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Abstract: Rapid developments in AI applications are a pivotal step for the development of modern technologies, 

highlighting the importance of brain signal classification as one of the promising areas. This study presents a deep 

learning-driven one-dimensional convolutional neural networks (1D-CNN) model for improving 

electroencephalogram (EEG) signals classification. The model is trained on different data balance scenarios to 

determine their impact on performance, and preprocessing techniques, including normalization and principal 

component analysis, are applied to reduce dimensions and improve performance. The model achieves high 

classification accuracy depending on the BNCI Horizon 2020 dataset, with the average performance accuracy for the 

eight classes reaching 91.01% in training and 90.99% in testing, while for the seven classes, it is 99.6%. The study 

confirms the effectiveness of using different techniques for preprocessing and deep neural networks in classifying EEG 

signals, which improves the potential for developing brain-computer interfaces to facilitate communication between 

humans and technology. 
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1. Introduction 

Brain-computer interfaces (BCI) are an 

innovative technology that aims to enhance 

communication between the human brain and 

computer systems [1]. This technology relies on 

reading and analyzing brain signals, such as EEG 

signals, to interpret mental commands and convert 

them into concrete actions. BCI systems are of great 

importance in medical applications and assistive 

technologies, such as helping people with motor 

disabilities, including controlling prosthetic limbs 

and wheelchairs or improving the quality of life 

through brain control interfaces [2-4]. Fig. 1 

illustrates the framework of the typical BCI system 

that consists of multiple stages, including signal 

acquisition, preprocessing, feature extraction, and 

classification [5-7]. 

One of the most critical challenges in BCI  

 

  
Figure. 1 A Framework of typical BCI system 
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systems is accurately distinguishing between 

imaginary movements (Motor Imagery-MI) that 

represent complex brain activity. These movements, 

such as elbow flexion or hand opening, require high 

data analysis and classification capabilities, 

especially with   the use of multi-channel EEG data. 

EEG signals are inherently rich in noise and complex 

due to their reliance on the electrical activity of the 

brain [8, 9]. 

In this context, this study relied on the data of the 

BNCI Horizon 2020 dataset, which is an essential 

reference in the field of BCI research [10]. This 

database includes EEG signals representing six 

movements, the resting state and an unknown class. 

The data were recorded using 61 EEG channels, 

which provides a high level of detail but increases the 

complexity of processing and analysis. 

The main contributions of the presented study can 

be summarized as follows: 

• Analyzing EEG signals in an integrated 

method based on data refinement to reduce 

complexity and ensure signal quality. 

• Develop data balancing scenarios to select 

the optimal scenarios to improve model 

performance. 

• Incorporating preprocessing scenarios such 

as normalization and principal component 

analysis (PCA) to reduce dimensionality and 

improve model efficiency. 

• Using 61 EEG channels to improve 

classification accuracy and take advantage of 

the comprehensive information available. 

• Multiclass classification using deep learning 

highlights the potential of deep learning 

techniques, such as 1D-CNN, to classify MI 

in a complex environment while adopting 

multiclass classification to expand the range 

of commands that the model can handle. 

• Improve the model by including an 

“Unknown class” representing the auxiliary 

signals accompanying the data recording 

experience, such as visual and auditory 

stimuli and time markers, enhancing the 

model’s comprehensiveness in real-world 

applications. 

This paper is organized as follows: Section 2 

provides a comprehensive review of the literature 

related to the topic, Section 3 explains the material 

and methods used in the work, Section 4 describes the 

results obtained, Section 5 discusses these results, 

and finally, Section 6 presents conclusions and future 

recommendations. 

 

2. Literature review 

The study summarizes research related to the 

BNCI Horizon 2020 database and other databases, 

focusing on developments in the analysis of EEG 

signals using artificial intelligence (AI) and deep 

learning techniques to improve the classification of 

imaginary movements and expand its applications. 

Jeong et al. [11] introduced a subject-dependent and 

section-wise spectral filtering (SSSF) method to 

improve the decoding performance of movement-

related cortical potentials (MRCPs) in brain-machine 

interfaces (BMI). The method considers individual 

MRCP characteristics and temporal sections, leading 

to enhanced accuracy. The study shows successful 

decoding results in pseudo-online analysis, which is 

still insufficient for real-world applications due to the 

noise generated by body movements and exoskeleton 

vibrations. This could be considered one of the 

limitations of the study. In addition, the model 

training time was longer compared to traditional 

methods, which may limit the efficiency of real-time 

application. Mammone et al. [12] developed a deep 

Convolutional Neural Network (DCNN) classifier 

based on a 3D representation of time-frequency (TF) 

maps to detect premovement phases by 

distinguishing between EEG segments preceding 

motion onset (premovement) and resting states. The 

approach demonstrated higher performance in 

classifying premovement vs. rest compared to 

premovement vs. premovement for different motion 

types. One of the most critical limitations of the 

research is the average performance in distinguishing 

different motor planning movements, which indicates 

the need for further improvement in processing 

convergent and complex movements. Bi et al. [13] 

presented a new model called time-spatial parallel 

network (TSPNet) for classifying EEG-based MI 

signals in BCI systems. The model aims to improve 

the ability to distinguish between different 

movements by processing temporal and spatial 

features in parallel. The feature extraction process is 

divided into three main modules: time dimension 

feature extractor (TDFE) to extract temporal 

information from signals, spatial dimension feature 

extractor (SDFE) to analyze spatial patterns, and 

time-spatial parallel feature extractor (TSPFE) to 

remove redundancy between features and improve 

classification performance. They also developed a 

feature visualization algorithm based on frequency 

masking, where the effect of eliminating certain 

frequency bands on the model’s performance was 

analyzed, which helped identify the most important 

frequencies for each type of movement. However, the 

accuracy in classifying movements is still low, which 
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may affect the effectiveness of the model in real-

world applications. Batistić et al. [14] proposed using 

Short-Term Entropy extracted from time-frequency 

representations (TFRs) to improve the classification 

of MI using EEG signals. The approach aims to 

overcome the limitations of conventional features by 

testing the model on two different datasets, where 

Shannon and Rényi entropy showed superiority in 

detecting MI compared to conventional methods. 

However, the classification of different movement 

directions (e.g. Rights vs Up) was less accurate than 

moves classification against the baseline condition 

(rest), calling for improved feature extraction 

strategies. Bi et al. [15] presented the transfer data 

learning network (TDLNet), a deep learning model 

based on CNNs, to improve the classification of EEG 

signals for imagining upper motor movements across 

different participants. The model features a transfer 

data module (TDM) integrating participants’ data to 

enhance generalization, an inception module that 

extracts features from the signal by analyzing multi-

scale temporal information using convolution kernels 

of different sizes, and a residual attention mechanism 

(RAMM) that enhances the most important features 

in the EEG signals recorded. The model 

outperformed traditional models such as EEGNet and 

DeepConvNet in terms of classification accuracy, 

confirming the effectiveness of the proposed 

methodology in improving the recognition of 

imaginary movements. However, the generalization 

ability of the model remains a challenge due to the 

large variations in EEG signals across participants. 

