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Abstract: This study presents a new optimization algorithm called Spider-Tailed Horned Viper Optimization 

(STHVO), inspired by the spider-tailed horned viper. The viper's unique hunting strategy, which involves using its 

spider-like tail to attract prey, serves as the basis for this algorithm. STHVO incorporates two key processes: 

exploration and exploitation. Exploration allows the algorithm to search broadly for potential solutions, similar to how 

the viper moves through varied terrains in search of prey. Exploitation refines these solutions, akin to the snake 

focusing on its target once it has been lured. STHVO was rigorously tested across twenty-three benchmark functions, 

including unimodal and multimodal test suites. These benchmarks provide a comprehensive framework for assessing 

the algorithm's performance. The results showed that STHVO effectively balances exploration and exploitation, 

consistently finding high-quality solutions and outperforming a dozen established metaheuristic algorithms on most 

benchmarks. The algorithm's superior performance in both theoretical and practical contexts highlights its robustness 

and versatility. Overall, STHVO offers a novel, nature-inspired approach to optimization, proving to be a powerful 

tool for achieving optimal solutions across diverse applications. 

Keywords: Spider-tailed horned viper, Nature-inspired, Optimization, Metaheuristic, Optimization algorithm, 

Exploration, Exploitation. 

 

 

1. Introduction 

In various fields such as science, engineering, and 

industry, numerous problems present themselves 

with multiple potential solutions. These types of 

challenges are referred to as optimization problems. 

An optimization problem typically consists of three 

fundamental components: decision variables, 

constraints, and an objective function. The primary 

goal of optimization is to find the best possible 

solution from a set of feasible alternatives, effectively 

maximizing or minimizing the objective function 

under given constraints [1]. As science and 

technology have progressed, the complexity of 

optimization problems has increased significantly, 
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leading to the emergence of highly intricate 

challenges. This complexity has necessitated the 

development of advanced tools and methodologies 

specifically designed to tackle these problems [2]. 

Broadly speaking, the approaches used to solve 

optimization problems can be classified into two 

major categories: deterministic methods and 

stochastic methods [3]. 

Deterministic methods have long been the 

traditional choice for solving optimization problems. 

These methods can be further subdivided into 

gradient-based techniques and non-gradient-based 

techniques. Gradient-based methods are particularly 

effective when dealing with optimization problems 

that are differentiable, linear, continuous, convex, 

and have low dimensionality [4]. However, as the 

complexity of optimization problems increases, these 

deterministic methods often lose their effectiveness, 

leading to suboptimal solutions as they become 

trapped in local optima [5, 6]. Real-world 

optimization problems are often characterized by 

complexities such as discrete and unknown search 

spaces, non-differentiable and non-linear nature, 

discontinuities, non-convexity, and high 

dimensionality [7]. The inherent limitations of 

deterministic methods in handling such complex 

problems have motivated researchers to explore and 

develop alternative strategies [8, 9]. This has led to 

the rise of stochastic approaches, which are designed 

to better navigate the intricate landscapes of real-

world optimization problems [10]. 

Stochastic methods differ fundamentally from 

deterministic ones in that they do not rely on gradient 

information from the objective function or 

constraints. Instead, these methods employ random 

searches across the problem-solving space, using 

trial-and-error processes combined with stochastic 

operators to identify suitable solutions. Among the 

most popular stochastic approaches are metaheuristic 

algorithms, which are designed to mimic the 

collective intelligence observed in natural systems, 

such as animal groups, insect colonies, and social 

behaviors [11].  

Metaheuristic algorithms generally start the 

optimization process by generating an initial set of 

random solutions within the search space. These 

solutions are then iteratively improved through 

various algorithm-specific mechanisms. During each 

iteration, the algorithm seeks to refine its 

understanding of the search space by updating and 

retaining the best solution identified so far. The 

process continues until the algorithm converges to a 

final solution, which is proposed as the best possible 

answer to the problem. However, due to the inherent 

randomness of the search process, there is no 

guarantee that the solution obtained will precisely 

match the global optimum. As a result, the solutions 

generated by metaheuristic algorithms are often 

referred to as quasi-optimal solutions—solutions that 

are near the global optimum but not necessarily the 

absolute best [12]. When comparing the performance 

of different metaheuristic algorithms on a given 

optimization problem, the algorithm that converges 

most effectively to a quasi-optimal solution close to 

the global optimum is generally considered to be the 

superior method. For a metaheuristic algorithm to be 

effective, it must perform well on both a global and 

local scale. Global search, which represents the 

exploration capability of the algorithm, allows it to 

scan diverse regions of the search space to identify 

the area containing the global optimum. This helps 

the algorithm avoid becoming trapped in local optima. 

Local search, on the other hand, represents the 

exploitation capability of the algorithm. It focuses on 

refining the search within promising regions of the 

space, leading to better solutions that are closer to the 

global optimum. Since exploration and exploitation 

are conflicting objectives, a successful metaheuristic 

algorithm must strike an optimal balance between 

these two processes to conduct an effective search 

[13]. 

The continuous pursuit of more effective 

optimization solutions has driven researchers to 

design a multitude of metaheuristic algorithms. These 

algorithms draw inspiration from a wide range of 

sources, including natural phenomena, animal 

behavior, physical laws, biological processes, human 

social interactions, and even games. For instance, the 

Genetic Algorithm (GA) [14] is based on concepts 

from biology and genetics, while Particle Swarm 

Optimization (PSO)[15] is inspired by the movement 

patterns of birds and fish. The Spring Search 

Algorithm (SSA) [16] draws from Hooke's law and 

the tensile force of springs, whereas Teaching 

Learning Based Optimization (TLBO) [17] is 

modeled after the dynamics between teachers and 

students in a classroom setting. Additionally, the 

Darts Game Optimizer (DGO) [18] is inspired by the 

strategic approach players use to score points in the 

game of darts. 

