
Received: December 3, 2024. Revised: December 22, 2024. 1291

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.93

A Deep Learning Approach for Binary Code Similarity Detection to Detect

Vulnerabilities in Firmware Binaries

Nandish M1* Jalesh Kumar1

1Department of Computer Science and Engineering, JNNCE Shivamogga,

Visvesvaraya Technological University, Belagavi – 590018, India
* Corresponding author’s Email: nandish.m@jnnce.ac.in

Abstract: Connected devices are increasingly widespread and provide substantial advantages, yet they also face

significant security challenges, making them susceptible to malware, denial-of-service (DoS), and network attacks,

which can result in various issues such as data breaches, system malfunctions, and large-scale disruptions.

Vulnerability detection in the connected devices is essential to safeguard against the myriad of security threats posed

by the increasing number and diversity of connected devices. The implementation of robust vulnerability detection

strategies helps to protect sensitive data, ensure the integrity of critical infrastructure, and maintain consumer trust. In

this work, a novel vulnerability detection framework is proposed using graph attention network (GAT) and decoding-

enhanced bidirectional encoder representations from transformers with disentangled attention (DeBERTa) model.

GAT is used for analyzing complex device networks and detecting vulnerabilities arising from device interactions.

DeBERTa’s advanced contextual understanding and feature extraction techniques help to detect complex

vulnerabilities in connected devices, and its ability to handle diverse data makes it ideal for creating high-quality

embeddings. Hence transformer-based language model and GAT are used to generate device binary embeddings.

Binary embeddings are used in a generative adversarial networks model to classify it as vulnerable or normal. The

dataset considered for the experiment, consists of 18 real-world vulnerabilities across 9 IoT firmware packages. The

research findings show that proposed approach achieves good accuracy (by an average of 97.3%) based on real-world

vulnerabilities across different firmware packages. Comparative analysis carried out shows the effectiveness of the

proposed approach on existing vulnerability detection solutions, IoTSim, DeepWukong and Robin by substantially

reducing the frequency of false alarms.

Keywords: Graph attention network, Neural network, Internet of things, Security, DeBERTa.

1. Introduction

The fast growth in interconnected IoT

technologies and devices, has also exposed

significant security vulnerabilities, necessitating

advanced approaches for robust vulnerability

detection. Weak devices are used to breach

connected networks, giving hackers access to user

credentials and confidential company information,

thereby affecting IoT device security. IoT devices

typically lack the internal security measures needed

to thwart security threats. Common flaws [1] and

vulnerabilities [2] allow cybercriminals to gain

access to a device and use it as a platform to launch

sophisticated cyberattacks. Firmware is essential for

the operation, communication, security, and

efficiency of IoT devices. It bridges the gap between

the hardware capabilities of the device and the

higher-level applications that use the device's data

and functionalities. The continuous development and

updating of firmware are critical to maintaining the

performance, security, and interoperability of IoT

systems.

To find susceptible functions inside the firmware,

Binary Code Similarity Detection (BCSD)

techniques retrieve functions and compare them with

entries in a Common Vulnerabilities and Exposures

(CVE) database[2] based on their similarity score.

Reverse analysts obtain vital information such as

Received: December 3, 2024. Revised: December 22, 2024. 1292

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.93

source code and symbol tables from the BCSD

approach, which can be used to identify weaknesses

in huge firmware[3]. Vulnerability identification in

the IoT sector is crucial for safeguarding against the

myriad of security threats [4], [5], [6], [7], [8] caused

by the increasing quantity and diversity of connected

devices. The major purpose of vulnerability detection

in the IoT sector is to protect the security and integrity

of IoT networks and devices.

The current approaches to vulnerability detection

often fall short in dynamic and heterogeneous IoT

environments, where devices generate vast amounts

of diverse data. Detecting vulnerabilities in IoT

firmware presents several challenges. First, the

source code for many IoT firmware images is

inaccessible, as they are provided only as binary files,

which complicates the security analysis. Second, the

diverse array of instruction set architectures (ISAs)

on which IoT firmware operates demands extensive

reverse engineering expertise and specialized

knowledge to identify vulnerabilities effectively.

Moreover, the sheer scale of the IoT ecosystem,

encompassing over 29 billion devices globally [9],

imposes a substantial burden on researchers striving

to analyze and discover vulnerabilities

comprehensively.

There are notable research gaps in the current

vulnerability detection methods for several security

threat types, such as command injection, code

execution, function level access control, use-after-

free, cross-site scripting (XSS), and denial-of-service

(DoS). The common weakness enumeration (CWE)

[1] list is an industry-standard list of software and

hardware weaknesses that pose risks to cybersecurity.

For XSS vulnerabilities, there is a notable deficiency

in dynamic content analysis and context-aware

detection, which results in many false positives and

negatives. Command injection vulnerabilities suffer

from inadequate comprehensive input validation and

a lack of adaptive detection mechanisms that can

keep pace with evolving attack techniques. In the

realm of Code Execution, the limited capabilities in

behavioral analysis and poor integration of static and

dynamic analysis methods hinder the effective

identification of complex vulnerabilities. Function

level access control vulnerabilities highlight the need

for more granular detection methods and better

mechanisms to identify anomalies in role-based

access systems. Use-After-Free vulnerabilities are

challenging to detect because of the insufficient tools

for analysing complex memory management

schemes and the difficulty of identifying temporal

vulnerabilities. Addressing these gaps involves

developing advanced, context-aware detection

mechanisms that integrate static and dynamic

analysis, improve behavioral analysis, and prioritize

scalability and real-time responses in evolving threat

environments.

The novelty of the proposed approach are as follows:

1. The DeBERTa model is used in the proposed

approach to generate contextualized embedding,

which is further used for vulnerability detection

in IoT firmware binaries. The TBL model can

comprehend and capture challenging patterns

and contexts in the code.

2. The GAT's ability to capture and leverage the

structural relationships embedded within the

intricate interactions of the firmware's

components is also utilized in the proposed

approach.

3. Proposed Approach is evaluated on 18 real-world

vulnerabilities to show that vulnerable functions

are identified with 97.3% accuracy.

The outline of the research paper is as follows:

Section 2 narrates the recent works on vulnerability

detection. Section 3 details the specifics of the

proposed approach. The research findings achieved

by the proposed method and its comparative analytics

with other approaches are reviewed in Section 4 and

the last section concludes with highlighting the

novelty of the work proposed.

2. Literature survey

The existing literatures on vulnerability detection

in firmware are covered in this section, with a focus

on the techniques and frameworks that have been

applied to address problems related to firmware

security.

Shouguo Yang et al. [10] proposed the tool

Asteria-Pro, which combines domain knowledge

integration with function encoding. The model

effectively removes dissimilar functions using pre-

filtration module, thereby reducing computational

requirements. Asteria-Pro effectively detects inlined

vulnerable functions in more IoT firmware binaries.

