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Abstract: In this paper, a new metaheuristic algorithm called Orangutan Optimization Algorithm (OOA) is designed, 

which imitates the behaviors of Orangutans in nature. The fundamental inspiration of OOA is the foraging strategy of 

Orangutans and the skills of these animals in nesting. The theory of OOA is explained and then the implementation 

steps of OOA in two phases of exploration and exploitation are mathematically modeled. The performance of OOA in 

dealing with real-world applications is evaluated on twenty-two constrained optimization problems from the CEC 

2011 test suite. The optimization results show that the proposed OOA approach, by balancing exploration and 

exploitation during the search process, is able to provide suitable solutions for the benchmark functions. Also, in order 

to measure the quality of OOA, the results obtained from the proposed approach are compared with twelve well-known 

metaheuristic algorithms. Analysis of the simulation results shows that OOA has provided superior performance by 

providing better results in 100% of the benchmark functions compared to competitor algorithms. 

Keywords: Orangutan, Nature-inspired, Optimization, Metaheuristic, Optimization algorithm, Exploration, 

Exploitation. 

 

 

1. Introduction 

Many problems in both science and real-world 

applications present multiple feasible solutions, 

which makes them complex to solve. These problems 

are referred to as optimization problems, and the 

process of identifying the most suitable solution from 

the set of available options is known as optimization 

[1]. From a mathematical perspective, optimization 

problems consist of three main components: decision 

variables, constraints, and objective functions. The 
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goal of optimization, therefore, is to determine the 

optimal values for the decision variables while 

adhering to the constraints so that the objective 

function achieves its most favorable outcome, either 

maximum or minimum [2]. Optimization problem-

solving methods are broadly classified into two 

completely different categories: deterministic and 

stochastic approaches [3]. Deterministic methods, 

which are further divided into gradient-based and 

non-gradient-based techniques, are particularly 

effective in solving linear, convex, continuous, 

differentiable, and low-dimensional optimization 

problems [4, 5]. However, as the complexity and 

dimensionality of these problems increase, 

deterministic methods often fail by getting trapped in 

suboptimal local solutions [6, 7]. This is especially 

true for problems that are non-linear, non-convex, 

discontinuous, non-differentiable, and high-

dimensional, which are common in scientific and 

practical applications [8, 9]. Due to these limitations, 

researchers have developed stochastic approaches to 

tackle more challenging optimization problems [10]. 

Metaheuristic algorithms, which are one of the 

most widely employed stochastic methods, are highly 

effective in addressing complex optimization 

challenges. These algorithms have effective 

applications in various sciences such as architecture 

[11, 12], energy [13], protection [14], electrical 

engineering [15], and energy carriers [16]. 

Metaheuristic algorithms work by utilizing a random 

search mechanism within the problem space, 

employing random operators and a trial-and-error 

process to find suitable solutions. The advantages of 

metaheuristic algorithms include the simplicity of 

their concepts, ease of implementation, independence 

from the specific problem type, and the ability to 

solve non-linear, non-convex, discontinuous, non-

derivative, and high-dimensional optimization 

problems. Furthermore, they are efficient in 

exploring unknown, non-linear search spaces, which 

explains their popularity among researchers [17]. 

The optimization process in metaheuristic 

algorithms begins by randomly generating a set of 

initial candidate solutions that respect the constraints 

of the problem. In an iterative process, these solutions 

are progressively refined based on the updating steps 

defined by the algorithm. The best solution found at 

each iteration is saved, and ultimately, the best 

overall solution is presented as the final result [18]. 

While the random search nature of these algorithms 

means that they cannot guarantee a global optimum, 

the solutions they produce are often near-optimal, 

which are referred to as quasi-optimal solutions. 

Consequently, when comparing the performance of 

multiple metaheuristic algorithms, the one that 

provides a better quasi-optimal solution is considered 

the most effective one for that particular problem [19]. 

The search process in metaheuristic algorithms 

must balance two key concepts: global exploration 

and local exploitation. Global exploration enables the 

algorithm to thoroughly scan the problem space, 

preventing it from getting stuck in local optima and 

helping to identify the most promising areas in the 

search space. Local exploitation, on the other hand, 

allows the algorithm to converge towards a global 

optimum by intensively searching around promising 

regions and refining solutions. Striking a balance 

between exploration and exploitation is crucial for 

the success of any metaheuristic algorithm in 

providing effective solutions [20]. 

A key question in metaheuristics research is 

whether, given the vast number of algorithms already 

developed, there is still a need to design completely 

different metaheuristic algorithms. The No Free 

Lunch (NFL) theorem provides an answer to this. It 

states that the success of a metaheuristic algorithm in 

solving one set of optimization problems does not 

guarantee its success in solving others [21]. Therefore, 

no single algorithm is universally optimal for all 

optimization tasks. This insight encourages ongoing 

innovation in the field of metaheuristic algorithm 

design, as the NFL theorem suggests that newer 

algorithms can offer more effective solutions for 

specific problem sets. 