The primary research question explored in this 

study is whether the development of new 

metaheuristic algorithms remains necessary, 

considering the vast array of existing ones. The No 

Free Lunch (NFL) theorem [19] offers a significant 

viewpoint on this matter. It posits that the 

effectiveness of a specific metaheuristic algorithm in 

addressing a certain set of optimization problems 

does not inherently translate to success in solving 

different types of problems. According to the NFL 
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theorem, it is impossible to predict in advance how 

well a metaheuristic algorithm will perform on a new 

optimization problem. As a result, no single 

algorithm can be universally regarded as the best 

across all optimization contexts. This perspective 

reinforces the idea that the search for new 

metaheuristic algorithms is not only justified but 

essential. The ongoing development of new 

algorithms is crucial for discovering more efficient 

and effective solutions to the diverse and complex 

optimization problems that arise in various fields. 

The limitations imposed by the NFL theorem 

highlight the need for continued innovation in 

algorithm design, as each new algorithm may bring 

unique strengths that make it particularly well-suited 

for specific types of problems. Drawing inspiration 

from the NFL theorem, the authors of this paper have 

undertaken the task of developing a new 

metaheuristic algorithm. This algorithm aims to 

address some of the existing challenges in 

optimization and to contribute to the broader 

landscape of problem-solving tools by offering a 

fresh approach that could excel where others might 

fall short. 

The novelty and significant contribution of this 

paper lie in the introduction of a new swarm-based 

metaheuristic algorithm called Spider-Tailed Horned 

Viper Optimization (STHVO). This algorithm is 

specifically designed to tackle optimization tasks by 

drawing inspiration from the natural behaviors of the 

spider-tailed horned viper—a unique reptile known 

for its distinctive hunting strategy. 

The key scientific contributions of this research 

are as follows: 

• STHVO is designed based on simulation of the 

natural behaviors of spider-tailed horned viper in 

the wild. 

• The fundamental inspiration in the design of 

STHVO is the hunting strategy of spider-tailed 

horned vipers in two stages of moving towards 

suitable ambushes and seducing the prey through 

the spider tail. 

• STHVO is mathematically modeled based on the 

simulation of the hunting strategy of spider-tailed 

horned vipers in two phases of exploration and 

exploitation. 

• The performance of STHVO for solving 

optimization problems is tested on twenty-three 

standard benchmark functions, including 

unimodal and multimodal test suite.  

• The performance of STHVO for solving 

optimization problems is compared with the 

performance of twelve well-known metaheuristic 

algorithms. 

The remainder of this paper is structured as 

follows: Section 2 introduces and models the 

proposed STHVO approach. Section 3 presents the 

simulation studies and results. Finally, Section 4 

concludes the paper and offers suggestions for future 

research directions. 

2. Spider-tailed horned viper optimization 

This section provides an in-depth explanation of 

the theoretical foundation behind the proposed 

Spider-Tailed Horned Viper Optimization (STHVO) 

algorithm. Following this, the algorithm is 

mathematically modeled to facilitate its application 

in solving a wide range of optimization problems. 

2.1 Inspiration of STHVO 

The spider-tailed horned viper (Pseudocerastes 

urarachnoides) is a species of venomous viper, in the 

family Viperidae and genus Pseudocerastes [20]. The 

habitat of this viper is in the west of Iran near the 

border area with Iraq. The spider-tailed horned viper 

has a unique tail that resembles a spider. It uses this 

tail to lure and attract insectivorous birds. The head 

of the spider-tailed horned viper has two protrusions 

above the eyes that look similar to horns [21]. The 

spider-tailed horned viper has a deceptive strategy 

during hunting to trap birds and insects. They first go 

to suitable hunting areas where they can ambush well. 

Then, the spider-tailed horned viper hides itself and 

puts its tail under the soil so that only the spider-

shaped part of the tail is visible. With this strategy, 

other animals will only notice the spider-tailed 

horned viper's tail without seeing it. These deceived 

animals approach the tail of the spider-tailed horned 

viper with the greed of hunting spiders. At this 

moment, the spider-tailed horned viper attacks and 

hunts the deceived animal in a very fast reaction and 

leap that does not take even a second. A video clip of 

the hunting strategy of the spider-tailed horned viper 

is published by Fathinia et al at 

http://dx.doi.org/10.6084/m9.figshare.1454446 [22]. 

Among the natural behaviors observed of the 

spider-tailed horned viper in the wild, the hunting 

strategy of this animal is very significant. This 

strategy has two main steps (i) moving towards the 

hunting ambush areas and (ii) luring the prey through 

the spider tail. Modeling these prominent behaviors 

in spider-tailed horned vipers has been the key 

inspiration in the proposed STHVO design. 

2.2 Algorithm initialization 

The newly introduced Spider-Tailed Horned 

Viper Optimization (STHVO) algorithm is a 
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population-based technique where each member of 

the population is represented by a spider-tailed 

horned viper. In this framework, each viper identifies 

values for the decision variables according to its 

specific position within the search space. 

Consequently, within the STHVO algorithm, every 

spider-tailed horned viper symbolizes a potential 

solution to the optimization problem at hand. 

Mathematically, this can be depicted as a vector, with 

each element of the vector corresponding to a specific 

dimension of the viper's position. These elements 

reflect the values of the problem's variables. 

At the start of the STHVO process, the positions 

of all spider-tailed horned vipers within the search 

space are initialized randomly, following a specific 

equation or rule as defined in Eq. (1). This initial 

random placement allows the algorithm to explore a 

diverse range of possible solutions, setting the stage 

for the subsequent optimization process. 

 

𝑥𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑) (1) 

 

Here 𝑋𝑖 is the i'th spider-tailed horned viper (i.e., 

candidate solution), 𝑥𝑖,𝑗 is the its j’th dimension (i.e., 

decision variable), 𝑁 is the number of spider-tailed 

horned vipers, 𝑚 is the number of decision variables, 

𝑟 is a random number in the interval [0 − 1], 𝑙𝑏𝑗 is a 

lower bound, and 𝑢𝑏𝑗 is an upper bound on the j’th 

decision variable. 

In the STHVO algorithm, the spider-tailed horned 

vipers collectively constitute the population. From a 

mathematical perspective, this population can be 

represented as a collection of vectors. These 

individual vectors, which describe the position of 

each viper within the search space, can be aggregated 

and modeled using a matrix, as outlined in Eq. (2). 

