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Abstract: Drug-target affinity (DTA) prediction is essential in drug discovery because traditional methods are time-

consuming and expensive. Yet, recent computational approaches often struggle with limitations in representing the 

structural and sequential complexities of drugs and proteins, resulting in inferior prediction performance. Therefore, 

this study proposes a method to enhance DTA prediction accuracy using Dynamic Graph Attention Networks (GATv2) 

and Bidirectional Long Short-Term Memory (BiLSTM). The model incorporates multi-scale features, which include 

drug motif graphs, and a three-way multi-head attention mechanism to capture complex interactions between drug and 

protein representations. Evaluated on Davis and KIBA datasets, the proposed model outperformed baseline models 

(e.g., GCN, GAT, 1DCNN, LSTM) and benchmark methods (e.g., GraphDTA, MSGNN-DTA, and DGDTA) across 

three evaluation metrics, achieving MSE of 0.3209 and 0.1864, CI of 0.8646 and 0.8616, and r2m of 0.5046 and 0.6672, 

respectively. This approach addresses limitations in static attention mechanisms, lack of multi-scale representation, 

and simplified interaction modeling in existing methods, offering a more robust method for DTA prediction. 

Keywords: Drug target affinity, Drug graph, Protein sequences, Regression, Dynamic graph attention network, 

Attention mechanism. 

 

 

1. Introduction 

The process of binding between a drug and a 

target that modifies the target's function or behavior 

is known as drug-target interaction (DTI) [1]. A drug 

is any chemical substance that, when ingested, alters 

the organism's chemical composition. The term 

"target" refers to any biological component of the 

organism that interacts with the drug, resulting in 

alterations in a chemical environment. The common 

target itself is a protein or nucleic acid, including 

enzymes, G-protein coupled receptors, nuclear 

receptors, and ion channels [1]. DTI is an important 

aspect of the drug development process, which may 

take up to 2.6 billion US dollars and at least 17 years 

to complete the process of one drug from the original 

hypothesis to official marketing [2]. The process is 

long in time, complex, costly, and has a low chance 

of success. In addition, because of their unknown 

interactions, the majority of known chemical 

substances have yet to be utilized as drugs [1]. 

Therefore, in recent years, there has been a great deal 

of interest in the process to understand how drugs 

interact with their targets and how to predict drug-

target interactions [2]. 

In general, direct laboratory experiments using 

techniques like high throughput screening (HTS) can 

be used for the DTI prediction process [2]. However, 

the laboratory process in the lab takes a lot of time 

and costs a lot of money. Therefore, a new in silico 

approach is needed to address these problems [1]. 

One approach that can be used as an alternative to 

predict the DTI is the computational method. Also, 

the availability of large volumes of data on drug 

compounds with hundreds of potential targets makes 

computational methods available in DTI prediction 

[2]. Computational methods for drug-target 

interaction (DTI) are divided into three approaches, 

namely ligand-based, docking simulation-based, and 

chemogenomic-based [3]. Ligand-based approaches 

and docking simulations are conventional approaches. 

Ligand-based approaches are developed with the 



Received:  January 17, 2025.     Revised: February 12, 2025.                                                                                           529 

International Journal of Intelligent Engineering and Systems, Vol.18, No.3, 2025           DOI: 10.22266/ijies2025.0430.36 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

assumption that similar molecules share similar 

properties, so drug molecules should be able to bind 

to proteins that have similar molecules. However, this 

approach has drawbacks because the interaction 

predictions made are only limited to known drug 

molecules and proteins [4]. The second approach is 

based on docking simulation by utilizing the 3D 

structure of the protein. However, this approach has 

disadvantages when the 3D structure of the protein is 

unknown, and also the simulation is quite complex 

and requires large computational power [4]. The 

chemogenomic approach offers better solutions to 

answer the shortcomings of the previous two 

approaches. This approach uses drug chemical space 

information and protein genomic space and unifies 

them in the same subspace to infer possible 

interactions [1]. Several methods are often used in 

chemogenomic approaches, such as statistical 

methods [5, 6], machine learning methods [7, 8], and 

deep learning methods [9, 10]. 

In recent years, the use of deep learning has been 

frequently used in DTI prediction. This is related to 

the deep learning architecture that can identify hidden 

or complex patterns or data representations. As such, 

creating effective deep-learning models is essential 

for discovering hit compounds, which are identified 

as potential drugs for therapeutic use [11]. Generally, 

DTI prediction is commonly classified as a 

classification task [11-13]. This means the task only 

predicts whether a drug interacts with a specific target 

or not. However, one important piece of information 

is missing from the prediction results, which is a 

binding affinity value that represents the strength of 

a drug's interaction with a target pair that is measured 

by a continuous number [14]. Thus, the prediction of 

drug-target affinity (DTA) offers the advantage of 

predicting the strength value of the interaction 

between a drug and its target. Hence, this approach 

reduces the extensive search space for compounds in 

drug discovery research [14]. 

Several previous studies have performed DTA 

prediction by implementing deep-learning models 

with various representations of drugs and targets. 

Some studies represent drugs and targets as string 

sequences using the Simplified Molecular Input Line 

Entry System (SMILES) for drug compounds and 

protein amino acid sequences for targets, employing 

models such as 1DCNN and RNN-based models to 

do the feature learning [15, 16].  

Despite that, the current state of representing 

drugs as sequence strings is unsuitable. This is due to 

the possibility of losing structural details when 

employing string representation, which may have an 

impact on the binding affinity prediction [17]. 

Therefore, other studies used graphs as a drug 

representation by converting SMILES strings into 

graph-based representation using Graph Neural 

Network (GNN) models to do the representation 

learning [17, 18]. Although several studies have 

performed DTA prediction with drug representation 

as a graph, there are still some issues that need to be 

addressed. For example, many studies have used 

Graph Attention Networks (GATs) for drug 

representation learning because of their attention 

mechanism. However, GAT models have a static 

attention mechanism that applies the same attention 

weights regardless of the query node’s context. This 

limitation results in the model treating all node 

relationships equally, without adapting to the specific 

context of each query node. To overcome this 

limitation, GATv2 was introduced as a dynamic 

attention variant, providing more expressive 

representations by adapting attention weights to the 

query node’s context [19]. 

Also, even though current graph-based methods 

have already implemented GATv2 models for DTA 

prediction, these studies commonly represent drugs 

as a single graph structure. They neglect multi-scale 

structural information within drugs, such as structural 

features of individual amino acids, motifs, and 

various scales of structural features, including atoms 

and molecular fragments. These interactions and 

correlations between different structural levels play a 

pivotal role in drug–target protein interactions [20]. 

