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Abstract: Connected devices are increasingly widespread and provide substantial advantages, yet they also face 

significant security challenges, making them susceptible to malware, denial-of-service (DoS), and network attacks, 

which can result in various issues such as data breaches, system malfunctions, and large-scale disruptions. 

Vulnerability detection in the connected devices is essential to safeguard against the myriad of security threats posed 

by the increasing number and diversity of connected devices. The implementation of robust vulnerability detection 

strategies helps to protect sensitive data, ensure the integrity of critical infrastructure, and maintain consumer trust. In 

this work, a novel vulnerability detection framework is proposed using graph attention network (GAT) and decoding-

enhanced bidirectional encoder representations from transformers with disentangled attention (DeBERTa) model. 

GAT is used for analyzing complex device networks and detecting vulnerabilities arising from device interactions. 

DeBERTa’s advanced contextual understanding and feature extraction techniques help to detect complex 

vulnerabilities in connected devices, and its ability to handle diverse data makes it ideal for creating high-quality 

embeddings. Hence transformer-based language model and GAT are used to generate device binary embeddings. 

Binary embeddings are used in a generative adversarial networks model to classify it as vulnerable or normal. The 

dataset considered for the experiment, consists of 18 real-world vulnerabilities across 9 IoT firmware packages. The 

research findings show that proposed approach achieves good accuracy (by an average of 97.3%) based on real-world 

vulnerabilities across different firmware packages. Comparative analysis carried out shows the effectiveness of the 

proposed approach on existing vulnerability detection solutions, IoTSim, DeepWukong and Robin by substantially 

reducing the frequency of false alarms. 

Keywords: Graph attention network, Neural network, Internet of things, Security, DeBERTa. 

 

 

1. Introduction 

The fast growth in interconnected IoT 

technologies and devices, has also exposed 

significant security vulnerabilities, necessitating 

advanced approaches for robust vulnerability 

detection.  Weak devices are used to breach 

connected networks, giving hackers access to user 

credentials and confidential company information, 

thereby affecting IoT device security. IoT devices 

typically lack the internal security measures needed 

to thwart security threats. Common flaws [1] and 

vulnerabilities [2] allow cybercriminals to gain 

access to a device and use it as a platform to launch 

sophisticated cyberattacks. Firmware is essential for 

the operation, communication, security, and 

efficiency of IoT devices. It bridges the gap between 

the hardware capabilities of the device and the 

higher-level applications that use the device's data 

and functionalities. The continuous development and 

updating of firmware are critical to maintaining the 

performance, security, and interoperability of IoT 

systems.  

To find susceptible functions inside the firmware, 

Binary Code Similarity Detection (BCSD) 

techniques retrieve functions and compare them with 

entries in a Common Vulnerabilities and Exposures 

(CVE) database[2] based on their similarity score. 

Reverse analysts obtain vital information such as 
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source code and symbol tables from the BCSD 

approach, which can be used to identify weaknesses 

in huge firmware[3]. Vulnerability identification in 

the IoT sector is crucial for safeguarding against the 

myriad of security threats [4], [5], [6], [7], [8] caused 

by the increasing quantity and diversity of connected 

devices. The major purpose of vulnerability detection 

in the IoT sector is to protect the security and integrity 

of IoT networks and devices.  

The current approaches to vulnerability detection 

often fall short in dynamic and heterogeneous IoT 

environments, where devices generate vast amounts 

of diverse data. Detecting vulnerabilities in IoT 

firmware presents several challenges. First, the 

source code for many IoT firmware images is 

inaccessible, as they are provided only as binary files, 

which complicates the security analysis. Second, the 

diverse array of instruction set architectures (ISAs) 

on which IoT firmware operates demands extensive 

reverse engineering expertise and specialized 

knowledge to identify vulnerabilities effectively. 

Moreover, the sheer scale of the IoT ecosystem, 

encompassing over 29 billion devices globally [9], 

imposes a substantial burden on researchers striving 

to analyze and discover vulnerabilities 

comprehensively.  

There are notable research gaps in the current 

vulnerability detection methods for several security 

threat types, such as command injection, code 

execution, function level access control, use-after-

free, cross-site scripting (XSS), and denial-of-service 

(DoS).  The common weakness enumeration (CWE) 

[1] list is an industry-standard list of software and 

hardware weaknesses that pose risks to cybersecurity. 

For XSS vulnerabilities, there is a notable deficiency 

in dynamic content analysis and context-aware 

detection, which results in many false positives and 

negatives. Command injection vulnerabilities suffer 

from inadequate comprehensive input validation and 

a lack of adaptive detection mechanisms that can 

keep pace with evolving attack techniques. In the 

realm of Code Execution, the limited capabilities in 

behavioral analysis and poor integration of static and 

dynamic analysis methods hinder the effective 

identification of complex vulnerabilities. Function 

level access control vulnerabilities highlight the need 

for more granular detection methods and better 

mechanisms to identify anomalies in role-based 

access systems. Use-After-Free vulnerabilities are 

challenging to detect because of the insufficient tools 

for analysing complex memory management 

schemes and the difficulty of identifying temporal 

vulnerabilities. Addressing these gaps involves 

developing advanced, context-aware detection 

mechanisms that integrate static and dynamic 

analysis, improve behavioral analysis, and prioritize 

scalability and real-time responses in evolving threat 

environments. 

The novelty of the proposed approach are as follows: 

1. The DeBERTa model is used in the proposed 

approach to generate contextualized embedding, 

which is further used for vulnerability detection 

in IoT firmware binaries. The TBL model can 

comprehend and capture challenging patterns 

and contexts in the code. 

2. The GAT's ability to capture and leverage the 

structural relationships embedded within the 

intricate interactions of the firmware's 

components is also utilized in the proposed 

approach. 

3. Proposed Approach is evaluated on 18 real-world 

vulnerabilities to show that vulnerable functions 

are identified with 97.3% accuracy. 

