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Abstract: Classifying 3D human poses with 3D point cloud data is an important task in predicting human activities. 

But spatio-temporal 3D point cloud data processing is complicated. Therefore, a solution is needed to handle it 

properly. A lightweight model without sacrificing its accuracy value is critical. This research presents Convolutional 

Neural Network (CNN) 3D based on Binary Voxel Feature Extraction (BIVFE) from Light Detection and Ranging 

(LiDAR) 3D point cloud data to enhance human poses prediction. This method is effective for analyzing temporal 

data from LiDAR systems, achieving excellent accuracy so that it can recognize several human poses very well. This 

method influences the discovery of a fit model. This research uses a novel dataset consisting of four classes: the 

stand-up pose, the sit-down pose, the squat-down pose, and the hands-to-the-side pose. This research also 

investigates the convolution of structure and the hyperparameter tuning. The average accuracy is 99.25% with 

inference time 1.7 seconds, and the best conditions when the hyperparameter settings are Adam optimizer, learning 

rate 0.0001, batch size 1, and epoch 50. These findings suggest that our proposed method presents promising 

opportunities for enhanced learning outcomes. These findings validate the CNN 3D based on BIVFE from LiDAR 

3D point cloud data is accurately predicting human pose while handling the challenging of spatio-temporal 3D point 

cloud data. This research was also conducted on the benchmark dataset ModelNet10, ModelNet40, and ModelNet40-

C. The results have proven our findings to be suitable and reliable for multi-class prediction case and quite reliable 

on data conditions containing noise as in ModelNet40-C. Our novel dataset can be visited at 

https://github.com/fzrahmanti/3Dhumanpose. 

Keywords: LiDAR 3D, Human pose prediction, Binary voxel feature extraction (BIVFE), Convolutional neural 

network (CNN) 3D, Spatio-temporal 3D point cloud. 

 

 

1. Introduction 

Robustness in 3D point cloud human pose is an 

indispensable part of various apps, such as 

pedestrian detection focuses on identifying 

pedestrian or human locations [1 - 9], human pose 

estimation focuses on detecting joint points in the 

human body with the aim of understanding human 

movement [10 - 15], human action recognition 

focuses on the identification and classification of 

human actions derived from visual data [16 - 18], 

and human activity recognition focuses on 

recognizing the human long-term sequence of 

actions [19]. They are mainly focused on computer 

vision applications that use images or videos. 

However, advanced technologies that use sensors 

other than cameras, such as Light Detection and 

Ranging (LiDAR) 3D, led to additional difficulties 
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in object detection, pose prediction, activity 

recognition, etc. 

Human pose prediction is a basic task in 

recognizing human activities. Pose prediction falls 

under the field of computer vision and artificial 

intelligence. Human pose prediction is the first step 

to make a machine or robot able to recognize 

everyday human activities. 

Efficiency and accuracy in recognizing human 

poses are critical, so computer vision technology is 

expected to be applied in the real world. A 

lightweight model without sacrificing its accuracy 

value is critical. 

Human pose prediction is possible to use several 

devices, such as cameras, radar, and LiDAR. This 

research focuses on the use of LiDAR for human 

pose prediction. LiDAR emits light on surrounding 

objects when scanning. The closer the distance 

between the object and the LiDAR, the higher the 

point density. The further away the object is, the 

lower the point density. 

LiDAR produces data with spatial coordinates, 

namely point cloud data.  This data has specific 

geographic information within a certain time span. It 

refers to a number of vectors with geometric 

positions in a coordinate system. Our research used 

LiDAR 3D. Each point consists of 3D coordinates, 

so it has x, y, and z values. 

Some approaches that are often used in handling 

3D points include point-based approaches by 

utilizing 3D points [3, 16, 20-23] but difficulty in 

handling non-uniform data density, projection-based 

approaches by converting into a 2D representation 

[6, 23] but loss of 3D information, and graph-based 

approaches by representing 3D points in a graph 

structure [16, 24] but difficulty handling temporal 

dynamics.  

Voxel-based approach is the best solution for 

human pose prediction case. Voxel-based 

approaches by utilizing 3D points that are 

transformed into 3D voxel [16, 23, 25, 26]. Our 

strong approach is to use Binary Voxel Feature 

Extraction (BIVFE) to handle points in 3D space. 

This approach uses grids of a certain size. Each 3D 

point is inserted into the grids. The voxel approach 

ignores the density of points because they are 

already represented in the voxel grid so that it can 

speed up the feature retrieval process. Then, the 

voxel transformed into binary form. This feature 

approach is powerful and effective in recognizing 

human poses. The features that have been obtained 

as input values in the deep learning stage. This stage 

aims to train the spatio-temporal 3D point cloud data 

using CNN 3D based on Binary Voxel Feature 

Extraction (BIVFE). The CNN 3D algorithm is very 

effective in handling volumetric data or data with 

three dimensions: video (spatial and temporal 

dimensions) and point cloud data. The CNN 3D 

captures spatial and temporal features 

simultaneously. Capable of extracting more 

challenging and detailed features than CNNs 2D due 

to the 3D convolution kernels that operate on data in 

three dimensions. The fit model is used for testing 

on test data. 