The novelty of this paper lies in the development 

of a new metaheuristic algorithm called the 

Orangutan Optimization Algorithm (OOA), designed 

to solve a variety of optimization problems in 

different scientific fields and real-world applications. 

The key contributions of the paper are as follows:  

• OOA is inspired by the natural behavior of 

orangutans in the wild. 

• The algorithm’s core inspiration comes from the 

foraging strategies and nesting skills of orangutans. 

• The steps of OOA are described and 

mathematically modeled in two phases: exploration 

and exploitation. 

• To assess its effectiveness in real-world 

applications, OOA is applied to twenty-two 

optimization problems from the CEC 2011 test suite. 

• A comparative performance analysis is 

conducted, comparing OOA with twelve other well-

known metaheuristic algorithms. 

The structure of the paper is as follows: Section 2 

introduces and models the Orangutan Optimization 

Algorithm. Section 3 investigates the effectiveness of 

OOA in solving real-world applications. Finally, 

conclusions and suggestions for future research are 

discussed in Section 4. 
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2. Orangutan optimization algorithm 

In this section, the source of inspiration behind 

the Orangutan Optimization Algorithm (OOA) is 

thoroughly explained, followed by a comprehensive 

description of the theory underlying the approach. 

Afterwards, the step-by-step implementation of the 

OOA is carefully modeled using mathematical 

formulations, ensuring it can be effectively applied to 

solve completely different types of optimization 

problems. 

2.1 Algorithm initialization 

The newly introduced Orangutan Optimization 

Algorithm (OOA) is a bio-inspired metaheuristic 

algorithm that draws its inspiration from the natural 

behaviors of orangutans. In this approach, orangutans 

serve as the population members, and each orangutan 

represents a potential solution to the given 

optimization problem. These solutions are 

completely different from one another, as each 

orangutan occupies a unique position within the 

problem's search space. The variables corresponding 

to each solution are determined by the orangutan’s 

specific position, which can be mathematically 

modeled as a vector. As a group, these orangutans 

form the OOA population, which can be represented 

using a matrix structure using Eq. (1). This matrix is 

not static; it evolves as the algorithm progresses. 

Initially, the position of each orangutan in the search 

space is randomly determined. This randomness is 

essential in ensuring that the initial population covers 

diverse areas of the search space, enhancing the 

exploration capabilities of the algorithm. The 

initialization process for the population is 

mathematically modeled using Eq. (2), where each 

dimension of the orangutan’s position is calculated 

based on random values within a predefined range. 

This allows for a completely different starting point 

for each orangutan, creating diversity in candidate 

solutions. 
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𝑥𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑) (2) 

 

Here 𝑋 is the OOA population matrix, 𝑋𝑖  is the 

𝑖 th orangutan (candidate solution), 𝑥𝑖,𝑑  is its 𝑑 th 

dimension in search space (decision variable), 𝑁 is 

the number of orangutans, 𝑚  is the number of 

decision variables, 𝑟  is a random number in the 

interval [0,1], 𝑙𝑏𝑑, and 𝑢𝑏𝑑 are a lower bound and an 

upper bound of the 𝑑 th. decision variable, 

respectively. 

After initialization, each orangutan’s position 

corresponds to a set of variables, which are evaluated 

using the objective function of the optimization 

problem. The objective function assigns a value to 

each candidate solution, and this set of values can be 

represented mathematically using a vector, as shown 

in Eq. (3). 
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Here 𝐹  is the vector of calculated objective 

function and 𝐹𝑖  is the calculated objective function 

based on the 𝑖th orangutan. 

The calculated values of the objective function 

serve as a measure of the quality of each solution. 

Based on these evaluations, the algorithm identifies 

the best-performing orangutan (i.e., the candidate 

solution with the most optimal value) as well as the 

worst-performing one. In each iteration of the 

algorithm, the positions of the orangutans are updated, 

which means that their corresponding objective 

function values also change. As the search progresses, 

the best solution must be continuously updated to 

reflect the most optimal orangutan found so far. 

This iterative process of updating orangutan 

positions ensures that the algorithm effectively 

searches the problem space, gradually moving 

towards an optimal or near-optimal solution. 

2.2 Phase 1: foraging strategy (exploration) 

Orangutans, in their natural habitat, spend a 

significant amount of time searching for food such as 

fruits, tree leaves, and other diet items. This foraging 

behavior leads to large-scale movements and 

extensive exploration in their environment, allowing 

them to discover completely different areas in the 

search of resources. The simulation of this foraging 

strategy within OOA enhances the algorithm’s 

exploration capability, making it more adept at 

scanning and searching the global space of the 

problem. 

In the first phase of OOA, the position of each 

orangutan is updated to simulate this foraging 

behavior. Orangutans with better objective function 
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values are considered to represent better food sources, 

and each orangutan seeks out these superior positions. 

Eq. (4) mathematically defines the set of available 

food resources for each orangutan by considering all 

orangutans with better objective function values. The 

diversity of food sources allows the orangutans to 

explore a variety of potential solutions in completely 

different regions of the search space. 