Furthermore, substructures such as motifs carry 

special meanings in drug molecules, such as NO2 and 

carbon ring groups that are prone to mutagenesis [21]. 

Thus, motifs deserve more attention as additional 

drug representations. By integrating drug multi-scale 

features using both the overall molecular graph and 

specific motifs, DTA models can achieve a more 

comprehensive representation of the drug, leading to 

improved prediction accuracy. 

Besides, protein sequence representations are 

long, with each character describing an amino acid. 

Conventional models are unable to process 

contextual relationships within sequences, missing 

critical relationships between preceding and 

following amino acids. Bi-directional LSTM 

(BiLSTM) networks provide an alternative approach 

by considering both past and future contexts, 

enabling a more comprehensive understanding of the 

protein’s structural and functional properties [22]. 

Moreover, recent interaction modeling often relies on 

straightforward concatenation of drug and protein 

representations. This simplified approach overlooks 

the complex relationships between drug graphs and 

protein sequences, potentially ignoring the essential 

interaction information that might influence binding 

affinity. Moreover, many current methods only focus 
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on capturing interactions between two 

representations, drug graphs, and protein sequences 

without accounting for other potential representations 

(e.g., drug motifs). This limitation hinders the 

model's ability to fully capture the complex 

interactions between various drug and target features, 

possibly affecting binding affinity value. To address 

these issues, alternative approaches can leverage 

advanced attention mechanisms to incorporate 

additional representations and employ interaction 

models capable of processing multiple inputs in a 

more context-aware manner. 

To address the limitations mentioned above, this 

study proposes an enhanced GATv2 model to obtain 

more informative features from the drug graph node 

and combine it with drug multi-scale features to 

dynamically adapt and selectively fuse features from 

different drug feature representation scales. For 

protein sequences, BiLSTM is utilized to capture 

long-term dependencies and contextual associations, 

leveraging its ability for sequence data. We also 

incorporate a new attention mechanism inspired by 

the AttentionDTA study [23] called a three-way 

multi-head attention mechanism, which enables each 

representation to focus on critical regions of the other, 

effectively highlighting important cross-interactions. 

This comprehensive framework aims to overcome 

existing limitations and improve the accuracy and 

interpretability of DTA predictions. 

The main contributions of this study are: 

• Employed GATv2 as a dynamic attention 

mechanism to overcome the limitations of 

static attention in traditional GATs, enabling 

more context-aware graph representations. 

• Introduced a multi-scale representation for 

drug compounds, incorporating both 

molecular graph and motifs graph structures 

to enhance the granularity and context of drug 

representations. 

• Implemented a three-way multi-head 

attention mechanism to capture complex 

interactions between drug and target features, 

enabling the model to consider multiple 

aspects of inputs and improve prediction 

accuracy. 

• Utilized Bi-directional LSTM (BiLSTM) to 

effectively capture long-term dependencies 

and contextual relationships within protein 

amino acid sequences, providing a more 

robust understanding of protein properties. 

The rest of this research paper is organized as 

follows. Section 2 discussed several literature studies 

related to DTA prediction. Section 3 describes the 

research methodology, implementation, and 

experiment design. Section 4 presents the 

implementation results and discussion. Finally, the 

conclusion and future works are presented in section 

5. 

2. Related works    

Several previous studies have performed Drug-

target affinity (DTA) prediction using many different 

approaches. Many of these studies represent drug 

compounds and target proteins as sequences. In 2018, 

Öztürk et al. [14] proposed DeepDTA, a model that 

utilizes a deep learning architecture, specifically 

CNN, to predict binding affinity. This model learns a 

1D representation based on SMILES strings for drugs 

and protein sequences for targets, which are then 

combined and forwarded to the fully connected (FC) 

layer for predictions. DeepDTA bypassed the need 

for engineered features or structural data by directly 

leveraging raw sequence information and effectively 

outperformed traditional methods, establishing its 

utility for binding affinity prediction. However, CNN 

models struggle with capturing the ordered 

relationships within protein sequences. In the 

following year in 2019, Öztürk et al.  [24] further 

explored DTA prediction by introducing additional 

representations, such as protein domain and motif 

(PDM) sequences and ligands' maximum common 

substructure (LMCS). The WideDTA model retained 

the same CNN architecture for data representation 

learning and the FC layer for predictions but differed 

from DeepDTA in its use of letter-based rather than 

character-based models. Despite its improved 

architecture, WideDTA did not significantly 

outperform prior models, and in some cases, the 

addition of domain, motif, and LMCS features even 

decreased performance. 

In 2022, Ghimire et al. introduced the CSatDTA 

[20], which is CNN with a self-attention mechanism 

to address the limitations of sequence-based DTA 

models. Unlike traditional CNNs, which struggle 

with long-range dependencies and distant atomic 

interactions, CSatDTA uses self-attention to capture 

these complex relationships effectively. CSatDTA 

demonstrates its robustness in DTA prediction. 

However, it still relies on sequence-based 

representations, which may miss important structural 

details of drug and protein molecules. In 2023, 

D’Souza et al. proposed the DeepPS model [26], 

which focuses on motif-rich protein subsequences 

and uses SMILES as input for drug compounds. By 

leveraging binding site residues instead of full-length 

sequences, DeepPS reduces computational 

complexity and improves interpretability. However, 

this selective approach risks missing important 
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interactions from residues outside the binding pocket, 

potentially affecting binding affinity predictions. The 

model also showed slightly lower performance on 

smaller datasets like Davis, possibly due to the 

limited diversity of binding site residues in the 

training data. 

In recent years, several models have incorporated 

attention mechanisms to improve drug-target affinity 

(DTA) prediction by capturing interaction modeling 

between drug and protein features. Zhao et. Al. [27] 

introduced an attention-based architecture that uses 

1D convolutional neural networks (1D-CNNs) to 

extract sequence-level features from drug SMILES 

and protein amino acid sequences. Its novelty lies in 

its ability to calculate attention scores between 

subsequences of drugs and proteins, focusing on their 

critical interactions for predicting binding affinity.  

However, the attention mechanism relies on 

simplistic calculations, such as dot products or 

weighted sums, which may not fully capture the 

complex, non-linear relationships between drug and 

protein features, potentially limiting its ability to 

model intricate binding interactions. 

