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Abstract: Diabetes prediction is critical for early intervention and effective disease management. However, the 

inherent class imbalance in medical datasets, such as the Pima Indians Diabetes dataset, often leads to biased 

predictions favoring the majority class. This study provides a systematic analysis of various data balancing techniques 

applied to diabetes prediction, examining their effects on different classifiers and validation techniques. This study 

uniquely evaluates the impact of prior balancing before data splitting, offering new insights into real-world deployment 

scenarios. The Pima dataset was used due to its clinical relevance in diabetes prediction and its widespread use as a 

benchmark, allowing for robust comparison and reproducibility of results. The developed framework consists of 

preprocessing, data balancing, classification, and evaluation. The performance of different balancing techniques across 

various classification algorithms and validation techniques was evaluated using accuracy, precision, recall, and F-

measure. The results showed that applying data in cross-validation and balancing techniques fails to improve the 

prediction results, with the accuracy obtained with and without balancing around 90%. The accuracy improved slightly 

in the train-test percentage split, with the best accuracy of 91%. Finally, when balancing was applied prior to data 

splitting with cross-validation, the results were improved, as the combined sampling achieved an accuracy of 97.5% 

and undersampling achieved an accuracy of 94.1%. 

Keywords: Data balancing, Oversampling, Undersampling, Diabetes prediction. 

 

 

1. Introduction 

Diabetes affects the functionality of various body 

systems, posing serious health risks [1]. This 

condition is characterized by elevated blood glucose 

levels, exceeding those in healthy individuals [2]. 

Glucose, a vital sugar, plays a crucial role in 

metabolism, providing energy for cells throughout 

the body [3]. However, when blood glucose levels 

rise due to insufficient production or ineffective 

absorption of insulin, serious damage can occur to 

multiple organs, including the eyes, heart, and 

kidneys. The global incidence of diabetes is 

increasing rapidly, as illustrated in Fig. 1, 

highlighting the urgent need for effective strategies to 

manage and reduce the risk associated with this life-

threatening disease. According to the International 

Diabetes Federation (IDF), the number of diabetes 

cases are expected to rise to 783 million by 2045, as 

illustrated in Fig. 2 [4]. 

Accurate prediction of diabetes is essential for 

timely intervention and effective disease 

management. Early detection plays a crucial role in 

preventing a wide range of complications associated 

with diabetes, including heart disease, blindness, 

vascular problems, stroke, kidney failure, and even 

limb amputations. The ability to accurately predict 

diabetes is therefore invaluable, as it can save lives 

and significantly reduce the disease’s impact on 

patients’ health and quality of life. Moreover, early 

intervention allows for the implementation of tailored 

treatment plans, which can further slow disease 

progression and enhance long-term outcomes for 

individuals at risk [5]. 
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Figure. 1 Number of diabetes cases worldwide 2000-2021 

[4]  

 

 
Figure. 2 Predicted number of diabetes cases worldwide 

2023-2045 (Age 20-79) according to latest predictions 

(2013-2021) [4] 

 

Diabetes prediction relies on historical disease 

data, including tests, examinations, and profile 

information. The data generated from diabetes-

related tests and examinations offers a valuable 

opportunity to leverage advanced data science and AI 

techniques. The Pima Indians Diabetes Dataset 

(PIMA) is one of the well-known diabetes datasets 

utilized for such predictive modeling. This dataset 

comprises 768 records and 9 features, including age, 

body mass index (BMI), insulin levels, and blood 

pressure. Despite its relatively small size and 

imbalanced class distribution, the PIMA dataset 

provides a critical foundation for training machine 

learning algorithms. This enables the identification of 

patterns and correlations that improve diabetes 

prediction accuracy. Additionally, this dataset is 

often used to develop and test new predictive models 

that can be generalized to broader populations [6]. 

Despite its utility, historical data presents several 

challenges that can hinder the accuracy and 

effectiveness of predictive models. One major 

challenge is the presence of missing values in key 

features such as glucose, blood pressure, skin 

thickness, insulin, and BMI. These missing values 

can skew the data analysis and lead to biased or 

inaccurate model predictions if not handled 

appropriately. Another significant challenge is class 

imbalance, where the number of positive cases 

(diabetic) is significantly lower than negative cases 

(non-diabetic). This imbalance can bias predictive 

models toward the majority class, resulting in poor 

performance in identifying the minority class, which 

is critical for early detection and intervention. 

Additionally, the dataset contains features with 

varying types, scales, and distributions, which can 

affect the performance of machine learning 

algorithms. For example, features like age and insulin 

levels can have wide value ranges, which may lead to 

model convergence and performance issues if not 

properly normalized or standardized [7]. 

Given the challenges posed by missing values, 

class imbalance, and feature variability in the Pima 

Indians Diabetes dataset, it is crucial to explore 

methods that can mitigate these issues to improve 

model performance. This paper presents a 

comprehensive comparison of data balancing 

techniques in diabetes prediction, assessing their 

impact on multiple machine learning classifiers. 

Unlike existing studies that primarily focus on 

classifier performance, this work evaluates the 

interplay between balancing strategies and different 

validation methods, providing deeper insights into 

the effectiveness of each technique. 

The primary focus of this paper is to address the 

class imbalance problem, which can severely affect 

the accuracy of predictive models by biasing them 

toward the majority class. Additionally, this work 

aims to evaluate the effectiveness of various data 

balancing techniques, oversampling, undersampling, 

and hybrid methods on classification performance. 

