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Abstract: Real-world applications challenge facial expression recognition systems to adapt to various input image 

resolutions. Specifically, two-stage methods that rely on face patches from face detection tend to produce limited 

information for low-resolution cases and slow in the inference stage for high-resolution input. Besides, a high-

performance facial emotion vision-based system requires an adaptive deep learning model with low parameter usage 

and computational cost. This work proposes a novel facial emotion recognizer in multi-resolution input (FER-

MOTION) with high performance and cost-efficiency. The proposed network offers a lightweight CNN approach that 

is improved from MobileNetV2, offering a large kernel receptive module and a pyramid enhancement module, each 

designed to improve effectiveness and efficiency. This approach introduces a new extractor module capable of 

discriminating facial emotion features in a lightweight operation by capturing a larger spatial area at each network 

stage. A group-based attention module involving a pyramid spatial map is proposed to overcome the saturation 

performance of the extraction network. Comprehensive experimental results demonstrate that the proposed CNN 

architecture achieves high accuracy across varying image resolutions. The experiment is conducted on three 

benchmark facial expression datasets: KDEF, RAF-DB, and FERPlus. Analyses and comparisons of computational 

and parameter efficiency show that the proposed model is 3.8 times lighter in parameters and 1.8 times more efficient 

in floating-point operations than MobileNetV2. 

Keywords: FER-motion, Facial expression, Lightweight model, Multi-resolution, Enhancement module, Low-cost 

computation. 

 

 

1. Introduction 

 

The challenge in multi-resolution facial 

expression recognition occurs when the model 

processes low-resolution images. Key features like 

the eyes and lips become too small to be accurately 

identified, making it difficult for the model to 

recognize expressions effectively [1]. Facial 

expression recognition is also challenging due to the 

significant variability in human faces, which 

complicates the model's ability to detect expressions 

consistently. Furthermore, the subtle differences 

between similar expressions, such as disgust and 

anger or shock and surprise, make it difficult for the 

model to distinguish the expression accurately [2]. 

Computational efficiency issues can be achieved by 

processing data at lower resolutions and switching to 

higher resolutions only when necessary to save 

computing time and resources [3-5]. Clustering low-

resolution information involves recognizing patterns 

in critical features, enabling the system to group data 

more effectively while preserving important details 

for later analysis. This approach enables better 

adaptation to rapidly changing conditions. It also 

allows the system to customize more adaptive 

responses without processing the entire data at full 
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resolution. In addition, many data types naturally 

exhibit a hierarchical structure, with basic features 

present at lower resolutions and more complex 

features emerging at higher resolutions [6]. 

Employing a multi-resolution approach can leverage 

this hierarchy for more effective analysis and 

decision-making. In computing, multi-resolution 

techniques also optimize data representation in real-

time processing by integrating information across 

different resolution levels [7, 8]. Therefore, the 

proposed system will adjust the requirements of the 

deep learning model based on the dimensions of the 

detected face patches. 

A Convolutional Neural Network (CNN) is a 

deep learning method to process structured image 

data [9-13]. In applications such as human-computer 

interaction and the Internet of Things (IoT), it is 

crucial to utilize CNN architectures with a reduced 

number of parameters [14, 15]. It is particularly well-

suited for devices with limited capabilities, ensuring 

accurate predictions even with multi-resolution 

images [16, 17]. CNN utilizes multiple channel layers 

to discriminate essential features. Shallow layer 

architectures typically apply fewer convolution 

operations than deep architectures such as Visual 

Geometry Group (VGG) [18] and Residual Networks 

(ResNet) [19]. The lack of a superficial network 

captures complex and challenging features [20]. An 

enhancement module offers a solution to address this 

issue by implementing a comprehensive attention 

block that highlights the essential features of the input 

feature map [21]. This process designs trained 

weights to refine input features and improve the 

prediction system in machine learning [22]. The 

proposed work introduces two enhancement modules, 

including a spatial enhancement module assigned to 

critical parts of the large receptive residual and a 

pyramid-based enhancement module that processes 

the final features of the backbone and recovers 

valuable features for decision-making in the classifier 

block. The assignment of the two modules avoids 

excessive computation and parameters, thereby 

increasing the efficiency factor of the model. The 

contributions of this work are summarized as follows: 

1. A novel facial emotion recognition (FER-

MOTION) that utilizes lightweight and 

computationally efficient CNN architecture is 

introduced for recognizing basic facial 

expressions in multi-resolution input images. The 

Large Receptive Residual Network (LR2) 

captures a larger spatial area of the input map, 

enhancing the variety of combined 

representations. This architecture employs 

efficient operations to maintain low 

computational costs and high performance. 

2. Two novel enhancement modules: A spatial 

Context Enhancement module that strengthens 

the relationship of channel information within a 

single spatial map and an Efficient Pyramidal 

Enhancement module (EPE) highlight vital 

features across different groups and spatial areas. 

3. Extensive experiments are conducted on multi-

resolution input images involving three 

benchmark datasets for facial expression 

recognition: Karolinska Directed Emotional 

Faces (KDEF), Real-world Affective Faces 

Database (RAF-DB), and Facial Expression 

Recognition 2013 Plus (FERPlus). The study also 

evaluates the model's efficiency, comparing 

parameter usage, computational complexity, and 

speed on Jetson Nano and low-computation 

Central Processing Unit (CPU) devices. In 

addition, real application scenarios visually test 

the reliability of the integrated system when 

implemented on an inexpensive device. 