This matrix encapsulates the entire population, with 

each row corresponding to a single spider-tailed 

horned viper and each column representing a specific 

dimension of the search space or a decision variable. 

 

𝑋 = 

[
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 (2) 

 

Here 𝑋 is the population matrix of STHVO. 

Corresponding to each spider-tailed horned viper 

as a candidate solution for the variables of the 

problem, N values for the objective function can be 

evaluated. These calculated values provide insight 

into how well each candidate solution performs in 

relation to the objective. Mathematically, these 

objective function values for the entire population 

can be organized and represented as a vector, as 

shown in Eq. (3). This vector captures the 

performance of each spider-tailed horned viper, with 

each element corresponding to the objective function 

value of a specific viper within the population. 

 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)]

 
 
 
 

𝑁×1

 (3) 

 

Here 𝐹 is the objective function values vector and 

𝐹𝑖 is the objective function value obtained from the 

i'th spider-tailed horned viper. 

Within the population of spider-tailed horned 

vipers, the individual that yields the most favorable 

value for the objective function is identified as the 

optimal or best member. Since both the positions of 

the vipers in the search space and their corresponding 

objective function values are updated during each 

iteration, it is crucial to also update the identification 

of the best member accordingly. 

In the design of the Spider-Tailed Horned Viper 

Optimization (STHVO) algorithm, the process of 

updating the positions of population members in each 

iteration is guided by the natural hunting behavior of 

spider-tailed horned vipers. This behavior is modeled 

and incorporated into the algorithm through two 

distinct phases, which are elaborated upon in the 

following sections. These phases are designed to 

enhance the search process, enabling the algorithm to 

effectively explore and exploit the search space in 

order to find the optimal solution. 

2.3 Phase 1: Moving to suitable locations to 

ambush for hunting (Exploration phase) 

The spider-tailed horned viper uses camouflage 

and ambush strategy for hunting. This animal has the 

ability to move to positions that have suitable 

conditions for camouflage. This strategy leads the 

spider-tailed horned viper to move to different areas 

in order to discover a suitable ambush. This natural 

behavior of the spider-tailed horned viper is similar 

to the concept of exploration in the global search to 

identify the original optimal region in metaheuristic 

algorithms. Therefore, the mathematical modeling of 

the spider-tailed horned viper's movement towards 

the appropriate ambush, creates the ability of 

discovery in the design of STHVO. In the STHVO 

design, for each spider-tailed horned viper, the 
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position of other spider-tailed horned vipers that have 

a better value for the objective function are assumed 

as candidate positions for ambushes. Therefore, the 

set of candidate ambushes for each spider-tailed 

horned viper is specified using Eq. (4). 

 

𝐶𝐴𝑖 = {𝑋𝑘| 𝐹𝑘 ≤ 𝐹𝑖} (4) 

 

Here 𝐶𝐴𝑖 is the set of candidate ambushes for the 

ith spider-tailed horned viper and 𝑋𝑘  is the kth 

population members which has a better objective 

function value ( 𝐹𝑘 ) compared to the objective 

function value of the ith population member (𝐹𝑖). 

Among these candidate positions for ambush, one 

position is randomly selected as the ambush for 

hunting. Based on the modeling of the spider-tailed 

horned viper's movement towards the selected 

ambush for hunting, a new proposed location for the 

corresponding spider-tailed horned viper is 

calculated using Eq. (5). Then, according to Eq. (6), 

this new location, if it improves the value of the 

objective function, replaces the previous location of 

the corresponding spider-tailed horned viper. 

 

𝑥𝑖,𝑗
𝑃1 = 𝑥𝑖,𝑗 +  sin (

𝜋

2
𝑟). (𝑆𝐴𝑖,𝑗 − 𝐼 . 𝑥𝑖,𝑗) (5) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 < 𝐹𝑖

𝑋𝑖, 𝑒𝑙𝑠𝑒
 (6) 

 

Here 𝑋𝑖
𝑃1 is the new location proposed for the ith 

spider-tailed horned viper based on the first phase of 

STHVO, 𝑥𝑖,𝑗
𝑃1 is its jth dimension, 𝐹𝑖

𝑃1 is its objective 

function value, 𝑟 is a random number in the interval 
[0 − 1], 𝑆𝐴𝑖  is the location of the selected ambush 

for the ith spider-tailed horned viper, 𝑆𝐴𝑖,𝑗 is its jth 

dimension, and 𝐼 is a random number which selected 

from set {1,2}.   

2.4 Phase 2: Attracting and attacking the prey 

through caudal luring strategy (Exploitation 

phase) 

The most obvious characteristic of the spider-

tailed horned viper is its unique tail, which is very 

similar to a spider. spider-tailed horned viper uses 

this feature to deceive its prey. In this strategy, the 

spider-tailed horned viper camouflages its body in 

ambush positions for hunting. Then it hides its tail in 

such a way that only the spider-shaped part is 

exposed. Then, in order to lure prey, it shakes the 

spider-shaped part of its tail alternately. Birds and 

insects in that location only see the spider-shaped tail 

and approach the spider-tailed horned viper in order 

to hunt the spider. At this time, the spider-tailed 

horned viper attacks and hunts the prey with high 

action speed. This happens near the location where 

the spider-tailed horned viper is lurking and leads to 

a small movement of this animal in that position. This 

small change in the ambush area is similar to the 

concept of exploitation in local search to achieve 

better solutions in metaheuristic algorithms. In order 

to model this STHVO phase, a random location near 

each spider-tailed horned viper is calculated using Eq. 

(7). Then, if the value of the objective function is 

improved, the position of the spider-tailed horned 

viper is updated to this new position according to Eq. 

(8). 

 

𝑥𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗 + (1 − 2 . sin (

𝜋

2
𝑟))

(𝑢𝑏𝑗 − 𝑙𝑏𝑗)

𝑡
 (7) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 < 𝐹𝑖

𝑋𝑖, 𝑒𝑙𝑠𝑒
 (8) 

 

Here 𝑋𝑖
𝑃2 is the new location proposed for the ith 

spider-tailed horned viper based on the second phase 

of STHVO, 𝑥𝑖,𝑗
𝑃2  is its jth dimension, 𝐹𝑖

𝑃2  is its 

objective function value, 𝑟 is a random number in the 

interval [0 − 1], and 𝑡 is the iteration counter. 