The objective is to determine which techniques 

provide the best balance between accuracy and the 

ability to correctly identify diabetic cases without 

exacerbating issues such as overfitting or model 

instability. This study also seeks to assess how 

different balancing methods influence the 

performance of multiple machine learning algorithms 

when applied to the Pima dataset. This study 

contributes to the systematic analysis of the 

interaction between balancing techniques (e.g., 

Synthetic Minority Over-Sampling Technique -

SMOTE, Adaptive Synthetic Sampling -ADASYN) 

and multiple classifiers (e.g., eXtreme Gradient 

Boosting -XGBoost, Support Vector Machine -SVM) 

within a diabetes dataset, providing actionable 

insights for real-world deployment in diabetes 

prediction systems. The rest of this paper is structured 

as follows: Section 2 discusses the literature review. 

Section 3 discusses the proposed framework and the 

utilized processing components. Section 4 presents 

the results and evaluation of the proposed framework. 

Section 5 ends the paper, encapsulating concluding 

remarks and discussions on future research directions. 
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2. Literature review    

In the existing diabetes prediction frameworks, 

various machine-learning methods have been 

employed. Karegowda, et al. [8] proposed a 

framework that uses a Genetic Algorithm (GA) to 

optimize the weights of a Backpropagation network 

(BPN). Additionally, feature selection was 

implemented using Decision Tree (DT) and 

correlation-based methods. The PIMA dataset was 

preprocessed to remove the records with missing 

values, leaving 392 cases for training and testing with 

a 60-40 split. The results showed that the accuracy of 

the GA-based framework was 84.7%. Wei, et al. [9] 

compared the performance of several classifiers, 

including Deep Neural Network (DNN), Logistic 

Regression (LR), DT, Naïve Bayesian (NB), and 

SVM for diabetes prediction. The PIMA dataset was 

preprocessed by filling in missing values, followed 

by data transformation and normalization. Feature 

selection was implemented using Principle 

Component Analysis (PCA) and Linear Discriminant 

Analysis (LDA). The classification results showed 

that the DNN achieved the highest accuracy of 

77.86% using 10-fold cross-validation.  

Kibria, et al. [10] proposed an ensemble method 

that combines six classifiers using soft voting 

aggregation. The preprocessing stage includes 

median-based missing value imputation, SMOTE-

based oversampling, feature selection, and 

normalization. The classifiers used were artificial 

neural network (ANN), SVM, Random Forest (RF), 

Adaptive Boosting (AdaBoost), XGBoost, and LR. 

However, the final ensemble classifier was developed 

using the two best-performing methods: XGBoost 

and RF. The results were evaluated using 5-fold 

cross-validation on the PIMA dataset, with the 

proposed weighted ensemble model achieving an 

accuracy of 90% and an F1 score of 89%. 

Simaiya, et al. [11] proposed a multistage 

ensemble classification approach for diabetes 

prediction. The PIMA dataset was preprocessed by 

LDA-based dimensionality reduction, while the 

SMOTE method was employed to address bias 

during training. The classification methods were 

organized into three layers: the first layer included 

NB, K-nearest neighborhood (KNN), and DT; the 

second layer featured RF and Repeated Incremental 

Pruning (JRip); and SVM was utilized in the last 

layer. The results, evaluated using 10-fold cross-

validation, showed that the three-layer model 

achieved a precision of 0.784, a recall of 0.786, and 

an f-measure of 0.785. 

Edeh, et al. [12] proposed a diabetes prediction 

that uses multiple classifiers. In the preprocessing 

stage, a k-means clustering algorithm was used to 

correct data values, serving both to fill in missing 

values and remove outliers. The classification stage 

included RF, DT, SVM, and NB. The PIMA dataset 

was split into an 80%-20% ratio for training and 

testing. The SVM algorithm achieved the highest 

accuracy, reaching a value of 83.1%. 

Marzouk, et al. [13] developed a model for 

diabetes prediction by filling in missing values and 

removing outliers during the preprocessing stage. For 

classification, the model utilized DT, RF, SVM, 

Gradient Boosting (GBoost), ANN, KNNm LR, and 

NB. Using the PIMA dataset and cross-validation 

evaluation, the ANN achieved the highest prediction 

accuracy of 81.7%. Chang, et al. [6] compared the 

performance of three classifiers: NB, RF, and DT. 

During preprocessing, missing values were filled 

using the median. PCA, k-means clustering, and 

importance ranking were used for feature selection. 

The results using a 70%-30% training-testing split 

showed that RF achieved the highest accuracy of 

86.24% when using the entire feature set. 

Yadav and Nilam [14] implemented a 

normalization for the PIMA dataset and compared the 

performance of DT, SVM, RF, and KNN classifiers. 

KNN exhibited the best performance, achieving an 

accuracy of 80%. Reza, et al. [3] proposed a 

framework for diabetes prediction that included 

several preprocessing steps: filling missing data with 

median value, removing outliers, normalizing the 

dataset, and addressing class imbalance using 

SMOTE. For the classification stage, the framework 

utilized an improved kernel for SVM. The results 

showed that the enhanced kernel outperformed the 

traditional kernel, achieving an accuracy of 85.5%, 

precision of 0.834, recall of 0.87, F1-score of 0.852, 

and an AUC of 0.855. 

Perdana, et al. [7] evaluate the performance of the 

KNN classifier for diabetes prediction using the 

PIMA dataset. The preprocessing stage included 

feature reduction. Various values of k were tested in 

the KNN implementation. The results showed that 

using a 90%-10% training-testing split with k = 22 

achieved an accuracy of 83.12%. Al-Dabbas [15] 

implemented normalization, filling in missing values, 

performing outlier imputation, and oversampling. 

Both SMOTE and SVM-based SMOTE 

(SVMSMOTE) were implemented for oversampling. 

