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Abstract: Epileptic seizure is a neurological disorder which can create severe consequences when not monitored and 

given timely care. Various techniques have been proposed for detection of epileptic seizures using 

electroencephalogram (EEG) signals. But these unimodal approaches have higher false positives. Multimodal 

approaches combining electrocardiogram (ECG), facial cues etc. with EEG can reduce the false positives. This work 

proposes a deep learning fusion-based technique for detection of epileptic seizure from multimodal inputs of ECG and 

EEG. The solution extracts feature from multimodal inputs and applies cross modal learning in spatial and temporal 

context to increase the accuracy of epileptic seizure detection and reduce false positives. Through experimental 

analysis with EPILEPSIAE dataset and TUSZ dataset, the proposed solution is found to increase accuracy by at least 

1% and reduce false positives by at least 1% compared to recent multimodality solution combining ECG and EEG 

modality with CNN features and late decision fusion for seizure detection. 

Keywords: Epileptic seizure, Neurological, Multimodal, Electroencephalogram, Electrocardiogram, Deep learning, 

Cross modal learning. 

 

 

1. Introduction 

Epilepsy is a neurological disorder which has the 

higher risk of death and can create life crippling 

situations [1]. Though most of epileptic cases 

respond well to pharmaceutical drugs, 30-40% have 

drug resilient epilepsy. Epilepsy is often marked by 

irregular electrical activity in the brain, leading to 

focal seizures. These seizures are confined to a 

specific area of the body and may present as unusual 

sensations, brief lapses in awareness, altered 

behavior, or confusion, often without visible 

convulsions. Depending on the abnormal electrical 

activity in brain and how it spreads, the effects can 

vary from person to person [2]. 

Electroencephalography (EEG) is the most popular 

method for epileptic seizure diagnosis. EEG is the 

electrical signal measurements from electrodes 

attached to scalp area. Analysis of these electrical 

measurements can provide various cues about seizure 

onset and class of seizures [3]. Manual analysis of 

EEG is tedious and error prone as the signal is 

complex, high dimensional and noisy. Towards 

solving this problem, various machine learning (ML) 

techniques using both conventional [4] and deep 

learning [5] schemes have been proposed for 

automatic diagnosis of epileptic seizures from EEG 

signals.  

Conventional techniques extract various 

handcraft features in frequency and time domain 

from EEG signals. The features are then classified to 

seizure using various machine learning classifiers 

like support vector machine (SVM), K-nearest 

neighbor (KNN), Artificial neural networks (ANN), 

random forest etc. Deep learning techniques avoid 

handcraft features and learn intricate features through 

convolutions and pooling. The features are learnt 

either in 1-dimension or 2-dimension signal 

representation using various deep learning 

architectures to classify seizures. The existing ML 

based techniques have two important issues: (a) for 

the pre-seizure samples that are further in advance of 

the onset (one hour), the classification often leads to 

larger false negatives (low sensitivity) (b) for the non-

seizure samples the false positive tends to be larger 

as it gets closer to the pre-seizure period (low 
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specificity). Multi modal technique integrating 

various biological time series like EEG, intracranial 

electroencephalogram (iEEG), or ECG can solve 

these problems [6]. Multi-modality seizure detection 

can improve the classifier’s robustness by 

minimizing variance and maximizing overall 

performance. But there are very few works on multi 

modal integration especially with consideration for 

spatial and temporal context. This work addresses 

this gap and proposes a multimodality deep learning 

fusion integrating EEG and ECG signals with 

consideration for spatial and temporal context in both 

signal dimensions for increasing the accuracy of 

epileptic seizure prediction and reducing the false 

positives. The proposed solution has following novel 

contributions 

(i) A novel signal segmentation algorithm based 

on HRV features of ECG.  

(ii) A deep learning network with cross modality 

learning to extract features from each of EEG and 

ECG modality and provide enhanced fused feature 

with minimal adversarial loss. 

(iii) The spatial context fused features in different 

time segments are sequenced to capture temporal 

context and classified using long short-term memory 

(LSTM) classifier to predict probability of seizure 

and non-seizure class. With consideration of both 

spatial and temporal context, the accuracy of 

prediction increases and false positives reduces.   

The rest of paper contents are structured as 

follows. Section 2 presents the existing approaches 

for epileptic seizure prediction. Section 3 presents the 

proposed multimodality deep learning fusion 

technique for seizure prediction. The performance 

comparison results and discussion on results in 

presented in Section 4. Section 5 presents the 

conclusion and scope for future research. 