3. Simulation studies 

In this section, we present a series of simulation 

studies conducted to evaluate the effectiveness of the 

proposed STHVO approach in solving optimization 

problems. To achieve this, the performance of the 

Spider-Tailed Horned Viper Optimization (STHVO) 

algorithm has been rigorously tested against a set of 

sixty-eight standard benchmark functions. These 

benchmark functions include unimodal, high-

dimensional multimodal, and fixed-dimensional 

multimodal functions [23]. The STHVO's 

optimization capabilities have been compared against 

twelve well-established metaheuristic algorithms, 

namely GA [14], PSO [24], GSA [25], TLBO [17], 

MVO [26], GWO [27], WOA [28], MPA [29], TSA 

[30], RSA [31], AVOA [32], and WSO [33].  

To ensure a robust comparison, the STHVO and each 

of the competitor algorithms were executed twenty 

independent times for each benchmark function, with 

each run consisting of 1000 iterations. The 

performance outcomes from these simulations are 

summarized using six key indicators: mean, best, 

worst, standard deviation (std), median, and rank. 

The "mean" value of each indicator serves as the 

primary criterion for ranking the overall performance 
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of the metaheuristic algorithms, providing a 

comprehensive measure of their optimization 

efficiency across the tested functions.  

3.1 Evaluation for unimodal benchmark 

To evaluate the performance of optimization 

algorithms in solving unimodal optimization 

problems, seven benchmark functions, denoted as F1 

through F7, have been selected. These functions are 

characterized by the absence of local optima, making 

them particularly suitable for assessing the 

exploitation capabilities of metaheuristic algorithms. 

Table 1 presents the optimization results for these 

unimodal functions using the Spider-Tailed Horned 

Viper Optimization (STHVO) algorithm and the 

competing algorithms. 

The simulation results indicate that STHVO 

demonstrates exceptional exploitation abilities, 

achieving the global optimum for functions F1, F2, 

F3, F4, and F6. Notably, STHVO emerges as the top-

performing optimizer for the F7 function as well. For 

function F5, STHVO ranks as the second-best 

optimizer, closely following the African Vultures 

Optimization Algorithm (AVOA). 

Overall, the analysis of these results highlights 

STHVO's superior performance in solving unimodal 

functions, particularly in terms of local search and 

exploitation efficiency. This makes STHVO a 

significantly more effective optimizer compared to 

the other algorithms tested.
 

 

Table 1. Optimization results of unimodal test functions 
F  STHVO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA 

F1 

mean 0 149.52885 0 0 1.19E-49 5.68E-47 1.23E-149 0.1299222 1.02E-58 8.51E-75 1.01E-16 0.2247862 34.259744 

best 0 10.970151 0 0 3.10E-52 2.17E-51 1.38E-171 0.0810732 4.42E-61 7.19E-77 6.30E-17 4.68E-05 16.490891 

worst 0 763.40843 0 0 7.25E-49 7.89E-46 2.45E-148 0.2053109 7.50E-58 5.24E-74 1.59E-16 4.150064 70.225154 

std 0 192.04337 0 0 2.12E-49 1.80E-46 5.49E-149 0.0316133 1.93E-58 1.52E-74 2.84E-17 0.9242966 13.521229 

median 0 67.918469 0 0 2.12E-50 2.03E-48 1.85E-159 0.1238226 1.34E-59 1.72E-75 9.28E-17 0.0061152 31.283032 

rank 1 11 1 1 5 6 2 8 4 3 7 9 10 

F2 

mean 0 1.9334906 1.22E-261 0 8.38E-28 1.33E-28 5.32E-101 0.2406114 9.59E-35 8.96E-39 5.10E-08 0.7892474 3.1294029 

best 0 0.5276386 0 0 1.29E-29 2.64E-30 2.57E-112 0.160513 7.89E-36 3.41E-40 3.62E-08 0.0659251 1.925071 

worst 0 6.4384296 2.45E-260 0 4.62E-27 8.83E-28 1.06E-99 0.3998012 3.82E-34 4.84E-38 6.81E-08 2.45481 4.6047706 

std 0 1.4412668 0 0 1.19E-27 2.49E-28 2.38E-100 0.060872 9.06E-35 1.16E-38 9.78E-09 0.63236 0.6912539 

median 0 1.4588353 1.96E-283 0 2.36E-28 2.43E-29 4.97E-108 0.2185072 7.80E-35 5.35E-39 4.98E-08 0.5121005 2.8793431 

rank 1 11 2 1 7 6 3 9 5 4 8 10 12 

F3 

mean 0 1459.0408 0 0 4.31E-13 4.01E-08 21269.937 13.637584 5.49E-15 5.21E-25 466.52051 233.04072 2151.6372 

best 0 489.21634 0 0 2.45E-26 3.28E-21 1007.8992 7.3987313 2.15E-19 3.02E-28 225.44725 70.038065 1419.3192 

worst 0 2979.8443 0 0 5.44E-12 6.51E-07 48145.225 31.198209 4.53E-14 8.16E-24 696.68112 535.58465 3269.1486 

std 0 580.77002 0 0 1.24E-12 1.47E-07 10197.364 5.7430243 1.13E-14 1.81E-24 148.76645 148.45344 506.86522 

median 0 1549.3879 0 0 7.00E-15 1.13E-13 20800.105 12.710615 3.54E-16 1.08E-26 478.81643 196.91865 2084.9781 

rank 1 9 1 1 4 5 11 6 3 2 8 7 10 

F4 

mean 0 17.541482 9.37E-264 0 2.98E-19 0.0046062 42.358551 0.4972783 8.97E-15 2.27E-30 0.9665494 6.2633539 3.0015409 

best 0 10.603217 0 0 2.71E-20 2.16E-05 0.2259775 0.2870264 5.52E-16 1.32E-31 1.385E-08 3.5220248 1.9786598 