For classification, SVM, RF, and XGBoost were 

utilized. The PIMA dataset was split into a 90%-10% 

training-testing ratio, with the best results achieved 

using SVMSMOTE and XGBoost, attaining an 

accuracy of 91%. A summary of the reviewed 

literature is given in Table 1. 
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Table 1. Summary of literature review on diabetes 

prediction using Pima dataset 

Ref. Preprocessing Balance Acc. Split 

[8] GA for weight 

adjustments  

None 84.7% 

 

Percentage 

split using a 

60-40 ratio  

[9] Filling in missing 

values, 

normalization, 

transformation, 

and feature 

selection  

None 77.86

%  

 

10-fold 

cross-

validation  

 

[10] Filling in missing 

values, 

normalization, and 

feature selection 

SMOTE 90%  

 

5-fold 

cross-

validation  

[11] Feature selection SMOTE 0.784 

Prec. 

10-fold 

cross-

validation  

[12] Filling in missing 

values and outlier 

removal 

SMOTE 83.1% Percentage 

using an 80-

20 ratio 

[13] Filling in missing 

values and 

normalization  

None 81.7% 10-fold 

cross-

validation  

[14] Normalization None 80% Percentage 

using a 90-

10 ratio 

[6] Filling in missing 

values and feature 

selection 

None 86.24

%. 

Percentage 

using a 70-

30 ratio 

[3] Filling in missing 

values, 

normalization, 

outlier removal, 

and transformation 

SMOTE 85.5% 10-fold 

cross-

validation 

 

[7] Feature selection None 83.12

% 

Percentage 

using a 90-

10 ratio  

[15] Filling in missing 

values, 

normalization, 

outlier removal, 

and transformation 

SMOTE

, 

SMOTE

SVM 

91% Percentage 

using a 90-

10 ratio  

 

The challenge of diabetes prediction highlights 

the necessity of effective data preprocessing and 

balancing techniques to enhance model accuracy. As 

summarized in Table 1, previous studies using the 

Pima dataset demonstrate varying results, with 

accuracies ranging from 77.86% to 91%. While many 

researchers have focused on traditional preprocessing 

methods like filling missing values, the impact of 

advanced balancing strategies, particularly 

oversampling and undersampling techniques, 

remains underexplored. This paper stands out by 

comprehensively comparing these balancing 

methods, which are crucial for addressing class 

imbalance—a significant issue in medical datasets. 

The variations in accuracies among the studies 

emphasize that achieving high predictive 

performance depends not only on the choice of 

classifiers but also on the balancing techniques 

employed. By demonstrating how different balancing 

techniques interact with machine learning algorithms, 

this research contributes valuable insights to the field 

of diabetes prediction. This work underscores that 

selecting the appropriate balancing method is as vital 

as the choice of algorithm, ultimately paving the way 

for more accurate and reliable predictions in clinical 

practice. 

3. The proposed framework    

A framework is developed for diabetes detection, 

integrating various machine-learning algorithms and 

balancing techniques to evaluate these techniques 

and enhance the predictive performance. The 

framework consists of four main stages, as illustrated 

in Fig. 3: data preprocessing, data balancing, 

classification, and evaluation. A binary classification 

problem (diabetic or non-diabetic) is used for 

prediction. 

3.1 Data preprocessing 

In data preprocessing, missing values are handled, 

and data scaling is applied to ensure consistency 

across features. Missing values for key features such 

as glucose, blood pressure, skin thickness, insulin, 

and BMI, where unrealistically low values (such as 

zeros) are present, are treated as missing data. These 

missing values are filled with the median of the 

respective feature to maintain the statistical balance 

without introducing bias. This imputation helps 

prevent the skewing of model predictions due to 

incomplete or inaccurate data points. Data scaling is 

crucial to ensure that all features are on the same scale, 

preventing any particular feature from dominating 

the learning process due to its magnitude.  

 

 
Figure. 3 The proposed framework 

Diabetes Dataset  

Preprocessing 

Classification 

Result Analysis 

Balancing 
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Table 2. Summary of the oversampling techniques 

Tech. Description Pros Cons 

Random 

[16]  

Duplicates 

random samples 

of the minority 

class. 

Simple and 

effective at 

balancing 

classes. 

High risk of 

overfitting. 

SMOTE 

[16]  

Generates 

synthetic samples 

by interpolating 

between existing 

minority class 

samples. 

Reduces 

overfitting 

and improves 

generalizatio

n. 

May 

introduce 

noise. 

Border-

line 

SMOTE 

[17] 

Generates 

synthetic samples 

near the decision 

boundary. 

Enhances 

decision 

boundary 

robustness. 

Can still 

lead to 

some 

overfitting. 

ADASYN 

[18]  

Generates 

synthetic samples 

based on density 

distribution. 

Improves 

accuracy. 

Overempha

size noisy 

instances. 

SVM-

SMOTE 

[19] 

Generates 

synthetic samples 

based on SVM 

support vectors. 

Improves 

accuracy. 

Computatio

nally 

intensive. 

 

Besides, the min-max scaling technique is 

employed, which transforms the data to a common 

range of [0, 1]. This method not only simplifies the 

model training process but also improves the 

convergence of optimization algorithms used in 

machine learning models. By scaling all features 

uniformly, the models can perform more effectively, 

especially those that rely on distance metrics or 

gradient-based optimization.  

3.2 Data balancing 

The PIMA dataset consists of 678 samples, with 

500 non-diabetic cases and 268 diabetic cases, 

presenting a significant class imbalance. This 

imbalance can lead to a biased model that performs 

well in predicting the majority class (non-diabetic) 

but struggles to accurately identify the minority class 

(diabetic), which is critical for early detection and 

intervention. To address this issue, several data 

balancing techniques are employed, including 

oversampling methods to increase the number of 

minority class instances, undersampling to reduce the 

majority class, and combined methods that apply 

both oversampling and undersampling. These 

approaches aim to create more balanced datasets, 

enabling models to learn effectively from both 

classes and improving their predictive performance. 

