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Abstract: In this paper, a new human-based metaheuristic algorithm called Tailor Optimization Algorithm (TOA) is 

introduced. The basic idea in TOA design is taken from the processes that a tailor makes when sewing clothes. The 

theory of TOA is stated and then mathematically modeled in two phases of exploration and exploitation. The 

exploration phase is designed based on the simulation of extensive changes on the fabrics according to the garment 

pattern. The exploitation phase is designed based on the simulation of small changes on the sewn garments in order to 

handle the details of the garments. The effectiveness of proposed TOA approach to handle optimization tasks in real-

world applications is evaluated on twenty-two constrained optimization problems from the CEC 2011 test suite. The 

simulation results show that TOA is achieved effective solutions for CEC 2011 test suite optimization with the ability 

to explore, exploit, and balance them. In addition, the performance of TOA is compared with the results of twelve 

well-known metaheuristic algorithms. Analysis of the simulation results shows that TOA is successful in 100% of 

CEC 2011 test suite optimization problems in competition with the compared algorithms. The findings show that TOA 

with 100% success and ranking as the first best optimizer in the competition with the compared algorithms has an 

effective efficiency to handle real world applications. 

Keywords: Optimization algorithm, Engineering, Real-world application, Human-inspired, Tailor, Exploration, 

Exploitation. 

 

 

1. Introduction 

Optimization is a process that aims to find the 

best or closest solution to a problem, which can 

involve maximizing or minimizing an objective 

function given a set of constraints. Optimization is of 

particular importance in many scientific and 

industrial fields, because it can increase productivity, 

reduce costs, and improve system performance [1, 2]. 

One of the common methods to solve optimization 

problems is to use metaheuristic algorithms. These 

algorithms are inspired by the concepts and principles 

of nature and have been highly regarded due to their 

high ability to search in a wide space of solutions and 

find solutions close to the optimum [3]. Metaheuristic 

algorithms are widely used in solving optimization 

problems in various fields. 

In engineering, metaheuristic algorithms are used 

to optimize the design of structures, mechanical 

systems, and manufacturing processes. For example, 

Golf Optimization Algorithm (GOA) is used to 
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optimize the use of energy resources in integrated 

energy systems [4]. In the field of management and 

economics, these algorithms are used to optimize 

production planning, resource allocation, supply 

chain management, and solving stock market 

problems. The Wombat Optimization Algorithm 

(WOA) is used to optimize supply chain management 

applications [5]. In computer science, metaheuristic 

algorithms are used to optimize computer networks, 

allocate tasks in distributed systems, and solve 

complex problems such as the traveling salesman 

problem (TSP). These methods can be used to 

improve the performance of wireless networks and 

data traffic management [6]. In the fields of biology 

and medicine, these algorithms are used to optimize 

biological processes, design drugs, and analyze 

biological data. The Particle Swarm Optimization 

(PSO) algorithm can be used to diagnose diseases and 

predict the results of treatments [7]. 

Metaheuristic algorithms, with their special 

abilities to search and find near-optimal solutions, 

have become a powerful tool in solving complex and 

large problems. Due to their high flexibility and 

ability to work with different types of problems, these 

algorithms are used in many fields and help 

researchers and engineers to achieve more efficient 

and effective solutions [8]. 

The concepts of exploration and exploitation are 

two fundamental elements in the process of random 

search of metaheuristic algorithms, which play a vital 

role in the efficiency and performance of these 

algorithms [9]. Exploration refers to the process of 

searching the vast space of solutions to explore new 

and unknown areas. The main goal of exploration is 

to increase the variety of solutions and avoid getting 

stuck in local optimal points. By exploring, the 

algorithm can better identify the search space and be 

directed to areas with higher potential [10]. 

Exploitation refers to the process of focusing on 

specific areas of the search space that have already 

been identified and are most likely to improve the 

solution. The purpose of exploitation is to improve 

the quality of current solutions and to approach the 

global optimal point. This process is carried out using 

available information about the best solutions found 

[11].  

One of the main challenges in designing 

metaheuristic algorithms is to find a suitable balance 

between exploration and exploitation. If the 

algorithm explores too much, it may not focus 

enough on the high-yielding areas and fail to reach 

the optimal point. On the other hand, if the algorithm 

focuses too much on exploitation, it may get stuck in 

local optimal points and not fully explore the search 

space. A proper balance between exploration and 

exploitation can lead to increasing the efficiency of 

the algorithm. With enough exploration, the 

algorithm can identify new regions and, with proper 

exploitation, improve the quality of the solutions [12].  
The main research question is that according to 

the metaheuristic algorithms introduced so far, is 

there still a need to design newer algorithms? The 

answer to this question is possible by referring to the 

No Free Lunch (NFL) theorem [13]. The NFL 

theorem in the field of optimization and machine 

learning states that there is no general optimization 

algorithm that can work equally well for all 

optimization problems. New metaheuristic 

algorithms can perform better than existing 

algorithms by considering the specific features and 

challenges of different optimization problems. 

Therefore, research and development in the field of 

optimization algorithms should be continued in order 

to achieve more efficient and optimal solutions to 

deal with optimization problems. 

Motivated by the NFL theorem, the innovation 

and novelty of this paper is in designing a new 

metaheuristic algorithm called Tailor Optimization 

Algorithm (TOA) to deal with optimization problems. 
The main contributions of this paper are as follows: 

• TOA is designed based on the human activity of 

sewing.  

• The theory of TOA is stated and then 

mathematically modeled in two phases of 

exploration and exploitation.  

• The exploration phase is designed with regard to 

making changes on the fabrics based on the dress 

pattern.  