2. Literature survey    

Wang et al [7] proposed a multi modal approach 

to classify seizures. EEG signals were processed in 

1D or 2D mode with repeated convolutions & pooling 

along with LSTM to extract spatial and temporal 

features. The features are then classified using hybrid 

neural network to seizure classes. Multimodality was 

applied only in context of feature extraction but the 

same EEG signal was used which can create bias 

resulting in higher false positives. Harikumar et al [8] 

extracted Singular Value Decomposition (SVD) 

features from EEG signals and classified it to seizures 

using extreme learning machine. The temporal effect 

over longer duration is lost in SVD feature extraction 

and approach is based only on spatial features. Kumar 

et al. [9] extracted features from EEG signals using 

combined variable mode decomposition and Hilbert 

transform. The features are then classified to seizure 

using stacked neural networks. Temporal context was 

not considered in feature extraction and signal was 

processed as whole for feature extraction. Murariu et 

al. [10] decomposed the EEG signal to intrinsic mode 

functions (IMF) using empirical mode decomposition 

(EMD) and extracted Power spectral density features 

from IMF.  The features are classified by KNN and 

Naïve Bayes classifier. IMF’s segmentation using 

EMD cannot properly segment short duration 

seizures and hence they cannot be accurately 

classified. Ficici et al. [11] split the EEG signals to 

fixed duration epochs. Discrete wavelet transform 

(DWT) is applied over each epoch to get sub bands 

and energy features are extracted from each sub band. 

The energy features for each epoch are classified to 

seizure class using ensemble classifier. Temporal 

correlation between the epochs were not considered 

for seizure classification. Ghazali et al. [12] applied 

DWT on EEG signals to get sub bands. From these 

sub bands features related to time domain are 

extracted. The features are classified using feed 

forward neural network to seizure class. Temporal 

feature extraction was not considered. Jana et al. [13] 

split the EEG signals to two second duration 

segments and transformed them to a spectrogram 

matrix. This spectrogram matrix is then classified to 

seizure class using 1D convolutional neural network 

(CNN). Without consideration of temporal resolution 

features the accuracy was less than 80% in this 

method. Hassan et al [14] proposed a hybrid approach 

combining deep learning features with traditional 

machine learning classifiers for seizure detection. 

CNN features extracted from EEG signals are 

flattened to 1D feature vector. The best set of features 

are selected using mutual information entropy. The 

features are then classified using various traditional 

classifiers. Segmentation of EEG signal and temporal 

correlation between features of different segments 

were not considered in this work. Lih et al. [15] 

proposed a deep learning transformer architecture 

called EpilepsyNet to classify seizures. EEG signals 

were first segmented in 23.6 second duration and 

spectral entropy features are extracted from each 

segment. The features are then classified using Bi-

LSTM. Though temporal correlation was considered, 

the segments were on fixed duration and limited 

handcrafted features are extracted from each segment. 

Saeizadeh et al. [16] proposed a decision fusion 

approach combining EEG and ECG modalities. Both 

modality signals are segmented into 4s duration 

epochs. For each epoch, convolutional features are 

extracted and classified using softmax. Both results 

are then ensembled using logistic regression to 
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provide seizure class as output. Both modalities 

worked independently and only their decision was 

fused. Majzoub et al. [17] et al trained deep learning 

Alexnet with multichannel EEG to classify seizures. 

Use of multichannel input avoided information loss 

but without temporal correlation between signals 

across duration increases false positives. Christos et 

al. [18] developed a multi modal approach to detect 

seizure in home environment combining EEG with 

accelerometer and gyroscope. The accelerometer and 

gyroscope readings were used to filter noised EEG 

signal caused by patient movement. Time/frequency 

domain features extracted from EEG signal are 

classified by SVM to seizure. Nielsen et al. [19] 

proposed a multi modal approach to detect seizure 

combining EEG, ECG and accelerometry signals. 

Handcrafted features extracted from each modality 

were combined as one feature vector and classified to 

seizure type using SVM. Each modality feature is 

used individually without any cross-modal learning. 

Also, temporal correlation was not considered in this 

work. Vandecasteele et al [20] proposed a multi 

modal seizure detection approach combining behind-

the-ear EEG and ECG signals. Handcraft features are 

extracted from EEG and ECG signals and classified 

separately using SVN and RF classifier. The results 

of each are then late fused to provide the seizure class. 

The classification accuracy improved due to ECG 

integration. Qaraqe et al. [21] proposed a multimodal 

seizure detection technique combining EEG with 

ECG signals. From ECG, Heart rate variability 

(HRV) features are extracted and classified to seizure 

using SVM. EEG signal is split to EEG spectral band. 