Oversampling is a technique that balances the 

dataset by increasing the number of samples in the 

minority class. This can be achieved by duplicating 

existing samples or generating new synthetic ones. In 

random oversampling, random samples of the 

minority class are duplicated until the class 

distribution is balanced. While this effectively 

balances the dataset, random oversampling can lead 

to overfitting, as the model may become too reliant 

on repeated instances. SMOTE [16] is a more 

advanced oversampling technique that generates new 

synthetic samples by interpolating between existing 

minority class samples. By creating new, plausible 

samples, SMOTE reduces overfitting and improves 

the model’s generalization ability. Several extensions 

of SMOTE have been proposed, including borderline 

smote [17], ADASYN [18], and SVMSMOTE [19]. 

Borderline SMOTE focuses on generating synthetic 

samples near the decision boundary between classes, 

where misclassification is more likely. ADASYN 

adjusts the number of synthetic samples generated 

based on the learning difficulty of minority class 

instances, giving more weight to harder-to-learn 

cases. SVMSMOTE integrates SMOTE with SVM 

by using the support vectors to generate synthetic 

samples, focusing on key decision boundaries. Table 

2 provides a comparison of these techniques.  

Undersampling addresses data imbalance by 

reducing the number of samples in the majority class. 

This technique involves selecting a representative 

subset of the majority class to match the size of the 

minority class. In random undersampling, random 

samples from the majority class are removed until the 

dataset is balanced. However, this method can result 

in the loss of valuable information and may lead to 

underfitting. Advanced methods for undersampling 

have been proposed, including Cluster Centroids [20], 

Edited Nearest Neighbors (ENN) [21], All KNN [22], 

Condensed Nearest Neighbor (CNN) [23], and One-

Sided Selection (OSS) [24]. The Cluster Centroids 

technique clusters the majority class into several 

groups using a clustering algorithm (like k-means) 

and then replaces these clusters with their centroids. 

The result is a reduced number of representative 

samples for the majority class. ENN removes 

samples from the majority class that are misclassified 

by their k-nearest neighbors. Similar to ENN, All 

KNN applies the ENN method iteratively with 

different values of k for the nearest neighbors, 

removing misclassified instances across all iterations. 

CNN reduces the majority class by selecting a subset 

of samples that maintain the decision boundary. It 

starts with a small subset and iteratively adds 

instances only if they contribute to the correct 

classification of the remaining samples. OSS 

combines CNN with ENN. It first applies CNN to 

reduce the majority class and then uses ENN to 

remove noisy instances from the reduced dataset. 

Table 3 provides a comparison of these techniques. 
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Table 3. Summary of the undersampling techniques 

Tech. Description Pros  Cons 

Random 

[20] 

Randomly 

removes 

samples from 

the majority 

class. 

Simple to 

implement

. 

Leads to 

informatio

n loss and 

underfittin

g. 

Cluster 

Centroid

s [20] 

Clusters the 

majority class 

and replaces 

each cluster’s 

samples with 

their centroids. 

Preserves 

diversity 

and 

structure 

of the 

majority 

class. 

Risk of 

informatio

n loss. 

Edited 

Nearest 

Neighbo

rs (ENN) 

[21] 

Removes 

majority class 

samples 

misclassified 

by the k-

nearest 

neighbors. 

Effectively 

reduces 

noise and 

ambiguous 

instances. 

Computati

onally 

expensive 

and 

Informatio

n loss. 

All KNN 

[22] 

Iteratively 

applies ENN 

with different 

values of k. 

Improves 

performan

ce by 

removing 

more 

noise. 

Computati

onally 

expensive. 

Condens

ed 

Nearest 

Neighbo

r (CNN) 

[23] 

Selects a 

subset of 

majority class 

samples that 

maintain 

decision 

boundaries. 

Helps 

preserve 

decision 

boundaries

. 

Sensitive 

to noise 

and 

outliers. 

One-

Sided 

Selectio

n (OSS) 

[24] 

Combines 

CNN and ENN 

to reduce the 

majority class 

and remove 

noisy samples. 

Effectively 

reduces 

noise 

while 

balancing 

the data. 

Computati

onally 

expensive 

and 

Informatio

n loss. 

 

Combined sampling methods implement both 

oversampling and undersampling techniques to 

achieve a balanced dataset. SMOTEENN [25] and 

SMOTE with Tomek Links (SMOTE-TOMEK) [26] 

are used for this purpose. SMOTEENN combines the 

Synthetic Minority Over-sampling Technique 

(SMOTE) with Edited Nearest Neighbors (ENN). 

First, SMOTE is applied to generate synthetic 

instances for the minority class. Then, ENN cleans 

the dataset by removing noisy or ambiguous 

instances from both the majority and minority classes. 

SMOTE-TOMEK is a combination of SMOTE and 

Tomek Links. After applying SMOTE to oversample 

the minority class, Tomek Links are used to identify 

and remove borderline instances close to the decision 

boundary between classes. Table 4 compares these 

techniques. 

Table 4. Summary of the combined sampling techniques 

Tech. Description Pros  Cons 

S
M

O
T

E
E

N
N

 

[2
5

] 

Combines 

SMOTE 

with ENN  

Reduces 

noise and 

improves 

decision 

boundary 

clarity 

Computationally 

expensive and 

information loss  

S
M

O
T

E
 

T
o

m
ek

 [
2

6
] 

Combines 

SMOTE 

with Tomek  

Refines 

decision 

boundary 

by 

removing 

overlaps 

Computationally 

expensive and 

information loss  

 

The choice of data balancing technique 

significantly affects model performance. 

Oversampling, particularly with techniques like 

SMOTE, helps to improve the model’s sensitivity to 

the minority class, reducing the risk of bias towards 

the majority class. Undersampling, on the other hand, 

can simplify the model by reducing the size of the 

dataset but may also lead to the loss of important 

information. Combined sampling techniques offer a 

balanced approach, optimizing both class 

representation and model generalization. 