 

𝐹𝑆𝑖 = {𝑋𝑘: 𝐹𝑘 < 𝐹𝑖 𝑎𝑛𝑑 𝑘 ≠ 𝑖} (4) 

 

Here 𝐹𝑆𝑖  is the set of candidate food sources’ 

locations for the 𝑖 th orangutan, 𝑋𝑘  is the is the 

orangutan with a better objective function value than 

𝑖 th orangutan, and 𝐹𝑘  is the its objective function 

value. 

To model this movement mathematically, a new 

position is first calculated for each orangutan using 

Eq. (5). This movement allows the orangutan to 

adjust its location in a way that explores completely 

different regions, potentially leading to a significant 

improvement in the objective function value. If the 

objective function improves, the new position is 

confirmed and updated according to Eq. (6): 

 

𝑥𝑖,𝑑
𝑃1 = 𝑥𝑖,𝑑 + 𝑟 ∙ (𝑆𝐹𝑆𝑖,𝑑 − 𝐼 ∙ 𝑥𝑖,𝑑),  (5) 

  

𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 ≤ 𝐹𝑖,

𝑋𝑖, 𝑒𝑙𝑠𝑒 ,
  (6) 

 

Here 𝑋𝑖
𝑃1 is the new suggested position of the ith 

orangutan based on the first phase of OOA, 𝑥𝑖,𝑑
𝑃1 is its 

𝑑th dimension, 𝐹𝑖
𝑃1 is its objective function value, 𝑟 

is a random number with a normal distribution in the 

range of [0,1], 𝑆𝐹𝑆𝑖,𝑑  is the 𝑑 th dimension of the 

selected food source for the 𝑖 th orangutan, 𝐼  is a 

random number from the set {1,2}, 𝑁 is the number 

of orangutans, and 𝑚  is the number of decision 

variables.  

2.3 Phase 2: nesting skill (exploitation phase) 

In addition to foraging, orangutans also 

demonstrate remarkable intelligence through their 

nesting behavior. Every day, they build nests in trees, 

selecting branches and leaves near their current 

location. This activity focuses on a more localized 

search, optimizing their living space. Simulating the 

nesting skills of orangutans in OOA enhances the 

algorithm’s exploitation capabilities, improving the 

fine-tuning of solutions and allowing for more 

precise exploration of local regions. 

During this second phase of OOA, the orangutan 

moves towards a nearby tree to nest. In the context of 

the algorithm, this nesting process is modeled by 

generating a new position for the orangutan based on 

its current location. Eq. (7) is used to simulate the 

movement towards the tree, and if the objective 

function value improves, the new position replaces 

the previous one, as outlined in Eq. (8): 

 

𝑥𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗 + (1 − 2 𝑟𝑖,𝑗) ∙  

𝑢𝑏𝑗−𝑙𝑏𝑗

𝑡
    (7) 

  

𝑋𝑖 = {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 ≤ 𝐹𝑖

𝑋𝑖, 𝑒𝑙𝑠𝑒 
 (8) 

 

Here 𝑋𝑖
𝑃2 is the new suggested position of the 𝑖th 

orangutan based on the second phase of OOA, 𝑥𝑖,𝑑
𝑃2 is 

its 𝑑th dimension, 𝐹𝑖
𝑃2 is its objective function value, 

𝑡 is the iteration counter of the algorithm, and 𝑇 is the 

maximum number of algorithm iterations. 

3. Simulation studies 

In this section, the effectiveness of the proposed 

OOA approach in addressing optimization challenges 

in real-world applications is thoroughly examined. 

To achieve this, the CEC 2011 test suite, which 

comprises twenty-two constrained optimization 

problems derived from practical applications, has 

been employed. A comprehensive description and 

full details of the CEC 2011 test suite are available in 

[22]. The optimization results obtained by the 

proposed OOA approach are compared with the 

performance of twelve well-established 

metaheuristic algorithms, including: GA [23], PSO 

[24], GSA [25], TLBO [26], MVO [27], GWO [28], 

WOA [29], MPA [30], TSA [31], RSA [32], AVOA 

[33], and WSO [34]. 

The results of the OOA implementation, along with 

competitor algorithms, when applied to the CEC 

2011 test suite, are summarized in Table 1 and Table 

2. Additionally, the comparative performance of 

OOA and the other algorithms is illustrated through 

boxplots in Figure 1. From a detailed comparison of 

the simulation results, it becomes clear that the OOA 

approach consistently outperforms the competitors, 

emerging as the top optimizer across all the problems 

ranging from C11-F1 to C11-F22. This clearly 

highlights OOA's robustness and effectiveness in 

dealing with real-world optimization problems. 