The Context and Multi-Features-based Vulnerability

Detection (CMFVD) framework explained in [11]

addresses vulnerabilities in software projects by

integrating graphs of code snippets and textual

sequences through a slicing technique called context

slicing. Zhenhao Luo et al. [3] discussed an approach

i.e. IoTSim which is designed using a base-token

prediction task for extracting semantics and the

Transformer-Based (TB) language framework with

disentangled attention to obtain instruction position

information. A multi-layer Graph Convolutional

Networks (GCN) is used in the approach to generate

function embeddings. The IoTSim tool is robust

Received: December 3, 2024. Revised: December 22, 2024. 1293

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.93

against detecting similarity in IoT binaries designed

from different instruction architecture sets. Issues

with IoT firmware images created by compilers with

varying degrees of optimization and resulting from

diverse architectures are addressed in the work of

VulHawk [12]. The VulHawk approach uses the

RoBERTa and GCN techniques for generating

function embeddings. VulHawk performs 1-day

vulnerability detection from IoT Firmware and

achieves high performance in detecting

vulnerabilities.

The Shouguo Yang et al. [13], aims to decrease

false-positive rates and increase accuracy in patch

detection across compiler optimization levels and

cross-compilers. The model detects and confirms

real-world vulnerabilities of ten different real world

software programs. In [14], a supervised deep

learning approach using recurrent neural networks

(RNNs) for vulnerability detection based on binary

executables was employed. Differences in the

detection of various vulnerabilities were noted, with

non-vulnerable samples being identified with a

particularly high precision of over 98%. An

interaction-based IoT binary similarity comparison

system is discussed in [15] . The system uses

Bidirectional long short-term memory (Bi-LSTM)

and co-attention mechanism, which provides security

against IoT malwares.

The method proposed in [16] addresses the

challenges in discovering vulnerabilities in SOHO

(small office/home office) routers, particularly in

their web server modules. DeepWukong [17]

represented a drastic improvement in the static

detection of software vulnerabilities by integrating

deep learning techniques, specifically graph neural

networks, into the analysis process. This approach

allows for a more nuanced understanding of code,

capturing both its logical structure and natural

language elements.

Y. Xu et al. [18] represents a significant

advancement in binary-level function matching by

focusing on patch-based vulnerability identification.

The approach focuses on the potential of patch-based

approaches in overcoming the limitations of

traditional function matching methods, particularly in

reducing false positives and improving detection

accuracy. The work presented in [19] , uses multiple

graph representations, hierarchical convolutional and

pooling layers, and a tailored training loss metric for

software vulnerability detection. The approach saves

time in building static analysers and automates the

learning process of insecure patterns from code

corpora. In [20], proposed a cross-platform binary

vulnerability detection, by leveraging labelled

semantic flow graphs, numerical vector extraction,

and a customized semantics-aware DNN model. This

technique overcomes the limitations of control flow

graph (CFG) based methods and improves the

detection accuracy up to 83%.

The field of IoT firmware vulnerability detection

has seen advancements leveraging static and dynamic

analysis, machine learning, and deep learning-based

approaches. However, each method has inherent

limitations that hinder their comprehensive

application, particularly in the diverse and complex

domain of IoT firmware security. First, static analysis

techniques, such as those used in DeepWukong [17],

often result in high false positives because they fail to

account for runtime behaviors, making them less

effective at detecting vulnerabilities that emerge

during execution. Second, tools like Asteria-Pro [10]

and VulHawk [12] struggle with analyzing binaries

that are heavily obfuscated or optimized, as such

conditions obscure the code’s structure and semantic

details necessary for accurate vulnerability detection.

Third, machine learning-based methods, like the

supervised RNN approach in [14], depend on

extensive labeled datasets, which are challenging to

curate for IoT firmware due to the diversity of

architectures and the limited availability of real-

world vulnerability examples. Finally, methods like

IoTSim [3] and the semantic-aware DNN in [20] lack

robust adaptability across different instruction set

architectures and compiler optimizations, leading to

reduced accuracy in cross-platform and cross-

compiler scenarios. From the survey, it is also

observed that vulnerability type analysis and impact-

based detection approaches are lacking in many of the

proposed works. Therefore, the proposed model

using DeBERTa and GAT technique is introduced.

The proposed approach addresses key limitations of

existing firmware vulnerability detection methods by

incorporating contextual slicing and disentangled

attention to retain both static and runtime semantics.

The robustness of DeBEERTa, combined with the

graph-based modeling capabilities of GAT,

effectively handles challenges such as obfuscated or

optimized binaries. By overcoming scalability issues

in graph-based methods, the proposed method

achieves superior accuracy and robustness in

detecting vulnerabilities across diverse IoT firmware

binaries.

3. Proposed approach

In this work, it is proposed to implement

vulnerability detection model for IoT firmware

binaries. An overview of the proposed vulnerability

detection model using the DeBERTa and GAT

Received: December 3, 2024. Revised: December 22, 2024. 1294

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.93

Figure. 1 Overview of the Proposed Approach

technique is shown in Fig. 1. The first step involves

extracting relevant features from the IoT firmware

and vulnerable binaries. This includes analyzing the

microcode, which is a low-level representation of the

binary instructions, to derive meaningful attributes.

Additionally, features such as opcodes and operands

are extracted. These features capture the functional

and operational aspects of the binary code.

Preprocessing and Feature Extraction: In the

preprocessing stage, the IoT and vulnerable binaries

are first disassembled into assembly language using

the Binary Ninja tool, thereby converting the binary

code into a human-readable format i.e microcode.

Next, function boundaries are identified by detecting

patterns that indicate the start and end of functions,

often marked by prologue and epilogue instructions.

Functions are then extracted from the assembly

instructions for feature extraction. In the feature

extraction stage, features are derived from IoT binary

functions and CVE vulnerablilty functions. Each

instruction of the function was analyzed to extract

operand and opcode features, which provide valuable

insights into the structure and behavior of the code.

The CPU architecture and instruction set can have an

impact on opcode selection. To enhance the

understanding of the semantic information in

assembly instructions, two feature extraction layers

are established: one for opcodes and one for operands.

For opcodes, a lookup table is created that is specific

to each architecture and converts the opcode type of

the input instruction into a one-hot encoded

representation[21]. An embedding layer process the

vector to produce the opcode-based feature vector,

Xopcode. Operands provide the necessary data for

the instructions to act upon. The operand features are

extracted from the instructions: No. of string literals,

no. of integer literals, no. of function names, no. of

symbol constants and register sequence features. The

Figure. 2 Instruction feature fusion representation module

overall process of Instruction Feature Fusion

Representation Module is depicted in Fig. 2. For

Example: opcode-based 𝑋𝑜𝑝𝑐𝑜𝑑𝑒 , and operands-

based 𝑋𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠 feature vector of Add instruction are

merged to form the final output X as shown in Eq. (1).