3.3 Machine learning algorithms 

Various machine-learning classifiers were used, 

referring to the classification implemented for 

diabetes prediction in the literature (See Table 1) and 

the general state of the art of data classification. KNN 

is a non-parametric, instance-based algorithm that 

classifies data points based on the majority label of 

their k-nearest neighbors. KNN is helpful in cases 

where the decision boundary is complex. Gaussian 

NB is a probabilistic classifier based on Bayes’ 

theorem, assuming that the features follow a normal 

(Gaussian) distribution. NB is effective when the data 

distribution closely matches the Gaussian assumption. 

SVM is a supervised learning model that finds the 

optimal hyperplane to separate different classes in the 

feature space. SVM is well-known for its high 

performance, especially for high-dimensional spaces. 

DT is split into subsets based on the value of the input 

features; thus, it is known for its interpretability and 

ability to model complex relationships, and it is less 

sensitive to outliers. Ripper is a rule-based classifier 

that generates rules to classify data, create 

interpretable models, and handle balanced and 

imbalanced datasets. RF is an ensemble learning 

method that builds multiple decision trees and merges 

them to get a more accurate and stable prediction. RF 

is robust, can handle large datasets, and effectively 

reduces variance through ensemble learning. NN can 
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model complex, non-linear relationships and can 

learn deep representations. AdaBoost is an ensemble 

technique that combines multiple weak classifiers to 

create a strong classifier. AdaBoost can improve 

model performance by focusing on difficult-to-

classify samples. XGBoost is an advanced gradient-

boosting technique that builds models in a stage-wise 

fashion. It is known for its speed, accuracy, and 

ability to handle large datasets with complex patterns. 

Table 5 compares these classifiers.  

3.4 Data splitting and cross-validation 

In this paper, the impact of oversampling is 

explored not only on the training set but also on the 

test set. Specifically, in some experiments, 

 

 
Table 5. Summary of the classification algorithms [27] 

Clas. Description Pros Cons 

KNN Uses the k-

nearest 

neighbors for 

classification. 

Simple and 

effective.  

Computationall

y expensive. 

NB Assumes 

Gaussian 

distribution of 

features. 

Fast and 

handles 

high-

dimensional 

data. 

The assumption 

of normality 

may not always 

hold. 

SVM Finds optimal 

hyperplane. 

Effective for 

high-

dimensional 

spaces. 

Memory-

intensive and 

sensitive to 

parameter 

initialization. 

DT Splits data 

based on 

feature values. 

Intuitive. Prone to 

overfitting. 

Ripper Generates rules 

for 

classification. 

Interpretable

. 

May be less 

effective on 

complex 

datasets. 

RF Combines 

multiple 

decision trees. 

Robust and 

reduces 

overfitting. 

Slow with a 

large number of 

trees. 

NN Models non-

linear 

relationships. 

Captures 

non-linear 

patterns. 

Requires large 

datasets and is 

sensitive to 

hyperparameter

s. 

AdaBo

ost 

Combines 

weak 

classifiers. 

Robust and 

reduces bias. 

Sensitive to 

noisy data and 

prone to 

overfitting.  

XGBo

ost 

Combines 

weak 

classifiers. 

High 

accuracy. 

Requires 

careful tuning 

and can be 

memory-

intensive. 

Table 6. Metrics comparison and use cases 

 Formula Pros Cons 

A
cc

u
ra

cy
 

=
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 
Indicates 

overall 

performance 

for balanced 

data. 

Misleadin

g for 

imbalance

d datasets. 

P
re

ci

si
o

n
 

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Measures false 

positives. 

Covers 

limited 

aspects. 

R
ec

al

l =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Measures false 

negatives. 

Covers 

limited 

aspects. 

F
1

-

S
co

re
 =

2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Balances the 

importance of 

precision and 

recall. 

Does not 

reflect the 

overall 

accuracy. 

 

 

oversampling techniques were applied before 

splitting the dataset into training and testing subsets. 

This approach simulates a scenario where data 

balancing might occur prior to the separation of data, 

as is sometimes observed in practice. The objective 

was to assess how this preprocessing step, applied 

uniformly to the entire dataset, influences the overall 

performance of the classification models. 

Furthermore, both traditional data-splitting methods 

and cross-validation techniques were implemented to 

ensure a comprehensive evaluation of model 

performance. By employing these methods, the 

developed framework aims to enhance the reliability 

of the results and provide insights into the 

effectiveness of various oversampling techniques in 

different scenarios. 

3.5 Evaluation 

The commonly utilized classification metrics to 

evaluate the prediction process’s performance 

include accuracy, precision, recall, and F-measure 

(also known as F1-score). Each of these metrics 

offers insights into different aspects of model 

performance. The accuracy is the most 

straightforward metric, representing the proportion of 

correctly classified samples (both true positives and 

true negatives) out of the total samples in the testing 

set. Precision, also known as the positive predictive 

value, measures the proportion of true positive 

predictions out of all the instances that were predicted 

as positive. Recall, also known as sensitivity or true 

positive rate, measures the proportion of actual 

positives that were correctly predicted. The F1 score 

combines precision and recall, providing a single 

metric that balances both aspects. A summary of 

metrics is given in Table 6. 
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Figure. 4 Comparison results of the balancing techniques 

in cross-validation 

 

 

 
Figure. 5 Comparison results of the classifiers with 

SVMSMOTE in cross-validation  

 

 

3.6 Experimental setup 

Two experimental setups were implemented: (1) 

the training set balanced with the test set unaltered, 

reflecting real-world conditions, and (2) both training 

and test sets balanced for controlled comparative 

analysis. The first approach evaluates 

generalizability, while the second explores the full 

potential of the framework under ideal conditions. 