worst 0 27.655403 1.3E-262 0 2.18E-18 0.016076 90.467984 0.8355712 1.86E-14 9.13E-30 3.2669704 12.371081 3.6417756 

std 0 3.2042694 0 0 4.79E-19 0.0056337 33.451351 0.1344543 5.58E-15 2.62E-30 1.0824739 2.4730637 0.4579349 

median 0 17.499133 2.98E-284 0 1.19E-19 0.0016009 41.31905 0.4796231 9.79E-15 9.27E-31 0.491248 5.3459192 3.0950185 

rank 1 11 2 1 4 6 12 7 5 3 8 10 9 

F5 

mean 0.1971011 10733.849 1.167E-05 11.581195 23.433788 28.137151 27.152241 315.97201 26.827402 26.828334 41.224414 221.95213 487.96403 

best 0.0032627 1239.1579 1.581E-06 8.33E-29 22.233935 26.150697 26.463012 29.104389 26.048089 25.639963 25.965259 21.266982 284.94753 

worst 0.8194701 72445.385 6.94E-05 28.990119 24.299103 28.892032 28.719453 2049.1037 27.948366 28.753332 325.61607 3263.9422 817.17888 

std 0.215288 16805.071 1.634E-05 14.552556 0.4862913 1.0719239 0.6010416 560.52109 0.6425883 0.8249373 66.939143 716.99517 125.64149 

median 0.1116387 4929.9802 5.021E-06 1.07E-28 23.374827 28.832572 27.007881 51.634883 27.073941 26.460319 26.208759 57.655514 478.50447 

rank 2 13 1 3 4 8 7 11 5 6 9 10 12 

F6 

mean 0 140.60052 6.07E-08 6.6165029 1.71E-09 3.631487 0.0677189 0.1585581 0.6379952 1.2772201 1.08E-16 0.0537603 34.190471 

best 0 12.027894 5.48E-09 4.3714174 7.73E-10 2.7998407 0.0100785 0.082866 2.45E-01 0.6522531 5.04E-17 1.06E-05 16.294547 

worst 0 510.99473 1.637E-07 7.4374317 4.62E-09 4.789133 0.2700998 0.2296629 1.0085348 2.1866556 4.35E-16 0.7291825 52.265465 

std 0 169.22068 4.426E-08 1.1109393 8.90E-10 0.6506473 0.0770929 0.0420361 0.275652 0.4875699 8.76E-17 0.1620834 8.6007769 

median 0 46.185433 4.696E-08 7.25 1.54E-09 3.5600403 0.0358689 0.1509461 0.7488091 1.2537722 8.12E-17 0.004526 35.932867 

rank 1 13 4 11 3 10 6 7 8 9 2 5 12 

F7 

mean 2.38E-06 0.022533 0.022536 0.022504 0.022953 0.026143 0.02367 0.031097 0.02327 0.023487 0.066601 0.17512 0.03167 

best 1.74E-07 0.006973 0.006978 0.006948 0.007164 0.009358 0.007369 0.014017 0.00723 0.007765 0.044391 0.054068 0.020538 

worst 7.52E-06 0.040502 0.04044 0.04041 0.040846 0.044866 0.041255 0.045884 0.040922 0.041686 0.097328 0.314771 0.045561 

std 2.15E-06 0.008834 0.00881 0.008809 0.008834 0.008798 0.009182 0.00968 0.008943 0.008942 0.016455 0.068725 0.007975 

median 1.63E-06 0.023537 0.023519 0.023482 0.023802 0.02786 0.023754 0.032652 0.024449 0.024472 0.063053 0.182945 0.033758 

rank 1 3 4 2 5 9 8 10 6 7 12 13 11 

Sum rank 8 71 15 20 32 50 49 58 36 34 54 64 76 

Mean rank 1.1428571 10.142857 2.1428571 2.8571429 4.57 7.1428571 7 8.2857143 5.1 4.8571429 7.71 9.14 10.857143 

Total ranking 1 12 2 3 4 8 7 10 6 5 9 11 13 
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3.2 Evaluation for high-dimensional multimodal 

benchmark 

To assess the effectiveness of metaheuristic 

algorithms in tackling high-dimensional multimodal 

optimization problems, six benchmark functions, 

labeled F8 through F13, have been chosen. These 

functions are characterized by a substantial number 

of local optima, making them ideal for evaluating the 

exploration capabilities of metaheuristic algorithms, 

particularly in their ability to perform global searches 

and avoid entrapment in local optima. 

The results of applying the Spider-Tailed Horned 

Viper Optimization (STHVO) algorithm, along with 

other competing algorithms, to these functions are 

summarized in Table 2. The simulation outcomes 

reveal that STHVO successfully converged to the 

global optimum for functions F9 and F11, 

demonstrating robust exploration capabilities. 

Furthermore, STHVO outperformed all other 

algorithms for functions F8, F10, F12, and F13, 

establishing itself as the best optimizer for these 

problems. When comparing the simulation results, it 

becomes evident that STHVO excels in identifying 

optimal regions within the search space. Its high 

exploration ability has consistently provided superior 

performance in solving the high-dimensional 

multimodal optimization problems represented by 

functions F8 through F13, outperforming the other 

metaheuristic algorithms under comparison. 

3.3 Evaluation for fixed-dimensional multimodal 

benchmark 

To evaluate the performance of metaheuristic 

algorithms in solving fixed-dimensional multimodal 

optimization problems, ten benchmark functions, 

designated as F14 through F23, were selected. These 

functions are characterized by a limited number of 

local optima, making them ideal for simultaneously 

assessing the exploration and exploitation 

capabilities of metaheuristic algorithms, as well as 

their ability to maintain a balance between these two 

aspects during the search process. 

The outcomes of implementing the Spider-Tailed 

Horned Viper Optimization (STHVO) algorithm, 

along with other competing algorithms, on these 

functions are documented in Table 3.