The structure of this paper is as follows: Section 

II provides an overview of the related studies in facial 

expression recognition. Section III outlines the 

methodology, detailing the FER-MOTION system's 

architecture and key modules. Section IV describes 

the experimental setup, including datasets and 

evaluation criteria. Section V discusses the results 

and their implications. Lastly, Section VI concludes 

the paper and suggests directions for future research. 

2. Related works    

Facial expression recognition in real-world 

scenarios encounters significant challenges, such as 

occlusion, varying resolutions, and pose variations, 

which can impact accuracy. Advanced methods have 

been developed to address these issues, such as sparse 

autoencoders for facial expression recognition [23]. 

It was implemented for pain assessment applications 

by focusing on the upper part of the facial image to 

mitigate the challenges posed by different poses. 

Another study implemented ResNet-50, modifying 

the residual down-sampling block to enhance facial 

expression recognition [24]. This method 

demonstrated high accuracy across several 

benchmark datasets. More recently, Graph 

Convolutional Networks (GCNs) have been 

developed, introducing High Aggregation Subgraphs 

(HASs) [25]. Modern deep learning methods 

incorporate transformer models that leverage self-

attention to establish global relationships between 

features, as demonstrated by [26-27]. In addition, a 

combination of approaches is particularly adept at 

handling image recognition at large input resolutions, 

consistently achieving satisfactory accuracy in their 
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respective challenges. For instance, a study [28] 

implements an ensemble feature extractor with 

MDNet, ViT, and pre-trained ResNet50 to improve 

accuracy and precision in recognizing mental 

disorders. 

Low-resolution input images can hinder 

performance due to limited information availability 

[29]. Recent studies have addressed this challenge by 

employing lightweight convolutional networks that 

maintain high effectiveness [30]. Probabilistic data 

uncertainty learning has also been applied to enhance 

feature learning by focusing on erroneous predictions 

caused by input feature constraints [31]. The 

challenge of low-resolution inputs lies in the reduced 

feature variation, making it difficult to apply these 

methods to samples in the wild. A residual voting 

network, which modifies ResNet-18, has been 

proposed to address this issue. It can improve the 

focus on critical features and reduce resource 

consumption by minimizing the extraction area.  

Many previous studies have addressed facial 

expression recognition with varying focuses and 

limitations. The study [23] concentrated solely on the 

challenge of pose variation, which limits its 

adaptability to other significant factors like resolution 

changes. Studies [29-31] focused exclusively on low-

resolution inputs, achieving good performance in 

such cases but lacking generalization to higher 

resolutions. Conversely, a study [32] targeted high-

resolution images, resulting in inefficiencies when 

applied to lower-resolution scenarios. These 

approaches collectively highlight the rigidity of 

existing models, which are constrained to specific 

resolution types and fail to adapt to significant 

dimensional differences. Furthermore, studies such 

as [24, 25, 32] overlooked practical application 

aspects, particularly efficiency. In contrast, the FER-

MOTION architecture is specifically designed to 

overcome the limitations of previous work [23], 

which struggles with resolution changes. FER-

MOTION is highly adaptable and performs 

effectively across high and low-resolution inputs, 

ensuring consistent and flexible performance in 

multi-resolution scenarios. Compared to studies [26-

32] that only work well on specific resolution images, 

FER-MOTION bridges this gap by supporting a wide 

range of resolutions to reach implementations on 

objects of varying scales that often occur in real case 

scenarios. Additionally, while studies like [24], [25], 

and [31] overlook efficiency, FER-MOTION is 

lightweight, using fewer parameters and less 

computational power. Despite its simplicity, it 

delivers high accuracy while remaining adaptable 

and efficient for real-world applications involving 

diverse resolutions. 

3. Method    

The proposed deep learning system uses a data-

driven feature extractor to distinguish unique facial 

information. It emphasizes the importance of 

correlating vital features the classifier can use to 

generate accurate facial expression predictions on 

particular assessments. The FER-MOTION network 

is designed to maximize the smoothness of variation 

by dividing the process into two main stages, each 

handled by a dedicated module. The architecture 

consists of two core modules, the backbone and the 

classifier, as shown in Fig. 1. 

 

 
Figure. 1 Overall architecture of FER-MOTION. The backbone integrates Large Receptive Residual and Large Receptive 

Residual with Enhancement modules interchangeably to effectively distinguish essential facial features from irrelevant 

information. The EPE (Efficient Pyramid Enhancement) module is embedded within the LR2 with Enhancement to 

further augment the feature extraction capability 
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3.1 Backbone 

The backbone module is inspired by 

MobileNetV2 architecture [33], where the backbone 

module aims to extract the main features of 

expression. It utilizes convolution operations that are 

optimized for computational efficiency. It allows for 

more precise identification of important facial 

features. Once these features are extracted, the 

classifier module assumes the task of generating the 

final prediction of the facial emotion expressed based 

on the features extracted by the backbone. The FER-

MOTION architecture can improve accuracy in facial 

emotion recognition. 

The backbone consists of a convolution layer, 

two proposed modules, Global Average Pooling, and 

softmax activation. The proposed two modules 

include Large Receptive Residual (LR2) and Large 

Receptive Residual with attention mechanism 

(LR2_Att). Large Receptive Residual is utilized as a 

bottleneck replacement in MobileNetV2 and aims to 

extract features using a 5 × 5 kernel depthwise 

convolution. Employing a large kernel provides 

feature extraction with a sizeable receptive region 

and efficient computation due to the utilization of 

depthwise convolution. Additionally, LR2 employs a 

stride of two to reduce the spatial dimensions. 

