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Abstract: Epileptic seizure is a neurological disorder which can create severe consequences when not monitored and
given timely care. Various techniques have been proposed for detection of epileptic seizures using
electroencephalogram (EEG) signals. But these unimodal approaches have higher false positives. Multimodal
approaches combining electrocardiogram (ECG), facial cues etc. with EEG can reduce the false positives. This work
proposes a deep learning fusion-based technique for detection of epileptic seizure from multimodal inputs of ECG and
EEG. The solution extracts feature from multimodal inputs and applies cross modal learning in spatial and temporal
context to increase the accuracy of epileptic seizure detection and reduce false positives. Through experimental
analysis with EPILEPSIAE dataset and TUSZ dataset, the proposed solution is found to increase accuracy by at least
1% and reduce false positives by at least 1% compared to recent multimodality solution combining ECG and EEG
modality with CNN features and late decision fusion for seizure detection.
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1. Introduction

Epilepsy is a neurological disorder which has the
higher risk of death and can create life crippling
situations [1]. Though most of epileptic cases
respond well to pharmaceutical drugs, 30-40% have
drug resilient epilepsy. Epilepsy is often marked by
irregular electrical activity in the brain, leading to
focal seizures. These seizures are confined to a
specific area of the body and may present as unusual
sensations, brief lapses in awareness, altered
behavior, or confusion, often without visible
convulsions. Depending on the abnormal electrical
activity in brain and how it spreads, the effects can
vary from person to person [2].
Electroencephalography (EEG) is the most popular
method for epileptic seizure diagnosis. EEG is the
electrical signal measurements from electrodes
attached to scalp area. Analysis of these electrical
measurements can provide various cues about seizure
onset and class of seizures [3]. Manual analysis of
EEG is tedious and error prone as the signal is
complex, high dimensional and noisy. Towards

International Journal of Intelligent Engineering and Systems, Vol.18, No.2, 2025

solving this problem, various machine learning (ML)
techniques using both conventional [4] and deep
learning [5] schemes have been proposed for
automatic diagnosis of epileptic seizures from EEG
signals.

Conventional  techniques extract various
handcraft features in frequency and time domain
from EEG signals. The features are then classified to
seizure using various machine learning classifiers
like support vector machine (SVM), K-nearest
neighbor (KNN), Artificial neural networks (ANN),
random forest etc. Deep learning techniques avoid
handcraft features and learn intricate features through
convolutions and pooling. The features are learnt
either in 1-dimension or 2-dimension signal
representation using various deep learning
architectures to classify seizures. The existing ML
based techniques have two important issues: (a) for
the pre-seizure samples that are further in advance of
the onset (one hour), the classification often leads to
larger false negatives (low sensitivity) (b) for the non-
seizure samples the false positive tends to be larger
as it gets closer to the pre-seizure period (low
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specificity). Multi modal technique integrating
various biological time series like EEG, intracranial
electroencephalogram (iEEG), or ECG can solve
these problems [6]. Multi-modality seizure detection
can improve the classifier’s robustness by
minimizing variance and maximizing overall
performance. But there are very few works on multi
modal integration especially with consideration for
spatial and temporal context. This work addresses
this gap and proposes a multimodality deep learning
fusion integrating EEG and ECG signals with
consideration for spatial and temporal context in both
signal dimensions for increasing the accuracy of
epileptic seizure prediction and reducing the false
positives. The proposed solution has following novel
contributions

(i) A novel signal segmentation algorithm based
on HRV features of ECG.

(ii) A deep learning network with cross modality
learning to extract features from each of EEG and
ECG modality and provide enhanced fused feature
with minimal adversarial loss.

(iii) The spatial context fused features in different
time segments are sequenced to capture temporal
context and classified using long short-term memory
(LSTM) classifier to predict probability of seizure
and non-seizure class. With consideration of both
spatial and temporal context, the accuracy of
prediction increases and false positives reduces.

The rest of paper contents are structured as
follows. Section 2 presents the existing approaches
for epileptic seizure prediction. Section 3 presents the
proposed multimodality deep learning fusion
technique for seizure prediction. The performance
comparison results and discussion on results in
presented in Section 4. Section 5 presents the
conclusion and scope for future research.