Abbasi et. al. [28] introduced a model called 

DeepCDA, which incorporated a two-sided attention 

mechanism and domain adaptation, simultaneously 

analyzing the interactions between drug and protein 

substructures. By computing attention coefficients 

between drug and protein fragments, DeepCDA 

captured the binding strength of each fragment pair. 

This approach offered better insight into mutual 

interactions than models that only utilized single-

sided attention. However, the model faces limitations 

in cases of negative transfer, where domain 

adaptation may degrade performance when 

transferring knowledge between significantly 

different domains. In 2023, Zhao et al. [23] improved 

their previous paper by introducing a two-side multi-

head attention mechanism to enhance the capture of 

non-covalent interactions between drug atoms and 

protein amino acids. The two-side multi-head 

attention allowed the model to evaluate relationships 

from multiple perspectives, increasing its 

expressiveness and predictive accuracy. The model 

achieved improved performance. However, the 

model's reliance on sequence-based inputs and its 

lack of structural information may limit its ability to 

fully capture complex spatial interactions, which are 

often critical for accurate binding affinity prediction. 

Many early studies represented drug compounds 

and target proteins as sequences for DTA prediction. 

However, this approach often overlooks crucial 

spatial and topological information about drugs. To 

address these limitations, several studies have 

represented drugs as graphs. One notable study is 

GraphDTA by Nguyen et al. [17], which pioneered 

the use of graph neural networks (GNNs) for DTA 

prediction. GraphDTA represents drugs as undirected 

molecular graphs and proteins as sequence 

embeddings. Experimental results showed that 

graph-based drug representations significantly 

improved predictive performance compared to 

sequence-based models. However, the model’s 

inability to fully leverage multi-scale structural 

information and limited protein representations left 

room for improvement. 

Liang et al. introduced GLSTM-DTA [29], which 

combined GNNs for drug compound features and 

LSTMs for protein sequences. This hybrid approach 

successfully captured long-term dependencies in 

protein sequences and improved DTA prediction 

accuracy. Despite its success, the study highlighted 

the need for better feature fusion mechanisms 

between drugs and proteins. Despite its success, the 

study highlighted the need for better feature fusion 

mechanisms between drugs and proteins. Another 

study was MSGNN-DTA proposed by Wang et al. 

[21]. This model integrated multi-scale topological 

feature fusion with gated skip connections in GNNs 

to enhance drug-target representation by including 

drug molecules, motifs, and weighted protein 

structures. While MSGNN-DTA achieved state-of-

the-art results on benchmark datasets, it still 

struggled with high computational complexity 

because of the weighted protein graph. 

Xia et al. [30] proposed a novel integration of 

GCN and Word2vec embeddings for DTA prediction. 

The model represented drugs as molecular graphs and 

proteins as word embeddings derived from their 

amino acid sequences. Although this approach 

improved local feature extraction, the model faced 

challenges in accurately modeling non-local 

interactions between molecular substructures. Chen 

et al. [31] introduced SGNet, which fused drug graph 

representations with conjoint triad protein encodings. 

This method enhanced feature extraction from both 

graphs and sequences, achieving competitive results 

on various datasets. However, SGNet struggled with 

integrating high-resolution structural data due to the 

unavailability of 3D structures for many proteins. 

The DGDTA model by Zhai et al. [32] 

implemented a dynamic graph attention mechanism 

(GATv2), allowing the model to assign context-

aware weights to molecular substructures. This 

innovation significantly improved interpretability 

and accuracy in DTA prediction. However, the 

model’s reliance on a single drug graph structure 

limited its application on drug feature complexity. 

Banerjee et al. [33] introduced DeepGLSTM, which 

utilized a GCN model to extract molecular features 
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from drugs and a bidirectional LSTM (Bi-LSTM) to 

process protein sequences. This architecture 

demonstrated superior performance by leveraging 

power graph representations to capture topological 

information. Despite its effectiveness, the GCN 

model lacked expressiveness when capturing 

information from graph nodes and was limited in its 

ability to handle complex, multi-scale molecular 

interactions. 

Based on our literature studies, significant 

progress has been made in DTA prediction using 

various computational approaches. However, the 

state-of-the-art model lacked expressiveness when 

handling drug structural information, protein 

contextual information, integrating drug multi-scale 

structural features, and faced challenges in 

effectively fusing drug and protein representations. 

Therefore, this research aims to address these 

limitations by proposing a comprehensive framework 

by leveraging GATv2, BilSTM, drug multi-scale 

feature fusion, and a three-way multi-head attention 

mechanism, our approach seeks to improve the 

accuracy and interpretability of DTA predictions. 

3. Methodology    

This research aims to develop a robust deep-

learning model for Drug-Target Affinity (DTA) 

prediction by utilizing advanced computational 

methods. The study follows a structured workflow, as 

illustrated in Fig. 1, including dataset selection, data 

preprocessing to generate appropriate representations 

for drugs and proteins, model development, and 

model performance evaluation using established 

metrics. The Davis and KIBA datasets were used for 

model training and validation. Preprocessing 

techniques were implemented to extract relevant 

features from drugs and targets, such as molecular 

graphs, motif graphs, and protein sequences. The 

proposed model combines sequence-based and 

graph-based methods with an attention mechanism to 

improve predictive accuracy. Finally, several 

evaluation metrics were used to assess the model’s 

ability to predict binding affinities, ensuring its 

reliability and robustness. In addition, the notations 

used in this study are as follows: 

 

𝐾𝑑 
Dissociation constant that describes the 

binding affinity value 

𝑝𝐾𝑑 Logarithmic scale of 𝐾𝑑 

𝑒𝑖𝑗  Attention coefficient  

𝑎𝑇 
A learnable vector used for scoring 

attention 

𝑊 

A shared learnable weight matrix used 

to transform node feature in new 

feature space 

ℎ𝑖 and 

ℎ𝑗 
Feature vectors for node 𝑖 and 𝑗, 

respectively 

ℎ𝑖
′ 

Updated feature representation for 

node 𝑖 
𝜎 Non-linear activation function (ReLU) 

𝑎𝑘 The attention scores for each head 𝑘 

𝑊𝑘
𝑥 

Trainable weight matrices for 

molecule/motif/protein specific to each 

attention head, respectively 

𝐸𝑥 Embeddings of molecule/motif/protein 

𝐻𝑘 
Weighted embedding for each 

attention 𝑘 

𝐻 

Final combined embedding computed 

by concatenating the output of all 

attention heads 

𝑦 Affinity value final prediction 

𝑀𝑆𝐸 Mean squared error 

𝐶𝐼 Concordance index 

𝑟𝑚
2  Regression toward the mean 

 

