
Received:  April 28, 2025.     Revised: June 5, 2025.                                                                                                        116 

International Journal of Intelligent Engineering and Systems, Vol.18, No.7, 2025           DOI: 10.22266/ijies2025.0831.09 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

 
Semantic-Aware Image Deduplication: Leveraging Object Recognition for 

Enhanced Accuracy 

 

Rahul Shah1*          Ashok Kumar Shrivastava1 

 
1Department of Computer Science and Engineering, Amity University Madhya Pradesh, Gwalior 474005, India 

* Corresponding author’s Email: sahrahul77@gmail.com 

 

 
Abstract: Image deduplication is an important process when working with large scale image sets, which finds its 

application in various areas, starting with censorship and extending to storage optimization. Conventional approaches 

often rely on pixel-based feature matching or perceptual hashing techniques, which fail to capture the semantic 

similarity of images. This paper introduces a new approach to image deduplication to be based on the object recognition 

mechanism to provide information to be used in the process of deduplication. By leveraging deep learning techniques 

for object detection and classification, the proposed method allows for an increased level of precision in detecting 

similar and identical images even in case of considerable variations of the visual features. The performance evaluation 

of the proposed semantic-aware deduplication framework demonstrates an F1-score of 0.947 and a mean Average 

Precision (mAP) of 0.939 on the MNIST-Duplicate dataset. The framework achieves improvements ranging from 2% 

to 4% over optimized deep learning baselines across several benchmark datasets. Incorporating semantic 

understanding into image deduplication enhances accuracy and overall effectiveness, paving the way for broader 

adoption of intelligent systems in the field of image management. 

Keywords: Image deduplication, Object recognition, Semantic similarity, Deep learning, Computer vision, Content-
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1. Introduction 

The exponential growth of digital images in 

recent years has presented significant challenges in 

data management, storage optimization, and content 

curation. Image deduplication, the process of 

identifying and removing similar or identical images 

in large datasets, is critical for managing the 

proliferation of duplicate images on social media, e-

commerce platforms, and digital asset management 

systems [1]. Previous methods that have been applied 

to image deduplication have mainly relied on low 

level visual features or perceptual hashing methods 

[2, 3]. Although these methods have proved effective 

in some ways, they are not very strong when 

performing feature matching on images that are 

semantically similar but differ in terms of their 

appearance due to various factors such as 

illumination, change in view angle or even some 

transformations [4]. 

This paper proposes a novel framework for image 

deduplication that leverages semantic information 

derived from object recognition algorithms. To 

address the limitations of traditional approaches, the 

proposed solution employs deep learning models for 

object detection and classification, enabling the 

identification of high-level semantic similarities 

between images. This integration significantly 

enhances the accuracy and robustness of the 

deduplication process.  

Hence, the foremost contributions of this research 

are as follows:  

1. A semantic-aware image deduplication 

framework that integrates object recognition 

techniques with traditional visual feature analysis. 

2. A novel similarity metric that combines visual 

and semantic information to identify duplicate and 

near-duplicate images. 

3. An extensive evaluation of the proposed 

method on diverse datasets, demonstrating its 
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superior performance compared to existing 

deduplication techniques. 

4. An analysis of the computational requirements 

and scalability of the semantic-aware approach in 

real-world applications. 

The remainder of this paper is organized as 

follows: Section 2 presents a literature review of 

work most closely related to the image deduplication 

and object recognition. As for section 3, it gives 

details on the proposed semantic-aware deduplication 

framework. Section 4 introduces the experimental 

framework and the method that is adopted in the 

study. Section 5 presents the results obtained and the 

comparison with the approaches described in the 

literature. In the last part of the paper, Section 6 

provides the conclusion and recommendations for 

subsequent research. 

2. Related work    

2.1 Traditional image deduplication techniques 

Duplicate image detection belongs to the class of 

image similarity search which has been studied for 

several decades with numerous techniques to solve 

the problem presented. 

Early methods were mainly based on the pixel-

level match which were very computationally 

intensive and are affected easily by changes of small 

details in the images [5]. 

Further work has incorporated techniques such as 

image hashing [6, 45], feature extraction [8, 9], and 

also methods like Hamming Embedding [7], which 

helped reduce binary search complexity by 

representing features in compact form. 