• The exploitation phase is designed with attention 

to detail and making small changes to the sewn 

garments. 

• The performance of the proposed TOA approach 

to address real-world applications is challenged 

to address twenty-two constrained optimization 

problems from the CEC 2011 test suite. 

• The results obtained from TOA have been 

compared with the performance of twelve well-

known metaheuristic algorithms. 

In the following, the paper is organized as 

follows: In section 2, the literature review is 

presented. The proposed approach of TOA is 

introduced and designed in section 3. Then in section 

4, simulation studies are presented. Finally, 

conclusions and several research suggestions for 

further future work are provided in Section 5. 

2. Literature review 

Metaheuristic algorithms are divided into four 

main groups based on their source of inspiration: 
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swarm-based, evolutionary-based, physics-based, 

and human-based. Next, while introducing each 

group, some examples of famous algorithms are 

given. 

Swarm-based metaheuristic algorithms are 

designed based on the collective behaviour of living 

organisms such as insects, birds and fish.  The 

particle swarm algorithm (PSO) is inspired by the 

group behaviour of birds and fish to search for food 

[14].  Ant Colony Algorithm (ACO) is designed 

based on the behaviour of ants in finding the shortest 

path between nest and food source [15]. The artificial 

bee algorithm (ABC) is inspired by the foraging 

behaviour of honey bees [16]. Different crowding 

behaviors in nature have been sources of inspiration 

in designing other algorithms such as: Walrus 

Optimization Algorithm (WaOA) [17], Migration-

Crossover Algorithm (MCA) [18], Green Anaconda 

Optimization (GAO) [19], and Kookaburra 

Optimization Algorithm (KOA) [20]. 

Evolutionary-based metaheuristic algorithms are 

designed based on the principles of natural and 

genetic evolution, such as natural selection and 

mutation. Genetic Algorithm (GA) is inspired by the 

processes of natural selection and genetic 

recombination in natural evolution [21]. The 

Differential Evolution (DE) [22] algorithm is 

designed based on the differences between 

individuals of a population and using these 

differences to create new generations. The artificial 

immune system (AIS) algorithm is inspired by the 

body's immune system processes to identify and 

combat foreign agents [23]. 

Physics-based metaheuristic algorithms are 

designed based on physical laws and phenomena. 

Gravitational Search Algorithm (GSA) is designed 

based on Newton's law of gravity and gravitational 

interactions between particles [24]. The Simulated 

Annealing (SA) algorithm is inspired by the cooling 

process of materials in physics [25]. Electro-

Magnetism Optimization (EMO) search algorithm is 

inspired by the laws of electromagnetism and the 

force of attraction and repulsion between charged 

particles [26]. Some other prominent physics-based 

algorithms are: Prism Refraction Search (PRS) [27], 

Momentum Search Algorithm (MSA) [28], 

Electromagnetic Field Optimization (EFO) [29], 

Spring Search Algorithm (SSA) [30], and Kepler 

Optimization Algorithm (KOA) [31]. 

Human-based metaheuristic algorithms are 

designed based on human behaviours and processes. 

The Mother Optimization Algorithm (MOA) is 

inspired by maternal principles of education and 

nurturing by mother Eshrat [32]. The Teaching-

Learning Algorithm (TLBO) is inspired by the 

teaching and learning process in educational 

environments [33]. The Doctor-Patient Algorithm 

(DPO) is inspired by the interactions between the 

doctor and the patient in the diagnosis and treatment 

process [34]. Alibaba and the Forty Thieves (AFT) 

algorithm is based on the famous story of Alibaba and 

the Forty Thieves, where Alibaba seeks to discover 

the thieves' treasure [35]. 

Based on the best knowledge obtained from the 

literature review, no metaheuristic algorithm has 

been designed so far inspired by tailor's strategies 

when sewing clothes. Meanwhile, the tailor's 

strategies when making changes on the fabrics and 

also taking care of the details of the sewn clothes are 

intelligent processes that can be the basis for the 

design of a new optimizer. In order to address this 

research gap, in this paper, a new metaheuristic 

algorithm based on the simulation of tailor's 

strategies while sewing clothes is introduced, which 

is discussed in the next section. 

3. Tailor optimization algorithm 

In this section, the theory and the inspiration of 

the proposed Tailor Optimization Algorithm (TOA) 

approach are explained, then the its implementation 

steps are mathematically modeled. 

3.1 Inspiration of TOA 

Tailoring is one of the old and important 

industries of the world, which is still very influential 

in different societies. Tailors play an important role 

in the beauty and comfort of people. Sewing is also 

known as an art. A tailor should be able to come up 

with new and unique designs and use different colors 

and combinations to create visually appealing effects. 

Sewing is an art that requires technical expertise. A 

successful tailor must have sewing, designing, 

cutting and measuring skills. She/he should have a 

good knowledge of all kinds of fabrics and materials 

and be able to use the right materials according to 

each project. When a tailor wants to sew a dress, he 

must first choose a suitable pattern. By making 

changes on the fabric such as cutting and sewing, the 

tailor sews the basic design of the dress. Then, based 

on the details of the selected pattern, she/he takes care 

of the details and decorations of the clothes. Among 

the tailor's behaviors while sewing clothes, there are 

two more prominent strategies:  

(i): Making changes such as cutting and sewing 

fabrics based on the selected pattern.  

(ii): Taking care of the details and decorations of 

the sewn clothes according to the selected pattern. 

Mathematical modeling of these tailor's strategies 
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while sewing clothes is employed in TOA design, 

which is discussed below. 