The outline of the research paper is as follows: 

Section 2 narrates the recent works on vulnerability 

detection. Section 3 details the specifics of the 

proposed approach. The research findings achieved 

by the proposed method and its comparative analytics 

with other approaches are reviewed in Section 4 and 

the last section concludes with highlighting the 

novelty of the work proposed. 

2. Literature survey 

The existing literatures on vulnerability detection 

in firmware are covered in this section, with a focus 

on the techniques and frameworks that have been 

applied to address problems related to firmware 

security. 

Shouguo Yang et al. [10] proposed the tool 

Asteria-Pro, which combines domain knowledge 

integration with function encoding. The model 

effectively removes dissimilar functions using pre-

filtration module, thereby reducing computational 

requirements. Asteria-Pro effectively detects inlined 

vulnerable functions in more IoT firmware binaries. 

The Context and Multi-Features-based Vulnerability 

Detection (CMFVD) framework explained in [11] 

addresses vulnerabilities in software projects by 

integrating graphs of code snippets and textual 

sequences through a slicing technique called context 

slicing. Zhenhao Luo et al. [3] discussed an approach 

i.e. IoTSim which is designed using a base-token 

prediction task for extracting semantics and the 

Transformer-Based (TB) language framework with 

disentangled attention to obtain instruction position 

information. A multi-layer Graph Convolutional 

Networks (GCN) is used in the approach to generate 

function embeddings. The IoTSim tool is robust 
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against detecting similarity in IoT binaries designed 

from different instruction architecture sets. Issues 

with IoT firmware images created by compilers with 

varying degrees of optimization and resulting from 

diverse architectures are addressed in the work of 

VulHawk [12]. The VulHawk approach uses the 

RoBERTa and GCN techniques for generating 

function embeddings. VulHawk performs 1-day 

vulnerability detection from IoT Firmware and 

achieves high performance in detecting 

vulnerabilities.  

The Shouguo Yang et al. [13], aims to decrease 

false-positive rates and increase accuracy in patch 

detection across compiler optimization levels and 

cross-compilers. The model detects and confirms 

real-world vulnerabilities of ten different real world 

software programs. In [14], a supervised deep 

learning approach using recurrent neural networks 

(RNNs) for vulnerability detection based on binary 

executables was employed. Differences in the 

detection of various vulnerabilities were noted, with 

non-vulnerable samples being identified with a 

particularly high precision of over 98%. An 

interaction-based IoT binary similarity comparison 

system is discussed in [15] . The system uses 

Bidirectional long short-term memory (Bi-LSTM) 

and co-attention mechanism, which provides security 

against IoT malwares. 

The method proposed in [16] addresses the 

challenges in discovering vulnerabilities in SOHO 

(small office/home office) routers, particularly in 

their web server modules. DeepWukong [17] 

represented a drastic improvement in the static 

detection of software vulnerabilities by integrating 

deep learning techniques, specifically graph neural 

networks, into the analysis process. This approach 

allows for a more nuanced understanding of code, 

capturing both its logical structure and natural 

language elements. 

Y. Xu et al. [18] represents a significant 

advancement in binary-level function matching by 

focusing on patch-based vulnerability identification. 

The approach focuses on the potential of patch-based 

approaches in overcoming the limitations of 

traditional function matching methods, particularly in 

reducing false positives and improving detection 

accuracy. The work presented in [19] , uses multiple 

graph representations, hierarchical convolutional and 

pooling layers, and a tailored training loss metric for 

software vulnerability detection. The approach saves 

time in building static analysers and automates the 

learning process of insecure patterns from code 

corpora. In [20], proposed a cross-platform binary 

vulnerability detection, by leveraging labelled 

semantic flow graphs, numerical vector extraction, 

and a customized semantics-aware DNN model. This 

technique overcomes the limitations of control flow 

graph (CFG) based methods and improves the 

detection accuracy up to 83%. 

The field of IoT firmware vulnerability detection 

has seen advancements leveraging static and dynamic 

analysis, machine learning, and deep learning-based 

approaches. However, each method has inherent 

limitations that hinder their comprehensive 

application, particularly in the diverse and complex 

domain of IoT firmware security. First, static analysis 

techniques, such as those used in DeepWukong [17], 

often result in high false positives because they fail to 

account for runtime behaviors, making them less 

effective at detecting vulnerabilities that emerge 

during execution. Second, tools like Asteria-Pro [10] 

and VulHawk [12] struggle with analyzing binaries 

that are heavily obfuscated or optimized, as such 

conditions obscure the code’s structure and semantic 

details necessary for accurate vulnerability detection. 

Third, machine learning-based methods, like the 

supervised RNN approach in [14], depend on 

extensive labeled datasets, which are challenging to 

curate for IoT firmware due to the diversity of 

architectures and the limited availability of real-

world vulnerability examples. Finally, methods like 

IoTSim [3] and the semantic-aware DNN in [20] lack 

robust adaptability across different instruction set 

architectures and compiler optimizations, leading to 

reduced accuracy in cross-platform and cross-

compiler scenarios. From the survey, it is also 

observed that vulnerability type analysis and impact-

based detection approaches are lacking in many of the 

proposed works. Therefore, the proposed model 

using DeBERTa and GAT technique is introduced. 

The proposed approach addresses key limitations of 

existing firmware vulnerability detection methods by 

incorporating contextual slicing and disentangled 

attention to retain both static and runtime semantics. 

The robustness of DeBEERTa, combined with the 

graph-based modeling capabilities of GAT, 

effectively handles challenges such as obfuscated or 

optimized binaries. By overcoming scalability issues 

in graph-based methods, the proposed method 

achieves superior accuracy and robustness in 

detecting vulnerabilities across diverse IoT firmware 

binaries. 

3. Proposed approach 

In this work, it is proposed to implement 

vulnerability detection model for IoT firmware 

binaries. An overview of the proposed vulnerability 

detection model using the DeBERTa and GAT 
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Figure. 1 Overview of the Proposed Approach 

 

technique is shown in Fig. 1. The first step involves 

extracting relevant features from the IoT firmware 

and vulnerable binaries. This includes analyzing the 

microcode, which is a low-level representation of the 

binary instructions, to derive meaningful attributes. 