Furthermore, 1 × 1 convolution with 

SmoothSwish activation [30] was applied. This study 

employs this simple activation function for each LR2 

operation, preserving small features. This approach 

prevents and controls the loss of regions under the 

negative curve, which can occur due to convolution 

operations and the use of bias. The information 

represented in these regions typically contains subtle 

facial gesture features, and their removal can lead to 

decision errors. Therefore, the study applies a beta 

value of 1.2 to maintain the score space in small 

negative regions while forcing large negatives to 

disappear, thereby minimizing their impact on 

neighboring features. Additionally, a 1 × 1 

convolution with batch normalization is applied and 

residualized with the initial input to restore the 

features lost due to the convolution process (x). The 

mathematical representation for LR2 is as follows: 

 

𝐿𝑅2 =   
(𝐵𝑁(𝐶𝑜𝑛𝑣1𝑥1(𝛿(𝐶𝑜𝑛𝑣1𝑥1  

(𝐵𝑁(𝐷𝑤𝑙5𝑥5(𝑥))))) + 𝑥    (1) 
 

where x is the input feature that belongs to 𝐷𝑤𝑙, 
and 𝐷𝑤𝑙  is a depthwise convolution with a large 

kernel size of 5 × 5, ensuring a sizeable receptive area. 

BN represents batch normalization, which 

normalizes the extracted weight values. 𝐶𝑜𝑛𝑣1𝑥1 

represents an ordinary convolution with a 1 × 1 kernel 

size, and δ indicates SmoothSwish activation utilized 

to transform integer values into probabilities. 

3.2 Large receptive residual with enhancement 

module 

The backbone is designed as a crucial block that 

distinguishes essential expression features from 

trivial information. The FER-MOTION network 

leverages standard convolution's extensive 

information retrieval capabilities to efficiently 

capture a larger feature area. However, low-

computation operations often miss high-level 

features of sufficient quality. This problem decreases 

network performance. In order to address this case, 

this study incorporates a spatial-based attention 

module within the down-sampling convolution block. 

This addition aims to enhance the beneficial features 

while mitigating excessive feature loss that typically 

occurs during sequential convolutional blocks [21]. 

Fig. 2 illustrates the integration of an enhancement 

module within the residual part to increase feature 

correction performance. This attention mechanism 

effectively captures valuable features across the 

entire spatial area of the input map without 

significantly increasing the number of parameters. 

The formulation of the LR2 with attention module is 

as follows: 

 

 

 
Figure. 2 The proposed Large Receptive Residual 

module. This module employs sequential lightweight 

operations and integrates a residual technique to identify 

and recover missing features at the final process of the 

operation 

 

 

 
Figure. 3 The proposed Large Receptive Residual with 

Enhancement Module. This module incorporates an 

attention mechanism following two large depthwise 

convolutions to emphasize valuable information 
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𝐿𝑅2𝑎𝑡𝑡(𝑥) =   

𝐸𝑃𝐸 (𝐵𝑁 (
𝐶𝑜𝑛𝑣1𝑥1(𝐷𝑠)) ⊗

(𝐿𝐶𝐸(𝐷𝑠))
)) + 𝑥               (2) 

 

where 

 

𝐿𝐶𝐸 = 𝜎(𝐶𝑜𝑛𝑣9𝑥9(𝐷𝑤3𝑥3(𝐷𝑠)))     (3) 

 

and 

 

𝐷𝑠 =  𝛿(𝐷𝑤5𝑥5(𝐷𝑤5𝑥5(𝑥))))   (4) 

 

The proposed block applies two attention 

modules: spatial attention (Ds) and efficient pyramid 

enhancement (EPE). The attention-based LR2 

module applies a combination of depthwise 

operations with a 5 × 5 kernel (𝐷𝑤5𝑥5 ), applying 

dilation of three on the last convolutional. This 

operation was followed by smooth swish activation 

(δ). Furthermore, a Large Context Enhancement 

(LCE) module is offered to improve the 

representation of vital features in spatial regions by 

applying a depthwise operation with a 3 × 3 kernel 

followed by a more extensive filter operation 

( 𝐶𝑜𝑛𝑣9𝑥9 ) to generate a single map. A sigmoid 

activation (σ) generates a weighted probability map 

to refine the constructed features from 𝐶𝑜𝑛𝑣1𝑥1. This 

enhancement can strengthen the backbone when 

passing the extracted information to the network. 

Although it uses a large filter, it is a lightweight 

module that only generates a single weighted map. 

3.3 Efficient pyramid enhancement 

The medium layer of the backbone provides 

complex features produced from a comprehensive 

sequence of convolution operations. This feature map 

contains coarse facial gesture information; additional 

mechanisms are required to refine the valuable 

features. Several small and significant intensities of 

facial elements need to be enhanced to force the 

classifier's ability to strengthen. Therefore, an 

additional attention module is offered to achieve a 

high-performance backbone. On the other hand, 

static spatial-based operations generate saturation 

performance that does not relate essential features far 

apart [22]. The FER-MOTION proposes a spatial 

enhancement pyramid that can capture essential 

features with various receptive variations and 

summarize them as a valuable representation for 

information updating, as shown in Fig. 3. The 

proposed operation ignores the massive computation 

and thus does not significantly slow down the feature 

extraction calculation. An Efficient Pyramid 

Enhancement (EPE) applies depth-wise operations 

with various dilations involving the pyramid 

receptive regions, which is illustrated in detail as 

follows: 

 

 

 
Figure. 4 The proposed Efficient Pyramid Enhancement 
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𝐸𝑃𝐸 =  

𝐶𝑜𝑛𝑣1𝑥1(𝐷𝑤3𝑥3(∑ 𝑅𝑓𝑖(𝑥)𝑛=3
𝑖=1  ⊗  𝑥 )  +  𝑥)   (5) 