3.2 Algorithm initialization 

The proposed TOA approach is a population-

based optimizer that is able to achieve suitable 

solutions for optimization problems in an iteration-

based process based on random search in the problem 

solving space. In TOA, each member of the 

population means a candidate solution to the problem, 

which is mathematically modeled using a vector. 

Therefore, all members of the TOA population can be 

represented together using a matrix according to Eq. 

(1). The position of each member of the population in 

TOA is initialized completely randomly using Eq. (2). 
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𝑥𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑) (2) 

 

Here, 𝑋 is the TOA’s population matrix, 𝑋𝑖 is the 

ith member (i.e., candidate solution), 𝑥𝑖,𝑑  is its dth 

dimension in the search space (i.e., decision variable), 

N is the number of population members (i.e., 

population size), m is the number of decision 

variables, r is a random number within the interval 
[0,1] , while 𝑙𝑏𝑑  and 𝑢𝑏𝑑  stand for the lower and 

upper bounds of the dth decision variable, 

respectively.  
Each member of TOA is a candidate solution for 

the problem, based on which the objective function 

of the problem can be evaluated. The set of evaluated 

values for the objective function corresponding to 

each member of the population can be represented 

using a vector according to Eq. (3). 
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Where, F is the vector of objective function 

values and 𝐹𝑖 is the obtained objective function value 

based on the ith TOA member. 

3.3 Mathematical modelling of TOA 

The proposed TOA approach is an iteration-based 

algorithm that improves the quality of proposed 

candidate solutions based on updating the position of 

population members in the problem solving space in 

each iteration. In order to manage this updating 

process, the design of TOA is inspired by the tailor's 

strategies when sewing clothes. Among these two 

tailor strategies are more significant: (i): making 

changes (cutting and sewing) on the fabrics according 

to the pattern and (ii): dealing with the details and 

decorations of the sewn clothes. Therefore, in the 

design of TOA, the modeling of these two smart tailor 

strategies has been used in order to update the 

position of the population members in the problem 

solving space. Each of these strategies is modeled as 

a separate update phase, which is described below. 

3.3.1 Phase 1: Making extensive changes to fabrics 

(exploration phase)  

In the first phase of TOA, the position of the 

population members is updated based on the 

simulation of the tailor's strategy when cutting and 

sewing the fabrics. This strategy of the tailor leads to 

the creation of extensive changes on the fabrics, 

whose modeling leads to the creation of large changes 

in the position of the members of the population. 

These large displacements increase the ability of 

TOA exploration to manage global search in the 

problem-solving space. In this process, the tailor uses 

a suitable pattern to sew the clothes. In TOA design, 

it is assumed that corresponding to the sewing pattern, 

a position for the sewing pattern is generated in the 

problem solving space using Eq. (4). 

 

𝑃: 𝑝𝑗 = 𝑥𝑗
𝑤𝑜𝑟𝑠𝑡 + 𝑟 ∙ (𝑥𝑗

𝑏𝑒𝑠𝑡 − 𝑥𝑗
𝑤𝑜𝑟𝑠𝑡)  (4) 

 

Here, 𝑃𝑖 is the position for the sewing pattern, 𝑝𝑗 

is its jth dimension, 𝑋𝑏𝑒𝑠𝑡 is best population member, 

𝑥𝑗
𝑏𝑒𝑠𝑡 is its jth dimension,  𝑋𝑤𝑜𝑟𝑠𝑡 is best population 

member, 𝑥𝑗
𝑤𝑜𝑟𝑠𝑡  is its jth dimension,  and 𝑟  is a 

random number within the interval [0,1]. 
The tailor cuts and sews the fabrics according to 

the sewing pattern. Inspired by this tailor's strategy, it 

is assumed in the design of TOA that based on 

making changes on the fabrics according to the 

sewing pattern, a new position for each member of 

the population can be calculated using Eq. (5). In the 

following, if this new position leads to an 

improvement in the value of the objective function, it 

replaces the previous position of the corresponding 

member according to Eq. (6). 
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𝑥𝑖,𝑗
𝑃1 = 𝑥𝑖,𝑗 + 𝑟 ∙ (𝑝𝑖,𝑗 − 𝐼 ∙ 𝑥𝑖,𝑗),   (5) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 ≤ 𝐹𝑖 ,

𝑋𝑖, 𝑒𝑙𝑠𝑒 ,
 (6) 

 

Where, 𝑋𝑖
𝑃1  is the new position for the ith 

member based on exploration phase of TOA, 𝑥𝑖,𝑗
𝑃1 is 

its jth dimension, 𝐹𝑖
𝑃1 is its objective function value, 

𝑟 is a random number drawn from the interval [0, 1], 
and 𝐼 is randomly selected number, taking values of 

1 or 2. 

3.3.2 Phase 2: Making small changes to the sewn 

garment (exploitation phase)  

In the second phase of TOA, the position of the 

population members is updated based on the 

simulation of the tailor's strategy when dealing with 

the details and decorations on the sewn garments, 

according to the tailoring pattern. In this strategy, 

according to the given pattern, the tailor makes small 

and accurate changes in different parts of the garment 

so that its appearance is similar to the sewing pattern. 

This tailor's strategy leads to the creation of small 

changes on the clothes, whose modeling in TOA 

leads to the creation of targeted small changes in the 

position of the population members. These small 

changes in the position of the population members 

lead to an increase in the ability to exploit TOA in 

order to manage the local search in the problem-

solving space.  

