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Abstract: The growing integration of renewable energy sources and electric vehicle (EV) fast-charging stations 

(FCSs) in power distribution networks introduces challenges such as increased power losses, voltage instability, and 

operational complexity. To address these issues, this study proposes Adaptive Frilled Lizard Optimization (A-FLO), 

an enhanced metaheuristic algorithm inspired by the predatory behaviour of frilled lizards. Unlike conventional 

optimizers with static control parameters, A-FLO introduces adaptive mechanisms that dynamically adjust 

exploration and exploitation strategies through modified hunting and climbing behaviours. A-FLO is employed to 

optimize the placement and sizing of distributed generators (DGs) and FCSs in electrical distribution networks 

(EDNs) under high EV penetration. The results demonstrate that A-FLO effectively reduces power losses, improves 

voltage profiles, and enhances voltage stability in IEEE 33-bus, 69-bus and 118-bus EDNs. Comparative evaluations 

with recent metaheuristic algorithms confirm A-FLO's superior convergence reliability, solution quality, and 

scalability. The proposed method shows strong potential for real-world smart grid applications involving the 

coordinated planning of renewable energy and EV infrastructure. 

Keywords: Adaptive frilled lizard optimization, Distributed generators, Fast-charging stations, Electric vehicle 

penetration, Voltage stability improvement, Smart grid optimization. 

 

 

1. Introduction 

The integration of renewable energy sources and 

electric vehicle (EV) charging stations in 

distribution networks presents challenges such as 

power losses, voltage instability, and increased 

operational complexity [1, 2]. Effective planning 

and optimization strategies are essential for 

enhancing system performance while ensuring 

sustainability. Recent research highlights the 

importance of advanced algorithms in determining 

the optimal placement of charging stations and 

renewable energy sources [3]. Several studies have 

focused on the optimal integration of charging 

stations using different metaheuristic approaches. In 

[4], a hybrid gray wolf optimization particle swarm 

optimization (GWOPSO) was proposed for multi-

objective EV charging station (CS) placement. The 

solution improved power quality and grid reliability 

but lacked real-world validation and integration with 

renewable energy sources. Similarly, [5] developed 

a stochastic power flow model for optimal EV 

charging station siting and sizing, enhancing voltage 

stability using adaptive differential evolution 

optimization algorithm (ADEOA). However, it did 

not consider dynamic EV demand variations and 

real-time optimization. In [6], a modified 
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Archimedes optimization algorithm (MAOA) was 

introduced for CS placement. While it improved 

computational efficiency, it did not address 

uncertainties in renewable energy generation and 

charging station load variations. Likewise, [7] 

focused on reliable CS allocation using galaxy 

gravity optimization (GGO). Further, a 

comprehensive review analyzed challenges, 

mitigation approaches, and optimization strategies 

for CS infrastructure [8]. 

Further research has explored various 

optimization strategies for integrating EV CSs and 

renewable distribution generation (DGs) into 

electrical distribution networks (EDNs). Recently, 

[9] proposed direct search (DS) with PSO (PSO-DS) 

for optimal CS and capacitor banks (CBs) allocation 

focusing on real power loss and voltage profile. In 

[10], PSO with backward-forward sweep load flow 

is introduced for CS and DG allocation towards loss 

reduction and voltage profile improvement. The 

approach minimized power losses but did not 

address bidirectional energy flow challenges in 

vehicle-to-grid operations. In [11], a political 

optimization algorithm (POA) was applied for the 

optimal allocation of DGs and EVs in a EDN. A 

multi-objective dragonfly algorithm (MODA) based 

allocation strategy for CSs and renewable DGs were 

proposed in [12], incorporating demand response 

(DR). In [13], improved bald eagle search (IBES) 

algorithm was proposed for the optimal deployment 

of EV fast charging stations (FCSs) alongside solar-

based DGs. The method improved system reliability 

and power quality, yet it did not fully address the 

computational complexity and scalability of AI-

driven solutions. The study in [14] applied the 

African vulture optimization algorithm (AVOA) for 

optimal placement of DSTATCOM and DG to 

minimize the impact of EV charging on radial 

distribution networks (RDNs). However, it lacked 

dynamic load forecasting and adaptive control 

mechanisms. In [15], the placement of CSs and 

RDGs was explored considering uncertainties using 

Harris hawks optimization (HHO). While it 

improved network reliability, it did not fully account 

for demand-side management strategies and real-

time power fluctuations. In [16], the bald eagle 

search algorithm (BSA) was applied for optimal 

integration of EV CSs and DSTATCOM in Indian 

distribution systems. In [17], an enhanced pathfinder 

algorithm (EPFA) was used for the optimal 

integration of solar photovoltaics (SPVs) and rapid 

charging stations (RCSs) in low-voltage RDNs. The 

method minimized power losses but did not fully 

address uncertainties in solar power generation and 

EV demand. The study in [18] employed the 

arithmetic optimization algorithm (AOA) for EV 

charging station placement to minimize line losses. 