 

where 𝐷𝑤3𝑥3  is a depthwise convolutional layer to 

reconstruct enhanced features from the combined 

spatially varying features ( 𝑅𝑓𝑖) . 𝐶𝑜𝑛𝑣1𝑥1  is a 

convolutional layer with a 1 × 1 filter to mix the 

information from the residual feature correction 

function. The feature enhancement variation utilizes 

three different layers of spatial representation (𝑅𝑓1, 

𝑅𝑓2, and 𝑅𝑓3) formulated as follows: 

 

𝑅𝑓1  =   
𝜎(𝑍12(𝛾(𝑍11(𝐺𝐴𝑃(𝐷𝑤3𝑥3,𝑑=1  (𝑥))))))  (6) 

 

𝑅𝑓2  =   
𝜎(𝑍22(𝛾(𝑍21(𝐺𝐴𝑃(𝐷𝑤3𝑥3,𝑑=3  (𝑥))))))   (7) 

 

and  

 

𝑅𝑓3  =  

 𝜎(𝑍32(𝛾(𝑍31(𝐺𝐴𝑃(𝐷𝑤3𝑥3,𝑑=5  (𝑥))))))   (8) 

 

The combination of the receptive region involves 

a channel-based attention operation that adopts work 

from [21]. Each extracted receptive difference map is 

summarized by a Global Average Pooling (GAP) 

operation to generate the vector-based excitation 

scores. Then, two fully connected layers are 

sequentially employed, 𝑍𝑖1  and 𝑍𝑖2 , to select the 

preferred channel information followed by ReLU (γ) 

activation. The final block applies sigmoid activation 

(σ) to produce a weighted vector to refine the input 

map. The variable notation for all equations is 

presented in Table 1. The weights generated by each 

attention are summed by an element-wise addition 

operation combining the features at each position of 

the same vector. 

3.4 Classifier and loss function 

In the proposed network, a 2D convolution with a 

1 × 1 filter generates 1,280 features, representing the 

number of channels.  A global average pooling 

summarizes the features map by taking the mean of 

each score channel, thus preventing parameter 

overload. In addition, the 2D-convolution operation 

creates vectors with dimensions corresponding to the 

number of predicted emotion categories. This task 

uses seven emotion classes on the KDEF and RAF-

DB datasets and generates eight categories on the 

FERPlus dataset, representing basic human facial 

expressions. The last layer applies softmax activation 

to produce probabilities associated with a multimodal 

distribution, allowing the model to control a  

Table 1. Notation List 

Varia

bles 

Description 

𝑥 Input 

𝐷𝑤𝑙5𝑥5 Depthwise convolution with a large 

kernel size of 5 × 5 

𝐵𝑁 Batch normalization 

𝐶𝑜𝑛𝑣1𝑥1 Ordinary convolution with a 1 x 1 

kernel size 

𝛿 SmoothSwish activation 

𝐿𝑅2 Large Receptive Residual 

𝐷𝑠 Spatial attention 

𝐿𝐶𝐸 Large Context Enhancement 

𝐸𝑃𝐸 Efficient Pyramid Enhancement 

𝐿𝑅2𝑎𝑡𝑡 Large Receptive Residual attention 

𝐷𝑤3𝑥3 Depthwise Convolution with a 3 x 3 

kernel size 

𝐶𝑜𝑛𝑣9𝑥9 Convolution with a 9 x 9 kernel size 

𝜎 Sigmoid activation 

𝐷𝑤5𝑥5 Depthwise Convolution with a 5 x 5 

kernel size 

GAP Global Average Pooling 

𝐷𝑤3𝑥3,𝑑=1  Depthwise Convolution with a 3 x 3 

kernel size and 1 dilation 

𝐷𝑤3𝑥3,𝑑=3  Depthwise Convolution with a 3 x 3 

kernel size and 3 dilation 

𝐷𝑤3𝑥3,𝑑=5  Depthwise Convolution with a 3 x 3 

kernel size and 5 dilation 

𝑍𝑖1 Fully Connected 

γ ReLU activation 

𝑍𝑖2 Fully Connected 

𝑅𝑓1 First layers of spatial representation 

𝑅𝑓2 Second layers of spatial representation 

𝑅𝑓3 Third layers of spatial representation 
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Table 2. Ablation studies of the proposed module evaluated on KDEF dataset 

Module Experiment 

1 2 3 4 5 

S-swish ✔     

EPE ✔ ✔    

LCE ✔ ✔ ✔   

Additional Depthwise ✔ ✔ ✔ ✔  

Eff MobileNetV2 ✔ ✔ ✔ ✔ ✔ 

Parameters 595,549 595,549 491,479 440,511 1,108,863 

Accuracy (%) 97.96 97.46 96.28 95.82 94.78 

 

 

wide range of facial expression predictions. 

Furthermore, the proposed network employs a 

sequential convolutional block that uses a categorical 

cross-entropy loss function to compute the prediction 

loss of multi-resolution face expression recognition. 

The method compares the model's output with 

predefined ground truth labels involving one hot label. 

It can allow the evaluation of the model's 

performance in recognizing faces at different 

resolutions.  

3.5 Implementation setup and datasets 

The training stage increases model ability 

through a learning feature process that involves 

Adam Optimizer with a momentum of 0,9. 