Common spatial pattern features are extracted from 

each spectral band and classified using SVM 

classifier. The approach used both feature and 

decision fusion strategies for seizure detection. Sabor 

et al [22] combined EEG and ECG modality to detect 

epileptic seizure onset. The signals are split to 5 

second duration segments.  

From ECG, HRV features and from EEG, 

frequency domain features are extracted. Features are 

enhanced using CNN. The enhanced features are 

classified by SVM. Each modality was processed 

separately without any cross-modal learning. 

Sigsgaard et al. [23] proposed a multi modal 

approach combining EEG and ECG signals. RF 

classifier detects seizure from the time/frequency 

domain features extracted from EEG and ECG 

signals separately for each modality. The decision of 

each modality is then late fused to get final decision. 

Yang et al. [24] proposed a multimodal seizure 

detection technique combining iEEG and sEEG. 

Transfer learning is applied to enhance the 

convolutional features extracted from each modality 

and decision fusion is done on results of each 

modality.  

 

Problem definition 

Table 1 summarizes the solutions detailed so far. 

From the Table 1, it can be seen that integration of 

other modalities to EEG reduces the false alarms and 

helps to filter noisy signal processing. In most of 

solutions, the integration was done in early or late 

fusion mode but signals were processed individually 

without any cross-modality learning. Also in existing 

solutions, the temporal correlation over various 

epochs of signal and segmentation of epochs based 

on spike characteristics were not considered. 

Integration of cross modality learning in spatial and 

temporal context over multi-modality signal is a gap 

in the existing works. Addressing this gap can 

minimize the false positives and maximizes the 

accuracy of seizure detection. Based on this 

observation, this work proposes a multimodality deep 

learning fusion technique integrating cross modality 

learning in spatial and temporal context.  

3. Multimodality deep learning fusion    

The architecture of the proposed multimodality 

deep learning fusion technique is given in Fig. 1. The 

solution has four stages: (i) segmentation, (ii) 

scaleogram generation, (iii) cross modality learning, 

and (iv) detection. In the segmentation stage, a 

common segmentation boundary is established for 

the joint EEG and ECG signals based on the HRV 

analysis. 2D scaleogram image is generated on the 

segmented EEG and ECG signals in the scaleogram 

generation stage. In the feature enhancement stage, 

convolutional features are extracted from scaleogram 

image and enhanced with cross modal learning. In the 

detection stage, the temporal correlation between the 

cross modality enhanced features is used to predict 

the probability of seizures using LSTM. The 

functional components of the solution are detailed in 

below subsections. The notations used in subsequent 

equations are given in Table 3 

3.1 Segmentation 

Moridani et al. [25] observed that HRV features 

of RR interval, mean heart rate, low frequency and 

high frequency components of Poincare plots 

exhibited significant variations during onset and 

duration of seizure. But these variations alone cannot 

be taken as indication of seizure. Based on this 

observation, this work proposes a novel segmentation 

algorithm to partition the EEG and ECG signals using 

HRV feature variations.  Different from segmentation  
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Table 1. Summary of survey 

Work Modality Technique   Research Gap 

Wang et al. [7] EEG EEG features are extracted in two 

modes of 1D and 2D. These features 

were classified by hybrid neural 

network to seizures  

 

• Multimodality 

input was not considered 

• Classification did 

not consider temporal 

correlation 

• Signals were 

processed as whole without 

segmentation  

 

Harikumar et al. [8] EEG SVD features are extracted from 

EEG and classified by Extreme 

learning machine to seizures  

Kumar et al. [9] EEG Features are extracted from EEG 

using variable mode decomposition 

and Hilbert transform. Features are 

classified to seizures with stacked 

neural networks  

Murariu et al. [10] EEG EEG segmented and power spectral 

features are extracted. Classification 

using Naïve Bayes classifier  

• Multimodality 

input was not considered 

• Though 

segmentation was done on 

time duration feature 

correlation between 

temporal segments were not 

considered  

 

Ficici et al. [11] EEG EEG split to fixed duration 

segments. Energy features are 

extracted from each segment and 

classified as whole by ensemble 

classifier  

Ghazali et al. [12] EEG EEG split to sub band using DWT. 

Time domain features extracted from 

each sub band and classified as 

whole by feed forward neural 

network 

Jana et al. [13] EEG EEG split to 2s duration segments.  

Spectrogram matrix is created with 

FFT features of each segment 

mapped to row in matrix. Matrix is 

classified by 1D CNN.  