4. Results and discussion    

The evaluation was conducted in three sets of 

experiments using 10-fold cross-validation, 80-20 

percentage split, and prior balancing. In cross-

validation, the whole dataset was split into 10 folds; 

in each run, only the training data underwent 

oversampling (OS), undersampling (US), and 

combined sampling (CS), and the testing set 

remained as it was. In the percentage split, similarly, 

the training set was subject to balancing techniques, 

which are implemented, as only one run is required. 

In prior balancing, the whole dataset was sampled 

first; then, 10-fold cross-validation was conducted. 

As such, in the last experiments, both training and 

testing sets undergo the balancing techniques.  

4.1 PIMA results 

Fig. 4 shows a comparison between the different 

balancing techniques in cross-validation experiments 

with reference to no-sampling results, which was 

89.1%. The results showed that balancing techniques 

decrease the accuracy, especially the undersampling. 

The accuracy for undersampling using the best 

classifier ranges from 82.2% with All KNN to 87.8% 

with OSS. Oversampling, on the other hand, achieved 

better results, ranging from 87.6% using Borderline 

SMOTE to 88.9% with SVMSMOTE, which is very 

close to the results obtained without balancing. Fig. 5 

compares the results obtained without balancing and 

those using balancing techniques, highlighting the 

best performance achieved with SVMSMOTE.  

As noted in Fig. 5, the results of classifier 

accuracy without any sampling techniques show that 

different models perform variably, with the highest 

accuracy achieved by XGBoost (89.1%), followed by 

RF (87.6%), AdaBoost (87%), and DT (87%). These 

tree-based models perform better because they 

handle complex data distributions and capture 

intricate patterns. SVM also performs well, with an 

accuracy of 85.2%. However, KNN, NB, and NN 

perform lower, with accuracies of 76.3%, 76.4%, and 

71.7 respectively. The Ripper algorithm, which is 

rule-based, achieves a moderate accuracy of 83.5%, 

which is competitive but slightly lower than the tree-

based methods. 

When oversampling is applied to balance the 

dataset, a general trend of performance changes is 

observed. The XGBoost classifier exhibits a slight 

decrease in accuracy to 88.9%. Similarly, the 

accuracy of RF decreases from 87.6% to 87.4%, the 

accuracy of AdaBoost decreases from 87% to 85.7%, 

the accuracy of DT shows a significant reduction 

from 87% to 0.848, the accuracy of SVM experiences 

a slight decline from 85.2% to 85%, and the accuracy 

of KNN exhibits a minor decrease from 76.3% to 

75.7%. On the other hand, NB remains consistent 

with an accuracy of 76.4%, and NN shows no change 

in accuracy, remaining at 71.7%. The Ripper 

algorithm exhibits a notable decrease in accuracy 

from 83.5% to 79.6%, possibly due to oversampling 

introducing more complexity into the rule-based 

learning process. 

Fig. 6 compares the different balancing 

techniques in percentage split experiments. The 

classification accuracy without any sampling was 

89.6%. The results showed that balancing techniques,  
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Figure. 6 Comparison results of the balancing techniques 

in percentage-split  

 

 
Figure. 7 Comparison results of the classifiers in 

percentage-split  

 

 

specifically random, SMOTE, and SMOTE-B, 

maintain the same accuracy, while the rest decrease 

the accuracy slightly. The results of undersampling 

and combined sampling also exhibit the same trends, 

while the random undersampling slightly improves 

the results with an accuracy of 90.9%. Fig. 7 

compares the results obtained without balancing and 

those with balancing techniques, highlighting the best 

performance achieved with SMOTE.  

As noted in Figs. 6 and 7, the same results and 

conclusions apply as discussed in cross-validation 

experiments, with the exception of SVM, DT, and 

NN, which show slight improvements. However, in 

this case, the results depend on the selected training 

and testing subsets, meaning they cannot be 

generalized as reliably as those from the cross-

validation.  

The results of the prior balancing are quite 

notable, as they exhibit a different pattern compared 

to the earlier experiments. Fig. 8 shows a comparison 

of the different balancing techniques in prior 

balancing experiments, with no-sampling results 

used as reference, which was 89.1%. The results 

 

 
Figure. 8 Comparison results of the balancing techniques 

in prior balancing   

 

 
Figure. 9 Comparison results of the classifiers in prior 

balancing   

 

 

indicate that balancing techniques generally increase 

accuracy, with SMOTEENN combined sampling 

standing out, achieving an accuracy of 97.5%. The 

oversampling techniques also show improvements, 

with accuracies ranging from 88.7% using ADASYN 

to 93.6% using Random oversampling. The 

undersampling techniques present a varied range, 

with accuracies ranging from 80.8% using CNN to 

94.1% using All KNN. Fig. 9 compares the results 

obtained with no balancing against those with 

balancing techniques, highlighting SMOTEENN as 

the top performer.  

As noted in Figs.8 and 9, the accuracies improved 

using SMOTEENN for all classifiers except for the 

NN. The best results were achieved by the KNN 

classifier, with an accuracy of 97.5%. 

The variation in results across different 

experiments can be attributed to the quality of the 

utilized data. In both cross-validation and percentage 

split experiments, accuracy generally decreased with 
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the application of balancing techniques. However, in 

the prior balancing experiment, the results improved 

significantly. This variation is likely due to the 

quality of the samples, particularly rows with missing 

values, which may not contribute effectively to the 

classification process. Balancing the training set 

alone can sometimes lead to overfitting, especially if 

synthetic samples fail to represent real-world data. In 

such cases, the model may learn patterns specific to 

the balanced training data but perform poorly on the 

imbalanced test set. Moreover, the original dataset 

may not be fully representative, which justifies the 

observed increase in accuracy with undersampling 

and combined sampling techniques.  