It enhanced grid efficiency but lacked a comparative 

analysis with other metaheuristic approaches. In 

[19], a techno-economic assessment was conducted 

for grid and renewable-powered CSs in India using a 

modified salp swarm algorithm (MSSA). The 

approach improved cost-effectiveness but did not 

incorporate vehicle-to-grid (V2G) interactions. In 

[20], the hunter–prey optimization (HPO) is 

introduced for the optimal allocation of PV, 

DSTATCOM, and CSs in RDNs. While it enhanced 

power quality and voltage profiles, it did not 

evaluate large-scale distribution networks with high 

EV penetration. In [21], an improved pufferfish 

optimization algorithm (IPOA) was introduced for 

the optimal allocation of PV-FCSs in RDNs. The 

method enhanced power loss reduction and voltage 

stability but lacked a comparative analysis with 

emerging optimization techniques. In [22], 

arithmetic optimization algorithm (AOA) is 

employed for solaving DGs and CBs by aiming loss 

reduction, voltage profile improvement and voltage 

stability enhancement. In [23], multi-objective 

whale optimization (MOWOA) based DGs are 

optimally integrated for improving the RDNs 

performance. Further, the integration of DGs and 

EVs in power systems was reviewed, highlighting 

challenges related to grid stability and energy 

management [24, 25]. 

In previous studies as summarised in Table 1, 

metaheuristics have been shown to optimize CS and 

DG placement in EDNs. However, many of these 

algorithms prematurely converge, trapping them in 

local optima. Researchers hybridize current 

approaches or design new algorithms with improved 

exploration and exploitation to improve 

optimization performance [26]. Frilled Lizard 

Optimization (FLO) [27], a new algorithm, 

simulates frilled lizard hunting in the wild. This 

study implements FLO to integrate CS and DGs in 

EDNs and compares it to metaheuristic algorithms 

using IEEE 33, 69, and 85-bus EDN simulations. 

Further, the suggested adaptive-FLO (A-FLO) is 

modelled frilled lizard predatory and defensive 

instincts to dynamically change its search behaviour, 

unlike most metaheuristics that focus on exploration 

or exploitation with set control parameters. Its 

adaptive hunting and climbing tactics balance global 

search with local refining over time, reducing 

premature convergence and increasing solution 

variety. 

A-FLO may go from broad exploration to 

concentrated exploitation, unlike IPOA, PSO, and  
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Table 1. Comparisons of literature in terms of optimization schemes and performance indices  

Method 
Optimization schemes  Performance assessment 

Grid Size 
CS CS+DG DR Loss AVDI VSI Cost Reliability  

GWOPSO [4] ✓ – – ✓ ✓ ✓ – – 34-bus 

ADEOA [5] ✓ – – – – ✓ ✓ – 33-bus 

MAOA [6] ✓ – – ✓ ✓ ✓ – – 33, 69 & 10-bus 

GGO [7] ✓ ✓ – ✓ – – ✓ ✓ 69-bus 

PSO-DS [9] ✓ ✓ – ✓ ✓ – – – 33-bus 

PSO [10] ✓ ✓ – ✓ ✓ – – – 33-bus 

POA [11] ✓ ✓ – ✓ ✓ ✓ – – 28-bus 

MODA [12] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 69-bus 

IBES [13] ✓ ✓ – ✓ ✓ ✓ ✓ ✓ UEN (30-bus) 

AVOA [14] ✓ ✓ – ✓ ✓ ✓ – – 33, 69 & 136-bus 

HHO [15] ✓ ✓ – ✓ ✓ – ✓ ✓ 33-bus 

BES [16] ✓ ✓ – ✓ ✓ ✓ ✓ – 28 & 108-bus 

EPFA [17] ✓ ✓ – ✓ ✓ ✓ – – 69-bus 

AOA [18] ✓ ✓ – ✓ ✓ – – – 33-bus 

MSSA [19] ✓ ✓ – – – – ✓ – New Delhi 

HPO [20] ✓ ✓ – ✓ ✓ ✓ – – 33, 69 & 136-bus 

IPOA [21] ✓ ✓ – ✓ ✓ – – – 33 & 69-bus 

AOA [22] ✓ ✓ – ✓ ✓ – – – 33 & 69-bus 

MOWOA [23] – ✓ – ✓ ✓ – – – 33 & 69-bus 

Proposed  ✓ ✓ – ✓ ✓ ✓ – – 33 & 69-bus 

 

 

