loss ( 𝐿𝑐 ) utilizes 

SSIM, which compares similarity based on local 
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mean (𝜇𝐹), local variance (σ𝐹
2), and covariance (σ𝐹𝑌) 

calculated by Eq. (8), Eq. (9), and Eq. (10) 

respectively in each x on predicted density maps F 

during training and Ground truth Y. Where, 𝐿(𝑝) is 

representing weight in p offset to the center, and P 

contains every kernel position. The result of 1 

meaning the images are identical and -1 otherwise. 

 

𝜇𝐹(𝑥) = ∑ 𝐿(𝑝)

𝑝∈𝑷

⋅ 𝐹(𝑥 + 𝑝) (8) 

  

σ𝐹
2 (𝑥) = ∑ 𝐿(𝑝)

𝑝∈𝑷

⋅ [𝐹(𝑥 + 𝑝)2 − 𝜇𝐹(𝑥)]2 (9) 

 

 

SSIM then can be obtained point to point in 

density maps by using Eq. (11) where C1 and C2 

being small numbers with the values following [19] 

to mitigate division by zero. 𝐿𝐶  can be defined by 

averaging the SSIM value of each location 𝑥  with the 

number of pixels N as described by Eq. (12). 

 

𝑆𝑆𝐼𝑀 =
(2𝜇𝐹 + 𝐶1)(2σ𝐹𝑌 + 𝐶2)

(𝜇𝐹
2 + 𝜇𝑌

2 + 𝐶1)(σ𝐹
2 + σ𝑌

2 + 𝐶2)
 (11) 

  

𝐿𝐶 = 1 −
1

𝑁
∑ 𝑆𝑆𝐼𝑀(𝑥)

𝑥

 (12) 

3. Experiment and discussion 

3.1 Training settings 

Training conducted in NVIDIA RTX 2060 

SUPER with hyperparameters described by Table 1. 

Weight initialization is random with seed fixed for 

the same model generation. Normalization takes 

place for preprocessing the dataset before feed to the 

network. 

3.2 Metrics and Evaluation 

Mean Absolute Error (MAE) calculated using Eq. 

(13) and Mean Squared Error (MSE) calculated using 

Eq. (14) are applied to evaluate model fry counting 

performance. Where, 𝑌𝐶  is the ground truth numbers, 

𝐹𝐶  is counting prediction and M is the number of 

samples. Determining model complexity is evaluated 

using size of parameters and Floating-Point 

Operations per Second (FLOPs). 

The result of fry counting using proposed model 

shows remarkable results as shown in Fig. 8. Models 

can maintain counting consistency on different fry 

sizes and density, with less than 2% counting 

difference between ground truth and estimated count. 

Predicted density maps are evaluated using SSIM 

with reference to the ground truth density maps. The 

model predicted density maps similarity remains 

higher than 98% compared to ground truth. 

OSA-Net tested in PENSLV-2 Dataset in Fig. 7, 

which consists of 100 images of 12 days old PL with 

1920×1080 pixels, captured from different basins, 

angles, and lightning down sampled to 540×960. The 

results show that OSA-Net performs remarkably well 

in unseen data with different PL sizes and density 

levels with error rate under 11%. 

 

𝑀𝐴𝐸 =
1

𝑀
∑|𝑌𝐶𝑖 − 𝐹𝐶𝑖|

𝑁

𝑖=1

 

 

(13) 

 

𝑀𝑆𝐸 = √
1

𝑀
∑|𝑌𝐶𝑖 − 𝐹𝐶𝑖|

𝑁

𝑖=1

 (14) 

3.3 Comparative studies 

3.3.1. Fry counting networks 

Fry counting using a single capture angle is prone 

to fry adhesion leading to poor model performance. 

The role of backlight in the custom basin is crucial in 

this case. The slightly transparent body of PL is 

beneficial in a collision scenario which changes color 

to be darker due to dimmed more backlight compared 

to single PL. 

OSA-Net is compared with state-of-the-art fry 

counting models: SLCOBNet [15], Shrimpseed_Net 

[16], MSENet [8], and ShrimpCountNet [17]. All 

models are trained with the same hyperparameter and 

hardware setup as OSA-Net.  

 
Table 1. Hyperparameters value for OSA-Net training 

Initialization Random 

Epoch 300 

Batch Size 4 

Learning rate 0.0001 

Lambda 0.0005 

Optimizer Adam 

 
Table 2. Comparison with crowd counting models in 

PENSLV-1 dataset. 