The main contributions of this paper are: 

• This research proposes a CNN 3D based on 

BIVFE to enhance human pose prediction in 

spatio-temporal 3D point cloud data. This 

approach is effectively reliable for predicting 

human pose in multiple classes. 

• The BIVFE approach is an efficient approach to 

obtain features in 3D point cloud data. Without 

reducing the information of the data and not 

considering the density of points to be efficient in 

the process of obtaining features. The illustration 

of points in a 3D point cloud is represented in a 

voxel grid as in Fig. 1. An example of the basic 

human pose is a standing pose, such as in the 

figure. Several points are in 3D space. Each point 

is represented in a voxel grid that has a specific 

size. The dimensions of the grid size can be 

determined in advance. One voxel can have more 

than one 3D point. After voxelization, it 

transformed into binary form. This approach called 

Binary Voxel Feature Extraction (BIVFE). The 

BIVFE output is an input into the learning process.  

• This research investigates the convolution 

structure, CNN 3D, and CNN 2D with several 

models. It also investigates the use of an optimizer 

by using evaluation metrics that consider 

simplicity, accessibility, convergence stability, and 

computational efficiency. 

• This research represents a novel human pose 3D 

point cloud dataset that consists of stand-up, sit-

down, squat-down, and hands to the side poses. 

The human poses chosen are basic poses for 

carrying out daily activities. If the developed 

system can recognize basic poses well, then future 

developments can recognize other more 

challenging poses and even recognize human 

activities. Our novel dataset can be accessed on 

this link 

https://github.com/fzrahmanti/3Dhumanpose.git . 

• This research also conducted training and testing 

on the benchmark ModelNet10, ModelNet40, and 

ModelNet40-C datasets. The results of this 

benchmark dataset have proven our findings to be 

suitable and reliable for multi-class prediction case 

and quite reliable on data conditions containing 

noise, as in ModelNet40-C. 
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Figure. 1 Illustration of 3D points into voxel representation and 3D standing human pose into voxel representation 
 

The rest of the paper is organized as follows, 

Section 1 presents the background problem raised, 

the proposed solution, a brief explanation of the 

research carried out, and the main contribution of 

this research. Section 2 discusses the related works 

and their gaps. Section 3 explains the dataset used 

and the proposed method. Section 4 shows the 

experiment results and discusses them. Section 5 

discusses the conclusion of this research. 

2. Related works 

In this section, we represent the related works 

and their gaps. Several main research have been 

used as references in our research. 

The research is conducted by [16] using NodeNs 

sensors to recognize human activity. The output data 

from this device is point cloud data. This research 

uses a single object and multiple objects, combining 

several human activities. It also compares with 

previous research that used different benchmark 

datasets. The first step is segmentation using 

DBSCAN to determine which areas have high and 

low point densities. Then, this research used an 

LSTM approach to recognize human activity. The 

accuracy result for a single subject reaches 95.75%. 

Therefore, there is room to improve accuracy with 

several activities and different devices. 

In the other related work by [25], the research 

uses two approaches to processing point cloud data: 

a point-based and a voxel-based approach. The 

purpose of the research is to detect 3D objects with 

the Waymo dataset and KITTI benchmark dataset. 

The objects used are car, pedestrian, and cyclist. It 

outperformed other methods in the cyclist class 

alone, with the best score of 83.04%. The research 

reveals a gap in the method approach's application to 

human pose prediction and accuracy can be 

improved. 

Several research by [11] and [27] focused on 

LiDAR-based human pose. The research by [11] 

combined LiDAR and camera data to estimate 

human pose. Therefore, the present research 

maximized and used data derived from LiDAR to 

predict human poses. [27], applied 3D convolutional 

methods in temporal learning tasks, specifically in 

estimating the 3D point cloud human pose. The 

present one implemented CNN 3D based on BIVFE 

of LiDAR 3D point cloud data for human pose 

prediction in spatio-temporal. Our approach has 

proven effective in predicting human pose because it 

reaches 99.25% the accuracy value better than 

previous research. 

The research is conducted by [28], the stochastic 

gradient descent optimizer has the best results in 

detecting breast cancer in medical images. The 

stochastic gradient descent optimizer also has the 

shortest time during the training process compared 

to Adam and RMSprop. This inspired us to try using 

the stochastic gradient descent optimizer in 

recognizing human poses considering the accuracy 

and speed factors needed in the real world. Fast 

training time is needed to process challenging 3D 

point cloud data, which is a challenge for this 

research. But we also investigate Adam optimizer 

for our case. 