2. Literature survey

Wang et al [7] proposed a multi modal approach
to classify seizures. EEG signals were processed in
1D or 2D mode with repeated convolutions & pooling
along with LSTM to extract spatial and temporal
features. The features are then classified using hybrid
neural network to seizure classes. Multimodality was
applied only in context of feature extraction but the
same EEG signal was used which can create bias
resulting in higher false positives. Harikumar et al [8]
extracted Singular Value Decomposition (SVD)
features from EEG signals and classified it to seizures
using extreme learning machine. The temporal effect
over longer duration is lost in SVD feature extraction
and approach is based only on spatial features. Kumar
et al. [9] extracted features from EEG signals using
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combined variable mode decomposition and Hilbert
transform. The features are then classified to seizure
using stacked neural networks. Temporal context was
not considered in feature extraction and signal was
processed as whole for feature extraction. Murariu et
al. [10] decomposed the EEG signal to intrinsic mode
functions (IMF) using empirical mode decomposition
(EMD) and extracted Power spectral density features
from IMF. The features are classified by KNN and
Naive Bayes classifier. IMF’s segmentation using
EMD cannot properly segment short duration
seizures and hence they cannot be accurately
classified. Ficici et al. [11] split the EEG signals to
fixed duration epochs. Discrete wavelet transform
(DWT) is applied over each epoch to get sub bands
and energy features are extracted from each sub band.
The energy features for each epoch are classified to
seizure class using ensemble classifier. Temporal
correlation between the epochs were not considered
for seizure classification. Ghazali et al. [12] applied
DWT on EEG signals to get sub bands. From these
sub bands features related to time domain are
extracted. The features are classified using feed
forward neural network to seizure class. Temporal
feature extraction was not considered. Jana et al. [13]
split the EEG signals to two second duration
segments and transformed them to a spectrogram
matrix. This spectrogram matrix is then classified to
seizure class using 1D convolutional neural network
(CNN). Without consideration of temporal resolution
features the accuracy was less than 80% in this
method. Hassan et al [14] proposed a hybrid approach
combining deep learning features with traditional
machine learning classifiers for seizure detection.
CNN features extracted from EEG signals are
flattened to 1D feature vector. The best set of features
are selected using mutual information entropy. The
features are then classified using various traditional
classifiers. Segmentation of EEG signal and temporal
correlation between features of different segments
were not considered in this work. Lih et al. [15]
proposed a deep learning transformer architecture
called EpilepsyNet to classify seizures. EEG signals
were first segmented in 23.6 second duration and
spectral entropy features are extracted from each
segment. The features are then classified using Bi-
LSTM. Though temporal correlation was considered,
the segments were on fixed duration and limited
handcrafted features are extracted from each segment.
Saeizadeh et al. [16] proposed a decision fusion
approach combining EEG and ECG modalities. Both
modality signals are segmented into 4s duration
epochs. For each epoch, convolutional features are
extracted and classified using softmax. Both results
are then ensembled using logistic regression to
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provide seizure class as output. Both modalities
worked independently and only their decision was
fused. Majzoub et al. [17] et al trained deep learning
Alexnet with multichannel EEG to classify seizures.
Use of multichannel input avoided information loss
but without temporal correlation between signals
across duration increases false positives. Christos et
al. [18] developed a multi modal approach to detect
seizure in home environment combining EEG with
accelerometer and gyroscope. The accelerometer and
gyroscope readings were used to filter noised EEG
signal caused by patient movement. Time/frequency
domain features extracted from EEG signal are
classified by SVM to seizure. Nielsen et al. [19]
proposed a multi modal approach to detect seizure
combining EEG, ECG and accelerometry signals.
Handcrafted features extracted from each modality
were combined as one feature vector and classified to
seizure type using SVM. Each modality feature is
used individually without any cross-modal learning.
Also, temporal correlation was not considered in this
work. Vandecasteele et al [20] proposed a multi
modal seizure detection approach combining behind-
the-ear EEG and ECG signals. Handcraft features are
extracted from EEG and ECG signals and classified
separately using SVN and RF classifier. The results

of each are then late fused to provide the seizure class.