Jia et al. [16] proposed a two-stage training–

temporal-spectral neural network (TTSNet), a deep 

neural network based on temporal-spectral analysis to 

improve the classification of EEG signals associated 

with upper limb movements. TTSNet is based on a 

two-stage training where spectral features are 

extracted using task-related component analysis 

(TRCA) analysis and then passed through a CNN to 

process the temporal information. The method also 

uses filter banks to extract features from different 

frequency bands, which helps enhance neural pattern 

recognition. The results showed that TTSNet 

outperformed filter bank task-related component 

analysis (FBTRCA) and EEGNet in binary 

classification, providing more stable performance 

and higher accuracy. However, in multi-class 

classification, the performance was relatively lower, 

indicating additional challenges in accurately 

recognizing multiple movements and emphasizing 

the need for feature extraction and neural signal 

analysis improvements.  The research has some 

limitations, such as the absence of separate analysis 

for each subject and the lack of sufficient details 

about some methodological aspects, which affects the 

generalization of the results and the accuracy of the 

evaluation. Considering the challenges faced by 

previous studies, which often focus on binary 

classification or a limited number of classes while 

relying on limited data channels of EEG signals, this 

study proposes 1D-CNN as an effective solution to 

overcome these limitations and achieve multi-class 

classification using multi-channel data with high 

accuracy and efficiency. 

3. Material and methods 

This section describes the dataset for EEG signals 

and the Convolutional Neural Network (CNN) model 

for classifier MI in BCI. 

3.1 Dataset description 

This study is based on the "Decoding Upper Limb 

Movement from EEG (001-2017)" dataset from the 

BNCI Horizon 2020 project [10, 17], which focuses 

on EEG recordings of upper limb movements. The 

dataset was collected from 15 healthy adults aged 22–

40, with a gender balance of 6 males and 9 females. 

A variety of movements were recorded and 

performed either actually or imagined by the 

participants, which were recorded via several 

specialized channels, where EEG signals were 

recorded via 61 channels covering frontal, central, 

parietal, and temporal areas to measure the electrical 

activity of the brain, in addition to 

electrooculography (EOG) signals via 3 channels to 

measure eye movements. Sensor gloves across 19 

channels and exoskeleton sensors across 13 channels 

were used to determine movement onset. Each 

channel has a sequential channel label. Table 1 shows 

the range of channel numbers used in the experiment 

and their labels and data types. The experiment 

included six main types of upper Limb movements: 

elbow flexion (EF), elbow extension (EE), forearm 

extension (FS), forearm extension (FP), hand opening 

(HO), and hand closing (HC). In addition, a rest class 

was recorded,   where participants were instructed to 

avoid any movement, and auxiliary 

 

 
Table 1. Channel labels 

NO. 

Channel 
Channel Label  Type data 

1-61 F3 to PPO2h EEG electrode 

62-64 
EOG left to EOG 

right 

EOG positions 

65-83 thumb near to - Data glove sensors 

84-96 hand X to - exoskeleton sensors 
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Table 2. Event codes 
Class Event Code 

EF 0X600 

EE 0X601 

FS 0X602 

FP 0X603 

HC 0X604 

HO 0X605 

rest 0X606 

 

 

signals occurring during the data recording session 

were recorded, which we were given the name of the 

"unknown class". This class represents specific 

signals in the data, such as a cross on screen and beep, 

which do not belong to the six basic movements or 

the rest category and do not carry the event codes 

shown in Table 2; The signals are coded as events. 

Table 2 shows the hexadecimal codes assigned to 

each class of movements used in the experiment, 

where a specific code is assigned to each type of 

movement. Participants performed two separate 

sessions: the first was to execute the movements 

(known as Motor Execution - ME), and the second 

was to imagine the movements (known as Motor 

Imagination - MI). During each session, 10 runs were 

recorded, each run including 6 trials for each class of 

recorded movement. Fig. 2 illustrates the dataset 

description and its components. 

It will be split into 60% and 40% for training and 

testing, respectively, to be used in the proposed 

model, ensuring an appropriate balance for 

evaluating the overall performance of the model. 

3.2 Convolutional Neural Network (CNN) model 

Convolutional Neural Networks (CNN) is an 

advanced deep learning model that processes 

temporal and multidimensional data. The network 

relies on successive layers to analyze the data 

gradually and extract basic and complex features [18]. 

It starts with convolutional layers that extract initial 

patterns from the data, followed by activation layers 

such as rectified linear unit (ReLU) that add a 

nonlinearity element to improve the model's ability to 

learn complex relationships, which is defined as Eq. 

(1): 

 

𝜎(𝑐) = max(0, 𝑐)                                               (1) 

 

Where σ represents the activation layers, and c 

denotes the input. This function yields zero for 

negative inputs and the input itself for positive values, 

producing piecewise linear behavior in neural 

networks. 

 

 

 
Figure. 2 Dataset description 
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Figure. 3 Proposed model diagram 

 

 

Then, the Pooling layers reduce the data 

dimensions, while normalization layers contribute to 

training stability and speed up the learning process. 

In addition, dropout layers randomly disable some 

neural connections during training to avoid 

overfitting and improve the model's generalization 

ability. Finally, the network ends with a fully 

Connected layer in which the extracted features are 

integrated, and the Softmax function is used to 

provide multi-class classification, which is defined as 

Eq. (2) [19-22]: 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)𝑖 = 𝑝𝑖 =
exp(𝑧𝑖)

∑ exp(𝑧𝑗)
𝑀
𝑗=1

                         (2) 
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Where zi denotes the ith component of the output 

vector from the preceding layer z, The numerator is 

standardized by summating of all exponential terms 

from 1 to M (M is No. classes) to constrain the value 

of pi within the range of 0 and 1. 

In this study, 1D-CNN was employed to analyze 

and classify EEG signals to distinguish MI. The 

network-assisted extracting of temporal and 

frequency patterns directly from the raw signals 

enhances the model's efficiency. 

3.3 Proposed model 

The model consists of four main stages that aim 

to analyze and classify brain signals effectively, as 

shown in Fig. 3. The first stage focuses on analyzing 

brain signal data extracted from the BNCI 2020 

Horizon project. It comprises preparing and 

processing the data for training and classification 

processes in subsequent stages. The second stage 

involves developing several scenarios for data 

balance. These scenarios were designed to address 

the challenges associated with the unbalanced 

distribution of classes within the data, which 

contributes to improving the model's efficiency. The 

third stage comprises applying preprocessing 

scenarios using normalization and PCA techniques. It 

aims to improve data quality and reduce the 

computational complexity of the model. Finally, 1D-

CNN was customized to effectively classify MI from 

EEG signals. 