These vectorized instruction representations are then

utilized as inputs for each node in the graph used for

GAT.

𝑋 = [𝑋𝑜𝑝𝑐𝑜𝑑𝑒; 𝑋𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠] (1)

This concatenated feature vector is used as input

to the graph attention network (GAT) neural network

for embedding generation. The instructions in

microcode are used as input to the DeBERTa model.

DeBERTa Embedding Model: The input functions

of IoT firmware and CVE Vulnerables, which

consists of instructions, undergo tokenization using

Received: December 3, 2024. Revised: December 22, 2024. 1295

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.93

Figure. 3 DeBERTa model for Contextualized

Embedding

Byte-Pair Encoding (BPE) technique [22]. This

process breaks down the text into subword tokens,

making it manageable for the model. Each token then

receives an initial word embedding. These

embeddings are learned during the model's

pretraining phase and encode semantic information

on the basis of the token's context in a large corpus of

text, typically ranging from tens of gigabytes to

several terabytes of text data. To capture the

sequential nature of instructions, DeBERTa applies

positional encoding to the word embeddings. This

step helps the model differentiate tokens based on

token position within the input sequence. The core of

DeBERTa's architecture lies in its self-attention

mechanism. This mechanism allows the model to

weigh the importance of each token relative to every

other token in the sequence. It enables DeBERTa to

capture dependencies and relationships between

tokens effectively, which is crucial for understanding

complex instructions. The DeBERTa model is

represented in Fig. 3, which is employed for

generating contextualized embeddings using an

encoder architecture. Instructions then pass through

multiple transformer layers. In each layer, the model

refines the representation of the input sequence by

aggregating information across tokens using self-

attention and feedforward neural networks. The

output from the DeBERTa model, after processing

through multiple layers, represents the instruction

contextualized embeddings. These embeddings are

high-dimensional vectors that encode comprehensive

semantic and contextual information about the input

instructions. Algorithm 1 presents the embedding

computation using the DeBERTa model, that

performs the following operations:

Stage 1: Input Representation (Tokenization and

Embedding)

In this stage, DeBERTa tokenizes the input sequence

into subword tokens and converts them into

embeddings. The two types of embeddings are Word

Embeddings (Ew) and Positional Embeddings (Er).

Word Embeddings represents the semantic meaning

of each token. Positional Embeddings represents the

position of each token in the sequence.

Stage 2: Disentangled Attention Mechanism

DeBERTa introduces a disentangled attention

mechanism by computing attention based on both

content(semantic) and relative position.

A. Content-Based Attention: Attention is

calculated by the dot product of query Q, key

K, and value V matrices

B. Position-Based Attention: Similarly,

positional attention is computed.

The total attention score is then computed by

combining content-based and position-based

attention:

Stage 3: Multi-Head Attention

In this stage, multi-head attention is applied to the

model. For each head k, the attention scores are

computed independently, and the outputs are

concatenated.

Stage 4: Feedforward Network and Residual

Connections

After multi-head attention, the output goes through a

feedforward neural network. The output Oi

is passed through a linear transformation followed by

a ReLU activation. The residual connections are

added to the feedforward output:

Stage 5: Layer Normalization and Output

Generation

Layer normalization is applied to stabilize and

improve training. The final contextualized

embeddings are stored for each token in the sequence.

These embeddings capture both the semantic

meaning of the words and their contextual

relationships.

GAT Embedding Model: Generating instruction

embeddings using a graph attention network (GAT)

model involves a series of steps that leverage the

model's ability to handle graph-structured data and

learn from node features and their relationships.

Initially, instructions of IoT firmware and vulnerable

functions are represented as a graph, where nodes

correspond to instructions, and edges denote the

relationships between the nodes. Each node is

initialized with a feature vector derived from

instruction components in the proposed work. No. of

string literals, no. of integer literals, no. of function

names, no. of symbol constants and register sequence

Received: December 3, 2024. Revised: December 22, 2024. 1296

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.93

features are considered. These feature vectors serve

as the input embeddings for the GAT model. The

GAT model uses an attention mechanism to compute

attention coefficients for each pair of connected

nodes, determining the importance of each

neighboring node’s features when updating a node’s

representation. During the message passing phase,

each node aggregates information from its neighbors

on the basis of the attention coefficients, combining

the aggregated information with its own features to

update its representation. Multihead attention is also

employed, where multiple attention mechanisms

operate in parallel, each providing different

perspectives on node relationships. The outputs of

multiple heads are concatenated to form the final

node representations. Multiple layers of the GAT can

be stacked to capture higher-order relationships in the

graph, with each layer further refining the node

representations. After passing through these layers,

the final node representations (embeddings) capture

rich semantic and structural information about the

instructions. These embeddings can be used for

classification tasks. A pooling operation is applied to

combine the node embeddings into a single

embedding representing the entire instructions of

binaries, using the global sum pooling approach [29].

Algorithm 2 presents the embedding computation

using GAT model. The steps involved in embedding

computation are:

Stage 1: Input Preparation

The input consists of a graph G, Node feature vectors

fi, a weight matrix W and Attention coefficients a.

Stage 2: Feature Transformation

Each node’s feature vector is transformed using the

weight matrix W, which projects the features into a

new space. This transformation ensures that the node

features are in a consistent format for further

processing.

Stage 3: Attention Score Computation

For each edge (i,j), where j is a neighbor of node i (j

∈ Ni):

A. Concatenate the transformed feature vectors

of nodes i and j.

B. Compute the raw attention score mij using the

attention coefficient vector a and the

LeakyReLU activation.

Stage 4: Attention Normalization

For each node i, the raw attention scores mij are

normalized using the softmax function to ensure they

sum to 1. This produces the final attention coefficient

αij. This normalization ensures that the attention

distribution over neighboring nodes is probabilistic.

Stage 5: Feature Aggregation

Using the computed attention coefficients, each node

aggregates the feature representations of its

neighbors. This process incorporates information

from neighboring nodes, weighted by their

importance.

Stage 6: Non-Linear Activation

The aggregated features fi' are passed through a

ReLU activation function to introduce non-linearity.

This step ensures the model can capture complex

relationships in the graph.

Stage 7: Graph-Level Embedding (Sum Pooling)

After processing all nodes, the sum pooling operation

computes the final graph embedding ϕ(G) by

summing up the updated feature vectors of all nodes.

This produces a single embedding vector that

represents the entire graph.

Detection model using GAN: The outputs from the

DeBERTa model (semantic and contextual

embeddings) and the GAT model (graph

embeddings) are concatenated. This step combines

the strengths of both models, creating a

comprehensive representation that integrates the

semantic, contextual, and structural features of the

binary code. The concatenated embeddings provide a

holistic view of the input data, capturing both the

detailed meaning of individual instructions and their

relationships within the code. The merged embedding,

which now contains integrated features from both

DeBERTa and GAT, is then fed into a GAN

discriminator.[23, 24] The discriminator is a

specialized component designed to analyze the

combined embedding and classify the input binaries.