Additionally, features such as opcodes and operands 

are extracted. These features capture the functional 

and operational aspects of the binary code. 

 

Preprocessing and Feature Extraction: In the 

preprocessing stage, the IoT and vulnerable binaries 

are first disassembled into assembly language using 

the Binary Ninja tool, thereby converting the binary 

code into a human-readable format i.e microcode. 

Next, function boundaries are identified by detecting 

patterns that indicate the start and end of functions, 

often marked by prologue and epilogue instructions. 

Functions are then extracted from the assembly 

instructions for feature extraction. In the feature 

extraction stage, features are derived from IoT binary 

functions and CVE vulnerablilty functions. Each 

instruction of the function was analyzed to extract 

operand and opcode features, which provide valuable 

insights into the structure and behavior of the code. 

The CPU architecture and instruction set can have an 

impact on opcode selection. To enhance the 

understanding of the semantic information in 

assembly instructions, two feature extraction layers 

are established: one for opcodes and one for operands. 

For opcodes, a lookup table is created that is specific 

to each architecture and converts the opcode type of 

the input instruction into a one-hot encoded 

representation[21]. An embedding layer process the 

vector to produce the opcode-based feature vector, 

Xopcode. Operands provide the necessary data for 

the instructions to act upon. The operand features are 

extracted from the instructions: No. of string literals, 

no. of integer literals, no. of function names, no. of 

symbol constants and register sequence features. The  

 

 
Figure. 2 Instruction feature fusion representation module 

 

 

overall process of Instruction Feature Fusion 

Representation Module is depicted in Fig. 2. For 

Example: opcode-based 𝑋𝑜𝑝𝑐𝑜𝑑𝑒 , and operands-

based 𝑋𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠 feature vector of Add instruction are 

merged to form the final output X as shown in Eq. (1). 

These vectorized instruction representations are then 

utilized as inputs for each node in the graph used for 

GAT. 

 

𝑋 = [𝑋𝑜𝑝𝑐𝑜𝑑𝑒; 𝑋𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠]  (1) 

 

This concatenated feature vector is used as input 

to the graph attention network (GAT) neural network 

for embedding generation. The instructions in 

microcode are used as input to the DeBERTa model.  

 

DeBERTa Embedding Model: The input functions 

of IoT firmware and CVE Vulnerables, which 

consists of instructions, undergo tokenization using  
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Figure. 3 DeBERTa model for Contextualized 

Embedding 

 
Byte-Pair Encoding (BPE) technique [22]. This 

process breaks down the text into subword tokens, 

making it manageable for the model. Each token then 

receives an initial word embedding. These 

embeddings are learned during the model's 

pretraining phase and encode semantic information 

on the basis of the token's context in a large corpus of 

text, typically ranging from tens of gigabytes to 

several terabytes of text data. To capture the 

sequential nature of instructions, DeBERTa applies 

positional encoding to the word embeddings. This 

step helps the model differentiate tokens based on 

token position within the input sequence. The core of 

DeBERTa's architecture lies in its self-attention 

mechanism. This mechanism allows the model to 

weigh the importance of each token relative to every 

other token in the sequence. It enables DeBERTa to 

capture dependencies and relationships between 

tokens effectively, which is crucial for understanding 

complex instructions. The DeBERTa model is 

represented in Fig. 3, which is employed for 

generating contextualized embeddings using an 

encoder architecture. Instructions then pass through 

multiple transformer layers. In each layer, the model 

refines the representation of the input sequence by 

aggregating information across tokens using self-

attention and feedforward neural networks. The 

output from the DeBERTa model, after processing 

through multiple layers, represents the instruction 

contextualized embeddings. These embeddings are 

high-dimensional vectors that encode comprehensive 

semantic and contextual information about the input 

instructions. Algorithm 1 presents the embedding 

computation using the DeBERTa model, that 

performs the following operations: 

Stage 1: Input Representation (Tokenization and 

Embedding) 

In this stage, DeBERTa tokenizes the input sequence 

into subword tokens and converts them into 

embeddings. The two types of embeddings are Word 

Embeddings (Ew) and Positional Embeddings (Er). 

Word Embeddings  represents the semantic meaning 

of each token. Positional Embeddings represents the 

position of each token in the sequence. 

Stage 2: Disentangled Attention Mechanism  

DeBERTa introduces a disentangled attention 

mechanism by computing attention based on both 

content(semantic) and relative position.  

A. Content-Based Attention: Attention is 

calculated by the dot product of query Q, key 

K, and value V matrices 

B. Position-Based Attention: Similarly, 

positional attention is computed. 

The total attention score is then computed by 

combining content-based and position-based 

attention: 

Stage 3: Multi-Head Attention  

In this stage, multi-head attention is applied to the 

model. For each head k, the attention scores are 

computed independently, and the outputs are 

concatenated. 

Stage 4: Feedforward Network and Residual 

Connections 

After multi-head attention, the output goes through a 

feedforward neural network. The output Oi                                                                                                                    

is passed through a linear transformation followed by 

a ReLU activation. The residual connections are 

added to the feedforward output: 

Stage 5: Layer Normalization and Output 

Generation 

Layer normalization is applied to stabilize and 

improve training. The final contextualized 

embeddings are stored for each token in the sequence. 

These embeddings capture both the semantic 

meaning of the words and their contextual 

relationships. 

GAT Embedding Model: Generating instruction 

embeddings using a graph attention network (GAT) 

model involves a series of steps that leverage the 

model's ability to handle graph-structured data and 

learn from node features and their relationships. 