Several strategies for assessing human pose 

classification, including dataset handling, 

preprocessing, convolutional layers, deep learning, 

and validation methods were also explored. A 

literature overview of several previous 
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Table 1. A literature overview of several previous methodologies 

Resear

ch 

Methodology Limitations Device 

Used 

Dataset Research Gap 

[1], 

2020 

Pedestrian Planar 

LiDAR Pose (PPLP) 

Network: OrientNet, 

Region Proposal 

Network (RPN), 

PredictorNet 

Handling 2D 

point cloud data 

and RGB images 

LiDAR 

2D, 

monocular 

camera 

imagery 

 

CMU Panoptic Dataset 

and a newly collected 

FCAV M-Air 

Pedestrian (FMP) 

Dataset 

Data processing is 

not much challenging 

3D point cloud data, 

but limited 

information on data 

[6], 

2022 

Bird Eye View 

(BEV) feature 

extraction network 

Object detection LiDAR 

and camera 

KITTI dataset and 

mobile robot 

Does not focused on 

human poses derived 

from 3D point cloud 

[11], 

2020 

RGB and RGB-D 

approach 

Human pose 

estimation 

LiDAR Raw dataset Does not focused on 

human poses 

prediction derived 

from 3D point cloud 

[12], 

2019 

Support Vector 

Machine (SVM) 

3D dense skeleton 

and corresponding 

joint locations 

LiDAR 

Full 

Motion 

Video 

(FMV)  

Raw dataset Differences in the 

used method and the 

comparison method 

[16], 

2017 

DBSCAN + LSTM Human activity NodeNS Raw dataset Differences device 

used 

[24], 

2023 

Modified GDANet  Noise and clutter 

point cloud data 

LiDAR 3D Raw dataset, 

ModelNet40-C  

Multi-class object 

detection and static 

data 

[26], 

2023 

Modified VGG-16  Human 

classification  

LiDAR 3D Raw dataset Does not handling on 

temporal data 

[27], 

2019 

3D convolutional 

neural network 

3D human 

estimation 

Two depth 

cameras 

Raw dataset and public 

dataset (ITOP, EVAL, 

PDT) 

Differences in the 

form of data 

processing because it 

comes from a 

different device 

[29], 

2020 

FatNet Focused on data 

processing then 

will be classified 

(-) 

no device 

required 

ModelNet40 dataset Point cloud 

classification 

[30], 

2019 

Dynamic Graph CNN 

(DGCNN)  

Object detection (-) 

no device 

required 

ModelNet40, 

ShapeNetPart, and 

S3DIS dataset 

Point cloud 

segmentation on 

static data 

[31], 

2018 

PointCNN  Focused on point 

cloud handling 

problem 

(-) 

no device 

required 

Net40, ScanNet, TU-

Berlin, Quick Draw, 

MNIST, CIFAR10, 

ShapeNet Parts, 

S3DIS, ScanNet 

Does not work with 

3D point cloud data 

[32], 

2024 

DRF-SSD Object detection (-) 

no device 

required 

KITTI dataset Point cloud 

segmentation by 

reducing information 

loss 

[33], 

2025 

NCFDet Object detection 

from multi 

modals 

6D rotating 

platform 

Raw dataset,  

KITTI dataset 

Robustness of image 

and point cloud 

features 

Current Binary Voxel Feature 

Extraction (BIVFE) + 

CNN 3D 

(Proposed Method) 

Focused on 

spatio-temporal 

point cloud data 

LiDAR 3D Novel human pose 

dataset, ModelNet10, 

ModelNet40, 

ModelNet40-C 

Binary voxel feature 

extraction and 

addresses spatio-

temporal data of 

human pose 

prediction. 
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Figure. 2 The block diagram of getting materials 

 

 

 
Figure. 3 Type of human poses 

 

 

methodologies is shown in Table 1. The differences 

are visible based on methodologies, limitations, 

device used, dataset, and research gap. Our proposed 

method, CNN 3D based on BIVFE of LiDAR 3D 

point cloud data. The BIVFE approach is an 

efficient approach to obtain features in 3D point 

cloud data. Our proposed method is effective in 

enhancing human pose prediction. It uses a 3D 

convolution structure, which proves that it is 

excellent result at recognizing human poses in 

spatio-temporal 3D point cloud data. 

3. Materials and method 

In this section, we explain the materials and the 

proposed methods of this work. The materials 

consist of the data collection, data processing, and 

data preparation. The block diagram of getting 

materials is shown in Fig. 2. 

Fig. 3 shows the types of human poses. Several 

types of poses were chosen, including sitting, 

standing, squatting, and sideways hand poses. 

Sitting and standing poses were chosen because they 

are basic human poses for various activities. The 

sideways hand pose is one of the human poses when 

exercising, and the squatting pose is one of the 

human poses when in the toilet. 

3.1 Materials 

The primary dataset used during this research 

was collected by itself using 3D Light Detection and 

Ranging (LiDAR). The distance between the blade 

and the LiDAR sensor is about 120 cm. The output 

from the LiDAR scanning process is in PCAP 

format. Data processing is needed, this step is used 

to process PCAP data into PCD format and extract 

each frame from the temporal 3D point cloud data. 

The sequence of steps is shown in Fig. 3, a block 

diagram of getting materials. Our dataset can be 

accessed on this link 

https://github.com/fzrahmanti/3Dhumanpose.git . 