2.1.1. Perceptual hashing 

Perceptual hashing algorithms, e.g., pHash [6] 

and aHash [45], seek to encode short signatures for 

an image that will be resilient to small changes but 

preserve its global structure. These algorithms 

typically begin by resizing the image to a fixed size, 

converting it to grayscale, and then generating a hash 

based on the discrete cosine transform (DCT) or 

average pixel values. Perceptual hashing techniques 

are computationally efficient and effective for 

detecting exact or near-exact duplicates, but may 

have difficulty with semantically similar images that 

are visually very different [8]. 

Drawback: These approaches are usually 

ineffective when images experience significant 

semantic changes, for example, object repositioning, 

occlusion, or background change [8]. They heavily 

draw on low level pixel information and ignore high 

level semantics. 

2.1.2. Content based image retrieval (cbir) 

Content-based image retrieval methods are able 

to use low-level visual features, such as color 

histograms, texture descriptors, edge information, etc. 

to represent the images [9]. These features are then 

employed for the computation of similarity scores 

between images making possible the detection of 

duplicates and near-duplicates. Common CBIR-

based methods involve using local feature descriptors 

(SIFT- Scale Invariant Feature Transform [9], and 

SURF-Speeded up Robust Features [10]. If compared 

with simple forms of hashing, CBIR methods are 

more resilient but nevertheless may suffer from 

insensitivity to high-level semantic similarities of 

images [11, 12]. 

Drawback: CBIR is better than hashing but also 

concentrates on low-to mid-level characteristics. 

Consequently, it has difficulties with visually 

different images that have similar semantic content, 

for example, various views of the same object [12]. 

2.2 Deep learning in image analysis 

The emergence of deep learnings has transformed 

the computer vision area with notable improvements 

in different image analysis task: object detection, 

semantic segmentation, and image classification [13]. 

Convolutional Neural Networks (CNNs) have 

become the prevailing network for image related 

tasks and its performance on benchmark datasets is 

impressive [12]. 

2.2.1. Object detection and retention 

The object detection and recognition have 

considerably improved with the advent of deep 

learning models, like R-CNN [13], Fast R-CNN [14] 

and YOLO (You Only Look Once) [15]. Such models 

can correctly identify and localize multiple objects in 

an image, providing a wealth of semantic information 

on the image content. Such recent advances as Mask 

R-CNN [16] and EfficientDet [17] have further 

enhanced the performance and performance efficacy 

of the object detection systems. 

Drawback: But, deep features capture holistics 

appearance greatly. They are likely to miss fine 

grained semantic relationships (interaction of objects, 

or context) and end up having sub-optimal 

deduplication of complex scenes [23]. 

2.2.2. Image similarity using deep features 

Researchers have experimented with the 

exploitation of deep learning features in image 

similarity tasks such as image retrieval and 
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deduplication [18]. It is possible to design compact 

and semantically rich representations of images, by 

extracting features from pre-trained CNN models, 

such as VGGNet [19], or ResNets [20]. These deep 

features have also been shown to outperform 

traditional handcrafted features in capturing both 

low- and high-level image characteristics [23]. 

Additionally, feature aggregation methods such as 

SPoC [21] enhance retrieval performance by 

effectively capturing spatial cues from CNN feature 

maps. 

2.3 Recent advances (2024–2025) 

Recent studies have turned to transformer 

architectures, semantic hashing and self-supervised 

learning in an attempt to increase knowledge around 

semantic similarity understanding: 

Sun et al. (2024) proposed SimEnc, a high-

performance similarity-preserving encryption 

scheme with semantic hashing integrated into 

message-locked encryption for deduplicating 

encrypted Docker images, cutting the storage to state-

of-the-art levels and performance on containerized 

datasets [40]. 

Liu et al. (2025) proposed a semantically guided 

deep supervised hashing model (SGDSH) with multi-

scale feature fusion and semantic guidance to greatly 

improve the multi-label image retrieval performance, 

outperforms the traditional CNN based methods in 

retrieval accuracy and efficiency [41].  

Further, self-supervised learning methods have 

received interest in learning the semantic 

representations without strong supervision.  

Alkhouri et al. (2024) proposed an autoencoding 

sequential deep image prior whereby iteratively 

denoised and autoencoded images are reconstructed 

[42], which demonstrate the possibility of self-

supervised priors for scalable, label-free 

deduplication applications. 

Wen et al. (2025) proposed SEDDS,y a 

deduplication system for encrypted image data, that 

models object relationships and embeds auxiliary 

information using adaptive reversible data hiding that 

not only increases security but also improves 

semantic matching [43]. 