Hassan et al. [14] EEG CNN features extracted from EEG 

signal and flattened to 1D vector. 

Classification is done by traditional 

classifier   

Lih et al. [15] EEG EEG signal split to 1 second 

segments. Deep learning transformer 

was trained to classify EEG 

segments to seizures   

Majzoub et al. [17] Multi-channel 

EEG  

AlexNet was trained to classify 

multichannel EEG features to seizure  

Saeizadeh et al. 

[16] 

ECG + EEG ECG and EEG signal split to 4s 

duration segments. CNN features 

extracted from each of ECG and 

EEG are classified separately and 

late decision fused to predict seizure 

class.  

• Though 

multimodality input was 

considered, each input was 

processed separately 

without any cross-reference 

learning 

• Though 

segmentation was done on 

time duration feature 

correlation between 

temporal segments were not 

considered  

 

Christos et al. [18] EEG with 

accelerometer 

and gyroscope 

Noisy EEG portions filtered using 

accelerometer and gyroscope 

readings. EEG is processed as whole 

• Segmentation of 

signal and temporal 
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by extracting time/frequency domain 

features and classified to seizures 

using SVM 

correlation between 

segments was not 

considered 

• Though 

multimodality input was 

considered, each input was 

processed separately 

without any cross-reference 

learning 

 

Nielsen et al. [19] EEG, ECG 

and 

accelerometry 

signals 

An aggregated feature vector 

combining handicraft features of 

each modality classified using SVM 

to seizure class.   

Vandecasteele et al. 

[20] 

behind-the-ear 

EEG and ECG 

Decision fusion of classification 

results of each modality of EEG and 

ECG to final decision on seizure 

Qaraqe et al. [21] EEG + ECG Strategies of early and late fusion to 

detect seizure  

Sabor et al. [22] ECG + EEG The signals are split to 5 second 

duration segments. Frequency 

domain features are extracted from 

EEG and HRV features are extracted 

from ECG. Features are enhanced 

using CNN. The enhanced features 

are classified by SVM to seizure 

class  

Sigsgaard et al. 

[23] 

ECG + EEG Features of frequency/time domain 

are extracted from each modality and 

classified by RF. Decision is then 

fused.   

Yang et al. [24] iEEG + sEEG convolutional features extracted 

from each modality and decision 

fusion is done on results of each 

modality 

 

 
Table 2. Feature difference across solutions 

Solutions Multimodality  Segmentation  Temporal 

correlation 

Cross 

modal 

learning  

[7],[8],[9]  × × × × 

[10],[11],[12],[13],[14], [15],[17]  × ✓ × × 

[16]  ✓ ✓ × × 

[18],[19],[20],[21],[22],[23],[24] ✓ × × × 

Proposed  ✓ ✓ ✓ ✓ 

 

 

 
Figure. 1 Proposed Multimodality architecture 
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Table 3. Equation notation list 

Equation no Variable Description 

1 𝑤 Frequency  

2 𝛼 Scaling factor for low pass filter with value in range of 0 to 1.  

2 𝛽 Scaling factor for low pass filter with value in range of 0 to 1.  

2 𝑚 Number of samples 

3 𝜃(𝑤) Daubechies wavelet filter response 

5 O11… .O1n Softmax classifier outputs for EEG scaleogram  

5 O21, …O2n, Softmax classifier outputs for ECG scaleogram 

5 E1 Output entropy for EEG scaleogram classification  

5 E2 Output entropy for ECG scaleogram classification 

7 𝑝 Prediction label 

7 𝑘 Number of output class 

8 ∅𝑡 Tangent activation function 

8 𝑊𝑐 Weights for input vector 

8 𝑈𝑐 Weights for hidden input vector 

12 𝐿 Loss function to be minimized  

 

based on uniform interval, this work adopts 

segmentation based on characteristic regions 

boundaries. This reduces the time for detection of 

seizure and also reduces weightage of non-seizure 

intervals over LSTM cell states during seizure 

detection stage. 

The ECG signal is processed to detect R peaks 

using Pan and Tompkins algorithm [26]. A 

segmentation start is marked at onset of R peak. The 

RR interval to next immediate R peak is measured. If 

the RR interval is less than 550-700 ms (milli sec), 

the process is repeated. If the RR interval is greater 

than 700 ms, segmentation end is marked and the 

ECG & EEG signal duration from segment start to 

segment end is marked as one segment. This process 

is repeated till the entire signal is segmented. The 

threshold of 550-700 is fixed based on observation in 

[25] Fig. 3. 