3.3.1. EEG data analysis stage 

a) Data decoding and transformation 

In this step, the medical EEG files in GDF 

(General Data Format) format are decoded using the 

mne library and converted into a readable CSV 

format, which allows easy access to channels and 

timing information and flexible data handling, thus 

making the data organized and ready for use in 

subsequent analyses, as shown in Fig. 4 , part (a) 

shows a sample of the data in its original format 

(GDF) before conversion, while part (b) shows the 

same sample after conversion (CSV) to facilitate its 

use in analysis. 

b) Extracting and label mapping experimental 

events information      

This step extracts event IDs, event codes and 

timings from the event file embedded in the GDF file, 

assigning an event timing as the start of each event 

(Event starting/Sample Starting) and converting 

event codes from hexadecimal to decimal to facilitate 

assigning labels to each movement based on numeric 

values of the events.  A map is created that associates  

 

 
(a) 

 

 
(b) 

Figure. 4 Sample of data decoding and transformation: (a) 

GDF file and (b) CSV file  

 

 

each event code with a specific movement, such as 

EF or HO. Codes that do not match known 

movements and are not listed in Table 2 are classified 

as "unknown" class. Fig. 5 shows a sample of the 

process of linking events to their labels. Fig. 5(a) 

shows a sample of the event file before processing, 

while Fig. 5(b) highlights the results after assigning 

events to their labels according to the main 

movements. 

c) Temporal alignment of EEG data with event 

annotations 

In this step, the brain signal recording data from 

the EEG data file (file product from section 3.3.1(a)) 

are merged with the event data from the event file 

(file product from section 3.3.1(b)) in temporally 

aligning to ensure accurate synchronization between 

signals and events. The event data (sample starting) 

in the event file is converted to the time units in 

seconds using the following Eq. (3):  
 

Time =
StartSample

SamplingRate
                                               (3) 

 
Where the sampling rate used is 512 samples per 

second. The signal data is then merged with the event 

data based on the closest time point to each signal,  
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(a) 

 

 
(b) 

Figure. 5 Sample of event processing and mapping: 

(a) sample of event file and (b) sample of event-label 

mapping 

 

 

ensuring that each data point is associated with the 

corresponding class. The resulting file contains 

information, including the timing of the recorded 

signals, 96 channels of signal data, as well as event 

information (Event Annotations) such as Start 

Sample, Event ID, Event Code, and Movement, 

which illustrates how the temporal data between the 

two files is aligned. Fig. 6 shows a sample of the 

resulting data, where the time values extracted from 

the EEG file, the recorded channels and the 

associated event information are displayed, reflecting 

the synchronization between the neural signals and 

the recorded activities. 

d) EEG channel selection and data refinement   

This step focuses on processing the EEG data by 

selecting the relevant channels, which are 61 EEG 

channels while excluding unimportant channels such 

as EOG channels, glove sensors, and exoskeleton 

sensors. The data is refined by removing rows that 

only contain the "Time” column with the label  

 

 
Figure. 6 Sample of aligned EEG data with event 

annotations 
 

 

 
Figure. 7 Sample of EEG channel selection and data 

refinement 

 

 

"unknown" and no channel-related data, as well as by 

excluding rows that contain zero values in the 

selected columns. As shown in Fig. 7, a sample of the 

resulting file is illustrated after the channel selection 

and data refining process. 

3.3.2. Developing data balance scenarios stage 

Designing data balance scenarios is a critical step 

in handling the imbalance in the distribution of 

classes within the dataset. Given the dominance of 

the unknown class, which significantly outnumbers 

other classes, four different scenarios were developed 

to mitigate the impact of this disparity and ensure a 

fair distribution of data for training the model. Table 

3  illustrates the details of data balance scenarios 

across 15 Subjects. 

a) No Balance:  

In this scenario, all available data is used without 

any modifications to the distribution. The model is 

trained on the natural data distribution, where the 

unknown class dominates, containing approximately 

14 times more samples than other classes. 
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Table 3. Data balance scenarios across 15 subjects 

 

 

b) Full Balance:  

This scenario reduces the number of samples in 

all classes to match the minimum count available 

among the other classes. In this case, all classes are 

equalized to contain the same number of samples, 

ensuring a fair training process where no class 

dominates. 

c) 3X Unknown Balance:  

This scenario adjusts the number of unknown 

samples to three times the minimum count of the 

other classes. This approach achieves a moderate 

balance, allowing the inclusion of more samples from 

the unknown class while maintaining a reasonable 

representation for all classes. 

d) 50% Unknown Balance:  

In this scenario, the unknown samples are 

reduced to approximately half of their original count. 

This adjustment reduces the overwhelming 

dominance of the unknown class and ensures a 

balanced representation of the other classes. 

3.3.3. Preprocessing stage 

In this stage, different techniques are used to 

improve classification performance, such as 

normalization and dimensionality reduction via PCA. 

Classification of EEG signals is a significant 

challenge in the development of prosthetic control 

systems, as they are high-dimensional and non-

stationary in nature, requiring procedures for data 

preparation and reducing their complexity [23]. 

a) Z-Score Normalization:  

it is used to standardize the range of values in the 

data, making it more suitable for machine learning 

models. Z-Score helps identify the outliers by 

distributing the data in a bell-curve fashion. The 

normalization is applied as Eq. (4) [23-25]: 

 

Z𝑠𝑐𝑜𝑟𝑒 =
X −μ

σ
                                                          (4) 

 

Where Z is the normalized data, X is the original 

data, μ is the mean, and σ is the standard deviation 

computed over 𝑋. 

b) Principal Component Analysis (PCA):  

it is a dimensionality reduction method in which 

data is transformed into a new space of uncorrelated 

vectors (principal components) while preserving as 

much variance in the data as possible [26-30]. 

In this work, three scenarios were used to prepare 

the data before training the model: 

• Raw Data: Train the model using the original 

data without making any changes. 

• Normalization: Normalize the data range 

using the Z-Score Normalization method. 

• Normalization + PCA: In this scenario, 

normalization was applied first, then 

dimensionality was reduced using PCA. 

3.3.4. Feature extraction and classification stage 

This study customized 1D-CNN to classify EEG 

signals related to MI. The model is based on a seven-

layer architecture designed to analyze raw signals and 

extract temporal and frequency patterns with high 

accuracy. The network starts with convolutional 

layers designed to extract raw and complex features 

from signals. Seven convolutional layers were used 

with ReLU activation after each layer to improve the 

network’s ability to learn from nonlinear patterns. 

Also, five pooling layers are applied to reduce the 

data size while preserving the most important 

features, which improves computational efficiency 

and reduces the complexity of the model. Five 

Dropout layers were included in the architecture to 

ensure performance stability and reduce the risk of 

overfitting. At the penultimate stage, a Global 

Average Pooling layer reduces each extracted feature 

to its global mean, reducing the data to a simple and 

efficient form for handling the final classification. In 

the final stage, two Dense layers were included: the 

Classes 

Data Balance Scenarios 

No Balance  

(15 Subjects) 

Full Balance  

(15 Subjects) 

3X Unknown 

(15 Subjects) 

50% Unknown 

(15 Subjects) 

Unknown 16884150 1152000 3456000 8064000 

Rest 1152000 1152000 1152000 1152000 

FS 1152000 1152000 1152000 1152000 

FP 1152000 1152000 1152000 1152000 

EF 1152000 1152000 1152000 1152000 

EE 1152000 1152000 1152000 1152000 

HC 1152000 1152000 1152000 1152000 

HO 1152000 1152000 1152000 1152000 

Total number of samples 24948150 9216000 11520000 16128000 
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first reinforces important patterns of the extracted 

features to facilitate model learning. In contrast, the 

final layer uses the SoftMax function to provide the 

final predictions for different classes. 

3.3.5. Classification types and training scenarios 

This section focuses on the classification 

scenarios, training methods, and analysis approaches 

applied to EEG data. Additionally, it includes 

strategies for selecting channels, which play a critical 

role in analyzing movement data. A concise 

breakdown of each aspect is provided:  

a) Training Scenarios 

• Subject-by-Subject:  In this approach, the 

model is trained and tested using data from a 

single subject. This method emphasizes 

individual patterns and allows for personalized 

analysis.  

• All Subjects Together: In this method, the 

model is trained and tested using combined data 

from all participants. This scenario creates a 

generalized model to detect patterns shared 

across individuals.  

b) Classification Types 

• Binary Classification: This type focuses 

on distinguishing between two classes and 

includes the following Scenarios: 

▪ mov vs. mov: Classifying one movement 

against another. 