By leveraging the detailed and multifaceted

representation provided by the merged embedding,

the GAN discriminator can differentiate between

vulnerable and normal binaries. The GAN

discriminator processes the merged embedding and

outputs a classification result. This result indicates

whether the input binary is classified as vulnerable or

normal.

ALGORITHM 1: EMBEDDING

 COMPUTATION USING DEBERTA

MODEL

 Input: -Instruction Sequence : {I1,I2,I3,….In}

-Projection matrix: W

 Output

:

Contextualized Embedding:

ContextEmb

1. ContextEmb ← ϕ

2. for each Instruction s ∈ {I1,I2,I3,….In}

3. Inputtokens ← Tokenizer (s)

Received: December 3, 2024. Revised: December 22, 2024. 1297

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.93

4. for each token i ∈ Inputtokens

5. Compute word embeddings:

6. Ew ← Token_Embedding(i)

7. Compute relative position embeddings:

8. Er ← Positional_Embedding(i)

9. for each head k ← {1,2, 3,.. 12}

10. Compute Content Based Attention

Scores:

11. 𝑄𝑤𝑘
, 𝐾𝑤𝑘

, 𝑉𝑤𝑘
= 𝐸𝑤 × 𝑊𝑤𝑘

𝑄 , 𝐸𝑤

× 𝑊𝑤𝑘
𝐾 ,

 𝐸𝑤 × 𝑊𝑤𝑘
𝑉

12. Compute Position Based Attention

Scores:

13. 𝑄𝑟𝑘
, 𝐾𝑟𝑘

= 𝐸𝑟 × 𝑊𝑟𝑘

𝑄
, 𝐸𝑟 × 𝑊𝑟𝑘

𝐾

14. Compute the disentangled attention

scores:

15. Attention(𝑄𝑤𝑘
, 𝐾𝑤𝑘

, 𝑄𝑟𝑘
, 𝐾𝑟𝑘

)

= Softmax (
𝑄𝑤𝑘

𝐾𝑤𝑘
𝑇 + 𝑄𝑟𝑘

𝐾𝑟𝑘
𝑇

√𝑑𝑘

)

16. For token i , all tokens in the input

sequence 𝑗, the output of the attention

mechanism of kth head is

17. 𝑂𝑘 = ∑ Attention𝑖𝑗𝑗 ⋅ 𝑉𝑤𝑘

18. end

19. Concatenate the outputs from all heads of

token i:

 Oi ←

𝐶𝑜𝑛𝑐𝑎𝑡(𝑂𝑘
1, 𝑂𝑘

2, … , 𝑂𝑘
12) . 𝑊𝑂

20. Apply a feedforward neural network with

ReLU activation:

21. 𝐹𝑖 = 𝑅𝑒𝐿𝑈(𝑂𝑖𝑊1 + 𝑏1)𝑊2 + 𝑏2

22. Xi ← Add residual connections and apply

layer normalization to the output 𝐹𝑖

23. ContextEmb ← ContextEmb U { Xi }

24. end

25. end

26. return ContextEmb

ALGORITHM 2: EMBEDDING

COMPUTATION USING GAT MODEL

 Input:

- Graph G : Nodes(n) and

Edges(e)

- Node feature Vector: f , Weight

Matrix: W

- Attention Coefficients: a

 Output: Graph Embedding: 𝜙 (𝐺)

1. Apply the weight matrix W to each node

feature vector 𝑓𝑖

2. �⃗⃗�′𝒊 = 𝑾. �⃗⃗�𝒊 ∀i∈ {1,…,n}

3. for each edge (i, j) where j ∈

𝒩𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑁𝑖)

4. Concatenate the transformed feature

vectors of nodes 𝑖 and j

5. �⃗⃗�𝒊𝒋 = �⃗⃗� ′𝒊|| 𝒇⃗⃗⃗ ⃗′𝒋

6. Compute the raw attention score using

the weight vector �⃗� and LeakyReLU

activation

 𝑚𝑖�̇� = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(�⃗�⊤. 𝑓𝑖𝑗)

7. end

8. for each vertex i

9. Normalize the attention scores using the

softmax function

10.
 𝛼𝑖𝑗 =

𝑒𝑥𝑝(𝑚𝑖𝑗)

∑ exp(𝑚𝑖𝑘) 𝑘∈𝑁𝑖

11. Aggregate the transformed features of its

neighbors weighted by the attention

coefficients:

12. 𝑓𝑖
′′ = ∑ 𝛼𝑖𝑗

𝑗∈𝑁𝑖

. 𝑓𝑗
′

13. Apply a non-linear activation function to

the aggregated features:

 𝑓𝑖
′′′ = ReLU(𝑓𝑖

′′)

14. end

15. Compute the sum of the updated feature

vectors (Sum Pooling):

16. 𝜙 (𝐺) = 𝛴𝑖=1
𝑛 𝑓𝑖

′′′

17. return 𝜙(𝐺)

Table 1. Variable and its definition

Variable Definition

In Instruction Sequence

K Attention Head count

n Number of nodes in Graph

e Number of edges in Graph

W Projection matrix

𝐸𝑤 Word Embedding

Er Relative positional embedding

𝑄𝑤𝑘
, 𝐾𝑤𝑘

, 𝑉𝑤𝑘
 Content-based attention scores

ContextEmb Contextualized Embedding

a Attention Coefficient

𝑓𝑖 Feature Vector

𝛼𝑖𝑗 Normalized Attention Score

𝜙 (𝐺) Graph Embedding

Acc Accuracy

Comp Compatible

4. Experimental results

This section presents the results and a

performance assessment of the proposed

vulnerability detection model. The Proposed

approach is compared with the latest works for

Received: December 3, 2024. Revised: December 22, 2024. 1298

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.93

detecting vulnerabilities in IoT firmware binaries.

The implementation language used in the proposed

approach is Python v3.12.5, with the PyTorch

framework as the primary tool. For disassembly,

Binary Ninja is utilized. The server operating system

is Ubuntu 22.04 LTS, supported by a 12-core Intel

Xeon E5-2697v2 CPU running at 2.7 GHz, and 128

GB of server memory. The GPU in use is an NVIDIA

RTX 3090. The DeBERTa model used in this setup

consists of twelve layers with output embeddings

having a dimension of 256. The function embedding

model is implemented with four-layer Graph

Attention Networks (GATs) and uses binary cross-

entropy as the function. Training and evaluation are

conducted on a desktop computer running Windows

10.