 

 

Table 2. Optimization results of high-dimensional multimodal test functions 
F  STHVO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA 

F8 

mean -12563.1 -7377.4 -11771.4 -6061.5 -9568.98 -6587.66 -9749.32 -8134.48 -6630.9 -5995.36 -3783.74 -7021.35 -8428.39 

best -12569.5 -9117.48 -11996.7 -6261.8 -10137.6 -7450.95 -11907.7 -8965.49 -7565.68 -7379.13 -4427.23 -8105.31 -9446.08 

worst -12447.1 -6085.2 -11134.6 -5761.79 -8745.39 -5618.68 -7811.64 -7254.01 -5851.95 -5302.91 -3273.81 -5933.15 -7210.39 

std 29.58355 844.5751 225.3039 148.21 397.2406 512.338 1580.941 476.9387 480.7458 539.692 398.2497 593.2177 730.3683 

median -12569.5 -7302.33 -11839.6 -6095.49 -9591.89 -6493.06 -9217.87 -8100.31 -6623.39 -5954.03 -3648.61 -6993.77 -8500.88 

rank 1 7 2 11 4 10 3 6 9 12 13 8 5 

F9 

mean 0 28.97533 6.583454 6.583454 6.583454 148.3763 6.583454 86.63614 6.816212 6.583454 26.79648 51.30779 54.16262 

best 0 19.64655 2.40439 2.40439 2.40439 78.41589 2.40439 53.82452 2.40439 2.40439 15.81141 18.73848 30.7041 

worst 0 54.36277 10.46883 10.46883 10.46883 234.1906 10.46883 168.1096 10.66632 10.46883 36.61418 81.58823 81.3586 

std 0 9.48664 2.267385 2.267385 2.267385 35.88933 2.267385 28.47394 2.466234 2.267385 5.999449 17.67074 15.78162 

median 0 26.10366 6.251354 6.251354 6.251354 141.5104 6.251354 83.45882 6.380382 6.251354 26.78886 48.71958 48.87199 

rank 1 6 2 2 2 10 3 9 4 2 5 7 8 

F10 

mean 8.88E-16 4.715424 0.379716 0.379716 0.379716 1.591003 0.379716 0.87383 0.379716 0.379716 0.379716 2.959294 3.381532 

best 8.88E-16 3.236274 0.229553 0.229553 0.229553 0.256334 0.229553 0.322181 0.229553 0.229553 0.229553 1.78901 2.852752 

worst 8.88E-16 6.178225 0.661322 0.661322 0.661322 3.146229 0.661322 1.903958 0.661322 0.661322 0.661322 5.153978 3.999378 

std 0 0.868365 0.110813 0.110813 0.110813 1.370093 0.110813 0.544498 0.110813 0.110813 0.110813 0.863615 0.356114 

median 8.88E-16 4.631668 0.37759 0.37759 0.37759 1.135053 0.37759 0.675923 0.37759 0.37759 0.37759 2.942725 3.341623 

rank 1 12 2 2 4 9 3 8 6 5 7 10 11 

F11 

mean 0 1.785179 0.007343 0.007343 0.007343 0.010377 0.014797 0.309377 0.010756 0.007343 6.371139 0.057229 1.231349 

best 0 0.957958 0.000986 0.000986 0.000986 0.001249 0.000986 0.192811 0.000986 0.000986 2.151214 0.007684 1.006126 

worst 0 4.249801 0.027298 0.027298 0.027298 0.031765 0.093317 0.495266 0.056482 0.027298 9.179713 0.212743 1.506171 

std 0 1.013796 0.006833 0.006833 0.006833 0.009303 0.026034 0.075302 0.013786 0.006833 2.191466 0.053252 0.143782 

median 0 1.43147 0.004538 0.004538 0.004538 0.008055 0.004538 0.316213 0.006388 0.004538 6.259994 0.035366 1.220211 

rank 1 9 2 2 2 3 5 7 4 2 10 6 8 

F12 

mean 2.63E-33 3.690078 0.180708 1.24209 0.180708 6.087865 0.186231 1.030065 0.212709 0.253438 0.310974 1.40834 0.322773 

best 2.13E-34 0.260998 4.62E-06 0.612509 4.62E-06 0.608211 0.000629 0.00134 0.011042 0.070265 0.000291 3.6E-05 0.044619 

worst 5.73E-33 8.84428 0.524574 1.717751 0.524574 10.14883 0.53572 3.301456 0.561 0.589744 0.681288 4.088235 0.563235 

std 1.7E-33 2.48161 0.186318 0.341333 0.186318 3.164144 0.186489 1.126013 0.184812 0.18446 0.24958 1.452063 0.167862 

median 2.62E-33 3.234149 0.14931 1.28368 0.14931 5.844715 0.153759 0.470796 0.179609 0.215524 0.302502 1.163642 0.313081 

rank 1 12 3 10 2 13 4 9 5 6 7 11 8 

F13 

mean 6.7E-32 818.9346 0.694804 0.694804 0.696755 3.235295 0.879948 0.719281 1.123419 1.555968 0.695667 5.414915 2.712071 

best 1.14E-34 16.8689 0.016641 0.016641 0.016641 2.247812 0.142551 0.026029 0.277828 0.619216 0.016721 0.129691 1.222117 

worst 4.34E-31 14676.65 2.848373 2.848373 2.848373 5.032679 3.141911 2.872739 3.285848 3.672998 2.848373 22.19864 5.383347 

std 1.3E-31 3537.918 0.753893 0.753893 0.752989 0.762291 0.83508 0.758286 0.711732 0.777076 0.752947 5.875425 1.033713 

median 3.38E-32 30.15666 0.459162 0.459162 0.459162 3.142976 0.671471 0.480768 0.951963 1.428021 0.459162 3.578458 2.57838 

rank 1 13 3 2 5 11 7 6 8 9 4 12 10 

Sum Rank 6 59 14 29 19 56 25 45 36 36 46 54 50 

Mean rank 1 9.833333 2.333333 4.833333 3.166667 9.333333 4.166667 7.5 6 6 7.666667 9 8.333333 

Total ranking 1 12 2 5 3 11 4 7 6 6 8 10 9 
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Table 3. Optimization results of fixed-dimensional multimodal test functions 
F  STHVO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA 