Notably, the simulation results indicate that OOA 

ranks as the best optimizer in the majority of the 

optimization problems from the CEC 2011 test suite, 

showcasing its superior performance when compared 

to the other algorithms.
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Table 1 Optimization results of CEC 2011 test suite 
 OOA WSO AVOA RSA MPA TSA WOA 

C11-F1 

mean 5.920103 17.39022 13.33731 21.05706 8.715436 18.01704 13.58734 
best 2E-10 14.61193 9.495939 18.71472 1.804603 17.30358 8.520687 

worst 12.30606 19.66117 16.68954 23.05217 13.19969 19.09799 16.93418 
std 7.196379 2.400987 4.013324 1.99914 5.368972 0.818959 4.018352 

median 5.687176 17.6439 13.58188 21.23068 9.928723 17.8333 14.44725 
rank 1 7 4 12 2 9 5 

C11-F2 
 

mean -26.3179 -14.2624 -19.9064 -11.8736 -23.3368 -11.6356 -17.8532 
best -27.0676 -15.7508 -20.5241 -12.1168 -23.9079 -15.1534 -21.0988 

worst -25.4328 -13.1382 -19.3344 -11.5246 -22.093 -9.58355 -14.2074 
std 0.738935 1.333128 0.544996 0.26244 0.884624 2.715589 3.570128 

median -26.3856 -14.0804 -19.8835 -11.9266 -23.6732 -10.9027 -18.0533 
rank 1 8 5 10 2 11 6 

C11-F4 
 

mean 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 
best 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 

worst 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 
std 2E-19 1.86E-11 2.13E-09 4.18E-11 6.64E-14 5.81E-14 6.62E-14 

median 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 
rank 1 11 13 12 6 8 4 

C11-F4 
 

mean 0 0 0 0 0 0 0 
best 0 0 0 0 0 0 0 

worst 0 0 0 0 0 0 0 
std 0 0 0 0 0 0 0 

median 0 0 0 0 0 0 0 
rank 1 1 1 1 1 1 1 

C11-F5 
 

mean -34.1274 -25.2175 -27.9963 -21.1342 -32.3358 -27.1746 -27.5944 
best -34.7494 -26.0919 -28.9217 -22.8513 -32.8473 -30.8993 -27.7615 

worst -33.3862 -24.4915 -27.632 -19.2053 -31.2781 -22.7089 -27.2665 
std 0.589989 0.736666 0.651398 2.066682 0.751817 3.543313 0.235926 

median -34.1871 -25.1432 -27.7158 -21.2401 -32.609 -27.5451 -27.6749 
rank 1 9 4 10 2 7 5 

C11-F6 
 

mean -24.1119 -14.0897 -18.2974 -13.2521 -21.3104 -8.63171 -19.0738 
best -27.4298 -14.764 -19.1411 -14.6227 -23.6053 -16.0875 -22.4303 

worst -23.0059 -13.5426 -17.602 -12.2858 -19.8721 -5.52345 -13.0723 
std 2.324951 0.65053 0.809346 1.065169 1.807309 5.248737 4.379777 

median -23.0059 -14.026 -18.2232 -13.0499 -20.8821 -6.45794 -20.3964 
rank 1 7 6 8 2 10 4 

C11-F7 
 

mean 0.860699 1.558108 1.288623 1.820738 0.99202 1.303556 1.673227 
best 0.582266 1.521316 1.182697 1.605716 0.862127 1.172989 1.588548 

worst 1.025027 1.635861 1.394596 1.96165 1.059349 1.59616 1.803919 
std 0.211503 0.055246 0.118873 0.159565 0.095148 0.206503 0.098956 

median 0.91775 1.537629 1.2886 1.857793 1.023301 1.222537 1.650222 
rank 1 9 7 13 3 8 12 

C11-F8 
 

mean 220 278.3988 241.0229 312.3393 225.8807 255.1568 262.5186 
best 220 255.5256 226.2458 277.3029 222.2252 222.2252 243.9974 

worst 220 310.8709 258.4594 348.7748 231.2187 340.1051 304.4945 
std 0 25.63005 14.43071 31.00166 4.442577 59.87582 29.60888 

median 220 273.5994 239.6932 311.6397 225.0395 229.1484 250.7913 
rank 1 11 7 12 2 9 10 

C11-F9 
 

mean 8789.286 504826.7 354448.5 929153.6 53342.71 92037.41 351366.3 
best 5457.674 345338.8 322389.6 615208 32194.85 74383.89 197262.9 

worst 14042.29 584496.9 381767.1 1088516 65230.14 119930.5 582900.7 
std 3889.181 117306.7 26662.14 223901 15947.1 21113.5 183601 

median 7828.591 544735.5 356818.6 1006445 57972.91 86917.64 312650.8 
rank 1 9 7 11 2 4 6 

C11-F10 
 

mean -21.4889 -13.6607 -16.1383 -12.2399 -17.9061 -14.0129 -12.7392 
best -21.8299 -14.3725 -16.7205 -12.4723 -18.5767 -17.4621 -13.2762 

worst -20.7878 -13.1969 -15.7944 -11.9599 -17.3594 -11.938 -12.3829 
std 0.498616 0.527305 0.445566 0.266005 0.585583 2.52099 0.409228 

median -21.669 -13.5366 -16.0191 -12.2637 -17.8442 -13.3258 -12.6488 
rank 1 7 3 10 2 5 9 