Based on this tailoring strategy, it is assumed in 

TOA design that a new position is generated near the 

position of each member using Eq. (7). Then, if the 

value of the objective function needs to be improved, 

this new position replaces the previous position of the 

corresponding member according to Eq. (8). 

 

𝑥𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗 + 𝑟 ∙ (

𝑥𝑗
𝑏𝑒𝑠𝑡 − 𝑥𝑗

𝑤𝑜𝑟𝑠𝑡

𝑡 + 1
)  (7) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 ≤ 𝐹𝑖

𝑋𝑖, 𝑒𝑙𝑠𝑒 
 (8) 

 

Here, 𝑋𝑖
𝑃2 is the new calculated position for the 

ith TOA member based on exploitation phase of TOA, 

𝑥𝑖,𝑗
𝑃2  is the its 𝑗 th dimension, 𝐹𝑖

𝑃2  is its objective 

function value, and 𝑡 is the iteration counter. 

3.4 Repetition process, pseudocode, and flowchart 

of TOA 

The process of the first iteration of TOA is 

completed by updating all population members 

according to the instructions of the first and second 

phases. After that, with the updated values, the 

algorithm enters the next iteration and the process of 

updating the TOA population continues until the last 

iteration of the algorithm based on Eqs. (4) to (8). The 

best candidate solution is identified and updated in 

each iteration. After the complete execution of TOA, 

the best candidate solution obtained is placed as a 

solution in the output. The flowchart of TOA 

implementation steps is shown in Figure 1. 

4. TOA for real-world optimization 

problems 

One of the important applications of 

metaheuristic algorithms is their efficiency to handle 

optimization tasks in real world applications. In this 

study, the performance of the proposed TOA 

approach has been evaluated to solve twenty-two 

constrained optimization problems from the CEC 

2011 test suite. This test suite consists of twenty-two 

challenging optimization problems in engineering. 

Detailed information, complete details, and 

mathematical models of these problems are available 

in [36]. 

The titles of these real-world optimization 

applications are as follows: parameter estimation for 

frequency-modulated sound waves, the Lennard-

Jones potential problem, the bifunctional catalyst 

blend optimal control problem, optimal control of a 

nonlinear stirred tank reactor, the Tersoff potential 

for the model Si (B), the Tersoff potential for the 

model Si (C), spread spectrum radar polyphase code 

design, transmission network expansion planning 

problem, large-scale transmission pricing problem, 

circular antenna array design problem, and the 

electronic logging device (ELD) problems (which 

consist of DED instance 1, DED instance 2, ELD 

instance 1, ELD instance 2, ELD instance 3, ELD 

instance 4, ELD instance 5, hydrothermal scheduling 

instance 1, hydrothermal scheduling instance 2, and 

hydrothermal scheduling instance 3), the Messenger 

spacecraft trajectory optimization problem, and the 

Cassini 2 spacecraft trajectory optimization problem. 

In order to evaluate the quality of the TOA 

proposed approach, its performance has been 

compared with twelve famous metaheuristic 

algorithms: Gravitational Search Algorithm (GSA) 

[24], Coati Optimization Algorithm (COA) [11], 

Kookaburra Optimization Algorithm (KOA) [20], 
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Golf Optimization Algorithm (GOA) [4], Spring 

Search Algorithm (SSA) [30], Teaching-Learning 

Based Optimization (TLBO) [33], Grey Wolf 

Optimizer (GWO) [37], Marine Predator Algorithm 

(MPA) [38], Tunicate Search Algorithm (TSA) [39], 

Reptile Search Algorithm (RSA) [40], African 

Vultures Optimization Algorithm (AVOA) [41], and 

White Shark Optimizer (WSO) [42]. The simulation 

results are reported using six statistical indicators: 

mean, best, worst, median, standard deviation (std), 

and rank. It should be mentioned that in order to rank 

the metaheuristic algorithms in handling each of the 

optimization problems, the comparison of the mean 

index has been used. 

The results of the implementation of TOA and 

competing algorithms to address the CEC 2011 test 

suite are reported in Table 1. In addition, the boxplot 

diagrams of metaheuristic algorithms are drawn in 

Figure 2. Findings It shows that TOA has achieved 

suitable solutions for optimization problems by 

effectively balancing exploration and exploitation 

during algorithm iterations. Based on the comparison 

of simulation results, it is evident that TOA was the 

first best optimization in order to solve all twenty two 

problems of CEC 2011 test suite. The findings show 

that by providing better results for the statistical index 

and achieving better solutions, TOA has provided 

superior performance for handling the CEC 2011 test 

suite compared to competing algorithms. 

5. Conclusions and future works 

In this paper, a new metaheuristic algorithm 

called Tailor Optimization Algorithm (TOA) was 

introduced to handle optimization tasks in real world 

applications. The main idea in the design of TOA was 

taken from the tailor's strategies when sewing clothes. 

The theory of TOA was stated and its steps were 

mathematically modeled in two phases of exploration 

and exploitation. The efficiency of TOA to handle 

optimization tasks in real-world applications was 

evaluated on twenty-two constrained optimization 

problems from the CEC 2011 test suite. The 

optimization results showed that TOA has achieved 

suitable solutions for the optimization problems of 

this test suite with its ability to explore, exploit, and 

balance them during the search process. In addition, 

the performance of TOA is compared with the 

performance of twelve well-known metaheuristic 

algorithms. The analysis of the results showed that 

TOA has provided superior performance compared to 

competing algorithms by providing better results 

compared to competing algorithms and getting the 

rank of the first best optimizer. The findings showed 

that TOA, with its ability in exploration and 

exploitation, has been more successful in 100% of 

CEC 2011 test suite optimization problems in 

competition with compared algorithms.  