Hyperparameters for fine-tuning include cosine 

learning rate decay, a batch size of 128, and no weight 

decay. A learning rate of 0.01 is used, and training is 

performed for 100 epochs. During the inference 

phase, the system crops the detected face region and 

feeds it into the classification model. This real-

application experiment used a Logitech c270 

webcam with VGA resolution (640 × 480) for live 

stream input. The classification model handles 32 × 

32-pixel patches, with speed measured across 1000 

frames to capture maximum performance. 

Experiments were carried out on both Jetson Nano to 

reflect affordable machine processing. The proposed 

facial emotion identification system involves face 

detection to isolate the face region from the 

background. This step is crucial for directing the 

focus of the classification model exclusively on the 

face, enhancing the system's performance. The 

proposed system employs face detection [4], a rapid 

and accurate method for detecting small faces in 

different resolutions. The proposed model integrates 

classification with face detection, using knowledge 

from the KDEF dataset in real scenario cases. 

In order to train and evaluate the facial expression 

recognition network, several multi-resolution 

datasets were utilized, including the Real-world 

Affective Faces Database (RAF-DB) [34], 

Karolinska Directed Emotional Faces (KDEF) [35], 

and Facial Expression Recognition 2013 Plus 

(FERPlus) [36]. Augmentation techniques, such as 

rotation, flipping, brightness adjustment, contrast 

enhancement, and color distortion, were applied 

exclusively to the KDEF dataset. Linear interpolation 

was used to upscale and downscale images to create 

multi-resolution inputs. The datasets served as the 

knowledge base from which the proposed model 

learned, with no prior training applied. The trained 

model assessed prediction errors using categorical 

cross-entropy loss, comparing predicted results with 

actual labels. For model evaluation, the KDEF 

dataset was divided using 10-fold cross-validation 

with a batch size of 128, and each fold was trained 

over 100 epochs. The consistency of the model's 

performance was further tested on the FERPlus and 

RFDB datasets, following the data split configuration 

outlined in [30]'s research. These datasets were used 

to train the model over 500 epochs with a batch size 

32. The Adaptive Moment Estimation (Adam) 

optimizer, initialized with a learning rate of 10−4, 

was employed. The learning rate was reduced by a 

factor of 0.75 whenever training accuracy plateaued 

for 20 epochs. 

4. Experiments and results    

This section presents the experimental results and 

evaluation of the proposed network, including an 

ablation study, comparisons with previous works, 

and an efficiency analysis. Performance and 

efficiency are measured using key metrics such as 

accuracy, parameter count, computational 

complexity, and model speed on low-cost devices. 

4.1 Model analysis 

In order to compare the performance of the 

proposed model through various experiments, this 

ablation study offers a thorough investigation into the 

usage of the modules proposed. These experiments 

evaluate the model's performance and parameter 
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efficiency by modifying the network's block structure 

and assessing each change's impact. Each step in the 

modification process is conducted carefully to 

observe whether the addition or replacement of a 

particular module affects the final results. Table 2 

presents the results from five experiments, each 

testing a different combination of modules. The 

experiments are conducted on the KDEF dataset, 

which is preferred due to its balanced number of 

instances.  

Table 1 illustrates the results of evaluating the 

performance and parameter efficiency of the 

proposed model. The first experiment is the proposed 

architecture, employing S-Swish Activation, EPE, 

LCE, Additional depthwise, and Efficient 

MobileNetV2. The complete model produced 

595,549 parameters and achieved 97.96% accuracy. 

Secondly, it removes S-Swish Activation without 

impacting the number of parameters. However, its 

accuracy decreased slightly to 97.46%. Furthermore, 

it excludes both S-Swish Activation and EPE, 

produced 491.47 parameters, and achieved an 

accuracy of 96.28%. This experiment left only one 

enhancement module, LCE. Additional depthwise 

and Efficient MobileNetV2 can generate parameters 

to 440M, with a corresponding decrease in 

performance of 95.82%. The last experiment only 

employed Efficient MobileNetV2, which involved 

1,108,863 parameters. However, the accuracy 

dropped by 1.04%. These observations demonstrate 

that increasing parameters can enhance the model's 

capacity, but it does not always lead to proportional 

improvements in performance. It can degrade 

performance when the number of parameters is 

excessive. 

4.2 Model Evaluation on Datasets 

4.2.1. Evaluation on KDEF dataset 

This dataset provides 4,900 RGB (Red, Green, 

Blue) images based on laboratory conditions and 

situations containing seven basic facial emotions: 

fear, anger, neutral, sadness, disgust, surprise, and 

happiness. The original dataset includes 70 people, 

each posing in five different poses: straight pose, full 

right, full left, half left, and half right. It 

accommodates both male and female genders to 

increase the variety of human faces. The multi-

resolution evaluation of the proposed model was 

performed on various image sizes, including 10 × 10, 

32 × 32, 64 × 64, 72 × 72, 150 × 150, and 224 × 224 

pixels. Table 3 shows that the FER-MOTION model 

achieves an accuracy of 97.81% at the resolution of 

224 × 224 pixels. This performance surpasses other 

architectures proposed by Cho et al.[38], which 

achieved an accuracy of 87.09%. This study employs 

a local attention module that utilizes multiple 

convolutions to generate a position map. The module 

is applied at the final stage of feature extraction, 

aiming to enhance the quality of the extracted 

information.  

 

 
Table 3. Performance comparison of the proposed model with previous works at different input resolutions evaluated on 

the KDEF dataset. 