The classification accuracy improved due to ECG
integration. Qarage et al. [21] proposed a multimodal
seizure detection technique combining EEG with
ECG signals. From ECG, Heart rate variability
(HRV) features are extracted and classified to seizure
using SVM. EEG signal is split to EEG spectral band.
Common spatial pattern features are extracted from
each spectral band and classified using SVM
classifier. The approach used both feature and
decision fusion strategies for seizure detection. Sabor
et al [22] combined EEG and ECG modality to detect
epileptic seizure onset. The signals are split to 5
second duration segments.

From ECG, HRV features and from EEG,
frequency domain features are extracted. Features are
enhanced using CNN. The enhanced features are
classified by SVM. Each modality was processed
separately without any cross-modal learning.
Sigsgaard et al. [23] proposed a multi modal
approach combining EEG and ECG signals. RF
classifier detects seizure from the time/frequency
domain features extracted from EEG and ECG
signals separately for each modality. The decision of
each modality is then late fused to get final decision.
Yang et al. [24] proposed a multimodal seizure
detection technique combining iEEG and SEEG.
Transfer learning is applied to enhance the
convolutional features extracted from each modality
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and decision fusion is done on results of each
modality.

Problem definition

Table 1 summarizes the solutions detailed so far.
From the Table 1, it can be seen that integration of
other modalities to EEG reduces the false alarms and
helps to filter noisy signal processing. In most of
solutions, the integration was done in early or late
fusion mode but signals were processed individually
without any cross-modality learning. Also in existing
solutions, the temporal correlation over various
epochs of signal and segmentation of epochs based
on spike characteristics were not considered.
Integration of cross modality learning in spatial and
temporal context over multi-modality signal is a gap
in the existing works. Addressing this gap can
minimize the false positives and maximizes the
accuracy of seizure detection. Based on this
observation, this work proposes a multimodality deep
learning fusion technique integrating cross modality
learning in spatial and temporal context.

3. Multimodality deep learning fusion

The architecture of the proposed multimodality
deep learning fusion technique is given in Fig. 1. The
solution has four stages: (i) segmentation, (ii)
scaleogram generation, (iii) cross modality learning,
and (iv) detection. In the segmentation stage, a
common segmentation boundary is established for
the joint EEG and ECG signals based on the HRV
analysis. 2D scaleogram image is generated on the
segmented EEG and ECG signals in the scaleogram
generation stage. In the feature enhancement stage,
convolutional features are extracted from scaleogram
image and enhanced with cross modal learning. In the
detection stage, the temporal correlation between the
cross modality enhanced features is used to predict
the probability of seizures using LSTM. The
functional components of the solution are detailed in
below subsections. The notations used in subsequent
equations are given in Table 3

3.1 Segmentation

Moridani et al. [25] observed that HRV features
of RR interval, mean heart rate, low frequency and
high frequency components of Poincare plots
exhibited significant variations during onset and
duration of seizure. But these variations alone cannot
be taken as indication of seizure. Based on this
observation, this work proposes a novel segmentation
algorithm to partition the EEG and ECG signals using
HRYV feature variations. Different from segmentation
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Work Modality

Technique

Research Gap

Wang et al. [7] EEG

EEG features are extracted in two
modes of 1D and 2D. These features
were classified by hybrid neural
network to seizures

Harikumar et al. [8] | EEG

SVD features are extracted from
EEG and classified by Extreme
learning machine to seizures

Kumar et al. [9] EEG

Features are extracted from EEG
using variable mode decomposition
and Hilbert transform. Features are
classified to seizures with stacked
neural networks

e Multimodality
input was not considered
e Classification did

not  consider  temporal
correlation
e  Signals were

processed as whole without
segmentation

Murariu et al. [10] EEG

EEG segmented and power spectral
features are extracted. Classification
using Naive Bayes classifier

e  Multimodality
input was not considered
e  Though

accelerometer
and gyroscope

Ficici et al. [11] EEG EEG split to fixed duration segmentation was done on
segments. Energy features are time duration feature
extracted from each segment and correlation between
classified as whole by ensemble temporal segments were not
classifier considered

Ghazali et al. [12] EEG EEG split to sub band using DWT.