The results indicate that oversampling the test set 

can artificially inflate model performance by altering 

the natural distribution of the data. While this 

approach may be suitable in specific applications 

where balanced datasets are prioritized even during 

testing, it generally does not reflect real-world 

conditions where data imbalance is common. This 

scenario was tested to illustrate the impact of 

preprocessing decisions on model accuracy and to 

caution against oversampling test data unless the 

objective is to measure performance under fully 

balanced conditions.  

The findings also reveal that oversampling did 

not consistently lead to improved accuracy. This 

underscores the potential risks of overfitting when 

synthetic samples are introduced into the dataset. 

Oversampling can sometimes degrade performance, 

particularly when the synthetic data does not 

accurately represent real-world conditions or when 

decision boundaries are noisy or unclear. This 

overfitting can result in models performing well on a 

balanced training set but poorly on an imbalanced test 

set. Therefore, while oversampling can be 

advantageous in some cases, it should be used 

carefully to prevent the introduction of noise and to 

ensure the model maintains its generalization ability. 

The results demonstrate that balancing the test set 

leads to marginally higher recall but compromises 

real-world applicability. The unbalanced test set 

results, which better reflect deployment scenarios, 

still show competitive performance, validating the 

framework’s robustness. 

The results show that XGBoost, which can handle 

both high-dimensional data and imbalanced datasets 

effectively, performs the best in classifying diabetes 

cases. XGBoost, when paired with techniques like 

SMOTE, SMOTE-TOMEK, and SVMSMOTE, 

which generate synthetic samples to balance the 

dataset, not only enhances the minority class 

representation but also reduces noise and overlapping 

between classes, which XGBoost can better exploit 

due to its tree-based structure. SMOTE-TOMEK, for 

example, combines oversampling and under-

sampling, improving recall by reducing the impact of 

outliers and noise while increasing the decision 

boundary clarity for the classifier. In contrast, simpler 

classifiers such as SVM or AdaBoost, though 

benefiting from balancing techniques like SMOTE 

and ADASYN, struggle to match XGBoost’s 

performance due to their sensitivity to noise and 

overfitting. For instance, while SVM shows an 

improvement with methods like SVMSMOTE, it still 

lags behind XGBoost in terms of recall and accuracy. 

This is because SVM relies on margin maximization, 

which can be compromised in the presence of noisy 

or overlapping synthetic data. AdaBoost, being a 

boosting method as well, performs well with 

techniques like SMOTE and B-SMOTE but tends to 

be less stable compared to XGBoost when handling 

imbalanced datasets, as it may not always generalize 

as effectively, especially with small or noisy datasets. 

4.2 Results comparison 

In comparison to the state-of-the-art, the results 

from this study reveal notable improvements in 

classification accuracy when using the SMOTEENN 

balancing technique, achieving an impressive 

accuracy of 97.5% for the KNN classifier, compared 

to state-of-the-art results such as 91% with SMOTE 

and SMOTESVM in a recent study ([15], 2024) and 

90% with SMOTE in another ([10], 2022). In contrast, 

traditional balancing methods showed varied 

effectiveness, with oversampling methods yielding 

slight declines in accuracy for some classifiers. This 

highlights the necessity of selecting appropriate 

balancing techniques based on the specific dataset 

and model characteristics. However, the potential 

limitations of this study must be acknowledged. 

While balancing techniques can enhance accuracy, 

they may also lead to overfitting, particularly if 

synthetic samples are not representative of real-world 

distributions.  

 

 
Figure. 10 Diabetes feature significance  
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Table 7. A Summary of the best-performing interacted 

techniques using the accuracy measure  

Balancing 

Technique 

Accuracy 

RF AdaBoost XGBoost 

No Sampl.  0.876 ± 0.005 0.870 ± 0.007 0.891 ± 0.006 

SMOTE 0.874 ± 0.006 0.865 ± 0.008 0.885 ± 0.005 

B-SMOTE 0.862 ± 0.007 0.874 ± 0.006 0.876 ± 0.004 

ADASYN 0.866 ± 0.006 0.862 ± 0.005 0.878 ± 0.004 

SVM-

SMOTE 
0.874 ± 0.005 0.857 ± 0.008 0.889 ± 0.006 

OSS 0.872 ± 0.006 0.861 ± 0.007 0.878 ± 0.004 

SMOTE-

TOMEK  
0.867 ± 0.005 0.866 ± 0.006 0.875 ± 0.005 

 
Table 8. A Summary of the best-performing interacted 

techniques using the precision measure  

Balancing 

Technique 

Precision  

SVM AdaBoost XGBoost 

No Sampl.  0.847 ± 0.004 0.839 ± 0.005 0.854 ± 0.004 

SVM-

SMOTE 
0.776 ± 0.005 0.776 ± 0.006 0.823 ± 0.005 

Cluster 

Centroids 
0.812 ± 0.004 0.784 ± 0.005 0.792 ± 0.004 

OSS 0.801 ± 0.005 0.799 ± 0.005 0.813 ± 0.004 

SMOTE-

TOMEK 
0.786 ± 0.005 0.785 ± 0.005 0.807 ± 0.004 

 
Table 9. A Summary of the best-performing interacted 

techniques using the recall measure  

Balancing 

Technique 

Recall   

Ripper RF AdaBoost XGBoost 

No Sampl. 
0.914 ± 
0.004 

0.810 ± 
0.005 

0.776 ± 
0.005 

0.828 ± 
0.004 

SMOTE 0.925 ± 
0.004 

0.840 ± 
0.005 

0.851 ± 
0.004 

0.862 ± 
0.004 

B-SMOTE 0.948 ± 
0.004 

0.858 ± 
0.004 

0.869 ± 
0.004 

0.851 ± 
0.004 

ADASYN 0.963 ± 
0.003 

0.851 ± 
0.004 

0.858 ± 
0.004 

0.862 ± 
0.004 

CSS 0.940 ± 
0.004 

0.854 ± 
0.004 

0.825 ± 
0.004 

0.825 ± 
0.004 

ENN 0.944 ± 
0.004 

0.925 ± 
0.004 

0.937 ± 
0.004 

0.922 ± 
0.004 

All-KNN 0.951 ± 
0.004 

0.929 ± 
0.004 

0.925 ± 
0.004 

0.937 ± 
0.004 

SMOTE-

TOMEK  
0.978 ± 
0.003 

0.896 ± 
0.004 

0.881 ± 
0.004 

0.888 ± 
0.004 

 

4.3 Feature significance 

The significance of each feature, as analyzed 

using the XGBoost, is given in Fig. 10. The results 

showed that BMI and glucose are among the most 

significant features in diabetes predictions. 