Table 2. Comparison of A-FLO in solving 13 benchmark engineering problems 

Problem  
HHO FLO A-FLO 

Best  Mean Std Best  Mean Std Best  Mean Std 

EP1 2994.426 2999.659 5.017 2994.425 2999.004 5.514 2994.424 2998.813 4.5 

EP2 0.013 0.013 0 0.013 0.013 0 0.013 0.013 0 

EP3 6059.714 6241.665 267.138 6059.714 6247.732 282.551 6059.714 6229 250 

EP4 263.896 263.896 0 263.896 263.896 0 263.896 263.896 0 

EP5 0 0 0 0 0 0 0 0 0 

EP6 1.34 1.398 0.185 1.34 1.361 0.055 1.34 1.345 0.075 

EP7 0.013 0.013 0 0.013 0.013 0 0.013 0.013 0 

EP8 26.486 26.486 0 26.486 26.486 0 26.486 26.486 0 

EP9 8.413 108.241 102.215 8.413 125.329 75.397 8.413 115 70 

EP10 6.843 6.843 0 6.843 6.843 0 6.843 6.843 0 

EP11 22.868 23.558 0.545 22.844 23.713 0.692 22.888 23.48 0.48 

EP12 1.725 1.742 0.065 1.725 1.726 0.003 1.725 1.73 0.01 

EP13 359.208 359.208 0 359.208 359.208 0 359.208 359.2 0.1 

 

other single-strategy optimizers. This makes A-FLO 

ideal for non-linear, multi-constrained power system 

optimization issues, as shown by its higher 

performance on benchmark test systems. The 

following are the major contributions of this 

research work. 

• Developed a novel bio-inspired algorithm for 

optimal placement of EV charging stations and 

renewable energy resources in distribution 

networks, improving efficiency and stability. 

• Improved voltage stability, minimized power 

losses, and enhanced network resilience by 

dynamically balancing exploration and 

exploitation strategies in optimization. 

• Demonstrated A-FLO’s superiority over 

existing metaheuristic algorithms through 

simulations on IEEE 33-bus, 69-bus and 118-

bus test systems, ensuring scalability and 

adaptability. 
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• Addressed limitations of conventional 

approaches by reducing premature convergence 

and local optima trapping, making A-FLO 

suitable for real-world smart grid applications. 

Structure of the paper's remainder: Section 2 

covers theoretical notions and modeling. The 

problem formulation and objective functions and 

restrictions for optimal placement are in Section 3. 

The adaptive hunting and climbing tactics of the A-

FLO algorithm are described in Section 4. Section 5 

compares A-FLO to other optimization techniques 

using IEEE EDNs. Section 6 summarizes major data, 

highlights A-FLO's benefits, and suggests grid 

optimization research directions. 

2. Modelling of CS and DG impact 

The CS is treated as a lumped load on the power 

grid. When CSs are integrated into the system, 

additional loads are introduced due to charging 

demand of EVs. Further, by integrating a renewable 

DG, the loading condition can be offset by the 

equivalent of its power generation. Thus, the new 

total load at bus j with a CS/DG can be written as, 
 

𝑃𝑗
𝑛𝑒𝑤 = 𝑃𝑗

𝑜𝑙𝑑 + 𝑃𝐶𝑆,𝑗 − 𝑃𝐷𝐺,𝑗    (1) 

 

𝑄𝑗
𝑛𝑒𝑤 = 𝑄𝑗

𝑜𝑙𝑑 + 𝑄𝐶𝑆,𝑗 − 𝑄𝐷𝐺,𝑗    (2) 

 

𝑄𝐶𝑆,𝑗 = 𝑃𝐶𝑆,𝑗 ∙ 𝑡𝑎𝑛(∅𝑒𝑣,𝑖)    (3) 

 

𝑄𝐷𝐺,𝑗 = 𝑃𝐷𝐺,𝑗 ∙ 𝑡𝑎𝑛(∅𝑑𝑔,𝑖)    (4) 

3. Problem formulation 

The placement of CS and RDGs in a power 

distribution system involves optimizing multiple 

electrical parameters to ensure efficient operation, 

minimize losses, and enhance voltage stability. 

 

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝜌𝑖
𝑁
𝑖=1 (

|𝑆𝑖|2

|𝑉𝑖|2)     (5) 

 

 

 
Fig. 1. Illustration of CS and DG integration at a 

distribution bus-j  

Further, the impact of CS and DGs is analysed 

on feeder voltage profile and voltage stability, and 

are given by, 

 

 𝐴𝑉𝐷𝐼 =
1

𝑁
∑ |𝑉𝑖 − 𝑉𝑟|𝑁

𝑖=1                              (6) 

 

𝑣𝑆𝐼 = ∑
4𝑍𝑖𝑃𝑖

|𝑉𝑖|2

𝑁𝑏𝑟
𝑖=1                  (7) 

 

The following are the constraints considered 

while optimizing the objective function. 