Time domain features extracted from
each sub band and classified as
whole by feed forward neural
network

Jana et al. [13] EEG EEG split to 2s duration segments.
Spectrogram matrix is created with
FFT features of each segment
mapped to row in matrix. Matrix is
classified by 1D CNN.

Hassan et al. [14] EEG CNN features extracted from EEG
signal and flattened to 1D vector.
Classification is done by traditional
classifier

Lihetal. [15] EEG EEG signal split to 1 second
segments. Deep learning transformer
was trained to classify EEG
segments to seizures

Majzoub et al. [17] | Multi-channel | AlexNet was trained to classify

EEG multichannel EEG features to seizure

Saeizadeh et al. ECG + EEG ECG and EEG signal split to 4s e  Though

[16] duration segments. CNN features multimodality input was
extracted from each of ECG and considered, each input was
EEG are classified separately and processed separately
late decision fused to predict seizure without any cross-reference
class. learning

e  Though
segmentation was done on
time duration feature
correlation between
temporal segments were not
considered

Christos et al. [18] | EEG with Noisy EEG portions filtered using e  Segmentation  of

accelerometer and gyroscope
readings. EEG is processed as whole

signal and temporal
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by extracting time/frequency domain correlation between
features and classified to seizures segments was not
using SVM considered

Nielsen et al. [19] EEG, ECG An aggregated feature vector e  Though
and combining handicraft features of multimodality input was
accelerometry | each modality classified using SVM considered, each input was
signals to seizure class. processed separately

Vandecasteele et al.
[20]

behind-the-ear
EEG and ECG

Decision fusion of classification
results of each modality of EEG and
ECG to final decision on seizure

Qarage et al. [21] EEG + ECG

Strategies of early and late fusion to
detect seizure

Sabor et al. [22] ECG + EEG

The signals are split to 5 second
duration segments. Frequency
domain features are extracted from
EEG and HRYV features are extracted
from ECG. Features are enhanced
using CNN. The enhanced features
are classified by SVM to seizure
class

Sigsgaard et al. ECG + EEG

[23]

Features of frequency/time domain
are extracted from each modality and
classified by RF. Decision is then
fused.

Yang et al. [24] iIEEG + SEEG

convolutional features extracted
from each modality and decision
fusion is done on results of each
modality

without any cross-reference
learning

Table 2. Feature difference across solutions

Solutions Multimodality | Segmentation | Temporal Cross
correlation | modal
learning
[71.[8].[9] x x x x
[10],[11],[12],[13],[14], [15].[17] | x v X X
[16] v v x »
[18],[19],[20],[21],[22],[23] ,[24] | v x X X
Proposed v v v v
EEG ECG & EEG
—_— ) segments
ECG Segmentation (HRY - Scaleogram
Analysis) generation
—_———
ECG EEEG
Scaleogram
r
Enhanced fealures
l Detection (LSTM) |- Gmlzzm‘i:;f;a““
Seizure class

probabilities

Figure. 1 Proposed Multimodality architecture
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Table 3. Equation notation list
Equation no Variable Description
1 w Frequency
2 a Scaling factor for low pass filter with value in range of 0 to 1.
2 B Scaling factor for low pass filter with value in range of 0 to 1.
2 m Number of samples
3 o(w) Daubechies wavelet filter response
5 071 ....04p Softmax classifier outputs for EEG scaleogram
5 034, ... 05y Softmax classifier outputs for ECG scaleogram
5 E; Output entropy for EEG scaleogram classification
5 E, Output entropy for ECG scaleogram classification
7 p Prediction label
7 k Number of output class
8 D, Tangent activation function
8 W, Weights for input vector
8 U, Weights for hidden input vector
12 L Loss function to be minimized
based on uniform interval, this work adopts Hlj w) =
segmentation based on characteristic regions (¥
boundaries. This reduces the time for detection of ( o2 0 (a_m)
seizure and also reduces weightage of non-seizure H, (L) M=o (1 - a7 < 2)
intervals over LSTM cell states during seizure /= w| < ai~'n
detection stage. _ 0, for other w € [—m, 7]
The ECG signal is processed to detect R peaks
using Pan and Tompkins algorithm [26]. A Where
segmentation start is marked at onset of R peak. The
RR interval to next immediate R peak is measured. If w+(B-1)1
the RR interval is less than 550-700 ms (milli sec), Ho(w) = 6( a+B-1 ) (3)
the process is repeated. If the RR interval is greater
than 700 ms, segmentation end is marked and the Hy(w) = g(gf[;wl) (4)

ECG & EEG signal duration from segment start to
segment end is marked as one segment. This process
is repeated till the entire signal is segmented. The
threshold of 550-700 is fixed based on observation in
[25] Fig. 3.