4.4 Interaction analysis and validations 

In cross-validation, it was shown that 

oversampling methods, particularly SMOTE and 

ADASYN, improve recall, particularly for Ripper  

 
Figure. 11 The Sylhet dataset cross-validation best results 

 

 

 
Figure. 12 The Sylhet dataset percentage-split best results 

 

 

 
Figure. 13 The Sylhet dataset prior-balancing best results 
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(e.g., ADASYN achieves 96.3% recall) but slightly 

reduces precision. Undersampling ENN and All-

KNN methods benefit recall but often lower accuracy 

and precision. Combined Techniques, the 

SMOTEENN and SMOTE-TOMEK balance recall 

and F1 scores effectively, especially for RF and 

XGBoost. The results were confirmed in percentage 

split and prior balancing. It was also noted that 

XGBoost and AdaBoost, together with SMOTEENN 

and SMOTE-TOMEK, achieve balanced 

improvements in precision and recall. NN, together 

with ADASYN, showed performance improvement. 

A summary of the best-performing balancing 

techniques for accuracy, precision, and recall is given 

in Tables 7-9, respectively. The Confidence 

Intervals (CI) for each performance metric 

(accuracy, precision, recall, F1-score) are calculated 

based on 95% confidence intervals. For example, for 

XGBoost with “No Sampling,” the accuracy is 0.891 

with a margin of error of ± 0.006. The calculated 

confidence intervals indicate the margin of error for 

the mean performance of each balancing technique 

applied to each classifier.  

For significant comparisons, the paired t-test 

results for accuracy comparisons across all sampling 

methods are reported. Table 10 lists only significant 

results among all pair-wise comparisons. Significant 

improvements in accuracy were observed in all 

comparisons involving SMOTE, B-SMOTE, and 

ADASYN against No Sampling and Random 

oversampling. The results indicate that the 

oversampling methods helped significantly improve 

the accuracy of classifiers. The precision 

improvements were most noticeable between 

Random and SMOTE and also between No Sampling 

and SMOTE. SMOTE consistently showed better 

performance than others, particularly for the SVM 

and RF classifiers. SMOTE and B-SMOTE provided 

notable improvements in recall compared to No 

Sampling and Random oversampling. This suggests 

that the oversampling techniques helped capture 

more of the positive class, especially for SVM, RF, 

and AdaBoost classifiers. The F1 score showed 

consistent improvements with SMOTE and B-

SMOTE, indicating these methods balanced 

precision and recall well, leading to higher F1 values. 

Again, SVM and XGBoost benefited significantly 

from these sampling methods.  

Overall, oversampling methods like SMOTE, B-

SMOTE, and ADASYN generally led to significant 

improvements across the performance metrics, 

particularly in recall and F1 score, indicating they 

helped improve the classifier’s ability to correctly 

identify the minority class while maintaining the 

overall balance between precision and recall. 

4.5 Syllhat dataset results 

The Sylhet Diabetes dataset [28] is used to 

generalize the previous results. The dataset consists 

of 520 records, with each record containing various 

features related to demographic, medical, and 

lifestyle data, along with a target variable indicating 

the presence or absence of diabetes. The results are 

given in Figs 11 to 13. The results confirmed the 

findings obtained for the PIMA dataset and showed 

the effect of each balancing technique on the 

classification results accordingly [29-30].  

5. Conclusion   

In conclusion, this study analyzed the effects of 

balancing techniques on the PIMA Indian Diabetes 

dataset. A comprehensive framework for diabetes 

prediction was implemented, incorporating the 

balancing process alongside preprocessing, 

classification, and evaluation. The experiments 

demonstrate that the impact of sampling techniques 

varies across different evaluation methods. Balancing 

the training data in cross-validation and percentage 

split experiments often led to a slight decrease in 

accuracy, particularly with undersampling. However, 

prior balancing, where the entire dataset is balanced 

before splitting, resulted in significant improvements, 

especially with combined sampling methods like 

SMOTEENN, which achieved the highest accuracy. 

The study demonstrates that the choice of data 

balancing techniques significantly affects 

classification performance. SMOTEENN 

consistently outperformed other methods, achieving 

a peak accuracy of 97.5%. Statistical tests confirmed 

the significance of these improvements, with p-

values indicating meaningful performance gains.  

These findings suggest that balancing both 

training and testing sets can enhance classifier 

performance and provide more reliable and 

generalizable results. Cross-validation with balanced 

data remains essential for consistent model 

evaluation across different subsets. This study 

highlights the critical role of selecting appropriate 

balancing techniques for specific classifiers. Models 

like XGBoost exhibit robustness across all 

techniques, while SVM, RF, and Ripper benefit from 

different balancing techniques. The superior 

performance of SMOTE-TOMEK underscores the 

importance of combined balancing to improve the 

recall.  

Future research will focus on exploring more 

robust synthetic sample generation methods, such as 

Generative Adversarial Networks (GANs), and 

employing stratified sampling to ensure balanced 
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representations in both training and testing datasets. 

Besides, future research will explore the integration 

of deep learning approaches and alternative feature 

selection methods. Finally, feature research will 

focus on using different feature selection techniques 

and various methods to handle missing data.  
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