 

𝑉𝑚𝑖𝑛 ≤ |𝑉𝑖| ≤ 𝑉𝑚𝑎𝑥, ∀𝑖 ∈ 𝑁𝑏𝑢𝑠                 (8) 

 

0 ≤ 𝑃𝐶𝑆,𝑖 ≤ 𝑃𝐶𝑆
𝑚𝑎𝑥, ∀𝑖 ∈ 𝑁𝐶𝑆                 (9) 

 

𝑃𝐷,𝑛𝑒𝑤 = 𝑃𝐷,𝑏𝑎𝑠𝑒 + 𝑃𝑙𝑜𝑠𝑠 + 𝑃𝐶𝑆 − 𝑃𝐷𝐺         (10) 

 

𝑄𝐷,𝑛𝑒𝑤 = 𝑄𝐷,𝑏𝑎𝑠𝑒 + 𝑄𝑙𝑜𝑠𝑠 + 𝑄𝐶𝑆 − 𝑄𝐷𝐺       (11) 

4. Proposed solution methodology  

A new bio-inspired metaheuristic called Frilled 

Lizard Optimization (FLO) imitates the predatory 

and defensive tendencies of the frilled lizard are 

introduced as a solution technique in this work.  

4.1 Frilled lizard optimization 

There are two main stages to the FLO approach. 

Exploration (hunting strategy): The lizard's capacity 

to search globally is improved by its quick approach 

to prey. After feeding, the lizard withdraws to a tree 

and refines its solutions in the local search space, a 

behaviour known as exploitation (tree climbing). 

4.1.1. Initialization 

The initial population of frilled lizards is 

randomly generated within the defined search 

bounds: 

 

𝑋𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑)             (12) 

 

where 𝑟~𝑈(0, 1)  is the uniformly distributed 

random number, 𝑙𝑏𝑑  and 𝑢𝑏𝑑  are the lower and 

upper bounds of the search space in dimension d, 

respectively.    

 

𝐹𝑖 = 𝐹(𝑋𝑖), 𝑖 = 1,2, … , 𝑁               (13) 

4.1.2. Hunting strategy 

During hunting, the frilled lizard selects a prey 

from a subset of solutions that have better objective 
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function values and the lizard moves toward its prey, 

given by: 

 

𝐿𝑖 = {𝑥𝑘|𝐹(𝑥𝑘) < 𝐹(𝑥𝑖), 𝑘 ≠ 𝑖}              (14) 

 

𝑥𝑖
′ = 𝑥𝑖 + 𝛼 ∙ 𝑟 ∙ (𝑥𝑝−𝑥𝑖) − 𝛽 ∙ 𝐼 ∙ 𝑥𝑖            (15) 

 

where 𝛼 and 𝛽 are the exploration coefficients, I is a 

randomly chosen intensity factor from {1,2}, 

𝑟~𝑈(0, 1)  is a random factor to diversify search. 

The new position is updated as: 

 

𝑥𝑖 = {
𝑥𝑖

′ 𝑖𝑓 𝐹(𝑥𝑖
′) < 𝐹(𝑥𝑖) 

𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
              (16) 

4.1.3. Climbing to safety 

After feeding, the frilled lizard climbs a nearly 

tree to refine its position. The position is updated 

based on the new function evaluation and are given 

by:  

 

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖 + (1 − 2𝑟) ∙ 𝛾 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑)        (17) 

 

where 𝛾 is the exploration decay factor that reduces 

as iterations progress, (1 − 2𝑟) ensures movement 

in both directions within bounds. 

 

𝑥𝑖 = {
𝑥𝑖

𝑛𝑒𝑤 𝑖𝑓 𝐹(𝑥𝑖
𝑛𝑒𝑤) < 𝐹(𝑥𝑖) 

𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
              (18) 

 

The process continues iteratively until the 

stopping criterion is met (maximum iterations T or 

convergence to a threshold solution). The best 

solution found is:  
 

𝑋𝑏𝑒𝑠𝑡 =
arg 𝑚𝑖𝑛 𝐹(𝑥𝑖)

𝑥𝑖
, 𝑖 ∈ {1, … , 𝑁}           (19) 

 

By combining climbing (intensification) and 

hunting behaviour (diversification), FLO effectively 

strikes a balance between phases of exploration and 

exploitations.  

4.2 Adaptive frilled lizard optimization 

A dynamic exploration coefficient 𝜆(𝑡)  is 

introduced as defined in Eq. (20) and the changes in 

Eq. (21). This ensures that initial iterations favour 

exploration, while later iterations prioritize 

exploitation. 

 

𝜆(𝑡) = 𝑒−𝜙∙
𝑡

𝑇                  (20) 

 

𝑥𝑖
′ = 𝑥𝑖 + 𝜆(𝑡) ∙ 𝑟1 ∙ (𝑥𝑝−𝑥𝑖) − {1 − 𝜆(𝑡)} ∙ 𝑟2 ∙

                ( 𝑥𝑖 − 𝑋𝑏𝑒𝑠𝑡)                                          (21) 

 

where 𝑥𝑝  randomly chosen prey from 𝐿𝑖  , 𝜆(𝑡)  

determines how much random exploration is 

allowed, 𝑋𝑏𝑒𝑠𝑡  ensures attraction towards the best 

solution, 𝑟1, 𝑟2~𝑈(0, 1)  are random weights. This 

adaptive movement reduces randomness over time, 

shifting from broad exploration to fine-tuned search. 