3.2 Scaleogram generation 

The ECG and EEG segments are converted to 

scaleogram image as shown in Fig. 4 by processing 

with tunable Q-Factor wavelet transform (TQWT).  

Scaleogram is the plot of energy distribution of a time 

series signal.  The choice of TQWT for scaleogram 

generation is due to more intricate energy distribution 

plot for oscillatory signals like EEG and EEG. 

TQWT is a fully discrete wavelet transform with use 

of filter banks (high pass or low pass) in sequence.  It 

is represented in terms of high pass filter 

(𝐻1
𝑗
(𝑤))and low pass filter (𝐻0

𝑗
(𝑤)) in Eq. (1) and 

Eq. (2). 

 

𝐻0
𝑗(𝑤) = {

∏ 𝐻0 (
𝑤

𝛼𝑚
) , |𝑤| ≤ 𝛼𝑗𝜋

𝑗−1
𝑚=0

0, 𝛼𝑗𝜋 < |𝑤| ≤ 𝜋
            (1) 

𝐻1
𝑗(𝑤) =  

{
 
 

 
 

𝐻1 (
𝑤

𝛼𝑗−1
)
∏

𝐻0 (
𝑤

𝛼𝑚
) ,

(1 − 𝛽)𝛼𝑗−1 𝜋 ≤ 

|𝑤| ≤ 𝛼𝑗−1𝜋

𝑗−2
𝑚=0

0, 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟 𝑤 𝜖 [−𝜋, 𝜋] 

   (2) 

 

Where 

 

𝐻0(𝑤) = 𝜃(
𝑤+(𝛽−1)𝜋

𝛼+𝛽−1
)    (3) 

 

𝐻1(𝑤) = 𝜃(
𝛼𝜋−𝑤

𝛼+𝛽−1
)     (4) 

 

In above equations, 𝜃(𝑤) is the filter response for 

Daubechies wavelet.  The number of decomposition 

level is given as J. Through experimentation, with 

various values J is set as 3 in this work. 𝛼, 𝛽  

represents the scaling factor of low pass and high pass 

filter respectively. 

3.3 Cross modality learning 

The ECG and EEG scaleogram images belonging 

to same segmentation slot is processed for feature 

extraction and enhancement using cross modality 

learning. Since the scaleogram image is an energy 

plot and there is no difference between ECG or EEG, 

cross modality fusion becomes easier at scaleogram 

level. The cross modality enhanced feature extraction 

is realized using the architecture given in Fig 2. The 

architecture has repeated convolutions to extract 

more intricate features. Convolution features at each 

level are dimension reduced using fully connected 

(FC) layer and the reduced feature is classified by 

softmax classifier to seizure class. 
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Figure. 2 Cross model learning 

 

 

The feature without dimension reduction is passed to 

convolution layer at next level. A consistency test is 

done by cross checking results of each softmax 

O11… .O1n, O21, … O2n,, O1, O2, O).  Majority rule is 

followed and if more than 90% of the outputs are 

consistent, the input feature is selected as valid. The 

valid features are merged as enhanced feature and 

passed to final stage softmax classifier. The enhanced 

feature is selected or dropped with criterion of loss 

minimization. Loss (L) is calculated using Eq. (5).  

 

𝐿 =  
𝑂1𝑛

𝑂1𝑛+𝑂2𝑛
𝐸1 + 

𝑂2𝑛

𝑂1𝑛+𝑂2𝑛
𝐸2 + 𝐸   (5) 

 

Where  

EEG Scaleogram ECG Scaleogram

Conv 11 Conv 21

Conv 1x Conv 2x

Conv 1n Conv 2n

Fc 1 Fc 2

Softmax 11Softmax 11

Softmax 1x Softmax 2x

Softmax 2nSoftmax 1x

Fc

Softmax 2Softmax 1

Softmax

O21

O22

O2n

O24

O11

O12

O1n

O14

Loss based feedback

O1 O2

O

Reject/ Retain data 

sample

Reject/ Retain data 

sample

Enriched feature



Received:  December 4, 2024.     Revised: January 24, 2025.                                                                                           686 

International Journal of Intelligent Engineering and Systems, Vol.18, No.2, 2025           DOI: 10.22266/ijies2025.0331.49 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

 
Figure. 3 RR interval observation [25] 

 

 

 
Figure. 4 Scaleogram 

 

 

𝐸𝑥 = ∑ 𝑂𝑥𝑗. 𝑒𝑥𝑗
𝑛−1
𝑗=1      (6) 

 

In the above equations, E represents the final 

output entropy and exj represents the entropy till the 

final output, calculated using Eq. (7). 