Experiments are conducted separately for each of

the 18 types of vulnerabilities. The training method

follows a batch-wise approach, with a batch size of

64, and each node has a vector dimension of 64. The

dropout rate is set at 0.5, and the number of epochs

ranges from 10 to 100. Optimization is performed

using the Adam optimizer, with a learning rate of

0.002. The dataset presented provides a

comprehensive view of firmware analysis. In this

experiment, the latest IoT firmware images from nine

vendors (Tasmota, OpenWrt, MicroPython, Contiki-

NG, RIOT-OS, Cisco, D-Link, TP-Link and Netgear)

are collected. The custom CVE vulnerability

repository is built for the current experiment, which

is based on the CVE database. The dataset is based

on IoT firmware and associated vulnerabilities. The

CVE vulnerabilities[34] considered in the proposed

approach are listed in Table 2. The dataset includes

49 firmware images from nine vendors, as

documented in Table 3, and 230 vulnerable functions

from IoT projects, as detailed in Table 4. In total, the

dataset comprises 113,508 functions collected from

nine different IoT projects, including 230 vulnerable

functions. The vulnerabilities include Memory

Table 2. Key Vulnerabilities used in Dataset

Vulnerabilities CVE Ids Description

CWE-787 CVE-2022-43294, CVE-2023-28116,

CVE-2023-23609, CVE-2018-16666,

CVE-2023-24817, CVE-2023-24797,

CVE-2024-22751

Out-of-bounds Write

CWE-79 CVE-2021-36603, CVE-2023-24182,

CVE-2019-18993

Cross-site Scripting

CWE-122 CVE-2023-7158 Heap-based Buffer Overflow

CWE-119 CVE-2018-16665, CVE-2023-33975 Improper Restriction of Operations within

the Bounds of a Memory Buffer

CWE-20 CVE-2021-44228 Improper Input Validation

CWE-77 CVE-2022-25060, CVE-2022-25064,

CVE- 2022-27647

Command Injection

CWE-120 CVE-2022-27643 Classic Buffer Overflow

Table 3. Firmware Binaries used in

Dataset

IoT Firmwares # Firmware

Images

Tasmota[25] 3

OpenWrt [26] 4

MicroPython[27] 2

Contiki-NG[28] 5

RIOT-OS[29] 2

Cisco[30] 3

D-Link[31] 10

Tp-Link[32] 10

Netgear[33] 10

TOTAL 49

Table 4. Vulnerabilities in Different Versions of Firmware

CVE Ids Function Name (Filename) Confirmed#

2022-43294 ClientPortPtr (CRtspSession.cpp) 8

2021-36603 ble-l2cap (ble-l2cap.c) 11

 2023-7158 slice_indices (objslice.c) 12

2023-28116 ble-l2cap (ble-l2cap.c) 17

2023-23609 ble-l2cap (ble-l2cap.c) 16

2018-16666 next_string (aql-lexer.c) 17

2018-16665 lvm_shift_for_operator (lvm.c) 20

2023-33975 rbuf_add 13

2023-24817 gnrc_rpl_srh_process 14

2021-44228 log4j-core 12

2024-22751 sub_477AA0 11

2023-24797 sub_48AC20 8

2022-25060 oal_startPing 17

2022-25064 oal_wan6_setIpAddr 16

2022-27647 Libreadycloud 12

2023-24182 sshkeys 7

2019-18993 New_port_forward 12

2022-27643 SOAPAction_header, 7

Received: December 3, 2024. Revised: December 22, 2024. 1299

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.93

Table 5. X-Opt Vulnerability detection accuracy of proposed approach

Firmware Tasmota OpenWrt Micro Python Contiki-NG

 Opt0 Opt1 Opt2 Opt3 Opt0 Opt1 Opt2 Opt3 Opt0 Opt1 Opt2 Opt3 Opt0 Opt1 Opt2 Opt

3

Opt0 0.9

7

0.7

9

0.8

5

0.8

9

0.9

5

0.8

5

0.7

8

0.7

9

0.9

8

0.8

5

0.7

8

0.8

9

0.9

4

0.7

7

0.7

9

0.7

5

Opt1 0.8

8

0.9

8

0.9

4

0.8

5

0.8

7

0.9

4

0.8

4

0.8

5

0.8

7

0.9

9

0.8

6

0.8

5

0.9

3

0.9

3

0.8

5

0.8

7

Opt2 0.8

7

0.8

8

0.9

7

0.8

9

0.7

7

0.8

6

0.9

3

0.8

2

0.8

8

0.8

2

0.9

5

0.8

8

0.8

3

0.8

6

0.9

2

0.8

6

Opt3 0.8

5

0.8

9

0.9

1

0.9

4

0.8

5

0.8

9

0.8

1

0.9

6

0.8

5

0.8

7

0.9

1

0.9

2

0.8

6

0.8

9

0.9

0

0.9

6

Firmware Cisco D-Link Tp-Link Netgear

 Opt0 Opt1 Opt2 Opt3 Opt0 Opt1 Opt2 Opt3 Opt0 Opt1 Opt2 Opt3 Opt0 Opt1 Opt2 Opt

3

Opt0 0.9

8

0.8

4

0.8

2

0.8

9

0.9

1

0.8

5

0.8

6

0.8

4

0.9

6

0.8

1

0.8

5

0.8

6

0.9

5

0.7

9

0.8

1

0.8

3

Opt1 0.8

3

0.8

9

0.8

9

0.8

5

0.8

3

0.9

0

0.8

4

0.8

5

0.8

1

0.9

2

0.8

4

0.8

7

0.8

6

0.9

6

0.8

4

0.8

5

Opt2 0.8

7

0.7

7

0.8

8

0.7

9

0.8

5

0.8

8

0.9

1

0.8

0

0.8

5

0.9

6

0.8

7

0.8

4

0.8

7

0.9

6

0.9

0

0.8

9

Opt3 0.7

9

0.7

8

0.9

1

0.9

1

0.8

4

0.8

4

0.8

9

0.8

7

0.8

5

0.8

7

0.9

1

0.9

8

0.8

5

0.8

9

0.8

5

0.9

1

Corruption, XSS, Buffer Overflow (Heap-based),

Out-of-Bounds Memory Access, Improper Input

Validation, Command Injection, and Classic Buffer

Overflow. Cross Optimization (X-Opt) analysis in

vulnerability detection helps in understanding the

effect of optimizations in presence and behavior of

vulnerabilities, ensuring the effectiveness of security

tools, and developing robust security strategies. To

reflect real-world scenarios, the binaries were built

using default compilation settings without any

additional compiler optimizations. Each program in

binaries was compiled at four different optimization

levels (Opt0, Opt1, Opt2, Opt3). Opt0 indicates that

no optimization is performed. Opt1 indicates the

restricted level of optimizations performed. Opt2

represented a high level of optimization performed

and Opt3 refers to the most aggressive level of

optimization. The programs are compiled at the Opt0

optimization degree for the cross-compiler dataset

via GCC (version 2022.1) and Clang (version 7.0).