3.2 Scaleogram generation

The ECG and EEG segments are converted to
scaleogram image as shown in Fig. 4 by processing
with tunable Q-Factor wavelet transform (TQWT).
Scaleogram is the plot of energy distribution of a time
series signal. The choice of TQWT for scaleogram
generation is due to more intricate energy distribution
plot for oscillatory signals like EEG and EEG.
TQWT is a fully discrete wavelet transform with use
of filter banks (high pass or low pass) in sequence. It
is represented in terms of high pass filter

(HJ (w))and low pass filter (H] (w)) in Eq. (1) and
Eq. (2).

j-1 w ;
[T Ho (o), 1wl < a/m

Hy(w) = .
O,/ <|w|<m

1)
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In above equations, 8(w) is the filter response for
Daubechies wavelet. The number of decomposition
level is given as J. Through experimentation, with
various values J is set as 3 in this work. a,f
represents the scaling factor of low pass and high pass
filter respectively.

3.3 Cross modality learning

The ECG and EEG scaleogram images belonging
to same segmentation slot is processed for feature
extraction and enhancement using cross modality
learning. Since the scaleogram image is an energy
plot and there is no difference between ECG or EEG,
cross modality fusion becomes easier at scaleogram
level. The cross modality enhanced feature extraction
is realized using the architecture given in Fig 2. The
architecture has repeated convolutions to extract
more intricate features. Convolution features at each
level are dimension reduced using fully connected
(FC) layer and the reduced feature is classified by
softmax classifier to seizure class.
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ECG Scaleogram =

Conv 21 » Softmax 11 —021—

Conv 2x » Softmax 2x —022
\

Conv 2n » Softmax 2n —O2n—
A

Fc 2 » Softmax 2 —024—

Enriched feature

Softmax

» EEG Scaleogram

Y
011 Softmax 11 | Conv 11

y
012 Softmax 1x |« Conv 1x

Y
FO1n—+ Softmax 1x |« Conv 1n

y
FO14— Softmax 1 |« Fc1l

01

Reject/ Retain data

» Loss based feedback |«

02

Reject/ Retain data

sample

sample

Figure. 2 Cross model learning

The feature without dimension reduction is passed to
convolution layer at next level. A consistency test is
done by cross checking results of each softmax
011 .- 011,031, ... 02y, 04,05, 0). Majority rule is
followed and if more than 90% of the outputs are
consistent, the input feature is selected as valid. The
valid features are merged as enhanced feature and
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passed to final stage softmax classifier. The enhanced
feature is selected or dropped with criterion of loss
minimization. Loss (L) is calculated using Eqg. (5).

(0] 0
L — in E1 2n
O1n+02n O1n+02n

E,+E ()

Where
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R-R Interval

1000
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500 f
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800
750 F 1
700 F T 1

650 | 1

600 f g 1

550

2 hours 10-5 minutes
before seizure before seizure

Figure. 3 RR interval observation [25]

Figure. 4 Scaleogram

Ey = 2;:11 Oxj-exj (6)

In the above equations, E represents the final
output entropy and ey; represents the entropy till the
final output, calculated using Eq. (7).

exj = — Xy pf log pff @)

In the above Eq. (7), k represents number of
output classes. In this work k is 2 for seizure and no
seizure class. p represents the prediction label.