3.2 Proposed method 

The proposed method of this research has a 

block diagram as in Fig. 4. Several steps taken 

include taking human pose data using LiDAR 3D, 

preprocessing data with BIVFE, and training using 

CNN 3D-based models so that it produces human 

pose predictions. This research also investigates the 

hyperparameter changes. The challenge of the 

proposed method is whether it also excels in the 

multiclass case when using the benchmark dataset, 

so we also added testing against ModelNet10, 

ModelNet40, and ModelNet40-C. 

The data used in this research are discussed in 

the materials section. We will now discuss how to 

obtain features from 3D point cloud data using 

BIVFE approach and train using CNN 3D-based 

models. Each step from Fig. 4 will be explained in 

more detail in the following review. 
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Figure. 4 The Block diagram of human pose prediction using CNN 3D based on BIVFE from LiDAR 3D point cloud 

data 

 

 
Figure. 5 CNN 3D-BIVFE Model
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3.3 Binary voxel feature extraction (BIVFE) 

The Binary Voxel Feature Extraction (BIVFE) 

consists of three parts, they are feature scaling, 

transformation, and voxel representation.  

Feature scaling aims to handle numeric data with 

a different range of values, so it is necessary to 

present the numeric data on the same scale. At this 

part, this research uses a min-max scaler. The 

formula can be seen in Eq. (1). All features are 

scaled between a specified minimum and maximum 

value. At this stage, we have x’, y’, and z’ values. 

These results will later become input values at 

the transformation perform. The transformation 

performs used scaler transform, the output is x”, y”, 

and z”. Those 3D points will be represented into 

voxel grid.  

The voxel approach starts from 3D points of 

point cloud data represented by a voxel grid of a 

certain size. The dimension of the grid is 16 x 16 x 1. 

The voxel representation of 3D points that have 

transformation and feature scaling produces binary 

voxels, where these results are used as feature 

extraction that enters the learning process. There are 

only values 1 and 0, these values mean the existence 

of a point in a voxel grid, which are the results of 

feature extraction and namely Binary Voxel Feature 

Extraction (BIVFE). It is easy and fast enough that 

the obtained features are immediately fed into the 

CNN 3D. The BIVFE described in Fig. 4 is an input 

learning.  

 

𝑋 𝑛𝑒𝑤 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
. (𝑚𝑎𝑥 − 𝑚𝑖𝑛) + 𝑚𝑖𝑛 (1) 

  

3.4 Adaptive moment estimation (Adam) 

optimizer 

Adaptive Moment Estimation or Adam 

Optimizer combines AdaGrad and RMSprop 

Optimizers. Adam optimizer uses the first moment 

(mean) and second moment (variance) estimates of 

the gradient to update the parameters. 

The Adam algorithm calculates the gradients 𝑔 

of the loss function ℒ on Eq. (2). Adam is refreshing 

the first-moment estimations 𝑚  and the second-

moment estimations  𝑣, which are in Eq. (3) and Eq. 

(4), respectively. Then, the bias in the first and 

second moment estimates is corrected as in Eq. (5). 

After that, calculate the adaptive learning rate α as 

in Eq. (6). Adam is refreshing the parameter model 

using Eq. (7). 

 

𝑔(𝑡) = ∇ℒ (𝜃(𝑡−1))    (2) 

 

𝑚(𝑡) = 𝛽1 𝑚(𝑡−1) + (1 − 𝛽1) 𝑔(𝑡)  (3) 

 

𝑣(𝑡) = 𝛽2 𝑣(𝑡−1) + (1 − 𝛽2) (𝑔(𝑡)⨀ 𝑔(𝑡)) (4) 

 

�̂�(𝑡) =
𝑚(𝑡)

1−𝛽1
𝑡 , 𝑣(𝑡) =

𝑣(𝑡)

1−𝛽2
𝑡   (5) 

 

𝛼(𝑡) =  
𝛼(𝑡−1) √1−𝛽2

𝑡

1−𝛽1
𝑡     (6) 

 

𝜃(𝑡) = 𝜃(𝑡−1) −  
𝛼(𝑡) �̂�𝑡

√�̂�(𝑡)+𝜖
                (7) 

3.5 Stochastic gradient descent (SGD) optimizer 

SGD uses a subset of the data to update 

parameters, thereby reducing the computational 

burden compared to the entire dataset as in the 

Gradient Descent (GD) method. SGD has better 

generalization ability with new data. More frequent 

parameter updates (every mini-batch) allow SGD to 

find local minima faster than batch gradient descent 

methods that update parameters only once per epoch 

[11]. 

The SGD optimizer requires less memory 

because it only processes one mini-batch of data at a 

time, while other methods may require storing 

gradients for the entire dataset. The SGD algorithm 

is relatively simple and more accessible than other 

complex optimizers. 