 

𝑒𝑥𝑗 = −∑ 𝑝𝑖
𝑘 𝑙𝑜𝑔 𝑝𝑖

𝑘𝑚
𝑘=1     (7) 

 

In the above Eq. (7), 𝑘  represents number of 

output classes. In this work k is 2 for seizure and no 

seizure class. 𝑝 represents the prediction label.  

The sample set with reduces the loss are added to 

training set and the sample set increasing the loss are 

dropped. The cross-model network is then retrained 

with this updated training set. When the ECG and 

EEG scaleogram image is passed as input to the 

cross-model network, the features from the final FC 

layer are collected as enhanced features. This 

enhanced feature captures the more intricate details 

necessary for seizure classification at spatial context 

level. Learning at temporal context level is done in 

the detection stage.  

3.4 Detection 

The enhanced features are sequenced to a length 

N and this sequence is used to train a multivariate 

LSTM to predict seizure probabilities. LSTM is the 

refined version of most used recurrent neural 

networks (RNN) for series-based prediction. LSTM 

extends RNN by adding gating mechanism to control 

the learning rate and forget level. Taking input 

feature vector and previous hidden states as input, 

each LSTM cell applies activation function.  This cell 

activation output is given in Eq. (8). Cell activation 

function applies hyperbolic tangent activation on sum 

of weighted input (𝑊𝑐𝑥𝑡 ), weighted hidden state 

(𝑈𝑐ℎ𝑡−1) and bias (𝑏𝑐) 
LSTM adds gating mechanism to recurrent neural 

network. This gating mechanism allows LSTM to 

retain or forget a level of information. This allows 

LSTM to control information to be passed to next cell. 

 

𝑐𝑡 =   
∅𝑡(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)    (8) 

 

Gates control the level of information to be 

preserved or forgot at the LSTM nodes. Input gates 

control the preserving factor and forget gates control 

the forget factor. There is a final gate in LSTM cell 

to calculate hidden state information for next cell.  

The resulting gate vector from each of the gates is 

given below using Eqs. (9) to (11).  

 

𝑓𝑡 =  

 ∅𝑠(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)    (9) 

 

𝑖𝑡 =   
∅𝑠(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)              (10) 

 

𝑜𝑡 =  

∅𝑠(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)              (11) 

 

𝑓𝑡  is the forgot gate vector. 𝑖𝑡  is the input gate 

vector.𝑜𝑡 is the output gate vector. 

Taking the sequence of enhanced features 

(𝑍 = (𝑍1, 𝑍2, … 𝑍𝑇)), the LSTM is trained to predict 

the probabilities of two classes: seizure and not 

seizure. 𝑍𝑖 is the enhanced feature vector and T is the 

sequence length. The probability of output class is 

found by adding a softmax classifier at end of last 

LSTM cell. The softmax classifier operates in 

regression mode. It is trained to minimize the loss (𝐿).   

 

𝐿 =  

−[∑ ∑ 1{𝑦(𝑖) = 𝑘} 𝑙𝑜𝑔
𝑃(𝑦(𝑖) =

𝑘|𝑧(𝑖); 𝜃)]
1
𝑘=0

𝑚
𝑖=1         (12) 
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Where  

 

𝑃(𝑦(𝑖) = 𝑘|𝑧(𝑖); 𝜃) =
exp(𝜃(𝑘)𝑧(𝑖))

∑ exp (𝐾
𝑗=1 𝜃(𝑘)𝑧(𝑖))

            (13) 

 

Where 𝜃(1),𝜃(2),…𝜃(𝑘) are the parameters of the 

model and exp(𝜃(𝑘)𝑧(𝑖))  is the normalization of 

parameter with the input feature values. 

4. Results    

The performance comparison is done by 

evaluation of the proposed solution against two 

benchmark EEG+ECG datasets - EPILEPSIAE 

dataset [27] and Temple University Hospital Seizure 

Detection Corpus (TUSZ) dataset [28]. Though there 

are other benchmark datasets like University of Bonn, 

CHB-MIT datasets, they cannot be used in this work 

as they have EEG recordings alone but to 

demonstrate the multimodality and cross modality 

learning features of the proposed solution, these 

datasets were not suitable.  