▪ mov vs. rest: Classifying a single 

movement against the rest state. 

▪ all moves vs. rest: Classifying all 

movement classes combined against the 

rest. 

• Multiclass Classification: This type 

distinguishes between multiple classes 

and includes scenarios such as: 

▪ 8-class: Includes six movements, rest, and 

unknown. 

▪ 7-class: Includes six movements and rest, 

excluding unknown. 

▪ 6-class: Includes six movements only, 

excluding rest and unknown. 

c) Data Analysis Approaches 

• Single Time Points: EEG data is analyzed 

using individual samples at specific time 

points.  

• Time Windows: EEG signals are divided 

into time windows to analyze dynamic 

changes in brain activity over a specific 

period. 

d) EEG Channels Selection Approaches 

Different approaches are employed for selecting 

EEG channels when analyzing recorded movement 

data: 

• Single Channel (e.g., Cz): This method 

simplifies the analysis by focusing on 

activity from motor or sensorimotor 

regions, reducing complexity. 

• Muli-Channels: Utilizes Multiple EEG 

channels to enhance spatial resolution and 

provide broader coverage. This Strategy 

includes: 

▪ Four Channels (e.g., FCz, C3, Cz, C4): 

focuses on the sensorimotor region to 

capture movement-related signals with 

better spatial resolution. 

▪ 61 Channels: Ensure comprehensive 

coverage of brain regions, offering a 

detailed analysis of movements. 

e) Unknown Class 

The unknown class represents a set of auxiliary 

signals that appear during the data recording session, 

such as: 

• Cross on Screen: a visual cue appears on 

the screen during the BCI experiment. 

• Beep (Acoustic Stimulus): An audio cue 

during the experiment. 

• Start of Trial Trigger: marks the start of a 

trial at t=0. 

These signals are accompanying actions for the 

experiment, providing visual and auditory stimuli or 

time markers used during recording sessions. Since it 

does not belong to the six basic movements or the 

resting class, it is classified as a separate class to 

ensure the model’s comprehensiveness and ability to 

handle all signals recorded during the experiment. 

The addition of this class reflects a thoughtful 

design aimed at improving the application of the 

model in real-world environments, such as prosthetic 

limb control, where processing all recorded signals is 

essential to ensure efficient and accurate performance 

of the model under different operating conditions. 

4. Results 

In this study, we will present a 1D-CNN 

evaluation model for all scenarios with data 

balancing and preprocessing. 

4.1 Evaluation model 

There are several evaluation metrics to evaluate 

the performance of a model. These metrics include 

Accuracy, Precision, Recall, and F1-Score [31-34], as 

shown below: 
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Accuracy  (ACC) is used to evaluate the model's 

overall performance, as shown in Eq. (5): 

 

Accuracy =
TP+TN

TotalSamples(TP+TN+FP+FN)
         (5) 

 

True Positives (TP), True Negatives (TN), False 

Positives (FP), False Negatives (FN) 

Precision (Pr.) measures how well the model 

predicts only positive items, as illustrated in Eq. (6): 

 

Precision =
TP

TP+FP
                                                 (6) 

 

Recall (Re.) measures the model's ability to 

detect all true positive cases; it is defined in Eq. (7): 

 

Recall =
TP

TP+FN
                                                       (7) 

 

F1-Score provides a balance between Precision 

and Recall, as clarified in Eq. (8): 

 

F1 − Score =
Precision✕Recall

Precision+Recall
✕2                     (8) 

4.2 Hyperparameter tuning 

Tuning the model hyperparameter is essential to 

ensure the optimal performance of the 1D-CNN to 

classify imaginary movements. The hyperparameters 

in this work were tuned based on the 3X Unknown 

data balance scenario to improve the accuracy and 

stability of the model. Table 4 illustrates the effect of 

different parameters that were applied, including the 

learning rate, optimization algorithms, and batch size. 

4.3 Data balance scenarios evaluation 

In this study, we will evaluate the effect of the 

original data distribution, which may introduce a bias 

in the model's performance toward the dominant class, 

as shown in Fig.8, which shows the distribution of 

samples across different data balance scenarios using 

data from 15 participants. The significant difference 

in the number of samples in the “unknown” class 

compared to the other classes when no balance is 

applied is evident, with its samples significantly 

outnumbering the samples in the remaining classes. 

Fig.8 reflects the effect of each of the following 

scenarios (Full balance, 3X Unknown, and 50% 

Unknown) in reducing the dominance of the 

“unknown” class and achieving a more even 

distribution across the different classes of movements. 

4.4 Model classification performance evaluation 

In this study, we will evaluate the classification 

performance of the model by applying data balancing, 

normalization, and PCA scenarios. 

 

 

Table 4. Hyperparameter tuning to train the 1D-CNN on 3X Unknown data balance scenario 

Cases Optimizer 
Learning 

rate 

Batch 

size 
Epochs 

Early 

Stopping 
Epoch/sec 

Train 

Accuracy 

Test 

Accuracy 

Case 1 Adam 0.001 224 50 no 13 0.84 0.84 

Case 2 Adam 0.01 128 50 21 19 0.29 0.3 

Case 3 AdamW 0.001 224 50 no 13 0.84 0.84 

Case 4 AdamW 0.01 128 50 no 20 0.47 0.47 

 

 

 
Figure. 8 Data balance scenarios for classes across 15 subjects 
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4.4.1. Model classification performance evaluation of 

data balance scenarios 

The model's performance was tested using five 

data balancing scenarios (No Balance, Full Balance, 

3X Unknown, 50% Unknown, and Without 

Unknown), as shown in Tables 5 and 6. This study 

included a multiclass classification approach using a 

single time point and analyzing 61 channels of EEG 

signals. Data balancing scenarios tests were 

performed on a single subject's data (S1).  

The confusion matrix, evaluation accuracy, and 

loss show the 3X Unknown scenario as the best data 

balancing in Figs. 9 and 10, respectively. 

Table 5 shows the accuracy evaluation of the 

proposed model (1D-CNN) in classifying MI across 

different data balance scenarios. The table shows the 

number of classes used, the number of training 

epochs, and the application of the early stopping 

technique, in addition to the accuracy of the model in 

the training and testing phases for each scenario. 

Table 6 shows the performance evaluation results 

of the 1D-CNN model when tested on four different  
 

 

Table 5. Accuracy evaluation of the proposed model (1D-CNN) in classifying MI of data balance scenarios 

Data Balance 

Scenarios 

Classes 

Count 
Epochs 

Early 

Stopping 

Accuracy 

Training  

Accuracy 

Testing 

No Balance 8 

50  21 0.6774 0.6765 

100  21 0.6774 0.6765 

150  N/A N/A N/A 

Full Balance 8 

50  full 0.8536 0.8539 

100  full 0.8417 0.8425 

150  105 8539 0.8535 

3X Unknown 8 

50  full 0.8488 0.8467 

100  71 0.8362 0.8333 

150  78 0.8466 0.8441 

50% Unknown 8 

50  full 0.5065 0.5074 

100  full 0.5126 0.5134 

150  48 0.5021 0.5029 

Without Unknown 7 

50  full 0.9923 0.9924 

100  N/A N/A N/A 

150  N/A N/A N/A 

 

 

Table 6. Results of precision, recall, and F1-score for evaluation of the model in classifying MI of data balance scenarios 

Classes 

No Balance 

(8 class) 

Full Balance      

(8 class) 

3X Unknown          

(8 class) 

50% Unknown 

(8 class) 

Without 

Unknown  

(7 class) 

Pr. Re. F1. Pr. Re. F1. Pr. Re. F1. Pr. Re. F1. Pr. Re. F1. 