Model Accuracy on Resolution 

224 × 224 150 × 150 72 × 72 64 × 64 32 × 32 10 × 10 

MobileNetV2 - - - 96.73 96.59 - 

MobileNetV1 - - - 96.49 96.15 - 

MobileNetV3 Small - - - 95.33 95.58 84.64 

MobileNetV3 Large - - - 96.38 96.75 87.32 

ShuffleNetV1 - - - 93.63 90.08 - 

ShuffleNetV2 - - - 95.27 96.14 - 

ResNet18 - - - 93.06 97.12 91.97 

GhostNet - - - 88.62 96.79 90.11 

RGAA 93.47 - - - - - 

Aly et al. [37] - - 96.27 - - - 

Cho et al. [38] 87.09 - - - - - 

SAFEPA [23] - 94.29 - - - - 

FER-MOTION 97.81 95.88 97.54 97.49 97.96 92.1 
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Table 4. Performance comparison of the proposed model with previous works at different input resolutions evaluated on 

the RAF-DB dataset. 

Model Accuracy on Resolution 

224 × 224 20 × 20 15 × 15 10 × 10 8 × 8 5 × 5 

SCN - 69.26 56.13 55.55 44.92 41.82 

DMUE - 73.63 70.60 62.13 55.93 46.54 

RUL - 80.63 75.65 69.17 64.06 56.16 

MULR - 81.10 77.44 70.96 66.30 59.18 

Cho et al. 87.09 - - - - - 

Sun et al. [39] 89.50 - - - - - 

Jiang et al. [40] 88.72 - - - - - 

CLCM [41] 84.00 - - - - - 

FER-MOTION 90.32 83.90 81.03 73.14 72.00 62.32 

 

 

However, this positioning strategy cannot guarantee 

comprehensive improvement of the image features at 

each stage, thereby reducing the reliability of the 

prediction results. The proposed model also 

outperformed the SAFEPA model [23] by 1.59% at 

the resolution scale of 150 × 150 pixels.  This 

approach utilizes Sparse Autoencoders to reconstruct 

the upper part of the face, focusing primarily on the 

eyes, cheeks, and the upper portion of the nose. 

However, this design reduces the variability of 

information, limiting the model's ability to predict 

facial expressions accurately. Additionally, it relies 

heavily on decoders to produce high-quality image 

reconstructions, leading to over-processing and the 

potential loss of small yet critical expression details. 

The excellence of FER-mOTION is reinforced at 

medium resolution, performing 97.54% at a 72 × 72 

size. It outperforms Aly et al. [37], which differs by 

1.27%. This competitor utilizes online learning states 

with CBAM to enhance the performance of 

bottleneck feature extraction. The enhancement 

module is integrated prior to the residual block, 

which is reported to improve the capability of 

sequential convolutional feature extraction. While 

the enhancement module contributes to improved 

accuracy, it is noted that the network remains 

bottlenecked during the image-gathering stage in the 

online learning environment, limiting its overall 

performance and hindering the achievement of higher 

accuracy. 

Furthermore, the proposed model achieved an 

accuracy of 97.49% at the 64 × 64 pixels. It shows 

that the proposed model is superior to lightweight 

models, such as other MobileNet families, which 

only maintain an accuracy of approximately 96%. 

The proposed model outperforms 2.22%, 4.43%, and 

8.87% higher than shuffleNetV2, ResNet18, and 

GhostNet, respectively. This superiority continues at 

lower resolutions, such as 32 × 32 and 10 × 10, where 

other efficient models have performance below our 

model. 

4.2.2. Evaluation on RAF-DB dataset 

This dataset provides a significant challenge in 

facial expression recognition that captures the facial 

image in the wild. It contains a variety of poses, 

occlusion styles, and illumination with static 

resolution. In order to reach a variant of image scale, 

it manipulates the size by implementing a bilinear 

interpolation approach. Table 4 presents the 

evaluation results of the proposed model across 

various input resolutions using the RAF-DB dataset. 

This experiment was conducted in different 

resolutions, 224 × 224 to 5 × 5 pixels, providing 

insights into the model's performance in identifying 

patterns at different levels of resolution. The FER-

MOTION achieved the highest accuracy of 90% at 

the 224 × 224 resolution. Among the other models 

evaluated at this resolution, they obtain lower 

accuracy than our model. This evaluation 

demonstrates that the proposed model surpasses 

several benchmarks at the highest resolution. 

The results indicate that the recent methods by 

Sun et al. [39] and Jiang et al. [40] underperform 

compared to the proposed approach. Although their 

models utilize complex deep learning algorithms 

with diverse feature extraction techniques, they 

struggle in occupied occlusion scenarios and varying 

illumination. Their enhancement modules are applied 

solely at the high-level feature stage, ignoring 

improvements at the medium and low levels, 

undermining overall correction capabilities. 

Furthermore, the approach by Jiang et al. [40] 

primarily focuses on efficiency, and its application in 

human-machine interaction focuses on efficiency, 

limiting its robustness to handle extreme conditions. 

Furthermore, The CLCM [41] achieved a 

performance of 84%, which is lower than the 
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proposed model. This approach relies on weak 

feature extraction, prioritizing efficiency while 

lacking an attention module to enhance the quality of 

the shallow network. Consequently, the modified 

MobilenetV2 model struggles to address the complex 

challenges posed by the RAF-DB dataset, 

highlighting the advantages of the proposed method 

in handling such scenarios. 

The proposed model also maintained strong 

performance with an accuracy of 83% when we 

resolved to 20 × 20 pixels. This model continued to 

show a significant margin over existing models, 

highlighting its robustness even at lower resolutions. 