Initially, instructions of IoT firmware and vulnerable 

functions are represented as a graph, where nodes 

correspond to instructions, and edges denote the 

relationships between the nodes. Each node is 

initialized with a feature vector derived from 

instruction components in the proposed work. No. of 

string literals, no. of integer literals, no. of function 

names, no. of symbol constants and register sequence 
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features are considered. These feature vectors serve 

as the input embeddings for the GAT model. The 

GAT model uses an attention mechanism to compute 

attention coefficients for each pair of connected 

nodes, determining the importance of each 

neighboring node’s features when updating a node’s 

representation. During the message passing phase, 

each node aggregates information from its neighbors 

on the basis of the attention coefficients, combining 

the aggregated information with its own features to 

update its representation. Multihead attention is also 

employed, where multiple attention mechanisms 

operate in parallel, each providing different 

perspectives on node relationships. The outputs of 

multiple heads are concatenated to form the final 

node representations. Multiple layers of the GAT can 

be stacked to capture higher-order relationships in the 

graph, with each layer further refining the node 

representations. After passing through these layers, 

the final node representations (embeddings) capture 

rich semantic and structural information about the 

instructions. These embeddings can be used for 

classification tasks. A pooling operation is applied to 

combine the node embeddings into a single 

embedding representing the entire instructions of 

binaries, using the global sum pooling approach [29]. 

Algorithm 2 presents the embedding computation 

using GAT model. The steps involved in embedding 

computation are: 

Stage 1: Input Preparation 

The input consists of a graph G, Node feature vectors 

fi, a weight matrix W and Attention coefficients a. 

Stage 2: Feature Transformation 

Each node’s feature vector is transformed using the 

weight matrix W, which projects the features into a 

new space. This transformation ensures that the node 

features are in a consistent format for further 

processing. 

Stage 3: Attention Score Computation 

For each edge (i,j), where j is a neighbor of node i (j 

∈ Ni): 

A. Concatenate the transformed feature vectors 

of nodes i and j. 

B. Compute the raw attention score mij using the 

attention coefficient vector a and the 

LeakyReLU activation. 

Stage 4: Attention Normalization 

For each node i, the raw attention scores mij are 

normalized using the softmax function to ensure they 

sum to 1. This produces the final attention coefficient 

αij. This normalization ensures that the attention 

distribution over neighboring nodes is probabilistic. 

Stage 5: Feature Aggregation 

Using the computed attention coefficients, each node 

aggregates the feature representations of its 

neighbors. This process incorporates information 

from neighboring nodes, weighted by their 

importance. 

Stage 6: Non-Linear Activation 

The aggregated features fi' are passed through a 

ReLU activation function to introduce non-linearity. 

This step ensures the model can capture complex 

relationships in the graph. 

Stage 7: Graph-Level Embedding (Sum Pooling) 

After processing all nodes, the sum pooling operation 

computes the final graph embedding ϕ(G) by 

summing up the updated feature vectors of all nodes. 

This produces a single embedding vector that 

represents the entire graph. 

Detection model using GAN: The outputs from the 

DeBERTa model (semantic and contextual 

embeddings) and the GAT model (graph 

embeddings) are concatenated. This step combines 

the strengths of both models, creating a 

comprehensive representation that integrates the 

semantic, contextual, and structural features of the 

binary code. The concatenated embeddings provide a 

holistic view of the input data, capturing both the 

detailed meaning of individual instructions and their 

relationships within the code. The merged embedding, 

which now contains integrated features from both 

DeBERTa and GAT, is then fed into a GAN 

discriminator.[23, 24] The discriminator is a 

specialized component designed to analyze the 

combined embedding and classify the input binaries. 

By leveraging the detailed and multifaceted 

representation provided by the merged embedding, 

the GAN discriminator can differentiate between 

vulnerable and normal binaries. The GAN 

discriminator processes the merged embedding and 

outputs a classification result. This result indicates 

whether the input binary is classified as vulnerable or 

normal.   

 

ALGORITHM 1: EMBEDDING  

                   COMPUTATION USING DEBERTA 

MODEL 

 Input: -Instruction Sequence : {I1,I2,I3,….In} 

-Projection matrix: W 

 Output

: 

Contextualized Embedding: 

ContextEmb 

1.  ContextEmb ← ϕ  

2.  for each Instruction s  ∈ {I1,I2,I3,….In} 

3.   Inputtokens  ← Tokenizer (s) 
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4.   for each token i ∈ Inputtokens 

5.    Compute word embeddings: 

6.          Ew ← Token_Embedding(i) 

7.    Compute relative position embeddings: 

8.         Er  ← Positional_Embedding(i) 

9.    for each head k ← {1,2, 3,.. 12} 

10.     Compute Content Based Attention 

Scores: 

11.     𝑄𝑤𝑘
, 𝐾𝑤𝑘

, 𝑉𝑤𝑘
= 𝐸𝑤 × 𝑊𝑤𝑘

𝑄 ,     𝐸𝑤

× 𝑊𝑤𝑘
𝐾 , 

        𝐸𝑤 × 𝑊𝑤𝑘
𝑉     

12.     Compute Position Based Attention 

Scores: 

13.         𝑄𝑟𝑘
, 𝐾𝑟𝑘

=    𝐸𝑟 × 𝑊𝑟𝑘

𝑄
,    𝐸𝑟 × 𝑊𝑟𝑘

𝐾 

14.     Compute the disentangled attention 

scores: 

15.     Attention(𝑄𝑤𝑘
, 𝐾𝑤𝑘

, 𝑄𝑟𝑘
, 𝐾𝑟𝑘

)

= Softmax (  
𝑄𝑤𝑘

𝐾𝑤𝑘
𝑇 + 𝑄𝑟𝑘

𝐾𝑟𝑘
𝑇

√𝑑𝑘

) 

16.     For token i , all tokens in the input 

sequence 𝑗, the output of the attention 

mechanism of kth head is 

17.                       𝑂𝑘 = ∑ Attention𝑖𝑗𝑗 ⋅ 𝑉𝑤𝑘
 

18.      end 

19.    Concatenate the outputs from all heads of 

token i: 

             Oi ← 

𝐶𝑜𝑛𝑐𝑎𝑡(𝑂𝑘
1, 𝑂𝑘

2, … , 𝑂𝑘
12) . 𝑊𝑂   

20.    Apply a feedforward neural network with 

ReLU activation: 