Once the lizard feeds, it moves up a tree to 

refine its position. The movement strategy here is 

refined by the adaptive exploitation factor 𝜇(𝑡).  

 

𝜇(𝑡) = 1 − 𝑒−𝜙∙
𝑡

𝑇                  (22) 

 

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖 + 𝜇(𝑡) ∙ (1 − 2𝑟) ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑)   (23) 

 

where𝜇(𝑡) increases over time to favour exploration, 
(1 − 2𝑟)  ensures movement in both positive and 

negative directions.  

These adaptive hunting strategy and adaptive 

climbing strategy enhance exploration-exploitation 

dynamically, promoting convergence without 

premature stagnation, enhancing global search in 

early iterations and improving local search in later 

iterations.  

4.3 Performance analysis of A-FLO 

The A-FLO’s effectiveness was evaluated using 

13 benchmark engineering design problems. The 

best function values obtained by A-FLO are 

described here.    

EP1. Speed Reducer – Achieved a best fitness of 

2994.424, reflecting an efficient mechanical 

design. 

EP2. Tension/Compression Spring Design – 

Resulted in a minimal fitness of 0.013, 

indicating a highly optimized spring 

configuration. 

EP3. Pressure Vessel Design – Recorded a best 

fitness of 6059.714, accounting for cost and 

structural constraints. 

EP4. Three-Bar Truss Design – Attained a fitness 

of 263.896, balancing material use and stress 

limits. 

EP5. Design of Gear Train – Perfect optimization 

with a best fitness of 0.000, signifying an 

ideal solution. 

EP6. Cantilever Beam – Yielded a best fitness of 

1.340, minimizing weight while maintaining 

strength. 

EP7. Minimize I-Beam Vertical Deflection – 

Achieved 0.013, showing minimal deflection. 
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EP8. Tubular Column Design – Reached a fitness 

of 26.486, optimizing cross-sectional 

parameters. 

EP9. Piston Lever – Best fitness of 8.413, targeting 

efficient load transfer. 

EP10. Corrugated Bulkhead Design – Recorded 

6.843, optimizing for structural efficiency. 

EP11. Car Side Impact Design – Achieved 22.888, 

focusing on safety and material constraints. 

EP12. Design of Welded Beam – Obtained 1.725, 

balancing stress and fabrication cost. 

EP13. Reinforced Concrete Beam Design – Best 

fitness of 359.208, meeting strength and 

economy requirements. 

In Table 2, the performance analysis across 13 

engineering design problems demonstrates that A-

FLO consistently achieves superior optimization 

results compared to both HHO and FLO. It records 

the lowest mean fitness and standard deviation in 

most cases, indicating not only high-quality 

solutions but also enhanced stability and robustness. 

HHO, while not outperforming A-FLO, performs 

better than FLO in several problems, showcasing 

improved reliability over the original FLO approach. 

FLO, although occasionally competitive in best-case 

fitness, generally falls behind in terms of average 

performance and consistency. These findings affirm 

that A-FLO offers a balanced and reliable 

optimization capability, making it the most effective 

algorithm for diverse engineering applications under 

this comparative study. 

5. Simulation results 

Simulations are carried out on IEEE standard 

test systems under various operational scenarios 

using custom-developed programs in MATLAB 

R2023b. The computational experiments are 

executed on a personal computer configured with an 

Intel® Core™ i7-8750 CPU @ 2.20 GHz and 16 

GB RAM, ensuring reliable performance and 

efficient processing of optimization routines. 

5.1 Scenario-1 (Base case) 

In this scenario, the test systems are assumed to 

be serving only feeder regular load and not 

integrated with any DGs and CSs. The analysis of 

the 33-bus and 69-bus distribution systems in Table 

3 reveals key performance metrics related to power 

generation, load demand, power losses, and voltage 

stability.  

In the 33-bus system, generation is 3926.00 kW 

and 2443.03 kVAr, supplying 3715.00 kW and 

2300.00 kVAr load, with losses of 210.998 kW and 

143.033 kVAr. The minimum voltage is 0.9038 p.u. 

at bus 18. AVDI and VSI are 0.6486 and 0.0111, 

indicating moderate voltage deviation and 

acceptable stability. 

For the 69-bus system, generation is 

4027.10 kW and 2796.86 kVAr for a load of 

3802.10 kW and 2694.70 kVAr, with 225.001 kW 

and 102.165 kVAr losses. The lowest voltage is 

0.9092 p.u. at bus 65. AVDI is 0.5500 and VSI is 

0.0046, reflecting higher voltage deviation and 

lower stability than the 33-bus system.    

5.2 Scenario-2 (With EV load penetration) 

In Table 4, with 50% EV load penetration, the 

33-bus and 69-bus distribution systems exhibit 

significant changes in power demand, losses, and 

voltage stability compared to the base case. 