 
Figure. 1 Design Process Workflow 
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Table 1. Overview of Davis & KIBA Datasets 

Description Davis KIBA 

Drug 68 2,068 

Protein 379 229 

Total 

interaction 

30,056 118,254 

Train set (80%) 25,046 94,603 

Test set (20%) 5,010 23,651 

 

 

 
Figure. 2 Drug graphs construction illustration 

 

 

3.1 Dataset 

This study utilized the Davis and KIBA datasets 

to predict DTA as a regression task [34, 35].  The 

Davis and KIBA datasets are publicly available 

through previous study repositories or the 

Therapeutics Data Commons (TDC) website. These 

datasets are the most widely used in the DTA 

prediction field due to their comprehensive and 

diverse drug-protein interaction data [36]. The Davis 

dataset’s affinity value measurement is represented in 

dissociation constant (𝐾𝑑) values. To better illustrate 

the relationship between 𝐾𝑑  and binding affinity 

values, the 𝐾𝑑 are converted to logarithmic form as 

𝑝𝐾𝑑 , as formulated in Eq. (1). Higher 𝑝𝐾𝑑  values 

indicate stronger binding affinity, with values 

ranging from 5.0 to 10.8. 

 

𝑝𝐾𝑑 = −𝑙𝑜𝑔10 (
𝐾𝑑

109)     (1) 

 

For the KIBA dataset, the affinity value 

measurement derived from an approach called KIBA, 

where inhibitor kinase bioactivity from various 

sources such as 𝐾𝑖 , 𝐾𝑑 , and 𝐼𝐶50  is combined to 

obtain a value called the KIBA score. KIBA score 

values range from 0.0 to 17.2, with higher scores 

indicating high binding affinity values. A summary 

of the drug, target, and number of interactions is 

presented in Table 1. 

3.2 Pre-processing 

Before we developed the model, we performed 

several preprocessing steps. First, we checked for 

missing values and duplicate data and found there 

were none. Second, for the Davis dataset, we 

transformed the affinity value (𝐾𝑑) into logarithmic 

form (𝑝𝐾𝑑) as mentioned earlier using Eq. (1). Next, 

we constructed the drug graphs for both datasets. The 

Simplified Molecular Input Line Entry System 

(SMILES) strings are commonly used to represent 

the three-dimensional structure of drug molecules as 

one-dimensional sequences. The SMILES string 

provides information about drug characteristics, such 

as the number of atomic weights or valence electrons 

[17]. 

Following this, each drug SMILES was 

transformed into a molecule where the nodes denoted 

the set of atoms in the drug and the edges represented 

the chemical bonds connecting the atoms [2]. To 

better represent the node feature in graphs, we 

accommodate a set of atomic features from 

DeepChem [37]. Here, each node in the molecular 

graph represents the chemical properties of its 

corresponding atom using a 78-dimensional feature 

vector, with each dimension corresponding to a 

particular chemical attribute. A detailed description 

of thesTo improve the representation of drug 

structure information, we incorporate a drug multi-

scale feature representation by creating a motif-level 

graph alongside the molecular graph. Motifs in drugs, 

like the benzene ring, are closely linked to molecular 

properties. For example, the benzene ring maintains 

its significance as a whole structure but loses its 

meaning when its bonds are viewed in isolation.  

 
Table 2. Molecular graph atom features  

Feature Dimension 

Atomic features 44 

Degree of atom 11 

Total number of connected hydrogens 

atoms (implicit and explicit) 
11 

Implicit valence of atoms 11 

Whether the atom is aromatic or not 1 
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Table 3. Motif graph atom features 

Feature Dimension 

Atomic symbols contained motif 44 

Number of atoms in the motif 11 

Number of edges connecting motif 11 

Total number of hydrogens atoms 

connected by motif (implicit & explicit) 
12 

Implicit valence of motif 12 

Whether the motif is simple a simple 

ring 
1 

Whether the motif is chemically bonded 

or not 
1 

 

 

Multiple layers of graph neural networks (GNNs) 

often fail to capture the full information within these 

cyclic structures, resulting in an incomplete feature 

extraction [21]. Fig. 2 illustrates this transformation 

from SMILES to a graph. The motif-level graph was 

constructed by considering cyclic structures, 

individual chemical bonds that are not part of any 

cyclic structures, and their corresponding atom pairs 

as fundamental building blocks [21]. These elements 

are represented as nodes in the motif graph. Nodes 

corresponding to cyclic structures represent groups of 

atoms and bonds connected in a cycle, while other 

nodes represent individual chemical bonds and their 

associated atom pairs. The edges in the motif graph 

denote the chemical bonds linking these nodes. This 

approach captures more comprehensive structural 

information, aiding in motif graph generation and 

enhancing model training. Like the molecular graph, 

the features of the motif graph nodes were encoded 

into a 92-dimensional vector based on the DeepChem 

[37], which can be seen in Table 3. 

For target pre-processing, the protein's primary 

structure was represented by an amino acid sequence. 

Protein sequences are composed of 25 different 

amino acids, each represented by a specific ASCII 

character that encodes its properties. Adopting the 

method from the GraphDTA study, these sequences 

were encoded using label encoding, with a maximum 

length set to 1,000 characters. Sequences shorter than 

this limit were padded with zeros, while those 

exceeding 1,000 characters were truncated [17]. This 

approach ensures a consistent input dimension size 

for training convenience. Moreover, this length is 

suitable for most proteins, as their lengths range from 

200 to 2000, with a median of 700 characters. 

3.3 Model development 

In this study, we developed a prediction model of 

drug target affinity by combining two models, which 

are Dynamic Graph Attention Networks (GATv2) 

[19] and Bidirectional Long Short Term-Memory 

(Bi-LSTM) [38]. To enhance the performance of 

these combined models, multi-scale features and a 

three-way multi-head attention mechanism are 

implemented [21, 23]. The overview of the proposed 

model architecture can be seen in Fig. 3. For drug 

feature learning, drug graphs are represented as 𝐺 =
(𝑉, 𝐸) , where 𝑉  or nodes corresponding to atoms 

encoded as 78-dimensional feature vectors for the 

molecular graph and 92-dimensional feature vectors 

for the motif graph, and 𝑉  or edges represent the 

chemical bonds between the atoms. Both graphs are 

processed through three GATv2 layers to learn node 

embeddings, respectively. Each GATv2 layer 

updates the representation of node 𝑖 as described in 

Eq. (3). 