21.         𝐹𝑖 = 𝑅𝑒𝐿𝑈(𝑂𝑖𝑊1 + 𝑏1)𝑊2 + 𝑏2 

22.    Xi ← Add residual connections and apply 

layer normalization to the output 𝐹𝑖 

23.    ContextEmb ← ContextEmb U { Xi } 

24.     end 

25.  end 

26.  return ContextEmb 

 
ALGORITHM 2: EMBEDDING 

COMPUTATION USING GAT MODEL 

 Input:  

 

- Graph G : Nodes(n) and 

Edges(e) 

- Node feature Vector:  f ,  Weight 

Matrix: W  

- Attention Coefficients: a 

 Output: Graph Embedding: 𝜙 (𝐺)  

1.  Apply the weight matrix W to each node 

feature vector 𝑓𝑖 

2.                     �⃗⃗�′𝒊 = 𝑾. �⃗⃗�𝒊     ∀i∈ {1,…,n} 

3.  for each edge (i, j) where  j ∈ 

𝒩𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑁𝑖) 

4.   Concatenate the transformed feature 

vectors of nodes 𝑖 and j 

5.             �⃗⃗�𝒊𝒋 =  �⃗⃗� ′𝒊|| 𝒇⃗⃗⃗ ⃗′𝒋     

6.   Compute the raw attention score using 

the weight vector �⃗�  and LeakyReLU 

activation 

            𝑚𝑖�̇� = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(�⃗�⊤. 𝑓𝑖𝑗) 

7.  end 

8.  for each vertex i 

9.   Normalize the attention scores using the 

softmax function 

10.   
                   𝛼𝑖𝑗 =

𝑒𝑥𝑝(𝑚𝑖𝑗)

∑ exp(𝑚𝑖𝑘) 𝑘∈𝑁𝑖

 

11.   Aggregate the transformed features of its 

neighbors weighted by the attention 

coefficients: 

12.                        𝑓𝑖
′′ = ∑ 𝛼𝑖𝑗

𝑗∈𝑁𝑖

. 𝑓𝑗
′ 

13.   Apply a non-linear activation function  to 

the aggregated features: 

                   𝑓𝑖
′′′ = ReLU(𝑓𝑖

′′) 

14.  end 

15.  Compute the sum of the updated feature 

vectors (Sum Pooling): 

16.                               𝜙 (𝐺) = 𝛴𝑖=1
𝑛  𝑓𝑖

′′′ 

17.  return 𝜙(𝐺) 

  

 
Table 1. Variable and its definition 

Variable Definition 

In Instruction Sequence 

K Attention Head count 

n Number of nodes in Graph 

e Number of edges in Graph 

W Projection matrix 

𝐸𝑤 Word Embedding 

Er Relative positional embedding 

𝑄𝑤𝑘
, 𝐾𝑤𝑘

, 𝑉𝑤𝑘
 Content-based attention scores 

ContextEmb Contextualized Embedding 

a Attention Coefficient 

𝑓𝑖 Feature Vector 

𝛼𝑖𝑗 Normalized Attention Score 

𝜙 (𝐺) Graph Embedding 

Acc Accuracy 

Comp Compatible 

4. Experimental results 

This section presents the results and a 

performance assessment of the proposed 

vulnerability detection model. The Proposed 

approach is compared with the latest works for 
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detecting vulnerabilities in IoT firmware binaries. 

The implementation language used in the proposed 

approach is Python v3.12.5, with the PyTorch 

framework as the primary tool. For disassembly, 

Binary Ninja is utilized. The server operating system 

is Ubuntu 22.04 LTS, supported by a 12-core Intel 

Xeon E5-2697v2 CPU running at 2.7 GHz, and 128 

GB of server memory. The GPU in use is an NVIDIA 

RTX 3090. The DeBERTa model used in this setup 

consists of twelve layers with output embeddings 

having a dimension of 256. The function embedding 

model is implemented with four-layer Graph 

Attention Networks (GATs) and uses binary cross-

entropy as the function. Training and evaluation are 

conducted on a desktop computer running Windows 

10. 

Experiments are conducted separately for each of 

the 18 types of vulnerabilities. The training method 

follows a batch-wise approach, with a batch size of 

64, and each node has a vector dimension of 64. The 

dropout rate is set at 0.5, and the number of epochs 

ranges from 10 to 100. Optimization is performed 

using the Adam optimizer, with a learning rate of 

0.002. The dataset presented provides a 

comprehensive view of firmware analysis.  In this 

experiment, the latest IoT firmware images from nine 

vendors (Tasmota, OpenWrt, MicroPython, Contiki-

NG, RIOT-OS, Cisco, D-Link, TP-Link and Netgear) 