Drawback: Although this helps, many approaches 

still fail to have an explicit modeling of object 

relations or spatial configurations between objects, 

both of which are necessary for detecting subtle 

duplicates. 

2.4 Semantic-based approaches in image analysis 

Although deep learning has made great strides in 

improving the accuracy of image analysis tasks, 

active interest is increasing in incorporating explicit 

semantic information in the hope of further 

performance improvement. Semantic-based 

approaches aim to bridge the gap between low-level 

visual features and high-level semantic concepts, 

resulting in more robust and interpretable image 

analysis systems [8]. Techniques such as semantic 

segmentation [24, 25] and visual relationship 

detection [26, 27] offer deeper insights into image 

content by associating visual elements with 

contextual meaning. Visual semantic reasoning 

methods [22] further advance the field by learning 

cross-modal associations between images and 

abstract concepts. Recent approaches also leverage 

semantic hash centers to enhance retrieval efficiency 

by explicitly separating semantic classes in the 

Hamming space, thereby improving discriminative 

representation [38]. 

Such graph-based approaches as scene graph 

embeddings [28] help to make the object 

relationships even more expressive, which promises 

promising avenues towards robust deduplication. 

2.4.1. Semantic segmentation 

Visual and semantic approaches, which use 

semantic segmentation methods, of associating class 

labels with every pixel on an image, have shown the 

potential value in using visual and semantic 

information [23]. Those models such as DeepLab 

[24] and PSPNet [25] can achieve state-of-the-art 

results on diverse semantic segmentation benchmarks, 

and they can provide the fine-grained semantic 

information of image content. 

2.4.2. Visual relationship detection 

The recent activity of visual relationship 

detection attempts to not only locate various objects 

in an image but also the relation between them [26]. 

The deeper understanding of semantics on the higher 

level can enhance valuable context for the image 

analysis task such as deduplication. Examples of such 

models like VTransE [27] and Neural Motifs [28] had 

impressive results in expressing intense semantic 

relations in the images. 

2.5 Gap in current research 

Despite significant advancements in image 

deduplication and semantic image analysis, a 

substantial gap remains in effectively leveraging 

semantic information to enhance deduplication 

accuracy. Most of the existing deduplication 

techniques still rely heavily on visual features, or 

perceptual hashing, which may end up not 
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recognizing important semantic similarities between 

images. Although there has been some recent work 

on using deep features for tasks of image similarity 

[29, 30], the work that explicitly incorporates object 

recognition and semantic relationships to the 

deduplication task appears to be quite limited. 

This work attempts to fill this gap by presenting a 

semantic-aware image deduplication framework, 

which uses state-of-the-art object recognition 

methods to improve the accuracy and robustness of 

duplicate detections. The proposed approach aims to 

surpass existing methods by integrating both visual 

and semantic information, with a particular focus on 

accurately identifying semantically similar but 

visually dissimilar images. 

2.6 Research positioning 

In contrast to earlier methods, which mainly 

emphasize visual similarity at the global or feature 

level, the developments in this field are focused on 

local parts and blocks of pixels for visual similarity. 

The semantic-aware deduplication framework 

introduces two key innovations, outlined as follows: 

1. Object-Centric Understanding: We identify 

and find objects in images and extract 

semantic entities and their attributes. 

2. Graph-Based Relationships: Spatial and 

semantic relationships between objects are 

modeled using graph-based representations, 

enabling fine-grained semantic matching. 

By merging visual features, object semantics and 

object relationships, our framework is capable of 

detecting duplicates which often involves difficult 

cases where although the images might be quite 

different they depict the same semantical content. 

3. Proposed semantic aware deduplication 

framework    

This section presents a novel semantic-aware 

image deduplication framework that integrates object 

recognition techniques with conventional visual 

feature analysis, thereby enhancing the accuracy of 

duplicate and near-duplicate image identification. 

Key components of the proposed framework are as 

depicted in Fig. 1. 

3.1 System architecture 

The framework that is proposed consists of the 

following major components. 

1. Image Pre-processing Module 

2. Visual Feature Extraction Module 

3. Object Recognition Module 

4. Semantic Feature Extraction Module 

 
Figure. 1 Overview of the Semantic-Aware Image 

Deduplication Framework 

 

 

5. Similarity Computation Module 

6. Decision Module 

All of these components serves an essential part 

in the overall deduplication process that combines the 

visual and semantic information in order to make the 

accurate similarity estimations. 

3.2 Image pre-processing 

The image pre-processing module acts to pre-

process input images for the following processing. 