In X-Opt detection, the proposed strategy is

applied to analyze firmware binaries compiled with

separate optimizations levels. Table 5 displays the X-

Opt level vulnerability detection accuracy for IoT

firmware packages. The columns labelled Opt0

present the non-X-Opt detection results, whereas the

columns labelled Opt1, Opt2, Opt3 display the cross-

optimization detection results. The top row indicates

the names of the IoT firmware binaries used for the

experiment. The next rows indicate the optimization

degrees applied to compile the target firmware,

whereas the columns indicate the optimization

degrees applied to compile the vulnerability. The

cross-optimization accuracy of each firmware helps

in analysing how different compiler optimizations

impact the performance, size, and potentially the

presence of vulnerabilities in the compiled software.

In Table 5, the detection accuracy in non-X-Opt

settings is represented by the bold numbers, which

serve as a baseline for the findings achieved in X-Opt

settings. High accuracy is achieved by proposed

method at all levels of optimization, ranging from

75% to 99%, with an average accuracy of 88.0%.

Specifically, higher accuracy is obtained when the

target and vulnerablities compiled at the same

optimization level (87% - 98%) compared to different

optimization levels (75% - 89%).

Table 6. Analysis of CVE Function Sizes and Their

Corresponding Detection Accuracy, runtime, and

memory usage in different Test Cases

Function

Size

Target

Test

Functions

Detection

Acc

Memory

Usage

(MB)

Average

Runtime

(s)

1K-20K 20 96.7% 128 2.4

21K-40K 26 98.3% 240 5.8

41K-60K 35 97.5% 412 10.9

61K-80K 28 96.3% 654 19.3

81K-1M 44 97.7% 800 30

>1M 27 96.9% 936 45

*K is short for Kilo, M is short for Million

Received: December 3, 2024. Revised: December 22, 2024. 1300

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.93

Accuracy of functions of different sizes: A

statistical analysis was conducted on the distribution

of function sizes (i.e., total number of pointers,

method calls, and objects) across 180 tested functions

and their vulnerability detection accuracy. Table 6

presents the detection accuracy, memory usage and

average runtime of the target test functions on the

basis of their function size. The first column lists the

ranges of function sizes. The second column indicates

the number of functions falling within each boundary

range. The function sizes range from 1K to >1M, with

the majority being less than 1M. The accuracy of

vulnerability detection for functions of different sizes

is shown in the third column. The accuracy of

vulnerability detection ranged from 0.963 to 0.983,

suggesting reliable detection without a noticeable

trend of decreasing accuracy as function size

increased. The system has been tested across a wide

range of function sizes, from small (1K-20K) to

extra-large (>1M).

The average detection accuracy across all

tested functions is 97.3%, indicating a high level of

reliability in vulnerability detection. The highest

detection accuracy is observed in the 21K-40K size

range, whereas the lowest is in the 60K-80K size

range. Despite variations in accuracy, the system

maintains a consistently high detection rate above

96% across all function sizes. The impact of the total

number of pointers, method calls, and objects on

vulnerability detection is reflected in the detection

accuracy across different function sizes. The small

functions (1K-20K) with fewer pointers, method calls,

and objects have a detection accuracy of 96.7%. The

medium-sized functions (21K-40K and 41K-60K)

achieve the highest detection accuracies, 98.3% and

97.5% respectively, as the system effectively

identifies complex patterns. Large functions (61K-

80K and 81K-1M) exhibit a slight decrease in

accuracy to 96.3% but rebound to 97.7% because of

the system's robustness.

Extra-large functions (>1M), with the highest

number of pointers, method calls, and objects,

maintain a strong detection accuracy of 96.9%. One

major problem with having more pointers, method

calls, and objects in vulnerability detection is the

increased complexity of the codebase. This

complexity makes it harder to analyse and track the

flow of data and control within the program,

potentially leading to increased chances of missing

vulnerabilities. Pointers can introduce issues such as

dangling pointers, buffer overflows, and memory

leaks. Increased method calls can obscure the logical

flow and create intricate dependencies that are

difficult to trace. A greater number of objects can lead

Table 7. Adversarial Testing Results on Firmware

Binaries

Attack Type Accuracy Comments

Proposed

Approach

97.50% Normal binaries without

adversarial perturbations

were used.

Opcode

Substitution

87.20% Minor degradation

observed due to

substitution of opcodes

with semantically

similar ones.

Instruction

Reordering

84.80% Reordering instructions

caused a moderate drop

in performance.

NOP Padding 85.30% Extra NOP instructions

slightly affected feature

alignment and detection.

Combination

of All

80.10% Significant degradation

observed under

combined attacks.

to complicated interactions and state management

issues. As the number of pointers, objects and calls

increases in function, more complex interactions

occur. Despite increasing complexity, the system

demonstrates a consistently high average detection

accuracy of 97.3% across all function sizes,

indicating its reliability and effectiveness in

vulnerability detection. Memory requirements

increase proportionally with function size due to the

larger feature set and computations involved. The

memory usage grows from 128 MB for small

functions (1K–20K) to 936 MB for large functions

(>1M), highlighting the scalability of the system.

While the runtime increases with function size, the

system maintains reasonable processing times. Small

functions are analyzed in just 2.4 seconds, whereas

very large functions (>1M) require 45 seconds, which

is acceptable for detailed vulnerability analysis. The

model was tested against adversarially perturbed

firmware binaries created by introducing

modifications, such as opcode substitutions,

instruction reordering, and the addition of no-

operation (NOP) instructions. The results are shown

in Table 7.

4.1 Baseline approaches

For an exhaustive comparison, the evaluation

includes the following cutting-edge approaches

selected as baselines.

The benchmark approaches are as follows:

• IoTSim [3], an IoT-oriented BCSD tool that

integrates TBL models with disentangled

attention and a multilayer GCN to detect

vulnerabilities in IoT firmware binaries.

Received: December 3, 2024. Revised: December 22, 2024. 1301

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.93

• DeepWukong [17] used a novel DL-based

embedding technique for static detection of

software weakness in C/C++ programs, using

advanced GNN to encode code snippets.

• Robin [13], proposed an approach to enhance

binary code similarity detection by filtering out

false positives caused by vulnerable and patched

functions.

4.2 Performance metrics

To evaluate the effectiveness of proposed model

in vulnerability detection, four performance metrics,

including Accuracy, Precision, Recall, and F1 score

are used. Accuracy measures the overall correctness

of vulnerability detection results. Precision denotes

the proportion of identified vulnerabilities that are

true positives among all identified vulnerabilities.

Recall measures the proportion of true vulnerabilities

correctly identified by proposed approach. The F1

score, which combines precision and recall, provides

a single metric to assess proposed approach ability to

accurately detect and distinguish between

vulnerabilities and patched functions across various

compiler settings and software types.