C11-F11 
 

mean 571712.3 5272454 1232488 7839331 1793336 5392008 1420866 
best 260837.9 5107868 1058371 7600047 1728921 4633051 1360288 

worst 828560.9 5525958 1352575 7967240 1875084 6379519 1525324 
std 260922.1 207728.9 130596.6 180776.5 64144.21 762344.6 75885.36 

median 598725.2 5227994 1259503 7895018 1784669 5277731 1398926 
rank 1 10 2 13 6 11 3 

C11-F12 mean 1199805 7567324 3356778 11634817 1593020 4745383 5404660 
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 best 1155937 7280380 3293066 10848229 1533606 4529257 5016677 
worst 1249353 7835976 3423927 12340363 1669648 4877249 5583985 

std 47157.58 247077.4 56234.99 642185.6 59426.91 173011 280042.1 
median 1196965 7576470 3355059 11675339 1584414 4787514 5508990 

rank 1 10 6 11 2 7 9 

C11-F13 
 

mean 15444.2 15805.61 15461.49 16185.9 15474.24 15496.94 15534.98 
best 15444.19 15647.1 15457.78 15842.51 15469.61 15485.91 15494.82 

worst 15444.21 16179.68 15467.86 17050.98 15479.23 15508.27 15590.66 
std 0.009091 264.6824 4.630429 611.0784 4.134745 13.28135 46.60689 

median 15444.2 15697.84 15460.17 15925.06 15474.06 15496.79 15527.22 
rank 1 9 2 11 3 4 8 

C11-F14 

mean 18295.35 97633.27 18682.8 195620.9 18757.09 19533.06 19276.3 
best 18241.58 75011.44 18613.02 144878.1 18661.23 19307.69 19122.12 

worst 18388.08 135292.4 18772.36 280518.7 18827.98 20021.3 19404.44 
std 71.59938 28333.14 85.39038 63854.81 80.72001 345.4167 134.2456 

median 18275.87 90114.63 18672.9 178543.3 18769.57 19401.62 19289.31 
rank 1 11 2 12 3 10 7 

C11-F15 

mean 32883.58 781176.2 108312 1627642 45341.41 63506.54 201447.2 
best 32782.17 319976.9 43595.67 678569 32904.1 33271.47 33021.41 

worst 32956.46 1941570 171262.9 4224324 51625.56 123795.5 287013.3 
std 76.94696 816676.8 70280.06 1822751 8897.118 42920.58 120525.5 

median 32897.86 431579.1 109194.6 803837.2 48417.99 48479.6 242877.1 
rank 1 10 7 11 2 6 8 

C11-F16 
 

mean 133550 817900.7 136863 1662172 138948.3 145227.4 142736.4 
best 131374.2 264960.8 136069.7 420357.3 137599.1 143439.6 136665.8 

worst 136310.8 1901072 137623.9 4096895 142513 147081.2 147681.1 
std 2392.2 773155 895.5159 1737676 2504.36 1601.356 4827.072 

median 133257.5 552785 136879.1 1065717 137840.5 145194.4 143299.4 
rank 1 8 2 9 3 6 5 

C11-F17 
 

mean 1926615 8.18E+09 2.59E+09 1.37E+10 6.48E+08 1.72E+09 8.8E+09 
best 1916953 7.28E+09 2.23E+09 1.02E+10 4.63E+08 1.35E+09 6.28E+09 

worst 1942685 8.82E+09 2.73E+09 1.64E+10 8.61E+08 2.09E+09 1.17E+10 
std 12003.53 7.26E+08 2.55E+08 2.79E+09 1.76E+08 3.26E+08 2.4E+09 

median 1923412 8.32E+09 2.71E+09 1.41E+10 6.35E+08 1.73E+09 8.61E+09 
rank 1 7 6 10 2 5 8 

C11-F18 
 

mean 942057.5 46968550 6246568 1E+08 1551619 2458384 8789489 
best 938416.2 32165899 3860025 69122918 1166395 2105030 3833110 

worst 944706.9 53337276 10680388 1.14E+08 2092481 2764259 15367297 
std 2774.139 10456522 3372738 22297257 413798.4 297588.8 5119786 

median 942553.5 51185512 5222930 1.09E+08 1473799 2482124 7978775 
rank 1 10 6 12 2 5 7 

C11-F19 
 

mean 1025341 46337780 6425512 98329374 1785097 2899712 9420437 
best 967927.7 39329617 5431525 84714139 1177061 2367354 1993479 

worst 1167142 59275780 8194119 1.24E+08 2340168 3422486 16978182 
std 99675.04 9379552 1288187 19079537 614570.1 483548.6 7410517 

median 983146.6 43372862 6038202 92318587 1811579 2904504 9355044 
rank 1 10 7 12 2 5 8 

C11-F20 
 

mean 941250.4 48967515 5532949 1.06E+08 1385714 2114060 6700575 
best 936143.2 43137685 4951268 92693847 1359767 1937660 6319847 

worst 946866.6 57917146 6133039 1.26E+08 1422491 2356836 7209610 
std 5013.552 6621981 512099.1 14830816 29465.74 198216.7 400304.6 

median 940995.9 47407614 5523745 1.02E+08 1380299 2080873 6636421 
rank 1 10 6 12 2 5 7 