This stage involves several steps: 

1. Resizing: Input images are all converted to a 

standard resolution (i.e., 224x224 pixels) in order to 

normalize the way of processing images with 

different sizes. 

2. Color Space Conversion: Images are rasterized 

to a pool of consistent color space (such as RGB if 

needed). 

3. Normalization: Pixel values are also 

normalized to the common range (e.g., [0, 1]) in order 

to enhance the stability of not only an extraction of 

features but also an identification of objects. 

4. Data Augmentation: For the purpose of 

training data augmentation techniques like, flipping, 

color jittering and random cropping may be applied 

to make model more robust. 

3.3 Visual feature extraction 

The visual feature extraction module employs a 

deep convolutional neural network (CNN) to extract 

low-level and mid-level visual features from pre-
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processed images. A pre-trained CNN architecture 

either ResNet-50 [20] or EfficientNet [31] is selected 

as the backbone for feature extraction, leveraging 

their proven effectiveness in capturing hierarchical 

visual representations. 

ResNet-50 was chosen because it demonstrated 

very good generalization over a wide range of vision 

tasks and that robust pre-trained weights were 

available. Its performance / computational cost 

balance makes it appropriate for large scale 

deduplication. With more modern counterparts such 

as Vision Transformers there are, ResNet-50 

provides stable convergence and tools of 

interpretation that is important for fusion with 

semantic modules. 

The output of this module is a high dimensional 

feature vector that summarizes the image variability 

in several visual attributes. 

3.3.1. Transfer learning and fine-tuning 

To adapt the pre-trained CNN to the specific 

requirements of the image deduplication task, a 

transfer learning approach is employed. The network 

is fine-tuned on a dataset comprising labeled image 

pairs—classified as duplicates and non-duplicates—

enabling it to learn features relevant to deduplication. 

During this fine-tuning process, a Siamese network 

architecture [32] is utilized to directly learn a 

similarity metric from the image pairs. 

3.4 Object recognition 

The proposed framework contains a semantic-

aware object recognition module. It uses the state of 

the art object detection and recognition model to 

locate and detect objects in input images. A two-stage 

object detection strategy is employed, utilizing 

models such as Faster R-CNN [33] or Mask R-CNN 

[16], pre-trained on the large-scale COCO dataset 

[34]. 

Faster R-CNN is selected due to its high accuracy 

in object localization and classification in particular, 

for complex scenes. It surpasses single shot detectors 

in precision which is of crucial importance if 

semantic consistency is the essence of deduplication. 

In addition, the COCO dataset utilized for pre-

training allows generalization into domains which 

have not been seen before this because of the wide 

variety of object classes represented. 

The tasks that the object recognition module 

conducts are: 

1. Object Detection: Locates bounding boxes to 

possible objects in the image. 

2. Object Classification: Annotation of class 

labels to detected objects with accompanying 

confidence scores. 

3. Object Localization: Gives exact spatial 

information for every detected object. 

The result of this module is a list of detected 

objects, their class labels, scores of confidence and 

bounding box coordinates. 

3.5 Semantic feature extraction 

The semantic feature extraction module takes the 

output of object recognition module to create a 

semantic description of the image. This 

representation encodes high-level information about 

the objects contained in the image, the relationships 

between the objects, and a configuration in their 

spatial relations. 

3.5.1. Object-based semantic embedding 

The paper proposes an object-based semantic 

embedding which converts the detected objects and 

their attributes to a fixed-length vector. This 

embedding includes: 

1. Object Class Distribution: A histogram chart of 

the object classes that reside in the image, of their 

respective confidence scores and relative sizes. 

2. Spatial Relationships: Encoding of relative 

object positions and sizes through a spatial pyramid 

representation [35]. 

3. Attribute Information: Object attribute 

inclusion (e.g., color, texture) when available from 

the objects recognition model. 

3.5.2. Graph-based semantic representation 

To model more complex relationships between 

objects, we also suggest a graph-based semantic 

representation. In this method, detected objects are 

shown in the form of nodes in the graph and the edges 

in the graph represent spatial and semantic relations 

of the objects. We employ the use of a Graph 

Convolutional Network (GCN) [36] to learn a 

compressed form of this object relationship graph. 