Model Params↓ FLOPs↓ MAE MSE 

CMTL 2.46 MB 6.02 G 4.30 5.61 

SFCN 38.6 MB 31.62 G 3.70 4.41 

CSRNet 16.2 MB 20.41 G 3.65 4.19 

MCNN 0.13 MB 1.36 G 7.32 9.44 

OSA-Net 0.66 MB 1.99 G 1.99 2.69 
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Figure. 7 OSA-Net counting prediction in unseen dataset (PENSLV-2). 

 

 
Figure. 8 OSA-Net fry counting results in PENSLV-1 dataset case, PL age dictate as “PL-days old”. 

 

 

σ𝐹𝑌(𝑥) = ∑ 𝑊(𝑝)

𝑝∈𝑷

⋅ [𝐹(𝑥 + 𝑝) ⋅ 𝑌(𝑥 + 𝑝)]

− [𝜇𝐹(𝑥) ⋅ 𝜇𝑌(𝑥)] 
(10) 

 

As shown in Table 3 and Fig. 9, SLCOBNet has 

108.06 MB of parameters and makes it categorized as 

heavy models due to its complex architecture which 

require splitting images resulting in 4.09 Tera FLOPs 

of model complexity. Shrimpseed_Net with modified 

CSRNet architecture achieved descent accuracy with 

MAE (3.64), yet the model complexity is the second 

largest. ShrimpCountNet with SANet and TedNet 

combination architecture resulting in MAE (2.24) but 

has 0.92 MB of parameters which is slightly higher 

than original SANet. MSENet is the most compact 

model, yet OSA-Net counting performance remains 

wins with 33.7% MAE difference. OSA-Net captures 

complex patterns more effectively due to its 

aggregation architecture and SENet embedding. 

However, OSA-Net has slightly higher FLOPs (1.99 

G vs 1.38 G) and longer training and validation times 

compared to MSENet. These computational costs are 

offset by its improved performance. In real-world 

applications of PL counting where counting accuracy 

is paramount, validation time of less than one second 

difference than MSENet is acceptable. These metrics 

highlight OSA-Net superior accuracy, particularly in 

handling challenging fry occlusions in a short time.
 

Table 3. Comparison with state-of-the-art fry counting models in PENSLV-1 dataset scenario. 

Model Params FLOPs Train Time Val Time MAE↓ MSE↓ 

SLCOBNet 108.06 MB 4.26 T 78.9 s 10.2 s 11.45 15.8 

Shrimpseed_Net 2.84 MB 10.21 G 23.97 s 1.93 s 3.64 4.38 

MSENet 0.13 MB 1.38 G 10.73 s 1.04 s 3.00 3.70 

ShrimpCountNet 0.92 4.92 G 69.44 2.7 s 2.24 2.81 

OSA-Net 0.66 MB 1.99 G 23.52 s 1.94 s 1.99  2.69  

 

Table 4. OSA-Net performance comparison with SANet and OSA-Net without SE-Net in PENSLV-1 dataset. 

Model Params↓ FLOPs↓ Train Time↓ Val Time↓ MAE↓ MSE↓ 

SANet 0.91 MB 4.09 G 34.32 s 2.68 s 2.80 3.60 

OSA-Net-W 0.61 MB 1.76 G 17.91 s 1.38 s 3.21 4.25 

OSA-Net 0.66 MB 1.99 G 23.52 s 1.94 s 1.99  2.69  
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Table 5. Backbone models comparison trained in PENSLV-1 dataset. 

Model Params↓ FLOPs↓ Train Time↓ Val Time↓ MAE↓ MSE↓ 

ResNet101 27.67 MB 22.82 G 74.39 s 4.28 s 3.24 4.40 

ResNet50 8.7 MB 7.64 G 26.50 s 2.00 s 3.01 3.72 

AlexNet  61.1 MB 0.75 G 10.70 s 1.01 s 3.43 4.20 

VGG 7.7 MB 13.90 G 36.65 s 2.34 s 3.65 4.68 

VGG Decoder 8.4 MB 14.60 G 39.09 s 2.50 s 6.57 8.39 

SANet 0.91 MB 4.09 G 34.32 s 2.68 s 2.80 3.60 

 
Figure. 9 Stats comparison with other fry counting 

models in PENSLV1 dataset exclude SLCOBNet, 

network names SSN refer to Shrimpseed_Net, SCN refer 

to ShrimpCountNet. 

 

 
Figure. 10 Stats comparison with other crowd counting 

models in PENSLV1 dataset. 

 
Figure. 11 Stats comparison of backbone models in 

PENSLV-1 dataset. 

 

 
Figure. 12 Stats comparison of OSA-Net with SANet and 

OSA-Net-W in PENSLV-1 dataset. 