F14 

mean 0.998004 2.159387 2.406607 3.653747 2.159387 5.700948 2.71583 2.159387 3.312029 2.201135 2.867583 3.479798 2.159797 

best 0.998004 1.008449 1.008449 1.033767 1.008449 1.342461 1.008449 1.008449 1.174451 1.008449 1.198144 1.008449 1.008449 

worst 0.998004 4.719846 5.624475 9.631941 4.719846 9.631941 5.451903 4.719846 6.802766 4.897857 7.206773 8.974989 4.720026 

std 7.8E-17 1.142957 1.380167 2.705568 1.142957 2.822338 1.445938 1.142957 1.872511 1.242294 1.668326 2.777701 1.14279 

median 0.998004 1.859308 2.187961 2.69427 1.859308 6.427128 2.36768 1.859308 2.862881 1.859309 2.542571 2.900702 1.862184 

rank 1 2 6 11 2 12 7 3 9 5 8 10 4 

F15 

mean 0.000307 0.002682 0.002635 0.002955 0.002798 0.006434 0.002763 0.00362 0.00394 0.00398 0.003328 0.004021 0.006533 

best 0.000307 0.000612 0.000612 0.00084 0.000683 0.000675 0.000678 0.000695 0.000675 0.000676 0.001261 0.000612 0.000888 

worst 0.000307 0.007582 0.007582 0.007759 0.007583 0.028048 0.007776 0.013063 0.016022 0.00936 0.008411 0.016022 0.020864 

std 2.2E-19 0.002332 0.002329 0.002335 0.002337 0.006782 0.002311 0.003608 0.004247 0.00325 0.002412 0.004996 0.006693 

median 0.000307 0.001513 0.001521 0.001949 0.001695 0.004944 0.001744 0.002016 0.002436 0.003598 0.002149 0.001808 0.003625 

rank 1 3 2 6 5 12 4 8 9 10 7 11 13 

F16 

mean -1.03163 -1.03146 -1.03146 -1.03106 -1.03146 -1.0308 -1.03146 -1.03146 -1.03146 -1.03146 -1.03146 -1.03146 -1.03146 

best -1.03163 -1.03162 -1.03162 -1.03161 -1.03162 -1.03162 -1.03162 -1.03162 -1.03162 -1.03162 -1.03162 -1.03162 -1.03162 

worst -1.03163 -1.03096 -1.03096 -1.02934 -1.03096 -1.01818 -1.03096 -1.03096 -1.03096 -1.03096 -1.03096 -1.03096 -1.03096 

std 2.27E-16 0.000219 0.000219 0.000751 0.000219 0.003224 0.000219 0.000219 0.000219 0.000219 0.000219 0.000219 0.000218 

median -1.03163 -1.03156 -1.03156 -1.03139 -1.03156 -1.03156 -1.03156 -1.03156 -1.03156 -1.03156 -1.03156 -1.03156 -1.03156 

rank 1 6 2 9 2 10 3 5 4 7 2 2 8 

F17 

mean 0.397887 0.483259 0.483259 0.485208 0.483259 0.483276 0.48326 0.483259 0.48326 0.484446 0.483259 0.568651 0.60286 

best 0.397887 0.397932 0.397932 0.398041 0.397932 0.397933 0.397932 0.397932 0.397932 0.397939 0.397932 0.397932 0.397933 

worst 0.397887 1.229545 1.229545 1.231145 1.229545 1.229547 1.229545 1.229545 1.229546 1.229608 1.229545 2.236707 2.236716 

std 0 0.225911 0.225911 0.225761 0.225911 0.225916 0.225911 0.225911 0.225911 0.225446 0.225911 0.495246 0.551718 

median 0.397887 0.398772 0.398772 0.400894 0.398772 0.398794 0.398772 0.398772 0.398772 0.399096 0.398772 0.398772 0.398794 

rank 1 2 2 8 2 6 5 3 4 7 2 9 10 

F18 

mean 3 3.475023 3.475023 3.475065 3.475023 7.451845 3.475056 3.475023 3.47503 3.475024 3.475023 3.475023 4.626432 

best 3 3 3 3.000001 3 3.000003 3.000001 3 3.000003 3.000002 3 3 3 

worst 3 7.752356 7.752356 7.752356 7.752356 37.08707 7.752381 7.752356 7.752367 7.752356 7.752356 7.752356 19.27203 

std 1.03E-15 1.580785 1.580785 1.580778 1.580785 11.38608 1.580777 1.580785 1.580786 1.580785 1.580785 1.580785 5.412602 

median 3 3.000178 3.000178 3.000218 3.000178 3.00037 3.000197 3.000178 3.000179 3.000178 3.000178 3.000178 3.000427 

rank 1 2 7 11 3 13 10 6 9 8 5 4 12 

F19 

mean -3.86278 -3.85811 -3.85811 -3.84678 -3.85811 -3.85808 -3.85632 -3.85811 -3.85747 -3.85763 -3.85811 -3.85811 -3.8581 

best -3.86278 -3.86273 -3.86273 -3.8626 -3.86273 -3.86269 -3.86189 -3.86273 -3.86272 -3.86256 -3.86273 -3.86273 -3.86273 

worst -3.86278 -3.83572 -3.83572 -3.77012 -3.83572 -3.8357 -3.8356 -3.83572 -3.8324 -3.8327 -3.83572 -3.83572 -3.83571 

std 2.47E-15 0.006343 0.006343 0.021719 0.006343 0.006338 0.006134 0.006343 0.00711 0.007009 0.006343 0.006343 0.00634 

median -3.86278 -3.85951 -3.85951 -3.85157 -3.85951 -3.85949 -3.85821 -3.85951 -3.85844 -3.85912 -3.85951 -3.85951 -3.85951 

rank 1 2 4 11 3 7 10 5 9 8 3 3 6 

F20 

mean -3.322 -3.2118 -3.20676 -3.03288 -3.20178 -3.18491 -3.18305 -3.19172 -3.19388 -3.18908 -3.2193 -3.20429 -3.1718 

best -3.322 -3.28077 -3.28077 -3.18515 -3.28077 -3.27951 -3.28065 -3.28005 -3.28077 -3.27681 -3.28077 -3.28077 -3.27648 