Table 8. Comparison of Cross Compiler Vulnerability

Detection Results

Compiler GCC Clang

 Comp# Acc Comp# Acc

IoTSim[3] 170 78.2% 158 65.5%

DeepWukong [17] 160 81.4% 141 72.6%

Robin[13] 175 84.2% 149 73.5%

Proposed

Approach

 180 89% 180 88%

Related Works Comparison: Two firmwares (D-

Link and Tp-Link) with the highest number of test

instances were selected for cross-compiler analysis

[13,35], and firmware was compiled via GCC

(version 2022.1), and Clang (version 7) compilers.

Two separate compilers are used to determine the

cross-compiler detection accuracy. The compiler

optimization level is set to Opt0 during compilation.

Table 8 lists the test cases that are compatible

with the experiments, along with the current works

and proposed approach accuracy for cross-compiler

vulnerability detection. The detection outcomes of

the proposed approach, are displayed bold. The

proposed method achieves 88% and 89% accuracy on

Figure. 4 Recall, Precision, F1-score results of vulnerability detection in IoT Binaries

Received: December 3, 2024. Revised: December 22, 2024. 1302

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.93

binaries that are compiled with Clang and GCC

compilers, respectively. The detection accuracy in

Clang is marginally lower than that in GCC because

the Clang compiler uses different stacks and registers

in binaries. The detection accuracy is low in [3] and

[17] because Clang compiler lacks support for older

language standards. [13] has low detection accuracy

and high scalability because of syntactic changes in

the code. The results indicate, that the proposed

model is used as a reference model when comparing

the outcomes of other tools. Fig. 4 presents the

outcomes of firmware vulnerability detection,

showcasing the recall, precision and F1 score

respectively. When comparing proposed method with

other current approaches, it is evident that for most of

the CVEs, the performance of proposed approach is

significantly better (by average >8%) than that of

current approaches such as IoTSim, DeepWukong,

and Robin.For example, in the cases of CVE-2023-

28116, CVE-2023-23609, CVE-2018-16666 and

CVE-2018-16665 from the Contiki-NG project,

proposed method achieves a recall of 100%. The

proposed approach is successful in identifying all 70

vulnerable functions of the Contiki-NG project. The

average recall values achieved by IoTSim,

DeepWukong, and Robin are 92%, 92.5%, and

87.5%, respectively. The high recall achieved by the

proposed method in vulnerability detection indicates

that the proposed approach is highly effective at

identifying true vulnerabilities within the dataset. The

research outcomes indicate that the suggested

approach can be used to identify vulnerabilities in IoT

scenarios in an efficient and dependable manner.

4.3 Discussions

The ability of the proposed method is evident in

the detection of firmware binaries vulnerabilities.

However, it’s important to take into account certain

limitations. One key concern is the potential biases

introduced during dataset preprocessing, such as

tokenization, graph construction, and feature

selection, which may impact the model’s ability to

generalize across diverse datasets. Scalability poses

another challenge, as the method may struggle to

handle large-scale datasets or complex graphs due to

increased computational and memory requirements.

Additionally, the performance of the DeBERTa and

GAT models is highly sensitive to hyperparameter

settings, and suboptimal configurations could lead to

reduced accuracy or instability. The approach also

faces limitations in generalizing across diverse

instruction architectures, potentially hindering its

effectiveness in specific edge cases. Lastly, the

interpretability of the model remains a concern, as it

may be difficult to understand how specific

predictions are made, limiting the ability to diagnose

errors or explain outcomes effectively.

5. Conclusion and future work

In this work, a vulnerability detection tool uses a

GAT network and DeBERTa model, is proposed. By

leveraging DeBERTa's disentangled attention

mechanism and robust semantic embedding

capabilities, the proposed approach can achieve a

deeper understanding of the code context and

semantics, resulting in more accurate and effective

identification of vulnerabilities. The GAT improves

vulnerability detection by effectively capturing code

structure and interdependencies through attention

mechanisms, enhancing accuracy and scalability in

analysing large codebases. Under cross-compiler

settings, the proposed method achieves superior

performance with 89% accuracy across GCC and

Clang compiler, significantly outperforming cutting-

edge programs like Robin, DeepWukong and IoTSim

highlighting its robustness and effectiveness in

diverse environments. High accuracy is achieved by

the proposed method at all levels of optimization,

with an average accuracy of 88.0% across all

firmware. The system consistently achieves a high

average detection accuracy of 97.3% across all

function sizes, demonstrating its reliability in

vulnerability detection. The evaluation results show a

recall of 100%, successfully identifying all 18

vulnerability types. Future work should focus on

improving dataset preprocessing techniques to

mitigate biases introduced during tokenization,

enhancing the model's generalization across diverse

datasets. Additionally, efforts should be made to

enhance model interpretability and adaptability

across different firmware types and instruction

architectures, ensuring more robust and explainable

predictions.

Conflicts of Interest

All authors declare no conflict of interest.

Author Contributions

Conceptualization, methodology, writing original

draft preparation, Nandish M and Jalesh Kumar;

Supervision, Jalesh Kumar

References

[1] Common Weakness Enumeration, Software

and Hardware weaknesses DB. Accessed:

Received: December 3, 2024. Revised: December 22, 2024. 1303

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.93

Jan. 02, 2023. [Online]. Available:

https://cwe.mitre.org/

[2] National Vulnerability Database, National

Institute of Standards and Technology.

Accessed: Apr. 13, 2024. [Online].

Available: https://nvd.nist.gov/

[3] Z. Luo, P. Wang, W. Xie, X. Zhou, and B.

Wang, “IoTSim: Internet of Things-

Oriented Binary Code Similarity Detection

with Multiple Block Relations”, Sensors,

Vol. 23, No. 18, pp.1-22, 2023.

[4] T. Bakhshi, B. Ghita, and I. Kuzminykh, “A

Review of IoT Firmware Vulnerabilities and

Auditing Techniques”, Sensors, Vol. 24,

pp.1-28, 2024.

[5] M. H G, J. Kumar, and N. M, “GrMA-CNN:

Integrating Spatial-Spectral Layers with

Modified Attention for Botnet Detection

Using Graph Convolution for Securing

Networks”, International Journal of

Intelligent Engineering and Systems, Vol.

18, No. 1, pp. 1009-1020, 2025, doi:

10.22266/ijies2025.0229.72.

[6] S. Ul Haq, Y. Singh, A. Sharma, R. Gupta,

and D. Gupta, “A survey on IoT &

embedded device firmware security:

architecture, extraction techniques, and

vulnerability analysis frameworks”, Discov

Internet Things, Vol. 3, pp.1-29, 2023, doi:

10.1007/s43926-023-00045-2.

[7] X. Feng, X. Zhu, Q. L. Han, W. Zhou, S.