 

 

 
Figure. 3 Proposed model architecture overviews 
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𝑒𝑖𝑗 =  

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑎𝑇𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑊[ℎ𝑖 ∥ ℎ𝑗]))  (2) 

 

ℎ𝑖
′ = 𝜎(∑ 𝑒𝑖𝑗 . 𝑊ℎ𝑗𝑗∈𝑁(𝑖) )    (3) 

 

here, ℎ𝑗 is the feature vector of the neighboring node 

𝑗,  𝑊 is a learnable weight matrix, 𝑒𝑖𝑗 is the attention 

coefficient, and 𝜎 is a non-linear activation (ReLU in 

this implementation). The attention coefficient is 

calculated as in Eq. (2) where 𝑎𝑇 which is a learnable 

weight vector and ∥  denotes concatenation [19]. 

After each GATv2 layer, a gated skip connection is 

applied to combine features from- adjacent layers 

while mitigating gradient vanishing and feature 

degradation [21]. This process is repeated across 

three GAT layers, after which the node features are 

aggregated using mean global pooling and max 

global pooling to consolidate information across all 

nodes. The resulting pooled features are then passed 

through two fully connected layers to generate the 

final drug embeddings for the molecular graphs 

(𝐸𝑚𝑜𝑙) and motif graphs (𝐸𝑚𝑜𝑡𝑖𝑓). 

For target feature learning, it is represented as 

amino acid sequences, where each amino acid is 

encoded into a 128-dimensional vector using an 

embedding layer. These sequences are processed by 

a Bidirectional Long Short-Term Memory (BiLSTM) 

network, which captures contextual relationships in 

both forward and backward directions. The final 

output from the BiLSTM is aggregated using a max 

pooling operation and then passed through two fully 

connected layers to produce the protein embedding 

(𝐸𝑝𝑟𝑜𝑡). 

The embeddings 𝐸𝑚𝑜𝑙 , 𝐸𝑚𝑜𝑡𝑖𝑓 , and 𝐸𝑝𝑟𝑜𝑡   are 

combined using a three-way multi-head attention 

mechanism to capture interactions between drugs and 

proteins across multiple modalities [31]. For each 

attention head 𝑘, the attention scores are calculated as 

described in Eq. (4), where 𝑊𝑘
𝑚𝑜𝑙 , 𝑊𝑘

𝑚𝑜𝑡𝑖𝑓
, 𝑊𝑘

𝑝𝑟𝑜𝑡
 

are trainable weight matrices. The weighted 

embeddings are then computed as shown in Eq. (5). 

The final combined embedding 𝐻 is obtained by 

concatenating the outputs from all attention heads, as 

defined in Eq. (6). This combined embedding is 

subsequently passed through two fully connected 

layers to predict the DTA value. 

 

𝑎𝑘 =  

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑊𝑘
𝑚𝑜𝑙𝐸𝑚𝑜𝑙 +

𝑊𝑘
𝑚𝑜𝑡𝑖𝑓

𝐸𝑚𝑜𝑡𝑖𝑓 +

𝑊𝑘
𝑝𝑟𝑜𝑡

𝐸𝑝𝑟𝑜𝑡

)   (4) 

 

𝐻𝑘 = 𝑎𝑘⨀[𝐸𝑚𝑜𝑙 ∥ 𝐸𝑚𝑜𝑡𝑖𝑓 ∥ 𝐸𝑝𝑟𝑜𝑡]   (5) 

 

𝐻 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐻1, 𝐻2, … , 𝐻𝑘)    (6) 

 

Finally, this concatenated embedding 𝐻 is passed 

through two fully connected layers to predict the 

affinity value. The affinity value final prediction is 

computed in Eq. (7). 

 

𝑦 = 𝜎 (𝑊𝐻 + 𝑏)               (7) 

 

Where 𝑊 and 𝑏 are the output layer weights and bias, 

and 𝜎  is a non-linear activation function (ReLU in 

this implementation). 

3.4 Training & hyperparameters configuration 

In this study, the development of the proposed 

drug-target affinity (DTA) model was conducted 

using several libraries. For drug preprocessing, the 

RDKit library was utilized for converting drug 

SMILES strings into graph representations. For target 

preprocessing, we used NumPy and Scikit-learn for 

label encoding. For the model development, PyTorch 

and PyTorch Geometric were used. The experiment 

was conducted on a computer equipped with an 

Intel(R) Core (TM) i7-7850H CPU @ 2.20GHz and 

NVIDIA GeForce GTX 1050TI GPU. It was also 

conducted on Google Colaboratory Pro, which is 

equipped with a Tesla T4 GPU with 16GB memory 

capacity. The hyperparameter settings explored 

during the experimental design are detailed in Table 

4. To identify the optimal settings, multiple 

configurations of learning rate and batch size were 

evaluated. These learning rate range values were 

chosen to explore both large step sizes for faster 

convergence and small step sizes for stability. 

Meanwhile, the batch size range values were varied, 

with smaller sizes providing precise updates at the 

cost of higher computational overhead and larger 

sizes offering stability and efficiency. 

Due to limited computational resources, the 

hyperparameter optimization was conducted 

sequentially.  

 

 
Table 4. Hyperparameter setting 

Hyperparameters Value 

Epoch 300 

Learning rate 0.001, 0,005, 0.0001, 0.0005 

Batch size 32, 64, 128, 256, 512 

Dropout rate 0.2 

Loss function MSE 

Optimizer Adam 
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The experiments started by identifying the optimal 

learning rate, with a base batch size of 32. After 

determining the best learning rate configuration 

(0.0005), the next step focused on finding the optimal 

batch size while keeping the learning rate fixed at 512. 

This systematic approach allowed for efficient 

exploration of the hyperparameter space while 

balancing the constraints of computational efficiency. 

Among the configurations tested, the values 

highlighted in bold in Table 4 were selected as the 

final hyperparameters based on prior research and 

experimental results. The model was trained for a 

maximum of 300 epochs, with 20% of the training 

data allocated for validation. The mean squared error 

(MSE) was employed as the loss function, and the 

Adam optimizer was used for training. These 

hyperparameters were chosen to balance 

computational efficiency and model accuracy. 