C11-F21 
 

mean 12.71443 47.65386 23.5954 69.70586 18.79433 30.4773 38.01922 
best 9.974206 40.21741 22.58455 53.28962 17.08664 27.83265 35.2891 

worst 14.97499 55.7929 25.17928 86.27352 20.76606 31.91199 41.59334 
std 2.412667 7.133006 1.166637 15.39462 1.711693 1.90116 3.027254 

median 12.95425 47.30257 23.30889 69.63015 18.66231 31.08228 37.59723 
rank 1 9 3 10 2 6 7 

C11-F22 
 

mean 16.12513 45.62653 29.33206 59.65088 22.29539 33.27953 45.2224 
best 11.50133 40.43442 24.92922 44.92083 19.89289 29.90147 39.94322 

worst 19.55286 50.76417 34.23744 68.2016 24.26827 35.40932 49.68618 
std 4.197797 4.567446 4.678654 10.69338 2.342326 2.483074 4.622637 

median 16.72317 45.65375 29.08079 62.74054 22.51019 33.90365 45.63009 
rank 1 9 4 10 2 5 7 

Sum rank 22 192 110 232 55 147 146 
Mean rank 1 8.727273 5 10.54545 2.5 6.681818 6.636364 
Total rank 1 9 4 13 2 7 6 

Wilcoxon: p-value 2.00E-14 3.54E-17 7.12E-18 7.97E-06 2.23E-17 2.40E-17 

 



Received:  August 24, 2024.     Revised: December 2, 2024.                                                                                             53 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.07 

 

Table 2 Optimization results of CEC 2011 test suite 
 OOA MVO GWO TLBO GSA PSO GA 

C11-F1 

mean 5.920103 14.23293 11.54006 18.04442 20.81796 17.62171 22.26941 
best 2E-10 12.06721 2.440182 16.94885 18.26611 11.98458 21.09797 

worst 12.30606 16.75519 17.9142 20.10811 22.0111 23.14246 24.25607 
std 7.196379 2.542719 6.891004 1.494681 1.835857 5.329393 1.456657 

median 5.687176 14.05466 12.90292 17.56037 21.49731 17.67991 21.8618 
rank 1 6 3 10 11 8 13 

C11-F2 
 

mean -26.3179 -9.528 -21.2568 -11.3023 -15.241 -21.2983 -13.0262 
best -27.0676 -11.2824 -23.3867 -12.0527 -19.2658 -22.4767 -15.3514 

worst -25.4328 -8.10438 -18.0907 -10.7637 -11.6643 -19.023 -11.3361 
std 0.738935 1.384544 2.41029 0.60266 3.68196 1.640456 1.953962 

median -26.3856 -9.36262 -21.775 -11.1964 -15.0169 -21.8468 -12.7086 
rank 1 13 4 12 7 3 9 

C11-F4 
 

mean 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 
best 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 

worst 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 
std 2E-19 9E-13 6.7E-14 1.08E-13 6.62E-14 6.62E-14 6.62E-14 

median 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 
rank 1 10 7 9 3 2 5 

C11-F4 
 

mean 0 0 0 0 0 0 0 
best 0 0 0 0 0 0 0 

worst 0 0 0 0 0 0 0 
std 0 0 0 0 0 0 0 

median 0 0 0 0 0 0 0 
rank 1 1 1 1 1 1 1 

C11-F5 
 

mean -34.1274 -27.0569 -30.9071 -13.3897 -27.3571 -11.5656 -12.2902 
best -34.7494 -31.0961 -33.1007 -15.1957 -30.9286 -14.6193 -13.5569 

worst -33.3862 -25.0029 -27.5749 -12.0369 -24.7099 -10.0326 -10.9043 
std 0.589989 3.016868 2.471951 1.43243 2.882071 2.246734 1.211154 

median -34.1871 -26.0642 -31.4763 -13.1632 -26.8949 -10.8052 -12.3498 
rank 1 8 3 11 6 13 12 

C11-F6 
 

mean -24.1119 -10.2921 -18.8022 -4.21747 -20.6998 -4.94712 -5.71111 
best -27.4298 -17.7564 -20.7928 -4.93827 -24.3079 -7.0585 -9.74747 

worst -23.0059 -3.7729 -17.0597 -3.7729 -16.9161 -3.7729 -4.0188 
std 2.324951 7.752062 1.994112 0.529975 3.477442 1.570632 2.860723 

median -23.0059 -9.81963 -18.6782 -4.07935 -20.7876 -4.47854 -4.53909 
rank 1 9 5 13 3 12 11 

C11-F7 
 

mean 0.860699 0.951373 1.107406 1.65236 1.117491 1.15425 1.670577 
best 0.582266 0.885728 0.881194 1.479679 0.968488 0.897931 1.35767 

worst 1.025027 1.02631 1.309296 1.756946 1.298184 1.369651 1.829346 
std 0.211503 0.075607 0.186797 0.131117 0.158446 0.258564 0.224931 

median 0.91775 0.946726 1.119568 1.686408 1.101647 1.17471 1.747647 
rank 1 2 4 10 5 6 11 