Furthermore, this evaluation investigated the model 

at the 15 × 15 resolution and achieved a performance 

of 81%. This result indicates that the FER-Motion is 

still superior to other networks. The success of our 

model is also demonstrated at low resolutions (10 × 

10, 8 × 8, and 5 × 5), which results in an accuracy of 

73.14%, 72%, and 62.32%, respectively. These 

results highlight the proposed model's robust 

performance across all tested resolutions, particularly 

in maintaining superior accuracy compared to other 

models. The comparison reveals that the proposed 

model outperforms other models across most 

resolution levels, with the highest performance 

observed at the high resolution. It also demonstrates 

substantial effectiveness at lower resolutions, making 

it suitable for real-world applications with varying 

image quality. 

4.2.3. Evaluation on FERPlus dataset 

This dataset is a refinement of the FER-2013 

dataset, which improves the fit between images and 

labels. It contains eight basic emotions with several 

challenges widely used for evaluating facial 

expression recognition models. The comparison of 

the proposed model with several previous models 

across various input resolutions is presented in Table 

5. This work evaluates the model in resolutions of 64 

× 64, 128 × 128, 256 × 256, 5 × 5, 14 × 14, 18 × 18, 

and 32 × 32 pixels. The proposed model's accuracy 

increases to 89.46% at the 224 × 224 resolution.  

Jiang et al. [40] achieved a slightly higher 

performance than our model, with only a 0.18% 

difference. Although this difference is negligible, 

their model effectively performs on the FERPlus 

dataset by leveraging an RNN (Recurrent Neural 

Network) to capture relational patterns between 

facial features. Additionally, they employed extended 

training methods, such as transfer self-training, to 

incorporate prior knowledge of facial structure at the 

initial training stage, enhancing their model's 

capability. LenslessFET, and Ma et al. perform lower 

accuracy than our work. Ma et al. [42] employed a 

Multi-Layer Transformer Encoder to enhance the 

quality of essential features. This block is applied 

after combining extracted RGB and LBP features, 

leading to the transformer's module missing focus to 

capture vital gesture faces. As a result, the model 

struggles with specific multi-pose scenarios, 

achieving an accuracy of 88.81%. In contrast, 

LenslessFET [43] incorporates a Spectral Attention 

(SA) module to enhance the quality of extracted 

lensless images, applied at the final stage of the 

primary feature extractor. However, this attention 

mechanism is limited to high-level features and 

overlooks relational information across various 

frequency variations. Consequently, its performance 

is not significantly improved, achieving only 82.81% 

accuracy at the highest resolution.  

 

 
Table 5. Performance comparison of the proposed model with previous works at different input resolutions evaluated on 

the FERPlus dataset. 

Model Accuracy on Resolution 

256 × 256 224 × 224 48 × 48 20 × 20 10 × 10 5 × 5 

SCN - - - 78.09 69.62 52.71 

DMUE - - - 74.23 59.57 40.99 

RUL - - - 79.16 68.69 58.23 

MULR - - - 79.57 71.87 61.39 

He et al. - - 84.63 - - - 

Cho et al. - 88.45 - - - - 

Ma et al. [42] - 88.81 - - - - 

LenslessFET [43] 82.81  - - - - 

Jiang et al. [40] - 89.64 - - - - 

FER-MOTION 87.50 89.46 84.42 81.53 74.16 63.52 
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Table 6. Comparison of model efficiency between the proposed facial emotion network with other lightweight 

architectures. 

Model Image 

size 

Parameters GFLOPS Speed in FPS 

on Jetson Nano 

Speed in FPS on 

CPU, i7-12700  

Acc 

on 

KDEF FER Int FER Int 

MobileNetV1 32 × 32 3,236,039 0.0235 19.88 13.24 267.20 29.69 96.15 

MobileNetV2 32 × 32 2,266,951 0.0126 13.70 10.20 221.57 28.90 96.59 

MobileNetV3 Small 32 × 32 2,949,663 0.0168 11.30 8.84 226.34 20.32 95.58 

MobileNetV3 Large 32 × 32 5,127,839 0.0179 9.87 7.92 185.51 27.35 96.75 

ShuffleNetV1 32 × 32 973,567 0.0060 28.26 16.58 287.92 29.92 90.08 

ShuffleNetV2 32 × 32 4,025,915 0.0201 20.05 13.42 182.98 27.07 96.14 

ResNet18 32 × 32 11,198,919 0.0350 8.30 5.75 189.52 27.67 97.12 

GhostNet 32 × 32 3,918,680 0.0113 18.26 12.24 198.64 28.63 96.79 

FER-MOTION -10 10 x10 595.549 0.0070 10.34 8.17 216.32 29.21 92.10 

FER-MOTION -32 32 × 32 595.549 0.0070 9.73 7.75 191.87 27.78 97.96 

FER-MOTION -224 224 × 224 595.549 0.0070 8.18 6.90 34.88 15.78 97.81 

 

 

This evaluation also illustrates that our model 

obtained high performance in other resolutions with 

an accuracy of 81.53%, 74.16%, and 63.52% at 20 × 

20, 10 × 10, and 5 × 5, respectively. On the other hand, 

He et al.'s model slightly outperforms our model at 

48 × 48 resolution with an accuracy of 84.63%, 

making it marginally the best at this resolution. 

Nonetheless, the proposed model remains 

competitive at this intermediate level. The FER-

MOTION demonstrates superior performance across 

various resolutions, excelling at higher input image 

sizes.  

4.3 Efficiency evaluation and implementation of 

real scenario 

CNN models have demonstrated exceptional 

performance in recognizing facial expressions due to 

their ability to learn through weighted spatial filter 

operations. This approach typically involves a deep 

architecture with numerous convolutional layers, 

significantly increasing computational demands. 

Consequently, the extensive operations can lead to a 

reduction in data processing speed. In our proposed 

work, we investigate the efficiency of the developed 

model by examining the number of parameters, 

computational complexity, and processing speed and 

comparing it with existing lightweight architectures. 