 
𝑔𝑡 = ∇𝜃𝑡𝐽(𝜃𝑡)  (8) 

 

∆𝜃𝑡 = −𝜂. 𝑔𝑡  (9) 

 

𝜃𝑡′ = 𝜃𝑡 +  ∆𝜃𝑡  (10) 

 

Where the iteration t, η learning rate on Eq. (8), 

Eq. (9), and Eq. (10). Some things to consider when 

choosing a learning rate when using SGD are that 

the inaccuracy of the learning rate can cause slow 

convergence or the model not to converge at all, and 
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the loss value can fluctuate and be unstable from 

iteration to iteration. 

3.6 Convolutional neural network (CNN) 3D 

Much research has used artificial intelligence, 

machine learning, or deep learning to solve 

problems such as optimization case [34], improving 

network security [35], detection case [36]-[37], 

decision support [38], and expert system [39]. 

3D convolution is usually used for volumetric 

and sequential data, the structure of 3D convolution. 

It is suitable for detecting 3D objects in 3D point 

cloud data. 3D convolution can capture spatial-

temporal information that cannot be done with 2D 

convolution. 3D convolution works by using a 3D 

filter that covers volumetric input data such as 3D 

point cloud data. This filter moves along 3D to 

capture spatial and temporal features simultaneously, 

so this 3D convolution requires more computing 

resources. The 3D input size is din x hin x win, the 

filter 3D convolution size is dk x hk x wk and the 

feature map size is dout x hout x wout. 

The convolution architecture of the proposed 

CNN 3D based on BIVFE of LiDAR 3D point cloud 

in this research is shown in Fig. 5. The 3D point 

cloud data is represented into a voxel.  This research 

uses Binary Voxel Feature Extraction (BIVFE), then 

results as an input layer in the learning process. 

The convolution layers consist of three blocks. 

Block one consists of 3D convolution and max 

pooling. This 3D convolution used filter 16 and 

kernel dimensions 3 x 3 x 3. The dimension of max 

pooling used in Block one is 2 x 2 x 2.  

Block two consists of two 3D convolution and 

max pooling. The 3D convolution used filter 32 and 

kernel dimensions 3 x 3 x 3. The dimension of max 

pooling used in Block two is 2 x 2 x 2. 

Block three consists of three 3D convolutions 

and max pooling. The 3D convolutions used filter 

64 and kernel dimensions 3 x 3 x 3. The dimension 

of max pooling used in Block three is 2 x 2 x 2. Each 

convolution in each block used ReLU activation. 

After a fully connected layer follows the 

convolution layer and produces a human pose 

prediction class. A list of abbreviations of this 

research can be seen in Table 2. 

4. Result and discussion 

The total data used in this research is 1000 

frames of 3D point cloud. We divide the data 

preparation into two: using cross-validation and 

without cross-validation. Data preparation with 

cross-validation amounts to 250 frames for each 

human pose class, while data preparation without 

cross-validation amounts to 100 frames. Table 3 

shows the scenario experiment and division of 

training and test data. The k-fold cross-validation 

was used, and this research used 5-fold during the 

experiment. This research also tests the proposed 

method against benchmark datasets such as 

ModelNet10, ModelNet40, and ModelNet40-C. 

In addition to the dataset, another essential thing 

is the computer specifications used during the 

training and testing process. This research uses 

computer specifications CPU Intel(R) Core(TM) i5-

8350U CPU @1.70GHz and memory 16GB speed 

2400 MHz. 

First of all, we did cross-validation using 5-fold 

during the training and testing process, and the 

results we have observed are the best results 

according to Table 4. The AlexNET model with 

Adam optimizer has the best results when fold 2 is 

used. The human pose class that was successfully 

predicted perfectly is the hands to the sides (arm 

stretching pose). At the same time, the sit-down and 

squat-down poses have the same f-score value and 

are very good. So, it can be concluded that this 

model is very accurate and sensitive to data. 

The LeNET model with Adam optimizer has the 

best results when fold 3. Almost the same as the 

results of the AlexNet model, the human poses that 

were successfully predicted perfectly were the 

stretching arms pose and the squat down pose. The 

human pose with quite good results, with an f-score 

of 0.91, was the sit-down pose compared to the 

stand-up pose, with an f-score of 0.89. So, it can be 

concluded that the prediction results for the sit-down 

human pose are more accurate and sensitive than the 

stand-up pose prediction. 

CNN 3D with Adam optimizer was also 

implemented on the VGG16 model. In this 

experiment, it had the best results on fold 3. This 

model recognizes human poses very well and is 

sensitive to data, as evidenced by the f-score value 

for each human pose class, which is 0.95. 

Table 4 shows the evaluation results with CNN 

3D with Adam optimizer. It has the best results on 

the AlexNet CNN model with fold 2, which is able 

to predict poses very well in all human poses. This 

is evidenced by the perfect f-score value of 1 in the 

stand-up and hands-to-the-side pose classes and a 

very good f-score value in the sit-down and squat-

down poses. 