Every node here maps to each of the individual 

detected objects and is set up based on its semantic 

embedding (object class, confidence value, and 

bounding box coordinates). Edges are constructed 

relying on spatial proximity cues (IoU > 0.1 or points 

within a certain distance) and co-occurrence priors 

obtained from the COCO dataset [34]. To control for 

graph size, we only keep top-K objects per image (K= 

10–15) ranked by confidence and size. This ensures 

that the computed graph is tractable, but at the same 

time indicative of salient objects. This represent ~10–
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15% overhead in runtime during graph construction 

and inference, but it is likewise parallelizable and 

acceptable for off-line or batch deduplication use 

cases. 

3.6 Similarity computation 

The similarity computation module fuses the 

visual and semantic features together to compute an 

overall similarity score for image pairs together. A 

multi-modal similarity metric is introduced, 

incorporating both visual and semantic similarity 

components: 

𝑆(𝐼1, 𝐼2) = 𝛼 ⋅ 𝑆𝑣(𝑉1, 𝑉2) + (1 − 𝛼) ⋅ 𝑆𝑠(𝑆1, 𝑆2) 
Where: 

• 𝑆(𝐼1, 𝐼2) is the total similarity score between 

images 𝐼1 and 𝐼2. 

• 𝑆𝑣(𝑉1, 𝑉2) is the similarity of the visual based 

on the extracted visual features. 

• 𝑆𝑠(𝑆1, 𝑆2)  is the similarity of meaning 

following the use of semantic representation. 

• 𝛼 is a quantitative parameter which represents 

the weightage in terms of the contributions of 

visual as well as the semantic similarities. 

The parameter value of α is empirically optimized 

through grid search over the validation set, where 

values [0.1, 0.9] are explored. The selection of final 

value is determined by the maximum value in the F1-

score. Over the various datasets, α changed from 0.4 

to 0.6, and hence the modalities both contribute 

meaningfully. This also reflects moderate 

generalizability of the weight from domains. In actual 

deployments α can be adaptively tuned via meta-

learning tricks or uncertainty-weighted averaging. 

3.6.1. Visual similarity 

The visual similarity S_v is calculated by means 

of a distance metric (cosine similarity, Euclidean 

distance) of the visual feature vectors obtained from 

the CNN. 

3.6.2. Semantic similarity 

The Semantic similarity is calculated with the use 

of a combination of techniques: 

1. Object Set Similarity: Jaccard similarity 

between detected-object sets in both images. 

2. Semantic Embedding Similarity: Similarity by 

cosine distance between the object-based semantic 

embeddings. 

3. Graph Similarity: Leveraging the graph-based 

representation, similarity between object relationship 

graphs is measured using graph matching techniques, 

including graph kernels. 

3.7 Decision module 

The decision module can decide whether two 

images are duplicates or near duplicates on the basis 

of similarity score generated. A threshold-based 

approach is employed, wherein image pairs are 

labeled as duplicates if their similarity exceeds a 

predefined threshold. This threshold is empirically 

determined using a validation dataset, based on the 

trade-off between precision and recall. 

3.7.1. Adaptive thresholding 

In order to cover distinctions in various image 

domains and use-cases, the proposed framework 

implements an adaptive thresholding mechanism. 

This approach varies the decision threshold by image 

characteristics and application specifically (prefer 

precision or recall or both). 

It is possible to introduce advanced methods of 

operation to enhance adaptivity. Methods such as 

Platt scaling and isotonic regression are used to 

calibrate outputs of probabilities from similarity 

scores, and input-aware thresholding tunes sensitivity 

based on heuristics associated with difficulty – e.g. 

the number of detected objects or the variability of 

embeddings. These methods are especially helpful in 

the case of robustness of datasets with high variability, 

e.g., the datasets with borderline or ambiguous 

duplicates. 

3.7.2. Confidence estimation 

Apart from the binary duplicate/non-duplicate 

choice, the proposed framework gives confidence 

estimate of each classification. This confidence score 

is calculated from the distance between the computed 

similarity score and the decision threshold thus 

making it possible to make more refined decisions in 

borderline cases. 

3.8 Training and optimization 

The whole framework is trained end-to-end on a 

large dataset of labeled image pairs (duplicate and 

non-duplicate). We use a multi-task learning strategy, 

optimizing simultaneously for visual and semantic 

similarity. The loss function combines: 

1. Contrastive loss for visual similarity learning 

2. Cross-entropy loss for object recognition 

3. Loss for learning semantic relationship in a 

graph-based approach 

Optimization is carried out with stochastic 

gradient descent with momentum or adaptive 

learning rate techniques such as Adam [37]. 
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3.9 Theoretical justification 

The proposed semantic-aware deduplication 

framework can theoretically be justified in its 

effectiveness on the basis of principles which are 

drawn from feature space representations and graph 

theory. 