C11-F8 
 

mean 220 227.2504 229.9897 227.2504 245.9581 433.4045 225.9188 
best 220 222.2252 222.2252 222.2252 222.2252 246.7904 222.2252 

worst 220 236.4643 239.4366 240.8062 288.7436 521.1187 231.5722 
std 0 6.826963 9.25062 9.508314 32.95358 135.3033 4.579606 

median 220 225.156 229.1484 222.985 236.4317 482.8545 224.9389 
rank 1 5 6 4 8 13 3 

C11-F9 
 

mean 8789.286 148488.9 72528.14 379914.4 728516.7 946357 1669534 
best 5457.674 112757.3 38425.67 333470.8 624500.4 753374.8 1597320 

worst 14042.29 201975.7 104307.5 472974.3 768053.7 1146793 1778056 
std 3889.181 41402.58 28515.35 66519.34 73166.54 216193.9 88492.94 

median 7828.591 139611.4 73689.68 356606.2 760756.3 942629.9 1651381 
rank 1 5 3 8 10 12 13 

C11-F10 
 

mean -21.4889 -14.2748 -13.7729 -11.4072 -12.9746 -11.491 -11.2428 
best -21.8299 -20.137 -14.5805 -11.9091 -13.8309 -11.9553 -11.6709 

worst -20.7878 -11.2489 -12.4952 -11.0793 -12.0186 -11.1889 -10.9583 
std 0.498616 4.184379 0.941716 0.371762 0.818242 0.343631 0.318359 

median -21.669 -12.8566 -14.0078 -11.3203 -13.0246 -11.4099 -11.171 
rank 1 4 6 12 8 11 13 

C11-F11 
 

mean 571712.3 1498856 3618899 4774892 1585228 4784193 5541427 
best 260837.9 859467.4 3495887 4729579 1539942 4748182 5463937 

worst 828560.9 2772377 3928789 4846534 1677837 4846534 5679235 
std 260922.1 906932.5 217780.3 52692.61 67680.62 45577.61 99412.38 

median 598725.2 1181790 3525459 4761727 1561566 4771028 5511268 
rank 1 4 7 8 5 9 12 

C11-F12 
 

mean 1199805 1637420 1718522 12552409 5383533 2465510 12687503 
best 1155937 1473502 1584886 11856053 5104008 2332813 12602758 
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worst 1249353 1780806 1844952 13104339 5562149 2663064 12761027 
std 47157.58 132583.4 112208.9 553507.6 211689.3 148250.5 68583.36 

median 1196965 1647685 1722125 12624622 5433988 2433081 12693114 
rank 1 3 4 12 8 5 13 

C11-F13 
 

mean 15444.2 15511.81 15506.11 15869.08 110296.6 15497.48 27688.41 
best 15444.19 15491.36 15497.6 15609.61 80421.19 15480.31 15478.16 

worst 15444.21 15550.36 15512.72 16342.08 150810.9 15524.7 64042.27 
std 0.009091 28.12276 6.737851 348.5 33308.79 20.1553 25474.47 

median 15444.2 15502.77 15507.06 15762.32 104977.1 15492.45 15616.61 
rank 1 7 6 10 13 5 12 

C11-F14 

mean 18295.35 19439.01 19282.13 264278.7 19164.53 19191.89 19181.17 
best 18241.58 19329.12 19134.19 28547.81 18912.02 19044.6 18932.51 

worst 18388.08 19534.56 19465.07 507229.8 19316.17 19321.83 19459.96 
std 71.59938 91.02157 152.7497 241544.1 188.2708 122.2792 227.9891 

median 18275.87 19446.17 19264.63 260668.5 19214.96 19200.56 19166.11 
rank 1 9 8 13 4 6 5 

C11-F15 

mean 32883.58 45468.92 45450.31 12983382 269689.6 45627.01 6690553 
best 32782.17 33026.54 33051.55 2736525 228340.9 33253.65 3042549 

worst 32956.46 51781.2 51703.43 19358805 291640.4 51902.61 11460012 
std 76.94696 8899.828 8868.206 7940200 30947.35 8853.229 4054593 

median 32897.86 48533.97 48523.12 14919100 279388.6 48675.9 6129825 
rank 1 4 3 13 9 5 12 

C11-F16 
 

mean 133550 142437.6 145854.6 74771248 15765094 66926236 64261251 
best 131374.2 134044.7 142569.7 72863394 8018850 55365044 51941418 

worst 136310.8 150317.3 150973.4 76922213 28504369 79970878 82187377 
std 2392.2 7126.149 3777.487 1787965 9310709 11148097 13504451 

median 133257.5 142694.1 144937.6 74649692 13268579 66184512 61458106 
rank 1 4 7 13 10 12 11 