EE 0.00 0.00 0.00 0.85 0.96 0.90 0.84 0.96 0.90 0.79 0.13 0.23 0.99 1.00 1.00 

EF 0.00 0.00 0.00 0.84 0.99 0.91 0.84 0.95 0.89 0.00 0.00 0.00 1.00 0.99 0.99 

HC 0.00 0.00 0.00 0.84 0.98 0.91 0.81 0.97 0.88 0.00 0.00 0.00 0.99 0.99 0.99 

HO 0.00 0.00 0.00 0.84 0.98 0.90 0.85 0.97 0.91 0.00 0.00 0.00 1.00 0.99 0.99 

FP 0.00 0.00 0.00 0.84 0.98 0.91 0.83 0.97 0.89 0.00 0.00 0.00 0.99 1.00 0.99 

FS 0.00 0.00 0.00 0.88 0.96 0.92 0.85 0.94 0.90 0.00 0.00 0.00 0.99 0.98 0.99 

rest 0.00 0.00 0.00 0.88 0.97 0.92 0.84 0.97 0.90 0.00 0.00 0.00 0.99 1.00 0.99 

unknown 0.68 1.00 0.81 0.67 0.01 0.03 0.88 0.58 0.70 0.50 1.00 0.67 N/A N/A N/A 

Macro 

avg. 
0.08 0.12 0.10 0.83 0.85 0.80 0.84 0.91 0.87 0.16 0.14 0.11 0.99 0.99 0.99 

Weight 

avg. 
0.46 0.68 0.55 0.83 0.85 0.80 0.85 0.85 0.84 0.31 0.51 0.35 0.99 0.99 0.99 
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Figure. 9 Confusion matrix for testing the 1D-CNN model on the 3X Unknown data balance  scenario using 50 epochs 

 

 

 
Figure. 10 Performance curves of accuracy and loss  for training and testing the 1D-CNN model on the 3X Unknown 

data balance  scenario using 50 epochs 
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data balance scenarios using 50 epochs. The table 

shows the precision, Recall, and F1-Score metrics for 

each of the classified classes, as well as the overall 

arithmetic mean (Macro avg.) and the weighted mean 

(Weight avg.), which helps in comparing the impact 

of each scenario on the model’s performance. 

Fig.9 shows the confusion matrix representing the 

results of testing the proposed model (1D-CNN) on 

the 3X Unknown scenario using 50 epochs, which is 

the scenario that showed the best performance among 

all data balance scenarios. The matrix shows the 

actual and expected distribution of classes, reflecting 

the model’s ability to distinguish between different 

classes with high accuracy. While achieving a proper 

balance between classes and efficiently classifying 

the unknown class. 

Fig.10 shows the curves that represent the 

performance of the proposed model (1D-CNN) in 

terms of accuracy and loss during training and testing 

on the 3X Unknown scenario using 50 epochs. The 

accuracy curve shows a gradual increase in 

performance, reflecting the model's ability to adapt to 

the data, while the loss curve shows a steady decrease, 

indicating the stability of training and improvement 

in overall performance. 

4.4.2. Model classification performance evaluation of 

preprocessing scenarios 

After selecting the 3X Unknown scenario as the 

best scenario for data balance due to its high accuracy 

and having a larger number of samples from the 

unknown class, three preprocessing techniques were 

applied to the 3X Unknown data scenario (Raw Data, 

Normalization, and Normalization with PCA), as 

described in Section 3.3.3. The model was trained 

and tested on Subject-by-Subject (S1 to S15), as shown 

in Tables 7, 8, 9, and 10. 

Table 7 shows the classification accuracy of the 

1D-CNN model when applied to the 3X Unknown 

scenario using 50 epochs across 15 individuals for 8 

classes. The table includes the effect of three 

preprocessing scenarios, namely raw data, 

normalization, and Normalization + PCA 

(normalization with dimensionality reduction), on the 

performance of the model in the training and testing 

phases. 

Table 8 shows the weighted average of the 

Precision, Recall, and F-Score performance metrics 

of the proposed model (1D-CNN) when testing the 

3X Unknown scenario on different preprocessing 

techniques on the raw data, normalization, and 

normalization with (PCA) to classify 8 classes across 

15 subjects using 50 epochs. 

 

 
Table 7. Classification accuracy evaluation of the proposed model (1D-CNN) using 3x Unknown scenario with different 

preprocessing scenarios applied (Raw data, Normalization, Normalization with PCA) to classify 8 classes of MI across 

15 subjects using 50 training epochs 

Subjects 

(8 class) 

Raw Data Normalization 
Normalization + 

PCA 

Training 

Phase 

Testing 

Phase 

Training 

Phase 

Testing 

Phase 

Training 

Phase 

Testing 

Phase 

S1 0.8487 0.8467 0.9130 0.9107 0.9172 0.9161 

S2 0.6733 0.6703 0.9127 0.9116 0.9006 0.8991 

S3 0.3699 0.3703 0.9218 0.9206 0.9205 0.9194 

S4 0.3912 0.3933 0.8429 0.8406 0.8855 0. 8825 

S5 0.3002 0.3023 0.9210 0.9192 0.9393 0.9375 

S6 0.3002 0.3023 0.8736 0.8714 0.8896 0.8882 

S7 0.3388 0.3407 0.8764 0.8744 0.8983 0.8958 

S8 0.3002 0.3021 0.9134 0.9123 0.9030 0.9025 

S9 0.3072 0.3093 0.9044 0.9031 0.9190 0.9169 

S10 0.6294 0.6296  0.8984 0.8956 0.8861 0.8833 

S11 0.3405 0.3420 0.9093 0.9088 0.9181 0.9160 

S12 0.3714 0.3733 0.9087 0.9076 0.9225 0.9208 

S13 0.7156 0.7130 0.9231 0.9227 0.9294 0.9274 

S14 0.3004 0.3024 0.9362 0.9359 0.9190 0.9181 

S15 0.3017 0.3033 0.8872 0.8849 0.9041 0.9019 

avg. 0.4326 0.4334 0.9028 0.9013 0.9101 0.9099 
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Table 8. Weighted average of the precision, recall, and F1-Score performance metrics of the proposed model using the 

3X Unknown scenario with preprocessing techniques to classify 8 classes 

 

 
Table 9. Classification accuracy of the D-CNN model when testing the 3X Unknown scenario on different preprocessing 

techniques for classifying 7 classes of MI across 15 subjects using 50 epochs 

Subjects 

(7 class) 