 

 

 
Figure. 1 flowchart of TOA 

  

Input information of the optimization problem. 
Variables interval, constraints, objective function. 

Set the population size (N) and maximum 
number of iterations (T). 

Create and evaluate the initial population. 

Phase1: Determine the sewing pattern 
using Eq. (4). 

Phase 1: Calculate the new position of the 

𝑖th TOA member (𝑋𝑖
𝑃1) using Equation (5). 

 

Phase1: Evaluate 𝐹𝑖
𝑃1 based on 𝑋𝑖

𝑃1.  

Start TOA 

No 

Yes 

𝑖 = 𝑖 + 1 

Print the best candidate solution. 

i==N? 

𝑖 = 1 
𝑡 = 𝑡 + 1 

Phase 2: Update 𝑋𝑖 using Equation (8). 

 

t==T? 
No 

Yes 

End TOA 

Phase 2: Calculate the new position of the 𝑖th 

TOA member (𝑋𝑖
𝑃2) using Equation (7). 

 

Phase 2: Evaluate 𝐹𝑖
𝑃2 based on 𝑋𝑖

𝑃2. 

 

Phase 1: Update 𝑋𝑖 using Equation (6). 
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Table 1. Optimization results of CEC 2011 test suite 
 TOA WSO AVOA RSA MPA TSA COA GOA GWO TLBO GSA SSA KOA 

C11-F1 

mean 5.860902 9.287021 9.891289 13.29474 10.1855 20.63383 23.14364 23.34298 19.91985 14.93192 14.87855 11.74373 13.27816 

best 1.98E-10 3.171166 3.907239 9.712726 6.077739 19.47566 22.26689 22.24808 18.40361 10.7694 12.71635 6.794303 10.03214 

worst 12.183 13.3693 13.58012 16.46845 14.39696 22.40084 24.46245 25.11439 20.66189 18.2254 16.97651 16.61256 16.98022 

std 9.191179 6.352624 5.968245 4.830647 6.199248 1.703963 1.286596 1.719834 1.443034 4.427814 2.677296 5.861266 5.035423 

median 5.630304 10.30381 11.0389 13.49889 10.13364 20.3294 22.92262 23.00472 20.30695 15.36643 14.91067 11.78402 13.05015 

rank 1 2 3 7 4 11 12 13 10 9 8 5 6 

C11-F2 
 

mean -26.0547 -22.9078 -22.2314 -20.0246 -21.6955 -11.1491 -12.6357 -9.88293 -9.61488 -16.6161 -8.9137 -22.3596 -19.6285 

best -26.7969 -23.5809 -22.9092 -22.2022 -22.3824 -12.6185 -14.2803 -10.3648 -13.1049 -19.7995 -10.6697 -22.9283 -20.0253 

worst -25.1785 -21.7379 -20.9752 -18.6178 -20.9942 -9.80541 -10.6985 -9.43348 -7.50894 -12.916 -7.56156 -21.839 -19.0965 

std 0.943765 1.14408 1.203911 2.092314 0.834146 1.918396 2.013763 0.689155 3.546263 4.856384 1.885268 0.604342 0.534156 

median -26.1218 -23.1562 -22.5207 -19.6392 -21.7027 -11.0863 -12.782 -9.86673 -8.92286 -16.8744 -8.71176 -22.3356 -19.6962 

rank 1 2 4 6 5 10 9 11 12 8 13 3 7 

C11-F4 
 

mean 1.14E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 

best 1.14E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 

worst 1.14E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 

std 2.56E-19 1.64E-14 2.03E-14 1.9E-14 2.38E-14 3.04E-11 6.96E-09 6.07E-11 2.62E-14 1.53E-14 1.1E-12 1.9E-14 1.9E-14 

median 1.14E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 

rank 1 3 7 5 8 11 13 12 9 2 10 4 6 

C11-F4 
 

mean 13.74389 16.60183 15.44964 15.97763 15.51112 17.01622 16.53715 19.43001 16.18183 16.40418 18.20501 15.82447 15.19664 

best 13.67721 14.91731 14.33044 15.56605 13.85534 15.41725 14.2065 15.41725 15.0278 15.00959 13.81928 14.82544 13.8763 

worst 13.79425 18.45619 15.99284 16.62162 16.40696 18.77527 19.19848 22.04658 17.5138 17.92265 20.73299 16.95542 15.95173 

std 0.075233 2.563979 1.033515 0.669226 1.545418 1.8717 3.149354 3.848467 1.426721 2.174394 4.229717 1.2755 1.240616 

median 13.75204 16.5169 15.73764 15.86143 15.89109 16.93618 16.37181 20.12811 16.09285 16.34223 19.13389 15.75851 15.47927 

rank 1 10 3 6 4 11 9 13 7 8 12 5 2 

C11-F5 
 

mean -33.7862 -29.8605 -28.9174 -27.6151 -26.8704 -20.6622 -17.7802 -17.1668 -23.9684 -24.4412 -24.5107 -22.6104 -22.8496 

best -34.4019 -30.5022 -29.7488 -28.9541 -27.0341 -21.757 -19.0306 -19.0859 -28.5447 -24.592 -28.5758 -23.6503 -23.2995 

worst -33.0524 -28.7602 -27.7238 -26.6708 -26.7988 -19.6941 -16.7838 -14.9575 -18.6094 -24.2428 -22.424 -22.0519 -22.4085 

std 0.753531 1.029249 1.156526 1.382968 0.148854 1.453936 1.352856 2.775349 5.53429 0.197182 3.83941 0.990097 0.513434 