C11-F17 
 

mean 1926615 6.49E+08 6.49E+08 1.94E+10 1.01E+10 1.82E+10 1.9E+10 
best 1916953 4.64E+08 4.63E+08 1.89E+10 8.88E+09 1.6E+10 1.79E+10 

worst 1942685 8.61E+08 8.62E+08 2E+10 1.07E+10 2.07E+10 2.13E+10 
std 12003.53 1.76E+08 1.76E+08 5.05E+08 8.76E+08 2.17E+09 1.7E+09 

median 1923412 6.35E+08 6.36E+08 1.93E+10 1.04E+10 1.8E+10 1.85E+10 
rank 1 4 3 13 9 11 12 

C11-F18 
 

mean 942057.5 1565381 1601545 26802059 10091478 1.14E+08 97052378 
best 938416.2 1208053 1185497 21028845 7729212 95817548 93529199 

worst 944706.9 2036921 2235896 29424540 13030136 1.26E+08 1E+08 
std 2774.139 368195.2 475034.6 4090135 2516208 14506058 3013638 

median 942553.5 1508275 1492394 28377426 9803282 1.17E+08 97106275 
rank 1 3 4 9 8 13 11 

C11-F19 
 

mean 1025341 2070008 1974259 30755816 6098260 1.46E+08 97467953 
best 967927.7 1210246 1380176 21455451 3147832 1.33E+08 94730931 

worst 1167142 3061406 2544052 38744416 8333924 1.68E+08 1.01E+08 
std 99675.04 845585.3 632984 7705989 2276422 16187798 2637573 

median 983146.6 2004190 1986404 31411698 6455643 1.41E+08 97257575 
rank 1 4 3 9 6 13 11 

C11-F20 
 

mean 941250.4 1396197 1417828 29648330 12578064 1.35E+08 97487351 
best 936143.2 1377810 1385798 28996475 8553436 1.23E+08 92859483 

worst 946866.6 1424318 1451737 30311072 19190127 1.46E+08 1.01E+08 
std 5013.552 23341.83 32784.24 576825.8 4891126 13500555 3641038 

median 940995.9 1391330 1416889 29642886 11284346 1.35E+08 98019702 
rank 1 3 4 9 8 13 11 

C11-F21 
 

mean 12.71443 28.5535 24.21289 90.0843 39.62681 94.3193 91.6871 
best 9.974206 25.60463 22.88643 45.69564 35.56843 81.89725 54.46949 

worst 14.97499 31.2056 26.23347 130.3305 41.73212 104.4449 110.8826 
std 2.412667 3.198601 1.538292 36.44639 3.002921 11.57281 27.60483 

median 12.95425 28.70189 23.86583 92.15553 40.60334 95.46753 100.6981 
rank 1 5 4 11 8 13 12 

C11-F22 
 

mean 16.12513 33.41087 27.26913 92.56565 45.52291 95.95859 84.12789 
best 11.50133 26.60935 26.82319 61.62802 39.50369 81.4849 83.34725 

worst 19.55286 38.15783 27.77753 108.4826 52.56221 105.311 85.4577 
std 4.197797 5.34673 0.464144 22.23837 5.653775 11.1633 0.993915 

median 16.72317 34.43814 27.2379 100.076 45.01286 98.51922 83.8533 
rank 1 6 3 12 8 13 11 

Sum rank 22 119 98 222 158 199 224 
Mean rank 1 5.409091 4.454545 10.09091 7.181818 9.045455 10.18182 
Total rank 1 5 3 11 8 10 12 

Wilcoxon: p-value 7.29E-14 8.79E-15 1.52E-17 3.67E-17 7.12E-18 1.04E-17 

 



Received:  August 24, 2024.     Revised: December 2, 2024.                                                                                             55 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.07 

 

 

Figure 1 Boxplot diagrams of OOA and the competitor algorithms performances for the CEC 2011 test suite
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Moreover, the statistical analysis conducted using the 

Wilcoxon rank-sum test further reinforces the 

advantage of the OOA approach. The results 

demonstrate a significant statistical superiority for 

OOA over the competing algorithms, confirming its 

enhanced ability to optimize the CEC 2011 test suite 

more effectively.  

4. Conclusions and future Works 

In this paper, a completely different bio-inspired 

metaheuristic algorithm called the Orangutan 

Optimization Algorithm (OOA) was introduced, 

showcasing its capability in solving optimization 

problems across a variety of scientific disciplines and 

real-world applications. This novel approach is 

inspired by two distinct natural behaviors of 

orangutans: their foraging strategies for obtaining 

food and their nesting behavior for resting. These 

behaviors formed the foundation for the design of 

OOA, which was mathematically structured into two 

key phases—exploration and exploitation. The 

performance of OOA was applied to twenty-two 

optimization problems from the CEC 2011 test suite, 

further validating its effectiveness in solving real-

world optimization challenges. When compared to 

twelve other widely-recognized metaheuristic 

algorithms, OOA showed a superior performance, 

producing better optimization results for most 

benchmark functions. Moreover, the introduction of 

OOA opens several new avenues for future research. 

One of the most promising directions is the 

development of binary and multi-objective versions 

of OOA. Furthermore, expanding the application of 

OOA to address optimization challenges in 

completely different scientific fields and a broader 

range of real-world scenarios provides exciting 

opportunities for future studies. 
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