are collected. The custom CVE vulnerability 

repository is built for the current experiment, which 

is based on the CVE database. The dataset is based 

on IoT firmware and associated vulnerabilities. The 

CVE vulnerabilities[34]  considered in the proposed 

approach are listed in Table 2. The dataset includes 

49 firmware images from nine vendors, as 

documented in Table 3, and 230 vulnerable functions 

from IoT projects, as detailed in Table 4. In total, the 

dataset comprises 113,508 functions collected from 

nine different IoT projects, including 230 vulnerable 

functions. The vulnerabilities include Memory  

Table 2. Key Vulnerabilities used in Dataset 

Vulnerabilities CVE Ids Description 

CWE-787  CVE-2022-43294, CVE-2023-28116, 

CVE-2023-23609, CVE-2018-16666, 

CVE-2023-24817, CVE-2023-24797, 

CVE-2024-22751 

Out-of-bounds Write 

CWE-79 CVE-2021-36603, CVE-2023-24182, 

CVE-2019-18993 

Cross-site Scripting 

CWE-122 CVE-2023-7158 Heap-based Buffer Overflow 

CWE-119 CVE-2018-16665, CVE-2023-33975 Improper Restriction of Operations within 

the Bounds of a Memory Buffer  

CWE-20 CVE-2021-44228 Improper Input Validation 

CWE-77 CVE-2022-25060, CVE-2022-25064, 

CVE- 2022-27647 

Command Injection 

CWE-120 CVE-2022-27643 Classic Buffer Overflow 

 
Table 3. Firmware Binaries used in 

Dataset 

IoT Firmwares # Firmware 

Images 

Tasmota[25] 3 

OpenWrt [26] 4 

MicroPython[27] 2 

Contiki-NG[28] 5 

RIOT-OS[29] 2 

Cisco[30] 3 

D-Link[31] 10 

Tp-Link[32] 10 

Netgear[33] 10 

TOTAL 49 
 

Table 4. Vulnerabilities in Different Versions of Firmware 

CVE Ids Function Name (Filename) Confirmed# 

2022-43294 ClientPortPtr  (CRtspSession.cpp) 8 

2021-36603 ble-l2cap (ble-l2cap.c) 11 

   2023-7158 slice_indices  (objslice.c) 12 

2023-28116 ble-l2cap (ble-l2cap.c) 17 

2023-23609 ble-l2cap (ble-l2cap.c) 16 

2018-16666 next_string  (aql-lexer.c) 17 

2018-16665 lvm_shift_for_operator ( lvm.c) 20 

2023-33975 rbuf_add    13 

2023-24817 gnrc_rpl_srh_process  14 

2021-44228 log4j-core 12 

2024-22751 sub_477AA0 11 

2023-24797 sub_48AC20 8 

2022-25060 oal_startPing 17 

2022-25064 oal_wan6_setIpAddr 16 

2022-27647 Libreadycloud 12 

2023-24182 sshkeys 7 

2019-18993 New_port_forward 12 

2022-27643 SOAPAction_header, 7 
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Table 5. X-Opt Vulnerability detection accuracy of proposed approach

Firmware Tasmota OpenWrt Micro Python Contiki-NG 

 Opt0 Opt1 Opt2 Opt3 Opt0 Opt1 Opt2 Opt3 Opt0 Opt1 Opt2 Opt3 Opt0 Opt1 Opt2 Opt

3 

Opt0 0.9

7 

0.7

9 

0.8

5 

0.8

9 

0.9

5 

0.8

5 

0.7

8 

0.7

9 

0.9

8 

0.8

5 

0.7

8 

0.8

9 

0.9

4 

0.7

7 

0.7

9 

0.7

5 

Opt1 0.8

8 

0.9

8 

0.9

4 

0.8

5 

0.8

7 

0.9

4 

0.8

4 

0.8

5 

0.8

7 

0.9

9 

0.8

6 

0.8

5 

0.9

3 

0.9

3 

0.8

5 

0.8

7 

Opt2 0.8

7 

0.8

8 

0.9

7 

0.8

9 

0.7

7 

0.8

6 

0.9

3 

0.8

2 

0.8

8 

0.8

2 

0.9

5 

0.8

8 

0.8

3 

0.8

6 

0.9

2 

0.8

6 

Opt3 0.8

5 

0.8

9 

0.9

1 

0.9

4 

0.8

5 

0.8

9 

0.8

1 

0.9

6 

0.8

5 

0.8

7 

0.9

1 

0.9

2 

0.8

6 

0.8

9 

0.9

0 

0.9

6 

Firmware Cisco D-Link Tp-Link Netgear 

 Opt0 Opt1 Opt2 Opt3 Opt0 Opt1 Opt2 Opt3 Opt0 Opt1 Opt2 Opt3 Opt0 Opt1 Opt2 Opt

3 

Opt0 0.9

8 

0.8

4 

0.8

2 

0.8

9 

0.9

1 

0.8

5 

0.8

6 

0.8

4 

0.9

6 

0.8

1 

0.8

5 

0.8

6 

0.9

5 

0.7

9 

0.8

1 

0.8

3 

Opt1 0.8

3 

0.8

9 

0.8

9 

0.8

5 

0.8

3 

0.9

0 

0.8

4 

0.8

5 

0.8

1 

0.9

2 

0.8

4 

0.8

7 

0.8

6 

0.9

6 

0.8

4 

0.8

5 

Opt2 0.8

7 

0.7

7 

0.8

8 

0.7

9 

0.8

5 

0.8

8 

0.9

1 

0.8

0 

0.8

5 

0.9

6 

0.8

7 

0.8

4 

0.8

7 

0.9

6 

0.9

0 

0.8

9 

Opt3 0.7

9 

0.7

8 

0.9

1 

0.9

1 

0.8

4 

0.8

4 

0.8

9 

0.8

7 

0.8

5 

0.8

7 

0.9

1 

0.9

8 

0.8

5 

0.8

9 

0.8

5 

0.9

1 

Corruption, XSS, Buffer Overflow (Heap-based), 

Out-of-Bounds Memory Access, Improper Input 

Validation, Command Injection, and Classic Buffer 

Overflow.  Cross Optimization (X-Opt) analysis in 

vulnerability detection helps in understanding the 

effect of optimizations in presence and behavior of 

vulnerabilities, ensuring the effectiveness of security 

tools, and developing robust security strategies. To 

reflect real-world scenarios, the binaries were built 

using default compilation settings without any 

additional compiler optimizations. Each program in 

binaries was compiled at four different optimization 

levels (Opt0, Opt1, Opt2, Opt3). Opt0 indicates that 

no optimization is performed. Opt1 indicates the 

restricted level of optimizations performed. Opt2 

represented a high level of optimization performed 

and Opt3 refers to the most aggressive level of 

optimization. The programs are compiled at the Opt0 

optimization degree for the cross-compiler dataset 

via GCC (version 2022.1) and Clang (version 7.0). 