Wen, and Y. Xiang, “Detecting

Vulnerability on IoT Device Firmware: A

Survey”, IEEE/CAA Journal of Automatica

Sinica, Vol.10, No. 1, pp. 25-41, 2023, doi:

10.1109/JAS.2022.105860

[8] T. Sasi, A. H. Lashkari, R. Lu, P. Xiong, and

S. Iqbal, “A comprehensive survey on IoT

attacks: Taxonomy, detection mechanisms

and challenges”, Journal of Information and

Intelligence, Vol. 2, No. 6, pp.455-513,

2023.

[9] IoT Analytics, State of IoT. Accessed: Jan.

01, 2023. [Online]. Available: https://iot-

analytics.com/number-connected-iot-

devices/

[10] S. Yang et al., “Asteria-Pro: Enhancing

Deep Learning-based Binary Code

Similarity Detection by Incorporating

Domain Knowledge”, ACM Transactions

on Software Engineering and Methodology,

Vol. 33, No. 1, pp.1-39, 2023.

[11] Y. Zhang, Y. Hu, and X. Chen, “Context and

Multi-Features-Based Vulnerability

Detection: A Vulnerability Detection Frame

Based on Context Slicing and Multi-

Features”, Sensors, Vol. 24, No. 5, pp.1-21,

2024.

[12] Z. Luo et al., “VulHawk: Cross-architecture

Vulnerability Detection with Entropy-based

Binary Code Search”, In: Proc. of 30th

Annual Network and Distributed System

Security Symposium, NDSS 2023, pp.1-18,

2023.

[13] S. Yang et al., “Towards Practical Binary

Code Similarity Detection: Vulnerability

Verification via Patch Semantic Analysis”,

ACM Transactions on Software

Engineering and Methodology, Vol. 32, No.

6, pp.1-29, 2023.

[14] A. Schaad and D. Binder, “Deep-Learning-

based Vulnerability Detection in Binary

Executables”, Cryptography and Security,

pp.1-21, 2022.

[15] Q. Song, Y. Zhang, B. Wang, and Y. Chen,

“Inter-BIN: Interaction-based Cross-

architecture IoT Binary Similarity

Comparison”, IEEE Internet of Things

Journal, Vol.9, No. 20, pp.20018-20033,

2022, doi: 10.1109/JIOT.2022.3170927.

[16] Y. Zhang et al., “ESRFuzzer: an enhanced

fuzzing framework for physical SOHO

router devices to discover multi-Type

vulnerabilities”, Cybersecurity, Vol. 4, No.

1, pp.1-22, 2021.

[17] X. Cheng, H. Wang, J. Hua, G. Xu, and Y.

Sui, “DeepWukong: Statically Detecting

Software Vulnerabilities Using Deep Graph

Neural Network”, ACM Transactions on

Software Engineering and Methodology,

Vol. 30, No. 3, pp.1-30, 2020.

[18] Y. Xu, Z. Xu, B. Chen, F. Song, Y. Liu, and

T. Liu, “Patch based vulnerability matching

for binary programs”, In: Proc. of the 29th

ACM SIGSOFT International Symposium

on Software Testing and Analysis, pp. 376–

387, 2020.

[19] Y. Zhuang, S. Suneja, V. Thost, G.

Domeniconi, A. Morari, and J. Laredo,

“Software Vulnerability Detection via Deep

https://cwe.mitre.org/
https://nvd.nist.gov/
https://iot-analytics.com/number-connected-iot-devices/
https://iot-analytics.com/number-connected-iot-devices/
https://iot-analytics.com/number-connected-iot-devices/

Received: December 3, 2024. Revised: December 22, 2024. 1304

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025 DOI: 10.22266/ijies2025.0229.93

Learning over Disaggregated Code Graph

Representation”, Artificial Intelligence,

pp.1-11, 2021.

[20] J. Gao, X. Yang, Y. Fu, Y. Jiang, and J. Sun,

“Vulseeker: A semantic learning based

vulnerability seeker for cross-platform

binary”, In: Proc. of the 33rd ACM/IEEE

International Conference on Automated

Software Engineering, pp. 896–899, 2018.

[21] J. T. Hancock and T. M. Khoshgoftaar,

“Survey on categorical data for neural

networks”, J Big Data, Vol. 7, pp. 1-41,

2020, doi: 10.1186/s40537-020-00305-w

[22] V. Zouhar et al., “A Formal Perspective on

Byte-Pair Encoding”, In: Proc. of Findings

of the Association for Computational

Linguistics: ACL 2023, pp. 598–614, 2023,

doi: 10.18653/v1/2023.findings-acl.38.

[23] I. J. Goodfellow et al., Generative

Adversarial Networks. Jun. 2014, [Online].

Available: http://arxiv.org/abs/1406.2661.

[24] S. Karthika and M. Durgadevi, “Generative

Adversarial Network (GAN): a general

review on different variants of GAN and

applications”, In: Proc. of 2021 6th

International Conference on

Communication and Electronics Systems,

pp. 1–8, 2021.

[25] IoT Firmware, “Tasmota.” Accessed: May

05, 2023. [Online]. Available:

https://github.com/arendst/Tasmota-

firmware/tree/firmware/firmware

[26] IoT Firmware, “OpenWrt.” Accessed: Mar.

04, 2023. [Online]. Available:

https://github.com/OWASP/IoTGoat/tree/

master/OpenWrt

[27] IoT Firmware, “MicroPython.” Accessed:

Mar. 03, 2023. [Online]. Available:

https://github.com/peterhinch/micropython-

iot/tree/master

[28] IoT Firmware, “Contiki-NG.” Accessed:

Jan. 03, 2023. [Online]. Available:

https://github.com/contiki-ng/contiki-ng

[29] [29] IoT Firmware, “RIOT-OS.”

Accessed: Aug. 07, 2023. [Online].

Available: https://github.com/RIOT-

OS/RIOT

[30] IoT Firmware, “CISCO.” Accessed: Jul. 08,

2023. [Online]. Available:

https://software.cisco.com/download/home

[31] IoT Firmware, “D-Link.” Accessed: Feb. 02,

2024. [Online]. Available:

https://tsd.dlink.com.tw/ddwn

[32] IoT Firmware, “TP-Link.” Accessed: Jan.

01, 2024. [Online]. Available:

https://download1.dd-wrt.com/dd-

wrtv2/downloads/betas/2023/04-02-2023-

r52217/tplink_tl-wr840nv1/

[33] IoT Firmware, “Netgear.” Accessed: Jul. 06,

2023. [Online]. Available:

https://download1.dd-wrt.com/dd-

wrtv2/downloads/betas/2024/01-02-2024-

r54682/netgear-r6400/

[34] CWE Weakness, CWE Top 25 Weakness

2023. Accessed: Nov. 11, 2023. [Online].

Available:

https://cwe.mitre.org/top25/archive/2023/2

023_top25_list.html#tableView
[35] Paul Black, Iqbal Gondal, “Cross-Compiler

Bipartite Vulnerability Search”, Electronics,

Vol.10, No. 11, pp.1-17, 2021.

http://arxiv.org/abs/1406.2661