worst -3.322 -2.96532 -2.91467 -2.17221 -2.91528 -2.96503 -2.89897 -2.96532 -2.96531 -2.885 -2.96532 -2.96532 -2.89383 

std 4.13E-16 0.084033 0.095229 0.246758 0.086886 0.094134 0.090991 0.080923 0.088149 0.092384 0.0788 0.088165 0.104907 

median -3.322 -3.23189 -3.23137 -3.08281 -3.21493 -3.21473 -3.19135 -3.2134 -3.21839 -3.20534 -3.23398 -3.23137 -3.18421 

rank 1 3 4 13 6 10 11 8 7 9 2 5 12 

F21 

mean -10.1532 -7.11438 -7.58704 -5.44167 -7.58704 -5.66557 -6.84071 -6.62876 -7.37421 -5.90874 -6.62382 -5.75059 -5.34852 

best -10.1532 -9.20092 -9.20092 -7.05555 -9.20092 -8.25457 -9.20084 -8.27154 -9.2008 -8.16277 -8.27156 -9.20092 -9.03798 

worst -10.1532 -3.51975 -6.60653 -4.46116 -6.60653 -3.46793 -4.46082 -3.49365 -4.53676 -4.36714 -3.46282 -3.44077 -3.32057 

std 2.61E-15 1.48715 0.747798 0.747797 0.747798 1.743831 1.455726 1.587257 1.106657 0.906905 1.555338 2.273289 1.818798 

median -10.1532 -7.64768 -7.81093 -5.66555 -7.81093 -5.3662 -6.66618 -7.00334 -7.70119 -5.76634 -6.67918 -4.66721 -4.81568 

rank 1 5 2 12 3 11 6 7 4 9 8 10 13 

F22 

mean -10.4029 -8.32128 -8.32128 -6.08448 -8.32128 -7.06477 -7.43175 -7.76466 -8.20923 -7.51985 -8.32128 -7.56724 -6.2662 

best -10.4029 -9.33202 -9.33202 -7.09521 -9.33202 -9.24501 -9.04788 -9.332 -9.33182 -8.77075 -9.33202 -9.33202 -8.97291 

worst -10.4029 -6.82732 -6.82732 -4.59051 -6.82732 -4.72904 -4.59051 -5.74068 -5.8747 -5.9162 -6.82732 -3.61345 -3.61071 

std 3.87E-15 0.721138 0.721138 0.721138 0.721138 1.527336 1.448649 1.367651 0.93333 0.81732 0.721138 2.052413 1.726511 

median -10.4029 -8.21248 -8.21248 -5.97567 -8.21248 -6.97401 -8.0358 -8.11452 -8.21234 -7.50239 -8.21248 -8.21248 -6.42651 

rank 1 2 4 12 2 10 9 6 5 8 3 7 11 

F23 

mean -10.5364 -7.40062 -8.21787 -5.93715 -8.21787 -6.77543 -7.10483 -7.87946 -8.21769 -7.30843 -7.96837 -6.78797 -6.30837 

best -10.5364 -9.55581 -9.55581 -7.28001 -9.55581 -9.51657 -9.51225 -9.5558 -9.55562 -9.30909 -9.55581 -9.55581 -9.45463 

worst -10.5364 -3.6095 -6.83425 -4.55845 -6.83425 -3.43119 -3.68769 -6.0108 -6.83407 -4.37991 -5.88916 -3.41939 -3.39234 

std 2.25E-15 1.819709 1.13996 1.140183 1.13996 1.991945 1.903664 1.203891 1.139953 1.409614 1.335705 2.832943 2.448788 

median -10.5364 -7.493 -8.24264 -5.91768 -8.24264 -6.80198 -7.14983 -7.79849 -8.24239 -7.12691 -8.07751 -8.24264 -6.33748 

rank 1 7 3 13 2 11 9 6 4 8 5 10 12 

Sum Rank 10 34 36 106 30 102 74 57 64 79 45 71 101 

Mean rank 1 3.4 3.6 10.6 3 10.2 7.4 5.7 6.4 7.9 4.5 7.1 10.1 

Total ranking 1 3 4 13 2 12 9 6 7 10 5 8 11 
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The simulation results indicate that STHVO emerged 

as the best optimizer for functions F15 and F21. For 

the remaining functions—F14, F16, F17, F18, F19, 

F20, F22, and F23—while STHVO exhibited 

comparable performance in terms of the "mean" 

index values with some of the competing algorithms, 

it demonstrated superior performance by achieving 

better results for the "standard deviation (std)" index. 

This suggests that STHVO not only delivers 

consistent results but also reduces variability in the 

outcomes, reflecting its robustness. 

The analysis of these simulation results underscores 

that STHVO excels in maintaining a balance between 

exploration and exploitation throughout the 

optimization process. This balanced approach 

enables STHVO to deliver more effective 

performance in optimizing the fixed-dimensional 

multimodal functions F14 through F23 when 

compared to the other competing algorithms. 

4. Conclusions and future works 

In this paper, a new metaheuristic algorithm 

called Spider-Tailed Horned Viper Optimization 

(STHVO) was presented. The fundamental 

inspiration of SHTVO is the strategy of spider-tailed 

horned vipers during hunting in two stages (i) moving 

towards the hunting ambushes and (ii) luring the prey 

through the spider tail. STHOVO was 

mathematically modeled in two phases of exploration 

and exploitation in order to provide effective search 

at both global and local levels. The effectiveness of 

STHVO in solving optimization problems was tested 

on twenty-three benchmark functions of unimodal 

and multimodal test function. The optimization 

results of the benchmark functions showed that 

STHVO has a high success in exploration and 

exploitation, and balancing them during the 

optimization process. In order to analyze the ability 

of STHVO in optimization, the results obtained from 

the proposed approach were compared with the 

performance of twelve well-known metaheuristic 

algorithms. The analysis of the optimization results 

showed that STHVO has provided superior 

performance by providing better results in most of the 

benchmark functions compared to competitor 

algorithms.  

The authors provide several study suggestions for 

further research, including the design of binary and 

multi-objective versions of STHVO. Employing 

STHVO in solving optimization problems in various 

sciences and real-world applications is another 

suggestion for further research. 
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