Raw Data Normalization 
Normalization + 

PCA 

Training 

Phase 

Testing 

Phase 

Training 

Phase 

Testing 

Phase 

Training 

Phase 

Testing 

Phase 

S1 0.9943 0.9937 0.9970 0.9968 0.9949 0.9947 

S2 0.1477 0.1475 0.9982 0.9981 0.9969 0.9968 

S3 0.8883 0.8876 0.9984 0.9984 0.9963 0.9963 

S4 0.9593 0.9576 0.9883 0.9884 0.9916 0.9913 

S5 0.1562 0.1567 0.9977 0.9975 0.9980 0.9979 

S6 0.2037 0.2033 0.9983 0.9984 0.9978 0.9976 

S7 0.9329 0.9312 0.9972 0.9973 0.9967 0.9965 

S8 0.9653 0.9654 0.9994 0.9994 0.9981 0.9981 

S9 0.9705 0.9702 0.9975 0.9974 0.9973 0.9971 

S10 0.1514 0.1488 0.9992 0.9991 0.9956 0.9952 

S11 0.9689 0.9690 0.9974 0.9974 0.9954 0.9953 

S12 0.9898 0.9898 0.9975 0.9974 0.9968 0.9967 

S13 0.9839 0.9837 0.9945 0.9943 0.9932 0.9930 

S14 0.1502 0.1510 0.9996 0.9994 0.9980 0.9981 

S15 0.1537 0.1543 0.9981 0.9982 0.9984 0.9982 

avg. 0.6411 0.6407 0.9972 0.9972 0.9963 0.9962 

 

 

Table 9 shows the classification accuracy results 

of the1D-CNN model when tested on the 3X 

Unknown scenario using three preprocessing 

strategies (raw data, normalization, and 

normalization + PCA). The evaluation includes 

classifying 7 different classes of MI across 15 

subjects using 50 epochs, and the table shows the 

performance of the model in the training and testing 

phases for each preprocessing technique. 

Table 10 shows the weighted average of the 

classification performance metrics (Precision, Recall, 

and F1-Score) for the proposed model using the 3X 

Unknown scenario with preprocessing techniques for 

classifying 7 classes. 

Subjects 

Data Preprocessing Scenarios (8 classes) 

Raw Data Normalization Normalization + PCA 

Pr. Re. F1. Pr. Re. F1. Pr. Re. F1. 

S1 0.85 0.85 0.84 0.91 0.91 0.91 0.92 0.92 0.91 

S2 0.68 0.67 0.67 0.91 0.91 0.91 0.90 0.90 0.90 

S3 0.54 0.37 0.32 0.92 0.92 0.92 0.92 0.92 0.92 

S4 0.54 0.39 0.37 0.85 0.84 0.83 0.88 0.88 0.88 

S5 0.19 0.30 0.14 0.92 0.92 0.92 0.94 0.94 0.94 

S6 0.17 0.30 0.14 0.88 0.87 0.86 0.89 0.89 0.88 

S7 0.59 0.34 0.24 0.88 0.87 0.87 0.90 0.90 0.89 

S8 0.13 0.30 0.15 0.91 0.91 0.91 0.91 0.90 0.90 

S9 0.19 0.31 0.17 0.91 0.90 0.90 0.92 0.92 0.91 

S10 0.63 0.63 0.61 0.90 0.90 0.89 0.89 0.88 0.88 

S11 0.43 0.34 0.25 0.91 0.91 0.91 0.92 0.92 0.91 

S12 0.57 0.37 0.31 0.91 0.91 0.90 0.92 0.92 0.92 

S13 0.71 0.71 0.70 0.93 0.92 0.92 0.93 0.93 0.93 

S14 0.16 0.30 0.14 0.94 0.94 0.93 0.92 0.92 0.92 

S15 0.15 0.30 0.15 0.89 0.88 0.88 0.90 0.90 0.90 

avg. 0.4353 0.432 0.3467 0.9047 0.9007 0.8973 0.9107 0.9093 0.906 
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Table 10. Weighted average of the classification performance metrics (precision, recall, and F1-Score) for Data 

preprocessing scenarios (7 Classes) 

Subjects 

 

Data Preprocessing Scenarios (7 classes) 

Raw Data Normalization Normalization + PCA 

Pr. Re. F1. Pr. Re. F1. Pr. Re. F1. 

S1 0.99 0.99 0.99 1.00 1.00 1.00 0.99 0.99 0.99 

S2 0.08 0.15 0.04 1.00 1.00 1.00 1.00 1.00 1.00 

S3 0.89 0.89 0.89 1.00 1.00 1.00 1.00 1.00 1.00 

S4 0.96 0.96 0.96 0.99 0.99 0.99 0.99 0.99 0.99 

S5 0.22 0.16 0.07 1.00 1.00 1.00 1.00 1.00 1.00 

S6 0.13 0.20 0.14 1.00 1.00 1.00 1.00 1.00 1.00 

S7 0.93 0.93 0.93 1.00 1.00 1.00 1.00 1.00 1.00 

S8 0.97 0.97 0.97 1.00 1.00 1.00 1.00 1.00 1.00 

S9 0.97 0.97 0.97 1.00 1.00 1.00 1.00 1.00 1.00 

S10 0.15 0.15 0.05 1.00 1.00 1.00 1.00 1.00 1.00 

S11 0.97 0.97 0.97 1.00 1.00 1.00 1.00 1.00 1.00 

S12 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

S13 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 

S14 0.16 0.15 0.05 1.00 1.00 1.00 1.00 1.00 1.00 

S15 0.19 0.15 0.09 1.00 1.00 1.00 1.00 1.00 1.00 

avg. 0.6387 0.6407 0.606 0.9987 0.9987 0.9987 0.998 0.998 0.998 

 

 

5. Discussion 

The proposed model was trained and tested across 

different data balance scenarios for imaginary 

movement classification using the upper limb 

movement dataset. The training and testing were 

conducted on only one subject (S1) for eight classes 

in order to evaluate the impact of data distribution on 

the model’s accuracy and performance. Observed in 

Table 5, the scenario performance for No Balance 

shows the lowest accuracy among all scenarios at 50 

epochs, with an accuracy of 0.6765, where notice that 

the confusion matrix shows that the model classified 

most of the samples as belonging to the unknown 

class, regardless of the actual class of the samples. 

This performance reflects the effect of the lack of 

balance between classes, which led to a weakness in 

the model's ability to classify movements correctly. 

Table 6 shows that the scenario clearly shows a 

weakness in the performance model. This model was 

unable to classify the seven basic classes, and (Pr., 

Re., and F1) were zero for these classes. In contrast, 

the unknown class performed well due to its 

numerical dominance, with a precision of 0.68, 

Recall of 1.00, and F1-score of 0.81. This scenario 

reflects the negative impact of the unbalanced data 

distribution on the model’s performance.  

Notice in Table 5 that the scenario performance 

for Full Balance shows the best performance among 

all scenarios at 50 epochs, with accuracy reaching 

0.8539. This performance reflects the effect of a 

balanced distribution for all classes, which enhanced 

the model's ability to classify different movements 

with high accuracy. It was observed that the 

confusion matrix shows the model's consistent 

performance with a clear decrease in errors. This 

model was able to classify all classes accurately, as 

the equal distribution of samples shows a positive 

effect on reducing confusion between classes. 

Through Table 6, the model performance in this 

scenario improved significantly compared to the No 

balance scenario. All classes showed relatively high 

values in (Pr., Re., and F1.), indicating that data 

balance helps improve performance. For example, the 

EF class performed strongly, While the unknown 

class recorded average performance compared to the 

rest of the classes (Precision of 0.67, Recall of 0.01, 

And F1-Score of 0.03). These results indicate that the 

model was accurate in predicting the unknown class, 

but its ability to capture all its samples was weak. In 

general, the scenario shows great effectiveness in 

improving the overall performance of the model. Still, 

it may need to enhance the performance of the 

unknown class because it is important in practical 

application. 