In the 33-bus system, generation rises to 

5202.49 kW and 3181.98 kVAr, meeting a higher 

load of 4866.10 kW and 2955.33 kVAr. Losses grow 

to 336.39 kW and 226.65 kVAr. The minimum 

voltage drops from 0.9038 p.u. to 0.8793 p.u. at bus 

18, AVDI decreases from 0.6486 to 0.5767, 

indicating worsened voltage deviation, while VSI 

improves slightly from 0.0111 to 0.0139. 

In the 69-bus system, generation increases to 

5379.66 kW and 3548.54 kVAr for a load of 

5034.29 kW and 3388.56 kVAr. Losses escalate to 

345.38 kW and 159.98 kVAr. The minimum voltage 

falls from 0.9092 p.u. to 0.8888 p.u. at bus 65, 

AVDI declines from 0.5500 to 0.4713, while VSI 

slightly improves from 0.0046 to 0.0057.           

5.3 Scenario-3 (With CSs) 

With the optimal placement of three fast 

charging stations (FCSs), both the 33-bus and 69-

bus systems show marked improvements in 

operational performance under 50% EV penetration 

compared to non-optimized scenarios. 

In the 33-bus system, FCSs are optimally 

located at buses 2, 19, and 26 with respective 

supplies of 500 kW, 400 kW, and 300 kW. This 

integration reduces active and reactive power 

generation from 5202.49 kW/ 3181.98 kVAr to 

5165.52 kW/ 2861.70 kVAr. Losses drop 

significantly: real power loss from 336.39 kW to 

250.52 kW and reactive power loss from 

226.65 kVAr to 167.28 kVAr. Voltage performance 

also improves, with Vmin increasing from 

0.8793 p.u. to 0.8973 p.u., and AVDI rising from 

0.5767 to 0.6300, indicating better voltage 

regulation. A slight drop in VSI from 0.0139 to 

0.01199 suggests a minor trade-off in stability. 
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In the 69-bus system, FCSs at buses 2, 28, and 

47 (500 kW, 400 kW, 300 kW) help reduce 

generation from 5379.66 kW/3548.54 kVAr to 

5227.22 kW/ 3191.57 kVAr. Real and reactive 

losses decline from 345.38 kW/ 159.98 kVAr to 

225.12 kW/ 102.45 kVAr, approaching pre-EV 

levels. Vmin improves from 0.8888 p.u. to 

0.9092 p.u., while AVDI increases from 0.4713 to 

0.54998. The VSI stabilizes at 0.0046, matching the 

original value, reflecting restored voltage stability. 

5.4 Scenario-4 (With CSs and DGs) 

With the integration of photovoltaic (PV) units 

alongside optimally placed fast charging stations 

(FCSs), both the 33-bus and 69-bus systems exhibit 

significant improvements in efficiency, voltage 

profile, and system stability compared to the 

scenario with only FCS integration under 50% EV 

load penetration. 

In the 33-bus system, PV units installed at buses 

30, 13, and 24 (with capacities of 1305.36 kW, 

966.70 kW, and 1514.05 kW, respectively) 

substantially reduce the active power generation 

from 5165.52 kW to 1217.27 kW and reactive 

generation from 2861.70 kVAr to 2755.60 kVAr. 

Real and reactive losses are minimized from 

250.52 kW and 167.28 kVAr to 88.27 kW and 

61.17 kVAr, respectively. The minimum voltage 

improves from 0.8973 p.u. to 0.9743 p.u., shifting 

from bus 18 to bus 33, and the AVDI increases from 

0.6300 to 0.8222, indicating better voltage 

regulation. Although the VSI slightly drops from 

0.01199 to 0.00298, the overall system becomes 

more stable and efficient. 

In the 69-bus system, PV units at buses 12, 9, 

and 22 (354.65 kW, 372.66 kW, and 408.09 kW) 

help lower the active power generation from 

5227.22 kW to 4049.42 kW and reactive generation 

from 3191.57 kVAr to 3171.16 kVAr. Real and 

reactive losses reduce from 225.12 kW and 

102.45 kVAr to 183.32 kW and 82.04 kVAr, 

respectively. The minimum voltage increases from 

0.9092 p.u. to 0.9165 p.u. at bus 65. AVDI improves 

from 0.54998 to 0.5703, and VSI enhances from 

0.0046 to 0.00355, reflecting a stronger voltage 

stability margin. 

5.5 Comparative study  

The computational efficacy of A-FLO is 

compared for Scenario-3 with literature works are 

reported in Table 7. The performance of IPOA [21], 

AOA [22], and A-FLO was evaluated on the IEEE 

33-bus in terms of minimizing Ploss through 

optimal DG placement at buses 13, 24, and 30. 

IPOA achieved a Ploss of 72.79 kW with DGs sized 

at 801.7, 1091.33, and 1053.64 kW. AOA provided 

similar loss (72.79 kW) with slightly altered sizes. 