Experiments were also conducted with a 2D 

convolution structure that aims to provide evidence 

and more deeply analyze the 3D convolution 

structure, which is suitable for handling spatio- 

temporal data such as spatio-temporal 3D point 
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Table 2. Abbreviation during experiments 

Abbreviation Details 

N The number of frames 

din, hin, win, Input size 

dk, hk, wk Kernel size 

dout, hout, wout Output size 

x, y, z 3D points 

K K-Fold, Division of a dataset into 

K subsets of equal size 

E Evaluation 

Θ Model parameters 

Α Learning rate 

β1, β2, ε Hyperparameters 

 

Table 3. Scenario experiment of this research 

Scenario Dataset With 

Cross-

Validation 

Total Total Data for Each Class Convolution 

Dimension 

Optimizer 

1 Our novel 

dataset 

Yes 1000 250 stand-up (200 training, 

50 testing) 

250 sit-down (200 training, 

50 testing) 

250 squat-down (200 

training, 50 testing) 

250 hands-to-the-side (200 

training, 50 testing) 

CNN 3D Adam 

2 Our novel 

dataset 

CNN 2D Adam 

3, 4 Our novel 

dataset 

No 400 

and 

100 

100 stand-up (80 training, 20 

testing) 

100 sit-down (80 training, 

20 testing) 

100 squat-down (80 training, 

20 testing) 

100 hands-to-the-side (80 

training, 20 testing) 

CNN 3D Adam 

5, 6 400 

and 

100 

CNN 3D SGD 

7 ModelNet10 No 4899 The amount of data varies 

for each class 

CNN 3D Adam 

8 ModelNet40 No 12311 The amount of data varies 

for each class. (2468 testing) 

CNN 3D Adam 

9 ModelNet40-C No 12311 The amount of data varies 

for each class. (2468 testing) 

CNN 3D Adam 

 
Table 4. Best evaluation result on CNN 3D based on BIVFE with Adam optimizer (scenario 1) 

CNN 

Model 

K-Fold Evaluation Sit Down Squat Down Stand Up Hands to the Sides 

AlexNet 2 Recall 0.91 1.00 1.00 1.00 

Precision 1.00 0.90 1.00 1.00 

F-Score 0.95 0.95 1.00 1.00 

LeNet 3 Recall 0.83 1.00 1.00 1.00 

Precision 1.00 1.00 0.80 1.00 

F-Score 0.91 1.00 0.89 1.00 

VGG16 3 Recall 0.91 1.00 0.91 1.00 

Precision 1.00 0.90 1.00 0.90 

F-Score 0.95 0.95 0.95 0.95 
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Table 5. Evaluation result on CNN 2D based on BIVFE with Adam optimizer (scenario 2) 

Model K-Fold Evaluation Sit Down Squat Down Stand Up Hands to the Sides 

AlexNet 2 Recall 0.83 1.00 1.00 1.00 

Precision 1.00 0.90 0.90 1.00 

F-Score 0.91 0.95 0.95 1.00 

LeNet 2 Recall 0.83 1.00 1.00 1.00 

Precision 1.00 0.90 0.90 1.00 

F-Score 0.91 0.95 0.95 1.00 

VGG16 2 Recall 0.77 0.78 1.00 1.00 

Precision 1.00 0.70 0.80 1.00 

F-Score 0.87 0.74 0.89 1.00 

 

 

cloud data from LiDAR. Therefore, this research 

also implements a CNN 2D with the Adam 

optimizer, which has evaluation results according to 

Table 5. The AlexNet, LeNet, and VGG16 models 

with CNN 2D have the best results on fold 2. 

However, each has different precision, recall, and f-

score values results. The AlexNet model can 

recognize human hand poses to the side ideally but 

can still recognize other human poses, such as sit-

down, squat-down, and stand-up poses, very well 

with f-score values of 0.91, 0.95 and 0.95, 

respectively. The results of this evaluation on the 

AlexNet model with a CNN 3D are better than those 

of the AlexNet model with a CNN 2D. 

Meanwhile, the LeNet model with CNN 2D and 

Adam optimizer has very good evaluation results, so 

it is able to recognize human poses with f-score 

values in each class of human poses: sit-down 0.91, 

squat-down 0.95, stand-up 0.95, and hands to the 

sides 1. The results of this evaluation on the LeNet 

model with CNN 3D have perfect results on the 

squat-down, and hands-to-the-sides poses compared 

to the LeNet model with CNN 2D. 

The VGG16 model with a CNN 2D has quite 

good results in recognizing human poses but still has 

lower results than the VGG16 model with a CNN 

3D. Table 5 shows that the f-score evaluation results 

for each pose of sit-down, squat-down, stand-up, 

and hands to the sides are 0.87, 0.74, 0.89, and 1.00, 

respectively. These results indicate that the VGG16 

model with CNN 3D and Adam optimizer can 

recognize human poses and is very sensitive to new 

data compared to the VGG16 model with CNN  2D 

and Adam optimizer. 

Comparison of the accuracy of CNN 3D and 

CNN 2D according to Table 6. The accuracy results 

presented in the table show that the CNN 3D with 

the best model is the AlexNet model with Adam 

optimizer on fold 2 with an accuracy value of 97%. 