The sample set with reduces the loss are added to
training set and the sample set increasing the loss are
dropped. The cross-model network is then retrained
with this updated training set. When the ECG and
EEG scaleogram image is passed as input to the
cross-model network, the features from the final FC
layer are collected as enhanced features. This
enhanced feature captures the more intricate details
necessary for seizure classification at spatial context
level. Learning at temporal context level is done in
the detection stage.
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3.4 Detection

The enhanced features are sequenced to a length
N and this sequence is used to train a multivariate
LSTM to predict seizure probabilities. LSTM is the
refined version of most used recurrent neural
networks (RNN) for series-based prediction. LSTM
extends RNN by adding gating mechanism to control
the learning rate and forget level. Taking input
feature vector and previous hidden states as input,
each LSTM cell applies activation function. This cell
activation output is given in Eq. (8). Cell activation
function applies hyperbolic tangent activation on sum
of weighted input (W,x,), weighted hidden state
(U ht_4) and bias (b,)

LSTM adds gating mechanism to recurrent neural
network. This gating mechanism allows LSTM to
retain or forget a level of information. This allows
LSTM to control information to be passed to next cell.

C =
Pr(Wexe + Uche_q + be) (8)

Gates control the level of information to be
preserved or forgot at the LSTM nodes. Input gates
control the preserving factor and forget gates control
the forget factor. There is a final gate in LSTM cell
to calculate hidden state information for next cell.
The resulting gate vector from each of the gates is
given below using Egs. (9) to (11).

fe =
®S(fot + Ufht—l + bf) (9)
it =
Os(Wixe + Uihi—q + b;) (10)
0 =
Bs(Wox + Ughi—q + by) (11)

f: is the forgot gate vector. i; is the input gate
vector.o; is the output gate vector.

Taking the sequence of enhanced features
(Z =(Z1,Z,, ... Z7)), the LSTM is trained to predict
the probabilities of two classes: seizure and not
seizure. Z; is the enhanced feature vector and T is the
sequence length. The probability of output class is
found by adding a softmax classifier at end of last
LSTM cell. The softmax classifier operates in
regression mode. It is trained to minimize the loss (L).

I =

; P y(i) =
ST Sk 1y ® = K} log P

k|z®; 0)] 12
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Where

N ). _ exp(g(k)z(i))
P(y(l) = k|z(z), 9) ~ 3K exp (9020)

(13)

Where 6,0®, 9% are the parameters of the
model and exp(8®z®) is the normalization of
parameter with the input feature values.

4. Results

The performance comparison is done by
evaluation of the proposed solution against two
benchmark EEG+ECG datasets - EPILEPSIAE
dataset [27] and Temple University Hospital Seizure
Detection Corpus (TUSZ) dataset [28]. Though there
are other benchmark datasets like University of Bonn,
CHB-MIT datasets, they cannot be used in this work
as they have EEG recordings alone but to
demonstrate the multimodality and cross modality
learning features of the proposed solution, these
datasets were not suitable.

Benchmarking with EPILEPSIAE dataset

EPILEPSIAE dataset contains a wide variety of
biosignals collected from 275 patients diagnosed
with focal epilepsy. The data, gathered between 2009
and 2012 from three esteemed European centers, is
characterized by continuous long-term recordings,
averaging 165 hours per patient and an average of 9.8
seizures per patient. Among the 275 patients, 29 have
non-invasive data comprising both single-channel
ECG recordings from the chest and surface EEG data
in the 10-20 system. In our study, we utilize all the
available data from these 29 patients to ensure a
comprehensive analysis of seizure prediction using
non-invasive methods. using 5-fold cross validation.
In each fold, the dataset is split into 80% for training
and 20% for testing, with 10% of the training set
further allocated for validation. The performance
metrics represent the average efficacy of the model
across all folds, specifically on the testing datasets.

1.5

1

- 1
Ratio 0

Sensitivity  Specificity Accuracy
B Proposed
B Multimodal deep learning [16]

EpilepsyNet [15]

Figure. 5 Performance comparison for EPILEPSIAE
dataset
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90< 45-60 30-45 15-30 0-15
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e=@==Proposed ==@==Multimodal deep learning [16]

Figure. 6 Accuracy vs seizure onset time

This comprehensive approach ensures a robust
assessment of the model’s performance across
varying data subsets. The performance of the
proposed solution is compared against multimodal
non-invasive deep learning solution proposed by
Saeizadeh et al [16] and EpilepsyNet solution
proposed by Lih et al [15]. Saeizadeh et al [16] was
selected for comparison as it used both EEG and ECG
for seizure prediction similar to the proposed work.