Now, we observed in Table 5 that scenario 

performance for 3X Unknown shows with accuracy 

reaching 0.8467 at 50 epochs, reflecting a 

performance very close to the Full balanced scenario.  

Through Fig.  9, the confusion matrix shows a 

consistent and strong performance of the model, as 

the classification of the unknown class was improved 

while reducing the errors in classifying the other 

classes. This scenario reflects the improvement of the 

comprehensiveness of the model by increasing the 
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samples of the unknown class, which helped the 

model to accurately recognize this class alongside 

classifying the other classes.  We notice in Fig. 10 

that the performance curves show a gradual 

stabilization in accuracy and loss with continuous 

improvement during the training and testing process. 

The training process was stopped at 78 epochs using 

early stopping after reaching a clear stabilization 

without further performance improvement. This 

scenario performed similarly to the Full balance 

scenario. The base classes performed well with clear 

stability, while the Unknown class was more 

balanced compared to the full balance scenario. This 

scenario highlights the model’s ability to handle 

balanced data while improving the unknown class’s 

assimilating, as shown in Table 6. 

Following in Table 5, scenario performance for 

50% Unknown had the lowest performance among all 

scenarios, with an accuracy of 0.5029 at 48 epochs, 

where the training process was stopped using early 

stopping. Although the number of samples for the 

unknown class was 7 times the minimum for the rest 

of the classes, this distribution was not sufficient to 

enable the model to achieve good performance in 

classifying classes, where notice that the confusion 

matrix shows that the model struggles to correctly 

classify the unknown class, with frequent errors 

across all classes. Table 6 shows that this scenario 

showed very poor performance compared to the other 

scenarios. Many classes had very low of (Pr., Re., and 

F1.), indicating difficulty distinguishing between 

classes due to an inadequate distribution. The 

unknown class was the only one that achieved 

relatively acceptable performance due to the large 

number of samples. Still, it was not enough to 

improve the overall performance of the model. 

Finally, notice in Table 5 that the scenario 

performance for Without Unknown (7 Classes) 

achieved the highest performance among all 

scenarios, with accuracy reaching 0.9924 at 50 

epochs. This outstanding performance reflects the 

effect of removing the unknown class, which reduced 

the complexity of the model and contributed to 

improving its ability to distinguish between the other 

seven classes. Whereas the confusion matrix shows 

the model's excellent performance, as most samples 

are accurately classified into the correct classes with 

very small errors. In Table 6, the model in this 

scenario showed almost perfect performance, as all 

seven basic classes achieved a very high level of (Pr., 

Re., and F1.). Based on the analysis of the results, 

stable performance was achieved in two main 

scenarios, “Full Balance” and “3X Unknown”. These 

scenarios showed a clear balance between all classes, 

depending on the requirements of the study; the 3X 

Unknown scenario was chosen as it achieves a 

balance between high accuracy and balanced 

performance across all classes, where the accuracy 

and loss curves reflected stability and convergence 

between the model’s performance on the training and 

test data, indicating the model’s efficiency in dealing 

with balanced data. 

Hyperparameter tuning of the model plays an 

important role in ensuring the optimal performance of 

the 1D-CNN network for classifying MI. The 

hyperparameters were adjusted based on the 3X 

Unknown data balance scenario to improve the 

accuracy and stability of the model. As we can notice 

in Table 4, the effect of the different parameters that 

were applied is as follows: Case 1 was adopted as the 

final model setting, where the Adam algorithm was 

used with a learning rate of 0.001 and a batch size of 

224. These settings showed balanced and stable 

performance, as the training and testing accuracy 

reached 0.84 for each. This reflects the ability of the 

low learning rate to gradually improve the model 

weights while reducing the risk of instabilities during 

the training process. At the same time, the larger 

batch size contributed to enhancing the stability of the 

training. In contrast, using a higher learning rate 

(0.01) as in the second and fourth cases led to a 

significant decrease in accuracy. The model could not 

converge sufficiently due to the large weight updates. 

Also, the AdamW algorithm used in cases 3 and 4 

performed similarly to case 1 at a low learning rate 

but took longer to train. Case 1 was ultimately chosen 

because it achieves the ideal balance between high 

performance and time efficiency, making it the most 

suitable for achieving the goals of this work. 

After selecting the 3X Unknown balance 

scenario as the best scenario for data balance based 

on its high accuracy and large number of samples in 

the unknown class, the model was tested on 

preprocessing scenarios using the 8-class and 7-class 

classification types, which were applied to a Subject-

by-Subject training scenario. The preprocessing 

scenarios included using the normalization technique 

to standardize the data and improve its distribution, 

in addition to applying the PCA technique to reduce 

the dimensions to 30 principal components. The 

experiments were performed using only 50 epochs. 

The results are shown in Tables 7, 8, 9, and 10. 

In Tables 7 and 8, we observed the model's 

accuracy and values (Pr., Re., and F1.) during the 

training and testing phases of the 8 classes using the 

three preprocessing scenarios. The results showed the 

lowest values of accuracy and (Pr., Re., and F1.) in 

the Raw Data scenario, with accuracy (ACC) ranging 

between (0.30 - 0.84) across all subjects. The overall 

average was low for both the training and testing 
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phases, reflecting the model's poor performance in 

this scenario. Whereas the accuracy improved 

significantly using the Normalization scenario 

compared to the Raw data, with values approaching 

0.90 for most subjects and high values for (Pr., Re., 

and F1.). The overall average showed a significant 

improvement in this scenario. Finally, the model 

achieved the best performance using the 

Normalization + PCA scenario. All subjects showed 

high accuracy, exceeding the average of 0.91 for both 

the training and testing phases, the best results for (Pr., 

Re., and F1.) with average values exceeding 0.90 for 

most metrics. This reflects the effectiveness of the 

approach in significantly improving classification 

accuracy, making it the preferred choice among 

preprocessing scenarios. 

Tables 9 and 10 show the model accuracy and 

values (Pr., Re., and F1.) during the training and 

testing phases for 7 Classes using the three 

preprocessing scenarios. The results showed poor 

overall performance when using the Raw Data 

scenario, with accuracy being relatively low in 

several subjects, such as subject 2 (S2). The overall 

average of accuracy and values (Pr., Re., and F1.) was 

lower than the rest of the preprocessing scenarios. 

Whereas the accuracy and values (Pr., Re., and F1.) 

using the Normalization scenario significantly 

improved the classification of classes compared to 

Raw data, with almost all subjects achieving very 

high accuracy and values (Pr., Re., and F1.) 

exceeding 0.99, indicating stable performance with 

the exclusion of the unknown class. Finally, the 

model achieved advanced performance using the 

Normalization + PCA scenario, with values very 

close to the normalization scenario, approaching 0.99 

in all metrics and for all subjects. 

The results showed that preprocessing scenarios 

significantly impacted the model’s performance in 

class classification, highlighting the importance of 

improving data quality through preprocessing. The 

Normalization and Normalization + PCA scenarios 

contributed significantly to improving classification 

accuracy, with the results showing a significant 

superiority over Raw data. The Normalization + PCA 

scenario was the best choice among all preprocessing 

scenarios, achieving the highest levels of accuracy 

and (Pr., Re., and F1.)  across most topics. This strong 

performance reflects the effectiveness of this scenario 

in improving class classification when using 8-class 

classification, which is the focus of this study. These 

results emphasize the importance of choosing 

appropriate preprocessing techniques to improve 

model performance and highlight the effectiveness of 

the 3X Unknown balance scenario that was chosen. It 

contributed to achieving a balance between model 

accuracy and the large number of samples for the 

unknown class. 