A-FLO optimized DGs are 1091.304 kW (bus 13), 

801.349 kW (bus 24), and 1054.11 kW (bus 30), and 

thus, Ploss reduced marginally to 72.787 kW, 

highlighting its efficient allocation strategy. 

For the IEEE 69-bus, IPOA [21], AOA [22], 

EPFA [17], and A-FLO were compared for DG 

placement at key buses. IPOA achieved the best 

performance with a Ploss of 69.4262 kW using DGs 

at buses 11 (526.75 kW), 18 (380.43 kW), and 61 

(1718.97 kW). AOA [22] and EPFA [17] yielded 

similar losses (69.43 kW) with different bus 

allocations. A-FLO assigned 527.054 kW, 379.53 

kW, and 1719.428 kW to buses 11, 18, and 61 

respectively, resulting in a slightly lower loss of 

69.428 kW. 

Further, the efficacy of A-FLO is analyzed on 

the larger-scale IEEE 118-bus and compared with 

the FLO, Harris Hawks Optimization (HHO) [28], 

Hiking Optimization Algorithm (HOA) [29], and 

Polar Lights Optimizer (PLO) [30] for solving DG 

allocation (Scenario-3). For each algorithm, the 

population size and maximum number of iterations 

are set to 30 and 50, respectively. Additionally, 50 

independent runs are performed.  

In Table 8, the performance of HHO, HOA, PLO, 

and A-FLO is summarized on the IEEE 118-bus 

EDN for the DG allocation problem under Scenario-

3. A-FLO outperforms other algorithms with the 

lowest real power loss (617.50 kW) and reactive 

power loss (455.49 kVAr). The optimal sizes are 

3120.14 kW/ bus-109, 2519.27 kW/ bus-79, 2883.59 

kW/ bus-50 and 2857.87 kW/ bus-71, resulted for 

total DG capacity of 11380.89 kW. It also shows the 

best minimum voltage magnitude (0.954 p.u. at bus 

54) and the smallest AVDI (0.00072), indicating 

superior voltage profile regulation. VSI remains 

consistent across algorithms, with A-FLO and HHO 

showing a slightly better index (0.6557). 

 

 
Table 3. Base case performance (Scenario-1) 

System 𝑷𝒍𝒐𝒔𝒔 𝑸𝒍𝒐𝒔𝒔 𝑨𝑽𝑫𝑰 𝑽𝑺𝑰 

33-bus 210.998 143.033 0.6486 0.0111 

69-bus 225.001 102.165 0.5500 0.0046 

 

 
Table 4. Performance with EV load (Scenario-2) 

System 𝑷𝒍𝒐𝒔𝒔 𝑸𝒍𝒐𝒔𝒔 𝑨𝑽𝑫𝑰 𝑽𝑺𝑰 

33-bus 336.392 226.651 0.57671 0.0139 

69-bus 345.376 159.977 0.47126 0.0057 
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Table 5. Performance with CSs (Scenario-3) 

System 𝑷𝒍𝒐𝒔𝒔 𝑸𝒍𝒐𝒔𝒔 𝑨𝑽𝑫𝑰 𝑽𝑺𝑰 

33-bus 250.516 167.283 0.6300 0.0120 

69-bus 225.124 102.446 0.5500 0.0046 

 

 
Table 6. Performance with CSs and DGs  

(Scenario-4) 

System 𝑷𝒍𝒐𝒔𝒔 𝑸𝒍𝒐𝒔𝒔 𝑨𝑽𝑫𝑰 𝑽𝑺𝑰 

33-bus 88.268 61.175 0.8222 0.0030 

69-bus 183.324 82.039 0.5703 0.0035 

 

 

Table 7. Comparative Study (Scenario-3) 

System Method 
RGDs  𝑷𝒍𝒐𝒔𝒔  

(kW/bus #) (kW) 

33-bus 

IPOA [21] 

801.7/13  

1091.33/24  

1053.64 /30  

72.79 

AOA [22] 

776.4/14 

1099/24 

1070.2/30 

72.79 

A-FLO 

1091.304/13 

801.349/24 

1054.11/30 

72.787 

69-bus 

IPOA [21] 

380.43/18  

1718.97/61  

526.75/11  

69.4262  

AOA [22] 

571.6/11 

1719.9/61 

341/21 

69.43 

EPFA [17] 

381.45/17 

1718.84/61 

525.56/11 

69.43 

A-FLO 

527.054/11 

379.53/18 

1719.428/61 

69.428 

 
Table 8. Simulations on 118-bus EDN 

Item HHO HOA PLO A-FLO 

Ploss 625.39 625.37 626.71 617.50 

Qloss 474.45 474.44 461.58 455.49 

Vmin 0.944/54 0.944/54 0.944/54 0.954/54 

AVDI 0.00074 0.00074 0.00078 0.00072 

VSI 0.6557 0.6556 0.6556 0.6557 

DG 11141.96 11096.18 12041.51 11380.89 

Best  625.39 625.37 626.71 617.50 

Worst 840.95 812.04 842.71 863.60 

Mean 664.41 650.44 675.93 646.47 

Median 667.09 632.15 674.52 628.98 

Std 34.68 36.67 35.58 31.22 

Time 65.7047 66.3859 67.1359 62.1754 

 