To assess the effectiveness of our model in binary
classification, particularly in identifying whether a
patient is within 60 minutes of seizure onset, we
classify all labels under 60 minutes as pre-seizure and
all others as non-seizure. The performance results for
seizure prediction across the solutions are given in
Fig. 5.

From the results in Fig. 5, it is seen that proposed
solution has higher sensitivity, specificity and
accuracy compared to multimodal deep learning
solution proposed in [16] and EpilepsyNet solution
proposed in [15]. The accuracy and specificity are
atleast higher by 1% in proposed solution. Lower
false positive is inferred from higher specificity
values and lower false negatives is inferred from
higher sensitivity values. Both sensitivity and
sensitivity are higher in the proposed solution. Even
though proposed and [16] used ECG and EEG for
seizure detection, the proposed solution used cross
modal learning to enhance features and temporal
correlation to increase accuracy, but the solution in
[16] used only late decision fusion. The accuracy of
proposed solution is 14% higher and sensitivity is
13% higher compared to [15]. It is because only EEG
modality was used in [15]. Thus, the dual modality of
ECG and EEG improves the accuracy and sensitivity.

The accuracy trend over seizure onset is
measured and plotted in Fig. 6.

Even for earlier onset of 15 minutes, the proposed
solution is able to predict with 2% higher accuracy
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compared to multimodal deep learning solution
proposed in [16]. The temporal correlation-based
prediction using LSTM has increased the accuracy in
proposed solution while [16] did not consider
temporal context.

Benchmarking with TUSZ dataset

TUSZ dataset is a open-source EEG/ECG corpus
with data of 315 patients. For each patient, 19
channel EEG recordings and one channel ECG
recording is present in the dataset. There are 7 seizure
types in the dataset. The performance is compared
against strategy 3 (with combination of CNN +
MLP+ SVM) proposed in BHI-Net [22] and DWT-
Net [29] (used in [22] for comparison). The
performance is compared in terms of sensitivity,
specificity and False Alarm Rate (FAR). The
comparison results are given in Table 4.

The proposed solution has higher sensitivity
(>3%), higher specificity (>1.5%) and lower FAE
(20% less) compared to strategy 3 proposed in BHI-
Net. The proposed solution has higher sensitivity
(>12%), higher specificity (>6.38%) and lower FAE
(26% less) compared to DWT-Net [29].

The false alarm rate has reduced due to cross
modal learning and temporal correlation between
features of each segment in the proposed solution, but
BHI-Net used only late fusion without any temporal
correlation between features over segments.

The confusion matrix for the proposed solution
with EPILEPSIAE dataset and TSUZ dataset is given
in Fig. 7 and Fig. 8.

From the confusion matrix, it can be seen that
misclassified instances were very low (0.0183 for
TSUZ dataset and 0.0165 for EPILEPSIAE dataset).
The misclassification has reduced due to use of
multiple functional features of multimodal input,
cross modal learning and temporal correlation. The
contribution of each of the functional features is
analyzed using Ablation study. Ablation study was
conducted to find the contribution of each component
to the effectiveness of proposed solution. The
ablation study was conducted against following cases
in Table 5.

The results of accuracy and specificity for the
ablation cases are given in Fig. 9 and Fig. 10.

Table 4. Performance comparison for TUSZ dataset
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EPILEPSIAE dataset
TARGET
Normal Seizure SUMm
OUTPUT
70 1 7
Lt 57.85% 0.83% 98.59%
1.41%
1 49 50
Selzurs 0.83% 40.50% 98.00%
2.00%
71 50 1191121
Ll 98.59% 98.00% 98.35%
1.41% 2.00% 1.65%

Figure. 7 Confusion matrix for EPILEPSIAE dataset )

TSUZ dataset
TARGET
Normal Seizure SuUMm
QUTPUT
295 6 301
Normal 49.17% 1.00% 98.01%
1.99%
5 294 299
Selzure 0.83% 49.00% 98.33%
1.67%
300 300 589 / 600
sl 98.33% 98.00% 98.17%
1.67% 2.00% 1.83%

Figure. 8 Confusion matrix for TSUZ dataset

Table 5. Ablation cases

Ablation cases Description

c1 Proposed solution without cross
model learning

Proposed  solution  without
temporal correlation but with
cross model learning (realized by
skipping LSTM and using
softmax for classifying enhanced
features)