median -33.8452 -30.0898 -29.0985 -27.4178 -26.8244 -20.5988 -17.6532 -17.3119 -24.3597 -24.4649 -23.5215 -22.3697 -22.8453 

rank 1 2 3 4 5 11 12 13 8 7 6 10 9 

C11-F6 
 

mean -23.8708 -19.5347 -18.6034 -19.2995 -17.5487 -10.07 -9.9947 -10.3197 -5.11704 -16.8751 -8.36861 -14.1672 -14.4194 

best -27.1555 -22.2434 -21.1858 -20.1783 -19.8225 -10.91 -13.466 -11.0447 -13.7294 -19.8362 -15.1011 -16.8062 -15.8426 

worst -22.7759 -18.4262 -17.5194 -18.1892 -16.6256 -9.19519 -7.58452 -9.44867 -2.11095 -10.3342 -2.11095 -13.2875 -13.2875 

std 2.969416 2.480261 2.37342 1.180767 2.079838 0.950513 3.440836 1.071312 7.790004 6.084039 9.512731 2.385682 1.801424 

median -22.7759 -18.7346 -17.8543 -19.4153 -16.8733 -10.0874 -9.46413 -10.3928 -2.31391 -18.665 -8.13121 -13.2875 -14.2738 

rank 1 2 4 3 5 10 11 9 13 6 12 8 7 

C11-F7 
 

mean 0.852092 1.048561 1.085758 1.089457 1.123918 1.780284 1.887722 1.988212 1.405854 1.822112 1.007369 1.094874 1.26534 

best 0.576444 0.897991 0.952339 0.883893 0.896865 1.720403 1.61784 1.719307 1.264521 1.725317 0.924828 1.003848 1.003106 

worst 1.014777 1.115357 1.161838 1.169358 1.282126 1.884012 1.994796 2.169424 1.708546 1.991815 1.081874 1.168011 1.421776 

std 0.270131 0.137052 0.124419 0.186252 0.221654 0.097734 0.244618 0.25918 0.276654 0.16576 0.091709 0.111061 0.249484 

median 0.908573 1.090449 1.114427 1.152289 1.15834 1.758361 1.969127 2.032058 1.325174 1.785658 1.011387 1.103818 1.318238 

rank 1 3 4 5 7 10 12 13 9 11 2 6 8 

C11-F8 
 

mean 217.8 222.6991 223.0314 228.8892 221.1376 289.7481 264.1854 320.2845 255.8959 264.1854 224.0871 289.9628 221.4613 

best 217.8 220 220 220 220 260.9466 227.7112 280.9186 220 243.9048 220 227.7877 220 

worst 217.8 226.6322 227.6037 245.6912 223.8561 328.5745 301.8937 361.8864 349.7032 309.6049 233.8802 320.149 223.0819 

std 0 4.441596 5.043875 16.44641 2.497317 40.14035 43.15727 45.11147 85.26604 41.35467 8.992579 58.2482 2.294899 

median 217.8 222.082 222.2609 224.9327 220.3471 284.7357 263.5684 319.1665 226.9401 251.616 221.2341 305.9573 221.3817 

rank 1 4 5 7 2 11 9 13 8 10 6 12 3 

C11-F9 
 

mean 8701.393 79089.9 94987.57 335626.4 238273.7 653448.1 856537.4 1066351 123741.1 415750.8 175512.8 382426.9 621184.2 

best 5403.097 65546.69 78590.21 323532.6 220539.6 473118.8 761169 734578.4 99979.15 257058.4 115555.8 311431.3 589824.2 

worst 13901.86 100033.1 120001.2 353770.9 263657.4 736172 919593.3 1234383 146296.5 651308.7 251478.6 474672 639172.8 

std 4967.243 20577.92 24424.39 17447.67 25287.82 166807 91987.03 306971.7 26409.97 238454.7 76298.26 107266.9 29669.32 

median 7750.305 75389.91 90679.44 332601 234448.9 702250.8 872693.7 1148222 124344.4 377318 167508.5 371802.2 627870 

rank 1 2 3 7 6 11 12 13 4 9 5 8 10 

C11-F10 
 

mean -21.274 -17.851 -17.2872 -16.9944 -18.3533 -11.9494 -10.2307 -11.238 -13.2345 -11.8002 -14.171 -16.7613 -16.6794 

best -21.6116 -18.1864 -17.6145 -17.3299 -18.6005 -13.1993 -10.3777 -11.5765 -17.441 -12.4864 -19.6989 -16.9472 -16.8805 

worst -20.58 -17.5009 -16.9822 -16.5453 -17.8385 -11.2707 -10.0925 -10.9768 -10.9748 -11.3386 -11.4067 -16.3563 -16.2652 

std 0.63683 0.475941 0.467312 0.510803 0.47298 1.190768 0.18028 0.341248 3.937268 0.660305 5.075219 0.371758 0.380606 

median -21.4523 -17.8584 -17.2762 -17.0512 -18.4872 -11.6638 -10.2263 -11.1994 -12.2611 -11.688 -12.7891 -16.8709 -16.7859 

rank 1 3 4 5 2 10 13 12 9 11 8 6 7 

C11-F11 
 

mean 565995.2 2198529 2452508 1706489 2054692 6837040 2165140 9109225 6353489 1881902 1900098 2736779 2986780 

best 258229.6 2100385 2354043 1539264 1829047 6565080 2093116 8854810 5417762 1783748 1309884 2560298 2803298 

worst 820275.3 2316404 2552711 1836317 2238476 7202544 2224515 9267550 7517254 2013820 3111228 2882056 3127837 