3.5 Evaluation metrics 

The proposed model’s performance was assessed 

by benchmarking it against several state-of-the-art 

models using standard evaluation metrics for DTA 

predictions. Given that DTA prediction is a 

regression problem, three primary metrics frequently 

employed in DTA research are Mean Squared Error 

(MSE), Concordance Index (CI), and regression 

toward the mean (𝑟𝑚
2 ) [39, 40]. MSE evaluates the 

average squared deviation between the predicted and 

actual values, where a lower MSE value signifies 

improved prediction accuracy by reducing error. The 

formula for MSE is provided in Eq. (8). 

 

𝑀𝑆𝐸 =
1

𝑁
 ∑ (𝑦𝑖

` −  𝑦𝑖)2𝑛
𝑖=1     (8) 

 

The Concordance Index (CI) is a metric used to 

assess the ranking accuracy of predictions by 

evaluating whether the predicted values for two 

randomly chosen drug-target pairs align with their 

true binding affinities. Specifically, if  𝑦𝑖 − 𝑦𝑗 , the 

predicted binding affinity 𝑏𝑖  should also be greater 

than 𝑏𝑗. A higher CI value reflects better predictive 

performance. The CI is computed using Eq. (9). 

 

𝐶𝐼 =
1

𝑧
∑ ℎ(𝑏𝑖 − 𝑏𝑗)𝑦𝑖−𝑦𝑗

    (9) 

 

Here, 𝑧  is a normalization constant, and ℎ(𝑢) 

represents the step function. CI measures the 

consistency of prediction rankings relative to the 

actual dataset [7]. The 𝑟𝑚
2  metrics measure the 

external predictive performance of the regression 

model. It evaluates how well the predicted values of 

a variable approach the mean in subsequent 

measurements, even when there are extreme values. 

The formula is defined in Eq. (10). 

 

𝑟𝑚
2 = 𝑟2 ×  (1 −  √𝑟2 − 𝑟0

2)              (10) 

 

3.6 Experimental design 

There are three main experimental scenarios 

conducted to evaluate the model’s performance. The 

first experiment involved a parameter search to 

identify the optimal configuration for achieving the 

best results. Three critical parameters were explored, 

i.e., the hidden size of the BiLSTM, the number of 

heads in the GATv2 layers, and the number of heads 

in the three-way multi-head attention mechanism. 

The parameter exploration was performed 

sequentially. At first, the optimal hidden size for the 

BiLSTM was determined, while the number of heads 

in both the GAT layers and the attention mechanism 

was fixed at two. Once the best-hidden size was 

identified, the optimal number of heads for the GAT 

layers was explored. Finally, the best number of 

heads for the attention mechanism was determined 

using the previously established hidden size and GAT 

head values. The details of the parameter settings are 

provided in Table 5. 

In the second experiment, after determining the 

optimal key parameters, the proposed model was 

compared against benchmark models and baseline 

models. For the benchmark models, the models are 

compared against several state-of-the-art methods, 

such as GraphDTA [17], MSGNN-DTA [21], and 

DGDTA [32]. GraphDTA was chosen because it was 

the first study to model DTA prediction using graph-

based representations, laying the foundation for 

graph neural network applications in this area. 

MSGNN-DTA was included for its use of multi-scale 

features, which enable the model to capture structural 

details at various levels of the molecular graph.  

 
Table 5. Parameter exploration details 

Parameter Value Description 

BiLSTM 

hidden size 

16, 

32, 64 

Number of units in the hidden 

layer for the model to learn 

complex sequential 

dependencies 

GATv2 

Head 
2, 4, 8 

Number of attention heads. 

Higher values allow the model 

to capture diverse relationships 

among nodes 

Attention 

Mechanism 

head 

2, 4, 8 

Number of concatenated 

attention heads. Controls the 

richness of modality 

interactions 
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Finally, DGDTA was selected because it utilizes the 

Graph Attention Network v2 (GATv2), which offers 

dynamic attention capabilities, enhancing the 

representation of graph structures. The model we 

used is GIN [41] for GraphDTA, GAT for 

MSGNNDTA, and GATv2 for the DGDTA as these 

models are the best performance models stated in 

each respective paper. For fair comparison, we re-

executed the publicly available models with their 

original configuration described in their respective 

papers but limited the epoch size to be the same as 

our setting. 

For the baseline comparison, the graph 

convolutional network (GCN) [42] and graph 

attention network (GAT) [43] were selected as 

baselines for the drug encoder. GCNs aggregate 

information from neighboring nodes to capture the 

structural properties of molecules. Meanwhile, GAT 

introduces an attention mechanism that assigns 

varying weights to neighboring nodes, allowing the 

model to focus on the most relevant node features 

during aggregation. By comparing the proposed 

GATv2 with GCN and GAT, this evaluation aims to 

determine whether GATv2’s dynamic attention 

mechanism provides a meaningful improvement in 

modeling complex molecular structures. For protein 

embedding, 1D convolution neural network 

(1DCNN) and long short-term memory (LSTM) were 

chosen as baselines. 1DCNN captures local patterns 

within protein sequences by applying convolutional 

filters, making it effective for extracting sequential 

features. LSTM is capable of modeling long-term 

dependencies and relationships within sequences, 

offering a solid baseline for comparison with the 

proposed BiLSTM, which further improves 

performance by incorporating bidirectional 

processing to capture contextual relationships within 

protein sequences more comprehensively. 

In the third experiment, we evaluated the 

performance impact of incorporating multi-scale 

features and the three-way multi-head attention 

mechanism by developing several model variants. 

The first variant, without multi-scale features, 

excludes multi-scale information (motif drugs) to 

assess its specific contribution to the model’s 

performance. The second variant, without the three-

way multi-head attention mechanism, excludes the 

attention mechanism to analyze their impact on 

interaction modeling between drug and target that 

contribute to the model prediction accuracy. Lastly, 

the third variant, without both multi-scale features 

and the three-way multi-head attention mechanism, 

removes both components to provide a 

comprehensive evaluation of their combined effect 

on the model’s performance. 