Cc2
(cross modal
learning)

Proposed  solution  without
temporal correlation and without
cross model learning (realized by
late fusion of decision on each of
the spectrum features of ECG and

C3

EEG separately)

Measure Proposed BHI-Net DWT-
[22] Net [29]
Sensitivity 71.34 68.2 59.07
Specificity 96.1 94.6 89.72
FAR (/124h) 9.5 11.9 12

International Journal of Intelligent Engineering and Systems, Vol.18, No.2, 2025

From the results of Fig. 7, the proposed solution’s
accuracy drops 2% without temporal correlation (C1),
drops by 2% without cross modal learning (C2) and
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1

0.99
0.98
0.97
Accuracy
0.96
0.95
0.94
0.93

Proposed C1 Cc2 C3

Figure. 9 Accuracy of ablation cases

1

0.99

0.98

0.97

Specificit 0.96
y 095
0.94

0.93

0.92

0.91

Proposed C1 Cc2 C3

Figure. 10 Specificity of ablation cases

0.86

0.84
0.82
0.8
AU 0.78
0.76
072 .
0.72

Without cross modal
learning

With cross modal
learning

Figure. 11 Results of Average symmetric uncertainty
(ASU).

drops by 4% with temporal correlation & cross modal
learning (C3). The proposed solution’s specificity
drops by 3% without temporal correlation (C1), drops
by 3% without cross modal learning (C2) and drops
by 5% without both cross modal learning & temporal
correlation (C3). Thus, cross modal learning and
temporal correlation are the two important factors
improving the performance of the proposed solution.

The effectiveness of cross modal learning is
compared by measuring the average symmetric
uncertainty [30] between the features and output class
label (normal/seizure) for two cases of feature
aggregation without cross modal learning and feature
aggregation with cross modal learning. Average
symmetric  uncertainty (ASU) measures the
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correlation between the features and the output class.
It’s value ranges from O to 1 and value towards 1
demonstrates higher correlation. The results of ASU
are given in Fig. 11.

The ASU is 6% higher with cross modal learning
demonstrating its effectiveness.

Discussion

The study identified two important gaps of cross
modality learning and temporal correlation between
the features. Though many multi modal approaches
using EEG and ECG were proposed, these
approaches extracted features from each modality
and classified seizure using two modes of early and
late fusion. In early fusion, features were combined
in a single feature vector with correlating the features
at spatial level in cross layer manner for improving
the feature effectiveness. This is important for
reducing the false positives (FAR). The proposed
solution solved this problem by correlating the
features of each modality at spatial level by bringing
them to a common spectrogram form and learning
enriched features with cross layer loss measurement
feedback. Though segmentation of signal and
extraction of feature was considered in existing
works, the features are packed to matrix and
classified without considering the temporal
correlation between them. Considering the temporal
correlation improves the accuracy of seizure
detection. The proposed solution achieved higher
accuracy and reduced false positives by incorporating
two important features of cross modal learning and
temporal correlation between the sequence of
segments.

The proposed solution was implemented using
Python 3.8 with Intel®Core™i5-7500 3.4 GHz
processor and 16 GB RAM machine. Seizure
classification took 18.1 seconds for EPILEPSIAE
dataset and 19.3 seconds for TSUZ dataset. When
comparted to single modality based only of EEG, the
proposed solution has higher latency. Reducing the
latency is in scope of future work. Since both datasets
used for experimentation did not have noises, noise
filtering was not considered in this work. When the
solution is applied for real time data, depending on
signal acquisition a suitable bandpass filter must be
used to filter noise. Designing bandpass filter was not
in scope of the work.

5. Conclusion

This work proposes a multimodality deep
learning fusion-based technique to detect epileptic
seizure. The solution extracted deep learning features
from signals by converting them to scaleogram and
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improvised the features using cross model learning.
The enhanced features are sequenced over temporal
duration and classified using LSTM. Through
experimental analysis with EPILEPSIAE dataset, the
proposed solution is found to have 1% higher
accuracy and 1% lower false positives compared to
recent multi  modal techniques.  Through
experimental analysis with TUSZ dataset, the
proposed solution is found to reduce false alarm by
20% compared to recent multi modal techniques.
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