 
 

Fig. 2. Voltage profile of IEEE 118-bus 

 

 
Fig. 3. Convergence curves for IEE 118-bus (Scenario-3)  

 

 

In terms of robustness and consistency, A-FLO 

achieved the lowest best (617.50 kW), mean (646.47 

kW), median (628.98 kW), and standard deviation 

(31.22 kW) of real power loss across all runs, 

highlighting its reliable convergence. Furthermore, 

A-FLO recorded the least execution time (62.1754 

seconds), demonstrating computational efficiency 

alongside solution quality. The voltage profile and 

convergence curves for the best results are given in 

Fig. 2 and Fig. 3, respectively. 

6 Conclusion 

 This study introduced Adaptive Frilled Lizard 

Optimization (A-FLO), a novel bio-inspired 

algorithm for the optimal integration of distributed 

generators (DGs) and fast-charging stations (FCSs) 

in distribution networks. By dynamically adjusting 

its exploration and exploitation phases, A-FLO 

effectively addresses the limitations of conventional 

metaheuristics, such as premature convergence and 

local optima trapping. Simulation results across the 
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IEEE 33-bus, 69-bus, and 118-bus test systems 

validate the superior performance of A-FLO: In the 

33-bus system, real power loss reduced from 

336.392 kW (with 50% EV load) to 250.516 kW 

after FCS integration, and further to 88.268 kW 

upon adding PV-based DGs. Voltage stability index 

(VSI) improved from 0.0139 to 0.00298, and 

minimum voltage increased from 0.8793 p.u. to 

0.9743 p.u. In the 69-bus system, losses dropped 

from 345.376 kW to 225.124 kW with FCSs, and 

further to 183.324 kW with PV-DGs. VSI improved 

from 0.0057 to 0.00355, with minimum voltage 

rising from 0.8888 p.u. to 0.9165 p.u. For the 118-

bus system, A-FLO outperformed HHO, HOA, and 

PLO with the lowest real power loss (617.50 kW), 

lowest standard deviation (31.22), and shortest 

computational time (62.17 s) across 50 independent 

runs. It also achieved the highest minimum voltage 

(0.954 p.u.) and the lowest AVDI (0.00072), 

reflecting enhanced voltage regulation. These results 

confirm that A-FLO not only enhances voltage 

stability and loss minimization but also scales 

efficiently to large networks with high penetration 

of renewable energy and EV infrastructure. Its 

adaptability and robustness make it a promising 

optimization tool for real-world smart grid 

applications. 

Notation List 

𝑃𝑗
𝑛𝑒𝑤   : Real power load with CS/DG 

𝑃𝑗
𝑜𝑙𝑑 : Real power load at base case 

𝑄𝑗
𝑛𝑒𝑤  : Reactive power load with CS/DG 

𝑄𝑗
𝑜𝑙𝑑 : Reactive power load at base case 

𝑃𝐶𝑆,𝑗 : Real power demand of CS 

𝑃𝐷𝐺,𝑗 : Real power generation by DG 

𝑄𝐶𝑆,𝑗 : Reactive power demand of CS 

𝑄𝐷𝐺,𝑗 : Reactive power generation by DG 

∅𝑒𝑣,𝑖 : Power factor of EV charger 

∅𝑑𝑔,𝑖 : Power factor of DG power converter 

𝜌𝑖 : Resistance of branch 𝑖(Ω) 

𝑃𝑙𝑜𝑠𝑠  : Total Real power loss 

|𝑉𝑖| : Voltage magnitude of bus i 

𝐴𝑉𝐷𝐼 : Average voltage deviation index 

𝑣𝑆𝐼  : Voltage stability index 

|𝑉𝑟| : Nominal voltage 

𝑍𝑖 : Impedance of branch i 

𝑃𝑖  : Real power demand at bus i 

𝑉𝑚𝑖𝑛 : Minimum voltage limit 

𝑉𝑚𝑎𝑥 : Maximum voltage limit 

𝑁𝑏𝑟 : Total number of branches  

𝑃𝐷,𝑏𝑎𝑠𝑒 : Total real power load at base case 

𝑄𝐷,𝑏𝑎𝑠𝑒 : Total reactive power load at base case 

𝑃𝐷,𝑛𝑒𝑤 : Total real power load with CS/DG 

𝑄𝐷,𝑛𝑒𝑤 : Total reactive power load with CS/DG 

𝑁𝐶𝑆 : Number of CSs 

𝑁𝑑𝑔 : Number of DGs 

𝑁𝑏𝑟 : Total number of branches  

𝑁𝑏𝑢𝑠 : Total number of buses 
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