At the same time, the CNN 2D with the best model 

is the AlexNet model with Adam optimizer on fold 

2 with an accuracy value of 95%. A less favorable 

scenario occurred with 5-fold cross-validation, 

resulting in a significantly lower accuracy of 55% 

and 53%. These results show that the CNN 3D, 

accurately predicted human pose. The chart's 

visualization and error bar can be shown in Fig. 6. 

In this scenario of current experiment, it can be 

highlighted that the best performance was observed 

when CNN 3D with Adam optimizer was used in 

the AlexNet CNN model, which achieved an 

impressive accuracy of 97. This best model of CNN 

3D is very accurate and sensitive to data. 

The comprehensive accuracy comparison 

between CNN 3D and CNN 2D methods. 

Meanwhile Fig. 7 depicts the confusion matrix for 

the top-performing model, with instances of 

incorrectly and correctly predicted 3D point cloud 

human pose in this setting.  This is due to the 

ambiguity of human poses, which have similarities 

between squatting and sitting down poses. In 

addition, the proposed model has difficulty 

recognizing human poses in detail due to the lack of 

local information caused by the point density 

variance. Meanwhile, the results of the evaluation 

metrics are obtained by getting FP, FN, TP, and TN. 

This research is categorical cases based on its data, 

so the test evaluation is done using the metrics of 

accuracy, precision, recall, and f-score. Accuracy 

can be calculated from the TP, TN, FP, and FN 

values. 

Fig. 8 shows the accuracy and loss model graph, 

the accuracy graph for training and validation, and 

the loss graph for training and validation for the best 

CNN 3D with Adam optimizer in this experiment. 

Moving from Fig. 8 to Table 7, another 

experiment, this time using changes in data, the 

number of epochs, and the optimization method 

used. It can be concluded from this table that our 

proposed method, namely CNN 3D based on BIVFE, 



Received:  March 25, 2025.     Revised: May 11, 2025.                                                                                                    311 

International Journal of Intelligent Engineering and Systems, Vol.18, No.6, 2025           DOI: 10.22266/ijies2025.0731.19 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  
License details: https://creativecommons.org/licenses/by-sa/4.0/ 

is very effective and efficient in recognizing human 

poses with the best results using Adam optimizer 

and 50 epochs. The time required to perform 

training is quite short, 50 epochs, compared to using 

other optimizations, namely SGD. So, the use of 

Adam optimizer is quite fast in recognizing human 

poses. 

 

Table 6. Comparison the accuracy results between CNN 3D and CNN 2D with Adam optimizer 

Convolution 

Structure 

Model K-Fold Accuracy 

(%) 

Convolution 

Structure 

Model K-Fold Accuracy 

(%) 

3D AlexNet 1 88 2D AlexNet 1 85 

2 97 2 95 

3 95 3 88 

4 90 4 95 

5 60 5 75 

LeNet 1 88 LeNet 1 95 

2 93 2 95 

3 95 3 90 

4 90 4 85 

5 60 5 65 

VGG16 1 88 VGG16 1 85 

2 88 2 88 

3 95 3 82 

4 80 4 75 

5 55 5 53 

 

 

 
Figure. 6 Comparison the accuracy results between CNN 3D and CNN 2D with Adam optimizer and their error  bar
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Figure. 7 CNN 3D with Adam optimizer and epoch 50 

 

 

 
Figure. 8 CNN 3D based on BIVFE with Adam optimizer and epoch 50 

 

 
Table 7. Experiment results of CNN 3D based on BIVFE with hyperparameter changes (scenario 3 until 6) 

Scenario Total 

Data 

Epoch Learning 

Rate 

Optimizer Testing Accuracy 

(%) 

Inference Time 

(seconds) 

3 100 850 0.01 SGD  100 1.2 

4 400 850 0.01 SGD  100 1.2 

5 100 50 0.0001 Adam  97 1.7 

6 400 50 0.0001 Adam 100 1.7 

 

 
Table 8. Comparison of average accuracy using different datasets based on total data and average accuracy 

Dataset Total Data Average Accuracy (%) Average Inference Time 

(seconds) 

ModelNet10 4899 89.43 13.86 

ModelNet40 12311 91.90 30.39 

ModelNet40-C 12311 93.11 28.87 

Our novel dataset 1000 99.25 1.45 
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Table 9. Comparative research of different methodology 

Research Methodology Focus Dataset Accuracy 

(%) 

[6], 2022 Bird Eye View (BEV) feature 

extraction network 

Object detection KITTI dataset 

and mobile robot 

87.43 

[26], 2023 Modified VGG-16  Human classification  Raw dataset point 

cloud 

90.00 

[24], 2023 Modified GDANet  Noise and clutter point cloud data Raw dataset, 

ModelNet40-C 

96.70 

[27], 2019 3D convolutional neural 

network 

3D human estimation Raw dataset and 

public dataset 

(ITOP, EVAL, 

PDT) 