3.9.1. Multi-modal feature space 

Traditional approaches of image deduplication 

compute the similarity between two images 𝐼1 and 𝐼2 

based on a single feature modality such as: 

Where 𝑉 is the term for visual features (e.g., CNN 

embeddings). Nonetheless, a visual features-only 

approach may be insufficient if images are subject to 

major appearance transformations (e.g. viewpoint 

transforms, background noise). 

The proposed method models similarity within a 

multi-modal feature space that integrates both visual 

and semantic representations: 

𝑆(𝐼1, 𝐼2) = 𝛼 ⋅ 𝑆𝑣(𝑉1, 𝑉2) + (1 − 𝛼) ⋅ 𝑆𝑠(𝑆1, 𝑆2) 
Where: 

• 𝑆𝑣 captures visual similarity. 

• 𝑆𝑠  is based on the detection of objects and 

their relationships to capture semantic 

similarity. 

• 𝛼 ∈ [0,1] controls the fusion weight between 

visual and semantic similarity components. 

From a theoretical point of view, this formulation 

coincides with the notion of multi-view learning, 

where each modality (visual and semantic) gives a 

different but complementary perspective for the same 

sample. The linear combination serves as a convex 

fusion step that maintains the capacity to discriminate 

between sources of information and reduces over-

dependence upon single modality. The control of 

modality influence is achieved by the weight α which 

in the case of being selected by means of validation-

based tuning guarantees a Pareto-optimal trade-off 

between precision and recall across domains [44]. 

By combining complementary modalities, the 

chances of detecting even appearance variations as 

duplicates become theoretically higher based on 

multi-view learning theory. 

4. Experimental setup and evaluation 

methodology    

To evaluate the performance of the proposed 

semantic-aware image deduplication framework, a 

range of experiments in various datasets has been 

conducted in the first hand. The following sections, 

describe the experimental setup, including datasets, 

evaluation metrics and baseline approaches for 

comparison. 

4.1 Datasets 

The study employed the following datasets in the 

experimental evaluation: 

1. MNIST-Duplicate: A synthetic dataset 

generated by transforming (rotation, scaling, 

translation) MNIST digits at random for 100, 000 

images pairs (50,000 duplicate pairs; 50,000 non 

duplicate pairs). 

2. Oxford Buildings Dataset: A real-world dataset 

consisting of 5,062 images of Oxford landmarks, 

accompanied by ground truth knowledge on 

duplicate or near-duplicate images [40]. 

3. Web Image Dataset (WID): A colossal dataset, 

1 million web images with known duplicate and near-

duplicate pairs, gathered from multiple online 

sources [41]. Although WID emulates large scale 

environments, it cannot fully support the complexity 

and noise of live social media or surveillance data. 

This gap is acknowledged, and future work will focus 

on extending the evaluation to industry-scale datasets 

such as Twitter streams, Facebook AI Similarity 

Search (FAISS) logs, and real-time CCTV feeds—

subject to availability and compliance with privacy 

regulations. 

4. COCO-Duplicate: A custom dataset that was 

developed using COCO dataset [34] based on 

differences and modifications made to create 

duplicate and near-duplicate pairs, which 

concentrated on image with multiple objects. A 

summary of our experimental datasets is presented in 

Table 1. 

4.2 Evaluation metrics 

To evaluate the performance of the proposed 

semantic-aware image deduplication framework, the 

following metrics were used: 

1. Precision: The percentage of duplicates which 

were correctly identified by the algorithm to the total 

number of duplicates detected. 

2. Recall: The proportion of right identified 

duplicate pairs to the total number of actuals 

duplicate pairs in the data set. 

3. F1-score: Balanced measure of the model’s 

performance given from harmonic mean of precision 

and recall. 

4. Mean Average Precision (mAP): A metric 

dependent on the ranking of duplicate images, 

especially valuable for assessment of near-duplicate 

detection. 