 

Benchmarking with EPILEPSIAE dataset 

EPILEPSIAE dataset contains a wide variety of 

biosignals collected from 275 patients diagnosed 

with focal epilepsy. The data, gathered between 2009 

and 2012 from three esteemed European centers, is 

characterized by continuous long-term recordings, 

averaging 165 hours per patient and an average of 9.8 

seizures per patient. Among the 275 patients, 29 have 

non-invasive data comprising both single-channel 

ECG recordings from the chest and surface EEG data 

in the 10–20 system. In our study, we utilize all the 

available data from these 29 patients to ensure a 

comprehensive analysis of seizure prediction using 

non-invasive methods. using 5-fold cross validation. 

In each fold, the dataset is split into 80% for training 

and 20% for testing, with 10% of the training set 

further allocated for validation. The performance 

metrics represent the average efficacy of the model 

across all folds, specifically on the testing datasets.  

 

 
Figure. 5 Performance comparison for EPILEPSIAE 

dataset 

 
Figure. 6 Accuracy vs seizure onset time 

 

 

This comprehensive approach ensures a robust 

assessment of the model’s performance across 

varying data subsets. The performance of the 

proposed solution is compared against multimodal 

non-invasive deep learning solution proposed by 

Saeizadeh et al [16] and EpilepsyNet solution 

proposed by Lih et al [15].   Saeizadeh et al [16] was 

selected for comparison as it used both EEG and ECG 

for seizure prediction similar to the proposed work. 

To assess the effectiveness of our model in binary 

classification, particularly in identifying whether a 

patient is within 60 minutes of seizure onset, we 

classify all labels under 60 minutes as pre-seizure and 

all others as non-seizure. The performance results for 

seizure prediction across the solutions are given in 

Fig. 5. 

From the results in Fig. 5, it is seen that proposed 

solution has higher sensitivity, specificity and 

accuracy compared to multimodal deep learning 

solution proposed in [16] and EpilepsyNet solution 

proposed in [15]. The accuracy and specificity are 

atleast higher by 1% in proposed solution. Lower 

false positive is inferred from higher specificity 

values and lower false negatives is inferred from 

higher sensitivity values. Both sensitivity and 

sensitivity are higher in the proposed solution. Even 

though proposed and [16] used ECG and EEG for 

seizure detection, the proposed solution used cross 

modal learning to enhance features and temporal 

correlation to increase accuracy, but the solution in 

[16] used only late decision fusion. The accuracy of 

proposed solution is 14% higher and sensitivity is 

13% higher compared to [15]. It is because only EEG 

modality was used in [15]. Thus, the dual modality of 

ECG and EEG improves the accuracy and sensitivity.  

The accuracy trend over seizure onset is 

measured and plotted in Fig. 6. 

Even for earlier onset of 15 minutes, the proposed 

solution is able to predict with 2% higher accuracy 
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compared to multimodal deep learning solution 

proposed in [16]. The temporal correlation-based 

prediction using LSTM has increased the accuracy in 

proposed solution while [16] did not consider 

temporal context. 

 

Benchmarking with TUSZ dataset 

TUSZ dataset is a open-source EEG/ECG corpus 

with data of 315 patients.  For each patient, 19 

channel EEG recordings and one channel ECG 

recording is present in the dataset. There are 7 seizure 

types in the dataset.  The performance is compared 

against strategy 3 (with combination of CNN + 

MLP+ SVM) proposed in BHI-Net [22] and DWT-

Net [29] (used in [22] for comparison). The 

performance is compared in terms of sensitivity, 

specificity and False Alarm Rate (FAR). The 

comparison results are given in Table 4. 

The proposed solution has higher sensitivity 

(>3%), higher specificity (>1.5%) and lower FAE 

(20% less) compared to strategy 3 proposed in BHI-

Net. The proposed solution has higher sensitivity 

(>12%), higher specificity (>6.38%) and lower FAE 

(26% less) compared to DWT-Net [29].  

The false alarm rate has reduced due to cross 

modal learning and temporal correlation between 

features of each segment in the proposed solution, but 

BHI-Net used only late fusion without any temporal 

correlation between features over segments. 

The confusion matrix for the proposed solution 

with EPILEPSIAE dataset and TSUZ dataset is given 

in Fig. 7 and Fig. 8.  

From the confusion matrix, it can be seen that 

misclassified instances were very low (0.0183 for 

TSUZ dataset and 0.0165 for EPILEPSIAE dataset). 

The misclassification has reduced due to use of 

multiple functional features of multimodal input, 

cross modal learning and temporal correlation. The 

contribution of each of the functional features is 

analyzed using Ablation study. Ablation study was 

conducted to find the contribution of each component 

to the effectiveness of proposed solution. The 

ablation study was conducted against following cases 

in Table 5. 