98.00 

[32], 2024 DRF-SSD Object detection KITTI dataset 88.74 

[33], 2025 NCFDet Object detection from multi 

modals 

Raw dataset,  

KITTI dataset 

91.77 

Current Proposed Method: CNN 3D 

based on BIVFE 

Human pose prediction that 

focused on spatio-temporal 3D 

point cloud data 

Novel human 

pose dataset, 

benchmark 

dataset: 

ModelNet10, 

ModelNet40, 

ModelNet40-C 

99.25 

 

Another experimental scenario is an experiment 

with CNN 3D based on BIVFE with hyperparameter 

changes. Those experiments do not use cross-

validation, so the data distribution between training 

and testing data is also different. Those experiments 

use 400 data, with 320 training data and 80 testing 

data. Table 7 shows the results of the experiments 

conducted in this research with epoch 50 for Adam 

optimizer and 850 for SGD optimizer. The best 

experiment is when this research uses Adam 

optimizer with epoch 50, batch size 1, learning rate 

0.0001, and it has an inference time of 1.7 seconds. 

This research proposes CNN 3D based on 

BIVFE with Adam optimizer, which has been 

proven to recognize human poses better than other 

comparative methods. The number of datasets has 

been proven to affect the accuracy value and 

computation time. The more data is trained, the 

better the machine recognizes human poses. The 

experiment with Adam produced excellent accurate 

results. It was efficient in recognizing human poses 

by remembering the epoch value. 

Testing the reliability of the proposed method 

requires using not only our dataset but also other 

public datasets such as ModelNet10, ModelNet40, 

and ModelNet40-C. In a comparison of experiments 

using our proposed method, the ModelNet10 dataset 

achieve an accuracy value of 89.43%, the 

ModelNet40 dataset achieve an accuracy value of 

91.90%, and the ModelNet40-C dataset achieve an 

accuracy value of 93.11%. In comparison, our 

dataset has an average accuracy of 99.25%. Table 8 

shows that the proposed method is very effective for 

multi-class cases, quite reliable on data conditions 

containing noise as in ModelNet40-C, and efficient 

because it only consumes 50 epochs. 

Table 9 is comparative research of different 

methodology, focus, and accuracy results. The 

results analyzed in this current scenario show that 

the best models are an architecture with a CNN 3D 

based on BIVFE with Adam optimizer. The 

proposed method successfully outperforms other 

methods. 

Fig. 9 shows the evaluation metrics such as 

accuracy, precision, recall, and f-score. The f-score 

from the best performance has an excellent result; 

there is a balance between precision and recall 

results, which means the model accurately predicts 

and captures the positive class. Our proposed 

method is very good at predicting human poses of 

LiDAR 3D point clouds.  

5. Conclusion 

This research proposes a CNN 3D based on 

BIVFE from LiDAR 3D to enhance human pose 

prediction in spatio-temporal 3D point cloud data. 

This approach is effectively reliable for predicting 

human pose in multiple classes. 

The experiment in this research used cross-

validation and the one without cross-validation to 

transmit model performance. The existence of this 

scenario aims to determine the effect of cross-

validation. Analysis of the experimental results 

shows that the computing time is longer if cross-

validation is used because the model is trained and 
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Figure. 9 Precision, recall, f-score, support from each class from best performance 
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tested several times according to the fold that was 

determined at the beginning of the experiment. If 

cross-validation is not done, it will be faster because 

it only involves one training and testing process. 

However, if you do not use cross-validation, it 

will be susceptible to bias if the train-test split data 

is not done representatively. However, this did not 

happen in the experiments that have been carried out. 

The cross-validation scenario can provide excellent 

results for the dataset used. 

This research also investigates the convolution 

structure, CNN 3D and CNN 2D with several 

models. It also investigates the hyperparameter 

changes by using evaluation metrics that consider 

simplicity, accessibility, convergence stability, and 

computational efficiency. The experimental results 

showed that integrating 3D convolution in 

convolutional layer of a deep learning model with 

Adam optimizer increased accuracy in recognizing 

human pose until it reached 99.25% with inference 

time 1.7 seconds. 

This research represents a novel human pose 3D 

point cloud dataset that consists of stand-up, sit-

down, squat-down, and hands to the side poses. But 

this research was also conducted training and testing 

on the benchmark ModelNet10 dataset and it 

reached 89.43% for accuracy value. In addition, this 

research also conducted experiments on the 

benchmark dataset ModelNet40 and ModelNet40-C, 

the accuracy results of which reached 91.90% and 

93.11%. The results of this benchmark dataset have 

proven our findings to be suitable and reliable for 

multi-class prediction case and quite reliable on data 

conditions containing noise. 

There is a case where the proposed model fails 

to predict the 3D point cloud human pose due to the 

ambiguity of human poses, which have similarities 

between squatting and sitting down poses. Therefore, 

the proposed method has difficulty recognizing 

human poses in detail due to the lack of local 

information caused by the point density variance. 

Research suggestion to the future research is 

integration of other feature extraction approach and 

other learning algorithm to improved prediction 

outcomes. In addition, hardware specifications need 

to be improved to support better computing speed 

and computing costs. 
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