In X-Opt detection, the proposed strategy is 

applied to analyze firmware binaries compiled with 

separate optimizations levels. Table 5 displays the X-

Opt level vulnerability detection accuracy for IoT 

firmware packages. The columns labelled Opt0 

present the non-X-Opt detection results, whereas the 

columns labelled Opt1, Opt2, Opt3 display the cross-

optimization detection results. The top row indicates 

the names of the IoT firmware binaries used for the 

experiment. The next rows indicate the optimization 

degrees applied to compile the target firmware, 

whereas the columns indicate the optimization 

degrees applied to compile the vulnerability. The 

cross-optimization accuracy of each firmware helps 

in analysing how different compiler optimizations 

impact the performance, size, and potentially the 

presence of vulnerabilities in the compiled software. 

In Table 5, the detection accuracy in non-X-Opt 

settings is represented by the bold numbers, which 

serve as a baseline for the findings achieved in X-Opt 

settings. High accuracy is achieved by proposed 

method at all levels of optimization, ranging from 

75% to 99%, with an average accuracy of 88.0%. 

Specifically, higher accuracy is obtained when the 

target and vulnerablities compiled at the same 

optimization level (87% - 98%) compared to different 

optimization levels (75% - 89%). 
 

 

Table 6. Analysis of CVE Function Sizes and Their 

Corresponding Detection Accuracy, runtime, and 

memory usage in different Test Cases 

Function 

Size 

# Target 

Test 

Functions 

Detection 

Acc 

Memory 

Usage 

(MB) 

Average 

Runtime 

(s) 

1K-20K 20 96.7% 128 2.4 

21K-40K 26 98.3% 240 5.8 

41K-60K 35 97.5% 412 10.9 

61K-80K 28 96.3% 654 19.3 

81K-1M 44 97.7% 800 30 

>1M 27 96.9% 936 45 

*K is short for Kilo, M is short for Million 
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Accuracy of functions of different sizes: A 

statistical analysis was conducted on the distribution 

of function sizes (i.e., total number of pointers, 

method calls, and objects) across 180 tested functions 

and their vulnerability detection accuracy. Table 6 

presents the detection accuracy, memory usage and 

average runtime of the target test functions on the 

basis of their function size. The first column lists the 

ranges of function sizes. The second column indicates 

the number of functions falling within each boundary 

range. The function sizes range from 1K to >1M, with 

the majority being less than 1M. The accuracy of 

vulnerability detection for functions of different sizes 

is shown in the third column. The accuracy of 

vulnerability detection ranged from 0.963 to 0.983, 

suggesting reliable detection without a noticeable 

trend of decreasing accuracy as function size 

increased. The system has been tested across a wide 

range of function sizes, from small (1K-20K) to 

extra-large (>1M).  

The average detection accuracy across all 

tested functions is 97.3%, indicating a high level of 

reliability in vulnerability detection. The highest 

detection accuracy is observed in the 21K-40K size 

range, whereas the lowest is in the 60K-80K size 

range. Despite variations in accuracy, the system 

maintains a consistently high detection rate above 

96% across all function sizes. The impact of the total 

number of pointers, method calls, and objects on 

vulnerability detection is reflected in the detection 

accuracy across different function sizes. The small 

functions (1K-20K) with fewer pointers, method calls, 

and objects have a detection accuracy of 96.7%. The 

medium-sized functions (21K-40K and 41K-60K) 

achieve the highest detection accuracies, 98.3% and 

97.5% respectively, as the system effectively 

identifies complex patterns. Large functions (61K-

80K and 81K-1M) exhibit a slight decrease in 

accuracy to 96.3% but rebound to 97.7% because of 

the system's robustness.  

Extra-large functions (>1M), with the highest 

number of pointers, method calls, and objects, 

maintain a strong detection accuracy of 96.9%. One 

major problem with having more pointers, method 

calls, and objects in vulnerability detection is the 

increased complexity of the codebase. This 

complexity makes it harder to analyse and track the 

flow of data and control within the program, 

potentially leading to increased chances of missing 

vulnerabilities. Pointers can introduce issues such as 

dangling pointers, buffer overflows, and memory 

leaks. Increased method calls can obscure the logical 

flow and create intricate dependencies that are 

difficult to trace. A greater number of objects can lead 

 

Table 7. Adversarial Testing Results on Firmware 

Binaries 

Attack Type Accuracy Comments 

Proposed 

Approach 

97.50% Normal binaries without 

adversarial perturbations 

were used. 

Opcode 

Substitution 

87.20% Minor degradation 

observed due to 

substitution of opcodes 

with semantically 

similar ones. 

Instruction 

Reordering 

84.80% Reordering instructions 

caused a moderate drop 

in performance. 

NOP Padding 85.30% Extra NOP instructions 

slightly affected feature 

alignment and detection. 

Combination 

of All 

80.10% Significant degradation 

observed under 

combined attacks. 

 

 

to complicated interactions and state management 

issues. As the number of pointers, objects and calls 

increases in function, more complex interactions 

occur. Despite increasing complexity, the system 

demonstrates a consistently high average detection 

accuracy of 97.3% across all function sizes, 

indicating its reliability and effectiveness in 

vulnerability detection. Memory requirements 

increase proportionally with function size due to the 

larger feature set and computations involved. The 

memory usage grows from 128 MB for small 

functions (1K–20K) to 936 MB for large functions 

(>1M), highlighting the scalability of the system. 

While the runtime increases with function size, the 

system maintains reasonable processing times. Small 

functions are analyzed in just 2.4 seconds, whereas 

very large functions (>1M) require 45 seconds, which 

is acceptable for detailed vulnerability analysis. The 

model was tested against adversarially perturbed 

firmware binaries created by introducing 

modifications, such as opcode substitutions, 

instruction reordering, and the addition of no-

operation (NOP) instructions. The results are shown 

in Table 7. 

4.1 Baseline approaches 

For an exhaustive comparison, the evaluation 

includes the following cutting-edge approaches 

selected as baselines.  

The benchmark approaches are as follows: 

• IoTSim [3], an IoT-oriented BCSD tool that 

integrates TBL models with disentangled 

attention and a multilayer GCN to detect 

vulnerabilities in IoT firmware binaries. 
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• DeepWukong [17] used a novel DL-based 

embedding technique for static detection of 

software weakness in C/C++ programs, using 

advanced GNN to encode code snippets. 