std 333248.4 142576.8 123544.9 202116.6 241632.9 380895.3 76797.68 240749.8 1176166 130081.3 1109404 192433.5 188712.3 

median 592738 2188663 2451639 1725187 2075623 6790267 2171465 9157270 6239471 1865019 1589640 2752381 3007992 

rank 1 7 8 2 5 12 6 13 11 3 4 9 10 

C11-F12 
 

mean 1187807 3249665 3748991 5093441 5228348 10833650 7813616 14564001 6806356 7548715 3294660 3988704 7363500 

best 1144377 3189639 3657615 4953196 5064104 10570391 7683112 13775380 6419487 7147561 3162570 3809036 7232072 

worst 1236860 3284035 3805859 5264854 5360183 11023184 7944198 15214953 7043848 7847732 3449042 4090228 7467847 

std 60229.43 56676.18 86427.01 188279.3 165990.5 272688.1 153300.6 804237.7 376688.7 429410 200206.2 171673.7 137107 
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median 1184995 3262492 3766246 5077858 5244552 10870513 7813577 14632835 6881045 7599784 3283513 4027776 7377041 

rank 1 2 4 6 7 12 11 13 8 10 3 5 9 

C11-F13 
 

mean 15289.76 15534.37 15554.17 50326.53 16574.2 15958.19 15526.3 16337.51 15561.73 15604.56 15572.45 15549.56 19574.4 

best 15289.75 15486.13 15494.25 39310.43 15503.14 15714.52 15482.38 15914.75 15506.07 15526.6 15520.52 15487.01 15535.8 

worst 15289.77 15619.41 15660.38 65146.5 19722.54 16401.72 15609.41 17280.8 15658.9 15707.1 15642.17 15653.41 31683.11 

std 0.011611 80.48495 100.5251 15779.75 2846.292 422.804 78.68115 872.4631 93.92871 123.8388 80.27942 98.61077 10946.43 

median 15289.76 15515.97 15531.02 48424.59 15535.56 15858.26 15506.71 16077.25 15540.97 15592.27 15563.56 15528.92 15539.35 

rank 1 3 5 13 11 9 2 10 6 8 7 4 12 

C11-F14 

mean 18112.4 62853.41 73888.97 73845.83 87550.4 162838.2 63064.25 262035.2 63756.73 63467.61 63544.48 73830.29 73826.75 

best 18059.17 20436.54 20904.85 20881.55 21245.28 106873 20673.72 177589.2 21123.26 21057.02 21087.72 20876.3 20832.75 

worst 18204.2 106655.1 128582.7 128473.7 155930.4 236610.2 106656 383688.6 108056.7 107362.1 107390 128469.4 128544.9 

std 91.44637 56121.07 70089.61 70099.26 87687.53 81607.58 55972.12 120240.4 56511.95 56152.28 56153.46 70068.11 70132.86 

median 18093.11 62161.01 73034.17 73014.03 86512.96 153934.7 62463.63 243431.5 62923.49 62725.67 62850.09 72987.74 72964.66 

rank 1 2 10 9 11 12 3 13 6 4 5 8 7 

C11-F15 

mean 32554.75 2364474 2944188 3026447 4226628 3296624 2524096 4146183 2384934 2540259 2364603 2944240 5138066 

best 32454.34 517543.3 638037.6 727572.9 1129036 927052.7 831286.5 1254197 517660.5 723279.9 517717.5 638089.2 1987617 

worst 32626.9 3512239 4377329 4456996 6414863 4568137 3788076 6872227 3593508 3777295 3512397 4377391 8143784 

std 98.27628 1846453 2305560 2296595 3093337 2205460 1776798 3124625 1878016 1813267 1846439 2305567 3414391 

median 32568.88 2714057 3380693 3460609 4681306 3845653 2738510 4229154 2714285 2830230 2714149 3380741 5210432 

rank 1 2 7 9 12 10 5 11 4 6 3 8 13 

C11-F16 
 

mean 132214.5 13586934 16931393 22661059 26465027 14447888 13586900 15302504 13594393 13591588 13590470 38978589 38098743 

best 130060.5 13241913 16500946 19389293 24904965 13822025 13246269 14293247 13252545 13249206 13248313 34731435 33601123 

worst 134947.7 13974576 17415344 27404186 28558455 15717826 13974766 17942251 13983864 13973804 13970973 43160482 44502204 

std 3055.305 415702.5 518999 4619008 2065407 1164413 414598.8 2391873 415748.9 411120 411747.2 4829680 6240280 

median 131924.9 13565624 16904641 21925379 26198343 14125850 13563283 14487259 13570582 13571672 13571297 39011219 37145822 

rank 1 3 9 10 11 7 2 8 6 5 4 13 12 

C11-F17 
 

mean 1907349 3.38E+09 4.22E+09 7.68E+09 6.81E+09 1.29E+10 8.31E+09 1.81E+10 4.59E+09 1.26E+10 3.38E+09 1E+10 1.03E+10 

best 1897783 3.25E+09 4.06E+09 7.24E+09 6.58E+09 1.14E+10 7.99E+09 1.38E+10 4.47E+09 1.01E+10 3.25E+09 9.3E+09 9.9E+09 

worst 1923258 3.53E+09 4.41E+09 7.95E+09 6.97E+09 1.41E+10 8.75E+09 2.15E+10 4.74E+09 1.55E+10 3.53E+09 1.11E+10 1.1E+10 

std 15330.85 1.54E+08 1.93E+08 4.38E+08 2.64E+08 1.61E+09 5.09E+08 4.45E+09 1.62E+08 3.08E+09 1.55E+08 1.14E+09 7.04E+08 