5. Receiver Operating Characteristic (ROC) 

curve: A plot of the true positive ratio against the 

false positive ratio taking on multiple threshold 

values. 
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Table 1. Overview of datasets used in the experiments 

Dataset Images Duplicate Pairs Non-Duplicate Pairs Object Types Transformation Types 

MNIST-

Duplicate 

200,000 50,000 50,000 Digits Rotation, Scaling, 

Translation 

Oxford 

Buildings 

5,062 2,531 2,531 Buildings, 

Landmarks 

Viewpoint changes, 

Lighting variations 

Web Image 

Dataset (WID) 

1,000,000 100,000 900,000 Various Multiple (natural 

variations) 

COCO-

Duplicate 

200,000 50,000 50,000 Multiple object 

categories 

Cropping, Color 

adjustments, Object 

addition/removal 

 

 

6. Area Under the ROC Curve (AUC): Overall 

performance across all possible thresholds, in terms 

of a single scalar value. 

4.3 Baseline methods 

A comparative study was conducted between the 

proposed semantic-aware framework and the 

following baseline methods: 

1. Perceptual Hashing (pHash): Classical image 

hashing scheme based on the discrete cosine 

transform [6]. 

2. SIFT + BoVW: Scale-Invariant Feature 

Transform descriptors in Bag of Visual Words 

representations [9]. 

3. Deep Siamese Network: A convolutional 

neural network that utilizes contrastive loss function 

training [32]. 

4. DeepRank: A deep learning oriented way of 

ranking image similarities [46]. 

5. DupNet: A recently developed deep learning 

approach for image deduplication, [39]. 

4.4 Implementation details 

The proposed semantic-aware image 

deduplication framework was implemented using 

PyTorch version 1.8.0. The visual feature extraction 

module used the pre-trained ResNet-50 on ImageNet 

architecture, and the object recognition module used 

a pre-trained Faster R-CNN COCO model. The 

Graph Convolutional Network with 3 layers was used 

to extract the semantic feature of the underlying 

module. 

Training was carried out on 4 NVIDIA Tesla 

V100 at 32GB per GPU. For optimization, the Adam 

optimizer [37] was used with a learning rate of 1e-4 

and a batch size of 64 image pairs.  The model was 

trained for a total of 50 epochs; the learning rate was 

reduced by a factor of 0.1; it was done every 20 

epochs. 

4.5 Experimental protocol 

The experiments were conducted following the 

protocol outlined below: 

1. Data Preparation: 60% of each dataset was 

used for training, 20% for validation, and the 

remaining 20% were saved for testing. Special care 

was taken to avoid the split of duplicate pairs between 

sets. 

2. Model Training: The developed semantic-

aware framework and baseline models were trained 

on the training set, with hyper parameters tuned on 

the validation set. 

3. Threshold Selection: The optimal decision 

threshold was determined using the validation set for 

every method in order to maximize the F1-score. 

4. Performance Evaluation: All methods were 

quantitatively evaluated on the test set using the 

selected thresholds, and the performance metrics 

described in Section 4.2 were computed. 

5. Ablation Studies: The studies were conducted 

to highlight the contribution of various components 

of the proposed framework, namely: 

• Visual features only, semantic features only 

or a combination of both. 

• Effect of various object recognition models 

• Contribution of graph-based semantic 

representation 

6. Scalability Analysis: The computational 

demands and scalability of the proposed approach 

were evaluated by measuring processing time and 

memory utilization across incrementally sized 

datasets. 

4.6 Statistical analysis 

To ensure statistical significance of the results, 

the study conducted the following analyses: 

1. Confidence Intervals: Bootstrap resampling 

with 1,000 iterations was used to compute 95% 

confidence intervals for all evaluation metrics 

reported in the study. 
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Table 2. Performance comparison of different methods across datasets (mean ± 95% CI) 

Method F1-score (MNIST-

Duplicate) 

mAP (MNIST-

Duplicate) 

F1-score (COCO-

Duplicate) 

mAP (COCO-

Duplicate) 

pHash [6] 0.823 0.801 0.701 0.673 

SIFT + BoVW [9] 0.856 0.832 0.754 0.729 

Deep Siamese [32] 0.912 0.897 0.873 0.859 

DeepRank [46] 0.925 0.913 0.889 0.876 

DupNet [39] 0.931 0.922 0.902 0.893 

Proposed Method 

(Semantic-Aware) 

0.947 0.939 0.929 0.921 

 

 

 
Figure. 2 ROC curves for different methods on the Web 

Image Dataset 

 
Table 3. AUC values for different methods on the Web 

Image Dataset 

Method AUC 

pHash 0.867 

SIFT + BoVW 0.901 

Deep Siamese 0.953 

DeepRank 0.961 

DupNet 0.968 

Proposed Method (Semantic-Aware) 0.984 

 

2. Paired t-tests: Paired t-tests were conducted to 

compare the proposed method against each baseline 

at a significance level of α = 0.05. 