• Robin [13], proposed an approach to enhance 

binary code similarity detection by filtering out 

false positives caused by vulnerable and patched 

functions.  

4.2 Performance metrics 

To evaluate the effectiveness of proposed model 

in vulnerability detection, four performance metrics, 

including Accuracy, Precision, Recall, and F1 score 

are used. Accuracy measures the overall correctness 

of vulnerability detection results. Precision denotes 

the proportion of identified vulnerabilities that are 

true positives among all identified vulnerabilities. 

Recall measures the proportion of true vulnerabilities 

correctly identified by proposed approach. The F1 

score, which combines precision and recall, provides 

a single metric to assess proposed approach ability to 

accurately detect and distinguish between 

vulnerabilities and patched functions across various 

compiler settings and software types.  

 

Table 8. Comparison of Cross Compiler Vulnerability 

Detection Results 

Compiler GCC Clang 

 Comp# Acc Comp# Acc 

IoTSim[3] 170 78.2% 158 65.5% 

DeepWukong [17] 160 81.4% 141 72.6% 

Robin[13] 175 84.2% 149 73.5% 

Proposed  

Approach 

  180 89% 180 88% 

 

 

Related Works Comparison: Two firmwares (D-

Link and Tp-Link) with the highest number of test 

instances were selected for cross-compiler analysis 

[13,35], and firmware was compiled via GCC 

(version 2022.1), and Clang (version 7) compilers. 

Two separate compilers are used to determine the 

cross-compiler detection accuracy. The compiler 

optimization level is set to Opt0 during compilation.  

Table 8 lists the test cases that are compatible 

with the experiments, along with the current works 

and proposed approach accuracy for cross-compiler 

vulnerability detection. The detection outcomes of 

the proposed approach, are displayed bold. The 

proposed method achieves 88% and 89% accuracy on  

 

Figure. 4 Recall, Precision, F1-score results of vulnerability detection in IoT Binaries 
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binaries that are compiled with Clang and GCC 

compilers, respectively. The detection accuracy in 

Clang is marginally lower than that in GCC because 

the Clang compiler uses different stacks and registers 

in binaries. The detection accuracy is low in  [3] and 

[17] because Clang compiler lacks support for older 

language standards. [13] has low detection accuracy 

and high scalability because of syntactic changes in 

the code. The results indicate, that the proposed 

model is used as a reference model when comparing 

the outcomes of other tools. Fig. 4 presents the 

outcomes of firmware vulnerability detection, 

showcasing the recall, precision and F1 score 

respectively. When comparing proposed method with 

other current approaches, it is evident that for most of 

the CVEs, the performance of proposed approach is 

significantly better (by average >8%) than that of 

current approaches such as IoTSim, DeepWukong, 

and Robin.For example, in the cases of CVE-2023-

28116, CVE-2023-23609, CVE-2018-16666 and 

CVE-2018-16665 from the Contiki-NG project, 

proposed method achieves a recall of 100%. The 

proposed approach is successful in identifying all 70 

vulnerable functions of the Contiki-NG project. The 

average recall values achieved by IoTSim, 

DeepWukong, and Robin are 92%, 92.5%, and 

87.5%, respectively. The high recall achieved by the 

proposed method in vulnerability detection indicates 

that the proposed approach is highly effective at 

identifying true vulnerabilities within the dataset. The 

research outcomes indicate that the suggested 

approach can be used to identify vulnerabilities in IoT 

scenarios in an efficient and dependable manner.       

4.3 Discussions 

The ability of the proposed method is evident in 

the detection of firmware binaries vulnerabilities. 

However, it’s important to take into account certain 

limitations.  One key concern is the potential biases 

introduced during dataset preprocessing, such as 

tokenization, graph construction, and feature 

selection, which may impact the model’s ability to 

generalize across diverse datasets. Scalability poses 

another challenge, as the method may struggle to 

handle large-scale datasets or complex graphs due to 

increased computational and memory requirements. 

Additionally, the performance of the DeBERTa and 

GAT models is highly sensitive to hyperparameter 

settings, and suboptimal configurations could lead to 

reduced accuracy or instability. The approach also 

faces limitations in generalizing across diverse 

instruction architectures, potentially hindering its 

effectiveness in specific edge cases. Lastly, the 

interpretability of the model remains a concern, as it 

may be difficult to understand how specific 

predictions are made, limiting the ability to diagnose 

errors or explain outcomes effectively. 

5. Conclusion and future work 

In this work, a vulnerability detection tool uses a 

GAT network and DeBERTa model, is proposed. By 

leveraging DeBERTa's disentangled attention 

mechanism and robust semantic embedding 

capabilities, the proposed approach can achieve a 

deeper understanding of the code context and 

semantics, resulting in more accurate and effective 

identification of vulnerabilities. The GAT improves 

vulnerability detection by effectively capturing code 

structure and interdependencies through attention 

mechanisms, enhancing accuracy and scalability in 

analysing large codebases. Under cross-compiler 

settings, the proposed method achieves superior 

performance with 89% accuracy across GCC and 

Clang compiler, significantly outperforming cutting-

edge programs like Robin, DeepWukong and IoTSim 

highlighting its robustness and effectiveness in 

diverse environments. High accuracy is achieved by 

the proposed method at all levels of optimization, 

with an average accuracy of 88.0% across all 

firmware. The system consistently achieves a high 

average detection accuracy of 97.3% across all 

function sizes, demonstrating its reliability in 

vulnerability detection. The evaluation results show a 

recall of 100%, successfully identifying all 18 

vulnerability types. Future work should focus on 

improving dataset preprocessing techniques to 

mitigate biases introduced during tokenization, 

enhancing the model's generalization across diverse 

datasets. Additionally, efforts should be made to 

enhance model interpretability and adaptability 

across different firmware types and instruction 

architectures, ensuring more robust and explainable 

predictions. 
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