median 1904178 3.37E+09 4.21E+09 7.77E+09 6.84E+09 1.31E+10 8.25E+09 1.85E+10 4.58E+09 1.24E+10 3.37E+09 9.81E+09 1.01E+10 

rank 1 2 4 7 6 12 8 13 5 11 3 9 10 

C11-F18 
 

mean 932636.9 5522160 6656833 9771228 15980890 63061435 17454979 1.17E+08 6546008 13674962 5536107 43813641 38167225 

best 929032 4529168 5420393 8146881 14446535 43800928 11368122 81050688 5896599 7533019 4571385 38109890 36910176 

worst 935259.8 5955727 7189835 11149528 16657236 71459900 27822590 1.33E+08 7020436 20911517 5899421 47097930 39645160 

std 3543.117 904995.5 1126155 1785094 1410359 17591332 10326288 32954602 644250.2 7554659 874966.9 5644412 1673264 

median 933128 5801873 7008553 9894253 16409893 68492455 15314602 1.26E+08 6633498 13127656 5836811 45023373 38056781 

rank 1 2 5 6 8 12 9 13 4 7 3 11 10 

C11-F19 
 

mean 1015087 6358962 7669509 9182333 17152058 62821069 18259444 1.15E+08 7624691 14967162 6647696 55217810 39186390 

best 958248.4 4683137 5591066 7309535 14399738 52754668 16013437 98509514 5785337 7872773 4971051 52420101 36352611 

worst 1155471 7662559 9307147 11431069 19207195 79812893 22648780 1.45E+08 8892751 24156744 8393476 60654271 40835792 

std 127304.5 1731638 2164165 2752734 2784007 16278531 4109518 28809041 1969243 10761747 1937439 5012496 2649421 

median 973315.2 6545075 7889911 8994363 17500649 59358357 17187779 1.09E+08 7910339 13919566 6613129 53898433 39778578 

rank 1 2 5 6 8 12 9 13 4 7 3 11 10 

C11-F20 
 

mean 931837.9 6053537 7322001 11415953 16874721 66332954 16585159 1.24E+08 6875478 12039988 6064161 51266630 39037633 

best 926781.7 5935857 7174895 9901564 16444699 58849977 15079406 1.09E+08 6718872 11748200 5945179 47389243 37471730 

worst 937397.9 6178536 7478237 13851216 17364795 77641130 18300628 1.46E+08 7049586 12589574 6198044 54933824 40376597 

std 6403.284 136583.8 170666.9 2364674 512817.4 10827834 1804943 21555912 187716.2 532498.2 141674.9 5656040 1632186 

median 931585.9 6049878 7317436 10955517 16844694 64420355 16480300 1.2E+08 6866727 11911089 6056710 51371726 39151102 

rank 1 2 5 6 9 12 8 13 4 7 3 11 10 

C11-F21 
 

mean 12.58728 28.79524 32.34681 38.00116 39.81853 66.04013 45.07744 86.42775 42.25558 50.74794 38.68537 55.19432 54.3253 

best 9.874464 21.83702 23.33594 29.73812 25.38953 54.16408 35.47676 68.39954 35.39282 40.93961 28.11511 42.09047 33.03518 

worst 14.82524 34.93995 40.30472 47.13971 51.86213 76.7729 52.32495 105.1987 46.38737 59.03366 48.40893 61.61081 68.61014 

std 3.081446 7.702247 9.752454 9.718627 14.87106 16.59538 9.526881 26.52925 6.463794 10.75871 11.69897 12.12544 20.49512 

median 12.82471 29.202 32.87329 37.56341 41.01123 66.61178 46.25402 86.05636 43.62106 51.50925 39.10871 58.53801 57.82794 

rank 1 2 3 4 6 12 8 13 7 9 5 11 10 

C11-F22 
 

mean 15.96388 31.75672 35.23327 41.92937 41.94376 61.94204 53.36482 74.0998 44.40511 57.85303 43.02135 57.63744 53.73153 

best 11.38632 25.34323 27.60183 36.79969 31.93872 57.51068 43.9191 60.06303 40.24824 51.04782 31.12226 51.36268 45.75694 

worst 19.35733 36.4718 40.44158 47.23651 48.91765 69.0072 62.31853 84.73294 49.35287 63.8842 49.1952 66.14209 59.58751 

std 5.361405 6.889546 7.814412 6.056502 10.46694 6.886286 11.47779 14.10166 5.633708 9.114878 10.99954 9.788351 8.430633 

median 16.55593 32.60592 36.44483 41.84064 43.45933 60.62514 53.61082 75.80162 44.00967 58.24005 45.88397 56.5225 54.79084 

rank 1 2 3 4 5 12 8 13 7 11 6 10 9 

Sum rank 22 64 108 137 147 240 191 268 161 169 131 177 187 

Mean rank 1.00E+00 2.91E+00 4.91E+00 6.23E+00 6.68E+00 1.09E+01 8.68E+00 1.22E+01 7.32E+00 7.68E+00 5.95E+00 8.05E+00 8.50E+00 

Total rank 1 2 3 5 6 12 11 13 7 8 4 9 10 

Wilcoxon: p-value 6.72E-14 5.03E-15 8.80E-16 3.66E-15 1.88E-15 8.80E-16 2.06E-12 3.66E-15 2.76E-15 4.39E-15 1.31E-15 2.76E-15 
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Figure. 2 Boxplot diagrams of performance of metaheuristic algorithms in solving CEC 2011 test suite 
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