After analyzing the performance of the proposed 

advanced model on preprocessing scenarios, we will 

highlight some previous works in terms of model 

performance, number of channels, etc., to evaluate 

the progress of this study, as shown in Table 11.  

First, number of channels used: Most previous 

studies, such as [11] and [16], relied on a small 

number of channels, as some studies used only 4 and 

11 channels, which reduces the complexity of the 

data but may affect the accuracy of prediction. In 

contrast, this study used 61 EEG channels, which 

helped improve the discrimination between different 

classes of MI and achieved higher classification 

accuracy compared to studies that relied on a smaller 

number of channels. Secondly, preprocessing 

techniques: Previous studies focused mainly on using 

bandpass filters as one of the basic processing 

methods. In contrast, the current study adopted 

advanced processing techniques such as Z-Score 

Normalization and PCA, which reduced the 

dimensions and improved the accuracy of the model, 

making it more efficient compared to traditional 

methods. Thirdly, classification type: Some previous 

studies, such as [12] and [14], focused on binary 

classification, while some other studies focused on 

classifying a limited number of classes, such as [13] 

and [15], which relied on classifying only 6 classes. 

In contrast, this study adopted multi-class 

classification with eight classes, including the 

unknown class, which enhances the model’s ability to 

deal with more complex scenarios and provides a 

broader range of potential applications. Fourth, 

classification algorithm: Some previous studies used 

traditional algorithms such as SLDA and RLDA, as 

in [14] and [11], while other studies adopted CNN-

based networks such as TSPNet, TTSN, and TDLNet 

as in [13,15, and 16]. This study adopted a 1D-CNN, 

which has proven effective in classifying MI, with 

less computational resource consumption than more 

complex deep networks. Finally, model performance: 

The results showed that the proposed model 

outperformed previous studies, achieving high 

accuracy when classifying MI, which can be 

observed in Table 11, which reflects the efficiency of 

the adopted methodology in improving performance 

by using a large number of channels, adopting more 

advanced processing techniques, and supporting 

multi-class classification. 
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Table 11. Summary of related work and proposed model for BNCI Horizon 2020 dataset 

Ref & 

year 

Task 

Type 
Preprocessing  

Feature  

Extraction  
Classifier   

Training 

Scenario 

No. 

Channels 

Used 

Accuracy (%) 

[11] 

2020 

EF, EE, 

FS, FP, 

HO, 

HC, 

and 

Rest 

 

Interpolation 

and an 

antialiasing 

filter, artifact 

removal, large 

Laplacian 

spatial filter, 

and channel 

reduction  

SSSF & 

mean 

amplitude 

RLDA 

Subject- 

by- 

Subject 

4 

[C1, C2, 

CPz, Cz] for 

MRCP 

activation 

Binary/ MI: 

Avg. 73 (mov vs. rest), 

 

Multi-class (7-class): 

Avg. 38 

[12] 

2020 

EF, EE, 

FS, FP, 

HO, 

HC, 

and 

Rest 

Bandpass, 

Segmentation, 

and Region of 

interest-ROI 

Continuou

s Wavelet 

Transform

, and TF 

Maps  

DCNN 

Subject- 

by- 

Subject 

61 

Binary/MI: 

ACC.:  Avg. 62.47 

(premov vs. premov), and 

Avg. 90.3 (premov vs. rest),  

F-score:  Avg. 57.70 

(premov vs. premov), and 

Avg. 88.79 (premov vs. 

rest) 

 

[13] 

2023 

EF, EE, 

FS, FP, 

HO, 

HC 

Bandpass 

Filter, Notch 

Filter, and 

Down sample  

TDFE, 

SDFE, 

and 

TSPFE 

TSPNet 

(CNN -

based) 

Subject- 

by- 

Subject 

61 
Multi-class (6-class) 

ACC: Avg.  49.7 

[14] 

2023 

 

EF, EE, 

Rest 

Down sample, 
Bandpass 

Filter, Divide 

data into time 

periods, and 
ICA 

Amplitude

, and 

Entropy 

features 

(Rényi 

and 

Shannon) 

sLDA 

Subject- 

by- 

Subject 

31 

Binary MI: 

Acc, and F-score: max. 95 

(mov vs. rest) 

Acc,: max. 53, and F-score: 

max. 55 (mov vs. mov)  

 

[15] 

2023 

EF, EE, 

FS, FP, 

HO, 

HC 

Down sample 

TDM, 

Inception 

Module, 

and  

RAMM 

TDLNet 

(CNN -

based) 

All 

Subjects 

Together 

61 
Multi-class (6-class):   

Acc.: 63  

[16] 

2024 

EF, EE, 

FS, FP, 

HO, 

HC, 

and 

Rest 

Down sample, 
Bandpass 

Filter, Divide 

data into time 

periods, and 
ICA, 

Normalization

, Movement 

onset 

localization 

CNN+TR

CA  

TTSNet 

(CNN -

based) 

/ 11 

Binary /MI: Acc 

Precise onset-

labeled/dataset I(a): 0.7707  

Unlabeled onset/dataset 

I(b): 0.7526  

Multi-class/ MI: Acc 

Precise onset-

labeled/dataset I(a): 0.4588  

Unlabeled onset/dataset 

I(b): 0.4141  

Propos

ed 

model  

EF, EE, 

FS, FP, 

HO, 

HC, 

Rest, 

and 

unknow

n 

 

Z-Score 

Normalization

, and PCA 

/ 1D-CNN 

Subject- 

by- 

Subject 

61 

Multiclass MI: ACC.:  

8-class/ Training: Avg. 

91.01, Testing:  Avg. 90.99,  

F1-score: Avg.90.6 

7-class/ Training: Avg. 

99.63, Testing:  Avg. 99.62,  

F1-score: Avg. 99.8 
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6. Conclusion 

In this study, the 1D-CNN model was customized 

and tested to classify imaginary movements using 

EEG signals from the 2020 BNCI Horizon database. 

The results showed that the model is able to achieve 

high classification accuracy in different training and 

testing scenarios, with the 3X Unknown scenario 

being the most suitable for the study due to its high 

accuracy and balance in dealing with the unknown 

class. The study used preprocessing techniques, 

such as Normalization + PCA, which contributed to 

improving the model’s performance and reducing 

the data complexity. 

However, the study revealed some challenges 

that need to be addressed in the future, such as 

adopting a subject-dependent approach, which limits 

the generalization of the model to new users. The 

study also relied on a pre-recorded database 

dedicated to healthy individuals, which may reduce 

the model’s ability to adapt to the needs of 

individuals with special health conditions such as 

cerebral palsy or amputation. 

In the future, this work can be expanded by 

exploring the use of other deep learning models, such 

as RNN, for more complex analysis of EEG signals. 

In addition, it is proposed to adopt a training scenario 

based on collecting data from all subjects instead of 

subject-by-subject, which contributes to producing a 

more general and flexible model. Also, it is proposed 

that transfer learning be adopted to enhance 

adaptability across individuals. Finally, the model 

can be tested in realistic operating environments and 

connected to practical devices such as prosthetic 

limbs to evaluate its performance in practice and 

improve its real-world applications 
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