 

3.3.2. Crowd counting networks 

OSA-Net evaluated and compared with publicly 

available density map crowd counting models: 

CMTL [11], CSRNet [12], MCNN [14] and SFCN 

[13]. All models trained on the PENSLV-1 dataset. 

The comparison aims to validate OSA-Net's 

effectiveness in addressing the complex challenges of 

fry counting, including varying densities, occlusions, 

and visual noise which are similar with crowd 

counting networks addressed. By training all models 

under the same hyperparameter settings and 

hardware setup as OSA-Net, the evaluation ensures a 

fair assessment of its performance relative to 

established crowd counting networks. 

As shown in Table 2 and Fig. 10, MCNN is the 

lightest model, but its counting performance is 

suboptimal. CMTL also provides a compact 

architecture, but the performance is still behind OSA-

Net. CSRNet shows a great result but comes with 

high model complexity (20.41 G). Another great 

performance achieved with SFCN but the model 

complexity is also high (31.62 G). OSA-Net remains 

wins in the counting performance with MAE (1.99) - 
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Figure. 13 OSA-Net training MAE and MSE curves corresponding to different lambda values. 

 

Table 6. Best MAE and MSE correspond to different lambda values. 

Lambda 0.01 0.05 0.001 0.005 0.0001 0.0005 

MAE↓ 2.30 2.01 2.17 2.35 2.04 1.99 

MSE↓ 2.92 2.65 2.83 2.99 2.60 2.69 

 

-and MSE (2.69) among other density map regression 

models. This underscores the model’s superior 

counting under fry adhesion and varied density levels 

while maintaining compacity of the model with 

(0.66MB) model parameter and (1.99 G) FLOPs 

model complexity which strongly indicates OSA-Net 

compatibility deployment to edge devices. (0.63 G) 

FLOPs difference with MCNN is acceptable since the 

model accuracy difference is more than 300% or 3 

times better.  

3.4 Ablation studies 

3.4.1. Backbone 

Model ability to run on edge devices is dependent 

on the network complexity. Varied backbones 

ResNet [22], AlexNet [20], and VGG [21] are 

compared with the OSA-Net backbone which is 

SANet [18] to validate model simplicity. All models 

trained on the PENSLV-1 dataset. 

The results shown in Table 5 and Fig. 11, 

ResNet101 and AlexNet have over (25 MB) 

parameters followed by ResNet50, VGG, and VGG 

decoder that have over (7.5 MB) parameters which 

indicate high model complexities. However, The 

FLOPs of AlexNet are the lowest compared to 

ResNet101, ResNet50, VGG, and VGG decoder with 

(0.75 G). SANet demonstrates the most acceptable 

backbone to be implemented in edge devices with 

only (0.91 MB) parameters. In terms of counting 

performance, SANet performs remarkably well with 

MAE (2.80) and MSE (3.60) compared to AlexNet 

(the lowest FLOPs). This concludes SANet 

validation as a backbone model, which demonstrates 

both high accuracy counting and compactness. 

3.4.2. Attention mechanism 

The role of SE-Net is investigated closely. The 

backbone model of SANet and OSA-Net without SE-

Net (OSA-Net-W) are compared with OSA-Net. All 

models are trained using PENSLV-1 dataset to show 

SE-Net addition effectiveness to compensate for 

channels pruned in counting PL under different PL 

sizes and density levels. The results shown in Table 

4 and Fig. 12, SANet exhibit high model complexity 

with a parameter size of (0.91 MB) and (4.09 G) 

FLOPs, demonstrating remarkable counting 

performance compared to OSA-Net-W. This 

suggests that performance is influenced by the 

number of channels. However, the integration of SE-

Net into OSA-Net-W results in significant 

improvements, achieving a 38% reduction in MAE 

(1.99) and a 36.71% reduction in MSE (2.69), 

outperforming the original SANet while utilizing 

fewer parameters and FLOPs. This underscores the 

critical role of SE-Net in compressing less 

informative channels while amplifying those with 

greater feature significance. SE-Net compensates for 

pruned channels in OSA-Net-W, enabling the 

creation of a compact model that maintains high 

performance while preserving efficiency called OSA-

Net. 

3.5 Optimal lambda search 

Since OSA-Net model training is affected by the 

value of  𝐿𝐶  that tune by lambda (𝜆𝐶), searching for 

the best value of lambda is employed. This search is 

beneficial for model versatility under similar or 

different scenarios such as different types of fish. 
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Initial parameters except lambda are the same as 

Table 1. The testing involves different lambda values: 

0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005. As the 

results shown in Fig. 13 and Table 6, Lambdas 0.0005, 

0.05, and 0.0001 show the best result with 0.0005 as 

the best model performance. Lambdas 0.005 and 0.01 

have the poorest model performance and many 

oscillations in MAE and MSE plot meaning the 

model performs less in some data samples and fails 

to converge. From the statistics it can be concluded 

that keeping lambda values around 0.05, 0.0001 or 

0.0005 will help the OSA-Net model to converge. 