To evaluate the practicality of our model, we 

conducted speed tests on a Jetson Nano as a 

commonly used low-cost device in applications such 

as robotics, IoT, smart home, and industrial systems. 

These tests are intended to demonstrate the model's 

reliability in maintaining speed on resource-

constrained hardware. 

The testing stage demonstrates that the proposed 

model generates fewer parameters and requires less 

computational effort than competing models, as 

detailed in Table 6. All experiments were conducted 

at the exact input resolution of 32 × 32 for a fair 

comparison. The FER-MOTION consistently 

maintained a parameter count of 595 million and 7 

GFLOPs (Giga Float Point Operations). Despite its 

strengths in performance and efficiency, the facial 

expression (FER) model speed lags behind other 

lightweight architectures (except ResNet-18), 

achieving only 9.73 Frame Per Second (FPS) at the 

32 × 32 resolution. It is primarily due to the 

depthwise convolution operations within our network, 

which necessitate parallel processing memory. 

Besides, the Keras framework processes these 

operations sequentially, resulting in slower feature 

extraction and processing. Nevertheless, this 

limitation does not significantly impact the model's 

practical application, particularly when integrated 

with a face detection system (int). The facial emotion 

detection system remains reliable, operating at 7.75 

FPS with satisfactory performance effectiveness. To 

evaluate the model's performance on a low-cost 

device designed for real-time speed, we also 

deployed the proposed model on a CPU-based system 

equipped with an Intel Core i7-12700 processor (4.4 

GHz) and 16 GB of RAM. Notably, this device is 

more affordable than the Jetson Nano. The proposed 

model achieved an impressive speed of 191.87 FPS, 

outperforming ResNet-18 and ShuffleNetv2. 

However, the extensive use of depthwise operations 

and the branching in the convolution layers 

introduced a bottleneck that slightly hindered the 
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network's efficiency, a drawback of the proposed 

algorithm. 

The visualization presented in Fig. 5(a) serves to 

demonstrate the reliability of our model when applied 

to real-world scenarios in normal illumination. This 

experiment covers small, medium, and large face 

scenarios, using the KDEF dataset as the knowledge 

base. To ensure accurate face recognition, a face 

detection algorithm [44] was utilized to isolate and 

focus on face regions, generating face patches for 

analysis. The proposed system employs models at 

three distinct resolution levels to optimize 

performance across various face sizes. For face 

patches smaller than 30 × 30, models trained at a 

resolution of 20 × 20 are used. For medium-sized 

faces ranging from 30 × 30 to 100 × 100, models 

trained at 32 × 32 are applied. Larger faces exceeding 

100 × 100 are processed using models trained at 224 

× 224. This multi-resolution approach enables the 

system to accurately predict faces at different scales, 

effectively recognizing faces even at a distance of 4 

meters from the camera in the case of small faces. In 

order to assess the reliability and capability of the 

proposed model, we conducted tests under various 

lighting conditions, as illustrated in Fig. 5(b). The 

model successfully recognizes facial expressions in 

the top row of the image, even under limited lighting 

in the facial area. However, the bottom row highlights 

prediction errors in low-illumination scenarios. The 

scarcity of facial gesture information challenges the 

model in accurately predicting sad expressions. 

Furthermore, the model struggles significantly when 

the face is subjected to extremely low illumination. 

 

 

 
(a) 

 

 

 

 
(b) 

Figure. 5 Visualization of test results in real-world scenarios across multiple facial input resolutions. The scenarios are 

conducted under normal illuminance (a) and abnormal illuminance (b) 

 



Received:  December 3, 2024.     Revised: January 23, 2025.                                                                                           662 

International Journal of Intelligent Engineering and Systems, Vol.18, No.2, 2025           DOI: 10.22266/ijies2025.0331.47 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

5. Conclusions and future works   

This work proposes FER-MOTION, a facial 

expression recognition system that identifies 

emotions across multi-resolution inputs. The deep 

learning network effectively distinguishes facial 

texture features while maintaining efficiency, 

irrespective of variations in input dimensions. A 

Large Receptive Residual Network (LR2) can 

discriminate between critical features and trivial 

information without requiring extensive 

computational resources. Additionally, the system 

incorporates two enhancement modules to bolster 

feature extraction capabilities. The Large Context 

Enhancement module refines LR2 by enhancing 

focus on gesture context, improving feature filtering. 

Simultaneously, the Efficient Pyramid Enhancement 

module emphasizes essential features by representing 

diverse receptive areas. The model analysis 

demonstrates that the proposed modules significantly 

enhance network performance, minimizing the need 

for large numbers of trained parameters and 

computational resources. Comparative evaluations 

against previous work across different input 

resolutions show that the proposed recognizer 

consistently performs better. Although the model 

operates slower than other lightweight CNN 

architectures, it utilizes fewer parameters and 

exhibits reduced computational complexity. This 

deep learning model represents a significant 

scientific contribution as a novel network for 

recognizing human facial emotions across different 

resolution scales. Furthermore, the proposed modules, 

such as Large Receptive Residual Network, Large 

Context Enhancement, and Efficient Pyramid 

Enhancement, offer valuable recommendations for 

designing efficient and effective deep learning 

networks to enhance lightweight feature extraction 

performance. Future research may focus on 

optimizing the loss function to improve recognition 

accuracy by exploring focal loss approaches. 

Additionally, implementing the system on a robot 

would provide valuable insights into real-world 

scenarios, particularly in environments with dynamic 

illumination and jitter effects. 
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