Table 6. Parameters exploration results (Davis dataset) 

Parameter Value MSE ↓ CI ↑ 𝒓𝒎
𝟐  ↑ 

BiLSTM  

hidden  

size 

16 0.342 0.855 0.418 

32 0.325 0.868 0.493 

64 0.317 0.870 0.539 

GATv2  

head 

4 0.336 0.865 0.493 

8 0.311 0.871 0.554 

10 0.325 0.869 0.463 

Attention  

mechanism  

head 

4 0.254 0.888 0.604 

8 0.326 0.847 0.445 

10 0.331 0.857 0.453 

 
Table 7. Parameters exploration results (KIBA dataset) 

Parameter Value MSE ↓ CI ↑ 𝒓𝒎
𝟐  ↑ 

BiLSTM  

hidden  

size 

16 0.192 0.855 0.603 

32 0.190 0.860 0.601 

64 0.185 0.861 0.612 

GATv2  

head 

4 0.189 0.859 0.689 

8 0.184 0.862 0.715 

10 0.191 0.859 0.672 

Attention  

mechanism  

head 

4 0.166 0.877 0.729 

8 0.190 0.859 0.707 

10 0.188 0.859 0.694 

 

4. Experiment result    

4.1 Parameter exploration results 

In this experiment, we investigated the 

contribution of three key parameters, i.e., the hidden 

size of the BiLSTM, the number of heads in the 

GATv2 layers, and the number of heads in the three-

way multi-head attention mechanism. The 

Concordance Index (CI) was selected as the primary 

metric to identify the best-performing parameter 

configurations. The results for the Davis dataset are 

summarized in Table 6. For the BiLSTM hidden size, 

a hidden size of 64 achieved the best performance, 

with a CI of 0.870, the lowest MSE of 0.317, and the 

highest 𝑟𝑚
2  of 0.539. For the GATv2 number of heads, 

the optimal value was found to be 8 heads, achieving 

a CI value of 0.871, an MSE of 0.311, and a 𝑟𝑚
2  of 

0.554. For the attention mechanism number of heads, 

the best performance was achieved with 4 heads, 

resulting in a CI value of 0.888, and an MSE of 0.254, 

and a 𝑟𝑚
2   of 0.604. As for the KIBA dataset, as shown 

in Table 7, the BiLSTM hidden size of 64 achieved 

the lowest MSE of 0.185, the highest CI of 0.861, and 

the highest 𝑟𝑚
2  of 0.612. for the GATv2 head, the best 

value obtained is 8 head with MSE of 0.184, CI of 

0.862, and 𝑟𝑚
2  of 0.715. Finally, for the attention 
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mechanism head, the best results were obtained with 

8 heads, giving an MSE of 0.166, a CI of 0.877, and 

the highest 𝑟𝑚
2  of 0.729.  

The parameter exploration across both the Davis 

and KIBA datasets revealed several consistent trends. 

Increasing the BiLSTM hidden size from 16 to 64 

consistently improved the model performance. These 

results indicated that a larger hidden size allowed the 

model to effectively capture complex sequential 

dependencies within the protein sequences. For the 

GATv2 heads, a smaller value of 4 heads resulted in 

slightly worse performance as it did not capture 

sufficient diversity in node relationships. On the 

other hand, a higher value of 10 heads showed a drop 

in performance likely due to overfitting or increased 

computational overhead, which added unnecessary 

complexity without meaningful improvements. 

Finally, for the attention mechanism heads, a higher 

number of heads decreased the model’s performance. 

This was likely because increasing the number of 

attention heads diluted the attention weights, 

reducing the focus on key modality interactions and 

indicating diminishing returns and added 

computational complexity. Overall, this consistency 

across both datasets suggests that the chosen 

parameter configuration is robust and effective even 

for larger and more diverse datasets like KIBA. The 

best parameters configuration obtained for both 

datasets are BiLSTM hidden size of 64, Gatv2 head 

of 8, and attention mechanism head of 4. These 

configurations balance model complexity and 

performance for DTA prediction. 

4.2 Models comparison results 

4.2.1. Benchmark comparison 

We compared our proposed models with state-of-

the-art benchmark models. The results for both 

datasets are shown in Table 8. On the Davis dataset, 

the proposed model achieved the lowest MSE of 

0.254 the highest CI of 0.888, and 𝑟𝑚
2  0.604 

compared to benchmark models. The proposed model 

achieves consistent gains across all three metrics, 

indicating the model’s accurate overall predictions 

for binding affinities. On the KIBA dataset, our 

proposed model achieved an MSE of 0.166, the 

highest CI of 0.877, and 𝑟𝑚
2  of 0.729, surpassing 

GraphDTA [17] and DGDTA [32]. Although 

MSGNNDTA [21] obtained a marginally lower MSE 

of 0.156, the performance gap is relatively small. It 

may be attributed to MSGNNDTA’s weighted 

protein graph representation, which can capture more 

protein features more effectively but also increase 

computational complexity moderately. Nevertheless, 

the proposed model’s stronger CI and 𝑟𝑚
2  values 

highlight its superior overall ranking ability and its 

predictive power for binding affinities within a large 

dataset. This suggests that the multi-scale drug 

representation using GATv2 and BiLSTM-based 

protein encoder with a three-way multi-head 

attention mechanism provides more comprehensive 

and robust modeling of drug-target interactions, 

ultimately yielding more reliable DTA predictions. 

4.2.2. Baseline comparison 

Table 9 presents the comparison results of the 

proposed model with various baselines, where 

different graph-based encoders (GCN, GAT, and 

GATv2) are paired with different sequence-based 

encoders (1DCNN, LSTM, and BiLSTM). On the 

Davis dataset, our proposed model (GATv2-

BiLSTM) achieved the best results for MSE (0.254), 

CI (0.888), and  𝑟𝑚
2  (0.604), outperforming all other 

baselines.  A similar trend is observed on a larger 

dataset, which is the KIBA dataset. GATv2BILSTM 

achieved the lowest MSE (0.166) and achieved the 

highest CI (0.877) and 𝑟𝑚
2  (0.729). 

These results highlight two key factors that 

contribute to the superiority of the proposed model. 

GATv2’s dynamic attention assigns context-specific 

weights to neighboring nodes, which more 

effectively captures the subtleties of multi-scale 

molecular structures than the uniform aggregation of 

GCN or the static attention of GAT. Secondly, 

BiLSTM’s bidirectional sequence encoding more 

thoroughly extracts contextual dependencies across 

long protein sequences compared to 1DCNN or 

unidirectional LSTM, thereby producing richer 

representations of the target proteins. Consequently, 

the combination of GATv2 (drug) and BiLSTM 

(protein) enables more precise DTA predictions, as 

reflected by consistently lower MSE and higher CI 

and 𝑟𝑚
2  values on both datasets. 