4. Conclusion 

Counting Litopenaeus vannamei post-larvae fry 

manually can take hours and has poor accuracy. 

Computer-vision counting methods strategically 

solved the problem by its non-invasiveness, high 

accuracy, and speed. In this work, we introduced 

OSA-Net, a compact Litopenaeus vannamei fry 

counting network based on density map regression 

techniques. By utilizing scale aggregation networks 

that have been channels pruned, the model managed 

to be compact or lightweight with parameters of 660 

KB. OSA-Module with squeeze-and-excitation 

network addition is built to achieve high accuracy 

counting performance while still maintaining model 

compactness. PENSLV-1 dataset is built with several 

density levels and fry sizes to train and validate the 

model. Optimal lambda search is employed for model 

versatility information under implementation of 

similar or different scenarios. To validate 

performance, several comparative studies with 

publicly available models along with ablation studies 

to verify the role of each component in the network 

are employed. The results show the model can 

perform remarkably under different fry density levels 

and sizes with 1.99 and 2.69 of MAE and MSE 

respectively. Generalization test with PENSLV-2 

datasets shows the model robustness under unseen 

data with under 11% of error counting rate. The 

minimum parameter and complexity of OSA-Net is 

beneficial for implementation in edge devices for 

portable counting such as jetson-nano or raspberry-pi. 

Despite the success, challenges remain, particularly 

with complex fry adhesion, where fries stick together 

in highly dense counting. Future work could address 

this by incorporating additional viewpoints to capture 

more spatial details of the fry in different angles. 

 

Notations: 

Variable Notation 

U 
Input feature map with dimensions 

C×H×W in SE-Net. 

C, H, W 
Number of channels, height, and width of 

features respectively. 

𝑢𝑐 
input feature map in c-th channel  

U[𝑢1, 𝑢2, … , 𝑢𝑐 ]. 

𝑧, 𝑧𝑐 
channel-wise descriptor obtained by 

global average pooling. 

𝑠, 𝑠𝑐 Final channel-wise attention weight. 

𝑾𝟏, 𝑾𝟐 
Learnable weight matrix, used for 

dimensionality reduction and expansion. 

σ Sigmoid activation function. 

γ ReLU activation function. 

r Reduction dimension ratio, equal 16. 

𝑋̃𝐶 The recalibrated output feature map. 

𝑌 Ground truth density maps. 

𝐹 Predicted density maps. 

𝑥 
Spatial coordinate of fry dots in density 

maps. 

𝐺𝛽𝑖(𝑥) 
Gaussian kernel centered at 𝑥𝑖  with 

adaptive bandwidth 𝛽𝑖. 

𝛽𝑖 Adaptive bandwidth for the kernel at 𝑥𝑖. 

α 
Scaling factor for dots bandwidth in 

Gaussian filter kernels, equal to 0.1. 

𝑑̅ 
Average distance to the nearest fries 

relative to 𝑥𝑖. 

𝐾, 𝑁, 𝑀 
Number of nearest fries considered, 

number of pixels and, number of test 

samples respectively. 

𝐿, 𝐿𝐸 , 𝐿𝐶 
Total loss, Euclidean loss, and Local 

Pattern Consistency Loss respectively. 

𝜆𝐶  Lambda for 𝐿𝐶 tuning, equal to 0.0005. 

𝜇𝐹 , 𝜇𝑌 
Local means of predicted and ground truth 

density maps respectively. 

σ𝐹
2 , σ𝑌

2  
Local variance of predicted and ground 

truth density maps respectively. 

σ𝐹𝑌 
Covariance of predicted and ground truth 

density maps. 

P 
All positions of the kernels, 𝑷 =
{(−1, −1), . . , (1,1)}. 

p Offset from the center of kernels, 𝑝 ∈ 𝑷. 

𝐿(𝑝) 
Weight in p locations, (weight is not 

updated in back propagation). 

𝑆𝑆𝐼𝑀(𝑥) Structural Similarity Index Metrics of 𝑥. 

𝑌𝐶, 𝐹𝐶 
Ground truth and predicted number of 

fries respectively. 

𝐶1, 𝐶2 
Constant to avoid division by 0, the values 

are following [11]. 

MAE Mean Absolute Error 

MSE Mean Squared Error 
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