The results of accuracy and specificity for the 

ablation cases are given in Fig. 9 and Fig. 10. 

 

 
Table 4. Performance comparison for TUSZ dataset 

Measure Proposed BHI-Net 

[22] 

DWT-

Net [29] 

Sensitivity 71.34 68.2 59.07 

Specificity 96.1 94.6 89.72 

FAR (/24h) 9.5 11.9 12 

 

 
Figure. 7 Confusion matrix for EPILEPSIAE dataset 

 

 
Figure. 8 Confusion matrix for TSUZ dataset 

 
Table 5. Ablation cases 

Ablation cases Description 

C1 
Proposed solution without cross 

model learning 

C2 

(cross modal 

learning) 

Proposed solution without 

temporal correlation but with 

cross model learning (realized by 

skipping LSTM and using 

softmax for classifying enhanced 

features) 

C3 

Proposed solution without 

temporal correlation and without 

cross model learning (realized by 

late fusion of decision on each of 

the spectrum features of ECG and 

EEG separately)  

 

From the results of Fig. 7, the proposed solution’s 

accuracy drops 2% without temporal correlation (C1), 

drops by 2% without cross modal learning (C2) and  
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Figure. 9 Accuracy of ablation cases 

 

Figure. 10 Specificity of ablation cases 

 

 
Figure. 11 Results of Average symmetric uncertainty 

(ASU). 

 

drops by 4% with temporal correlation & cross modal 

learning (C3). The proposed solution’s specificity 

drops by 3% without temporal correlation (C1), drops 

by 3% without cross modal learning (C2) and drops 

by 5% without both cross modal learning & temporal 

correlation (C3). Thus, cross modal learning and 

temporal correlation are the two important factors 

improving the performance of the proposed solution. 

The effectiveness of cross modal learning is 

compared by measuring the average symmetric 

uncertainty [30] between the features and output class 

label (normal/seizure) for two cases of feature 

aggregation without cross modal learning and feature 

aggregation with cross modal learning. Average 

symmetric uncertainty (ASU) measures the 

correlation between the features and the output class. 

It’s value ranges from 0 to 1 and value towards 1 

demonstrates higher correlation. The results of ASU 

are given in Fig. 11. 

The ASU is 6% higher with cross modal learning 

demonstrating its effectiveness.  

 

Discussion 

The study identified two important gaps of cross 

modality learning and temporal correlation between 

the features. Though many multi modal approaches 

using EEG and ECG were proposed, these 

approaches extracted features from each modality 

and classified seizure using two modes of early and 

late fusion. In early fusion, features were combined 

in a single feature vector with correlating the features 

at spatial level in cross layer manner for improving 

the feature effectiveness. This is important for 

reducing the false positives (FAR). The proposed 

solution solved this problem by correlating the 

features of each modality at spatial level by bringing 

them to a common spectrogram form and learning 

enriched features with cross layer loss measurement 

feedback. Though segmentation of signal and 

extraction of feature was considered in existing 

works, the features are packed to matrix and 

classified without considering the temporal 

correlation between them. Considering the temporal 

correlation improves the accuracy of seizure 

detection. The proposed solution achieved higher 

accuracy and reduced false positives by incorporating 

two important features of cross modal learning and 

temporal correlation between the sequence of 

segments. 

The proposed solution was implemented using 

Python 3.8 with Intel®Core™i5-7500 3.4 GHz 

processor and 16 GB RAM machine. Seizure 

classification took 18.1 seconds for EPILEPSIAE 

dataset and 19.3 seconds for TSUZ dataset. When 

comparted to single modality based only of EEG, the 

proposed solution has higher latency. Reducing the 

latency is in scope of future work. Since both datasets 

used for experimentation did not have noises, noise 

filtering was not considered in this work. When the 

solution is applied for real time data, depending on 

signal acquisition a suitable bandpass filter must be 

used to filter noise. Designing bandpass filter was not 

in scope of the work.  

5. Conclusion   

This work proposes a multimodality deep 

learning fusion-based technique to detect epileptic 

seizure. The solution extracted deep learning features 

from signals by converting them to scaleogram and 
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improvised the features using cross model learning. 

The enhanced features are sequenced over temporal 

duration and classified using LSTM. Through 

experimental analysis with EPILEPSIAE dataset, the 

proposed solution is found to have 1% higher 

accuracy and 1% lower false positives compared to 

recent multi modal techniques. Through 

experimental analysis with TUSZ dataset, the 

proposed solution is found to reduce false alarm by 

20% compared to recent multi modal techniques.  
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