 

 
Table 8. State-of-the-art models comparison 

Dataset Model MSE ↓ CI ↑ 𝒓𝒎
𝟐  ↑ 

Davis 

GraphDTA 0.256 0.884 0.531 

MSGNNDTA 0.330 0.863 0.444 

DGDTA 0.283 0.869 0.505 

Proposed 

Model 
0.254 0.888 0.604 

KIBA 

GraphDTA 0.192 0.850 0.619 

MSGNNDTA 0.156 0.875 0.660 

DGDTA 0.257 0.824 0.493 

Proposed 

Model 
0.166 0.877 0.729 
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Table 9. Baseline models comparison 

Dataset 

Model 

MSE ↓ CI ↑ 𝒓𝒎
𝟐  ↑ Drug Encoder 

(Mol & Motif) 

Target Encoder 

(Protein) 

Davis 

GCN 1DCNN 0.302 0.868 0.514 

GCN LSTM 0.330 0.865 0.446 

GAT 1DCNN 0.304 0.869 0.496 

GCN LSTM 0.330 0.862 0.507 

GATV2 1DCNN 0.298 0.859 0.460 

GATV2 LSTM 0.396 0.861 0.456 

GATV2 BiLSTM 0.254 0.888 0.604 

KIBA 

GCN 1DCNN 0.185 0.864 0.557 

GCN LSTM 0.184 0.861 0.588 

GAT 1DCNN 0.187 0.859 0.648 

GCN LSTM 0.188 0.860 0.598 

GATV2 1DCNN 0.193 0.856 0.545 

GATV2 LSTM 0.191 0.862 0.467 

GATV2 BiLSTM 0.166 0.877 0.729 

 

 

 
Figure. 4 Model component comparison for the Davis 

dataset 

 

 
(b) 

Figure. 5 Model component comparison for the d KIBA 

dataset 

4.3 Ablation study results 

In the third, experiment, we evaluated the impact 

of multi-scale features and a three-way multi-head 

attention mechanism on our proposed models to 

enhance the DTA prediction. Fig. 4 and Fig. 5 

illustrate the comparative performance of four model 

variants on the Davis and KIBA datasets, 

respectively: (1) the full GATv2-BiLSTM model, (2) 

a variant without multi-scale features (No MS), (3) a 

variant without the three-way multi-head attention 

mechanism (No AM), and (4) a variant without both 

(No MS&AM). Across both datasets, the complete 

GATv2-BiLSTM model outperforms all ablated 

variants in terms of MSE, CI, and 𝑟𝑚
2 , underline the 

importance of integrating both multi-scale features 

and the three-way multi-head attention mechanism. 

On the Davis dataset, the No MS variant raises 

the MSE from 0.254 to 0.377, while reducing the CI 

from 0.888 to 0.842 and 𝑟𝑚
2  from 0.604 to 0.418. This 

indicates that the multi-scale (molecular + motif) 

representations significantly improve the model’s 

ability to capture complex chemical-structural 

patterns relevant to binding affinity. Similarly, the No 

AM variant reduces the model’s MSE by 0.282 and 

lowers both CI (0.872) and 𝑟𝑚
2   (0.531) compared to 

the full model. When both multi-scale features and 

attention are removed (No MS&AM variant), 

performance further declines (MSE = 0.308, CI = 

0.867, 𝑟𝑚
2  = 0.541), reinforcing that these two 

components complement each other in boosting DTA 

prediction. On the KIBA dataset, the No MS variant 
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showed an MSE of 0.195, a CI of 0.851, and an 𝑟𝑚
2  of 

0.569. Meanwhile, the No AM variant showed an 

MSE of 0.169, a CI of 0.869, and 𝑟𝑚
2  of 0.724. this 

result is slightly better than the NO MS variant, 

underlining the importance of multi-scale features for 

drug representation. for the No MS&AM variant, the 

model showed an MSE of 0.184, a CI of 0.861, and 

an 𝑟𝑚
2  of 0.680. This result further demonstrates the 

importance of multi-scale features and attention 

mechanisms in enhancing our proposed model’s 

overall prediction accuracy.  

Overall, the multi-scale drug representation 

effectively captures both the drug’s global and local 

structural properties, while the three-way multi-head 

attention mechanism enhances interaction modeling 

between drug molecule, drug motif, and protein 

sequence representations. By jointly incorporating 

these components, the proposed GATv2–BiLSTM 

model achieves stronger predictive capabilities and 

more robust generalization on both the Davis and 

KIBA datasets. 

5. Conclusion   

This study introduces an enhanced method for 

DTA prediction by integrating GATv2 for dynamic 

graph representation and BiLSTM for protein 

sequence encoding. The incorporation of multi-scale 

features which include a drug motif graph, and a 

three-way multi-head attention mechanism 

significantly improves the model’s accuracy and 

interpretability, as evaluated on the Davis and KIBA 

datasets. The proposed approach addresses key 

limitations in previous studies, such as the static 

nature of traditional attention mechanisms, 

insufficient structural drug representation, and simple 

interaction modeling. The proposed model achieves 

significant performance improvements over 

baselines and state-of-the-art methods. On the Davis 

dataset, it achieved an MSE of 0.254, a CI of 0.888, 

and an of 0.604, while on the KIBA dataset, it 

attained an MSE of 0.166, a CI of 0.877, and an 𝑟𝑚
2  

of 0.729. These metrics demonstrate the model’s 

ability to provide accurate and robust DTA 

predictions, outperforming baseline models and 

benchmarks such as GraphDTA, MSGNN-DTA, and 

DGDTA. 

Although these experimental scenarios showed 

promising results, this study acknowledges certain 

limitations. The data used was limited to the Davis 

and KIBA datasets, leaving questions about the 

model's ability to generalize on broader datasets. 

Furthermore, the computational complexity of the 

GATv2 layers and three-way multi-head attention 

mechanisms, while contributing to high performance, 

presents scalability challenges for large-scale drug 

discovery efforts due to high computational 

complexity usage. Future research should evaluate 

the model on the more diverse dataset, with 

additional representations of drugs and targets, 

including molecular fingerprints, protein 

subsequences, and 3D protein structures. Moreover, 

several approaches such as the graph sampling 

method, sparse attention mechanisms, and hardware 

optimization should be considered to improve 

computational efficiency. Exploring transformer-

based architectures, such as ESM or ProtBERT, may 

enhance protein sequence representation and reduce 

training time. Extending the framework with 

additional features, optimizing efficiency, and testing 

in low-resource environments could boost its 

practicality for real-world drug discovery, enabling 

faster identification of therapeutic candidates. 
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