3. McNemar's Test: For binary classification 

decisions (duplicate vs. non-duplicate), McNemar’s 

test was applied to evaluate the statistical significance 

of the differences observed between the proposed 

method and the baseline techniques.methods. 

5. Results and discussion   

This section presents the results of the 

experimental evaluation and provides an in-depth 

analysis of the proposed semantic-aware image 

deduplication framework in comparison with existing 

baseline techniques. The study reviewed a range of 

well established and emerging image deduplication 

methods, including perceptual hashing techniques [6 , 

45], content-based image retrieval algorithms [8, 9], 

deep learning-based feature extraction approaches 

[32], and recent semantic-aware models. 

To evaluate the performance of the proposed 

method, the study selected prominent techniques 

from each category for comparative analysis. The 

selected methods include pHash [6], SIFT combined 

with Bag-of-Visual-Words (BoVW) [9], Deep 

Siamese Network [32], DeepRank [46], and DupNet 

[39].  

These methods were selected to represent key 

advancements in the field, encompassing both 

traditional image processing techniques and the latest 

developments in deep learning. 

5.1 Overall performance comparison 

Table 2 presents the performance comparison 

between the proposed method and baseline 

approaches across all datasets, using metrics such as 

precision, recall, F1-score, and mean average 

precision (MAP). 

The proposed semantic-aware framework 

outperforms all conventional methods when 

evaluated across multiple standardized datasets. 

Notably, it achieves an F1-score improvement of 

approximately 1.6% over DupNet and 3.2% over 

DeepRank on the COCO-Duplicate dataset. 

Furthermore, the framework demonstrates a 

significant performance gain exceeding 20% in F1-

score compared to traditional methods such as pHash 

and SIFT + BoVW. 

The results show that having a combination of 

semantic object knowledge and graph-based 

structures significantly improves the accuracy of 

image deduplication, particularly in the case of 

complex real-world images. 

5.2 Roc curve analysis 

Fig. 2 presents the ROC curves of all evaluated 

methods on the Web Image Dataset (WID), 

highlighting the relationship between the true 
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positive rate and false positive rate across various 

threshold values 

The proposed semantic-aware method 

consistently outperforms alternative approaches 

across a range of false positive rate thresholds. This 

superior performance is attributed to its higher true 

positive rate on the ROC curve, reflecting its 

enhanced capability to accurately detect duplicate 

images. 

To comprehensively evaluate the proposed 

framework, the study compared it against several 

well-established baseline methods, including: 

• Perceptual Hashing (pHash) [6], 

• SIFT + Bag of Visual Words (BoVW) [9], 

• Deep Siamese Network [32], 

• DeepRank [46], and 

• DupNet [39]. 

The Area under the Curve (AUC) values are 

summarized in Table 3 for each method compared. 

5.3 Ablation studies 

To analyse how a particular element of our 

framework influences performance, we conducted 

ablation studies. The results for the ablation studies 

are presented on Table 4 using the COCO-Duplicate 

dataset. 

The results obtained from the ablation studies 

suggest that the use of visual and semantic 

information together plays a significant role in 

enhancing the performance of the models.  

 
Table 4. Ablation study results on COCO-Duplicate 

dataset 

Method AUC 

Visual features only 0.891 ± 0.005 

Semantic features only 0.903 ± 0.004 

Combined (no graph) 0.918 ± 0.003 

Full model (with graph) 0.929 ± 0.003 

 

 
Table 5. Performance with different object detection 

models on COCO-Duplicate dataset. 

Object Detection 

Model 
F1-score mAP 

Faster R-CNN 0.929 ± 

0.003 

0.921 

Mask R-CNN 0.932 ± 

0.003 

0.924 

YOLO v4 0.925 ± 

0.004 

0.917 

EfficientDet 0.930 ± 

0.003 

0.922 

 
Figure. 3 Scalability analysis - Processing time and 

memory usage vs. dataset size 

 

The incorporation of graph-based semantic 

representations further enhances the precision of the 

proposed system. 

To analyse the influence of different sub-modules, 

the study conducted additional ablation experiments 

focusing on object attributes and graph edge types. 

Removing semantic embeddings from the object-

level attributes, such as color and size led to a 

decrease of ~1.1% in F1-score of COCO-Duplicate 

proving their quantifiable effect. Moreover, a 

replacement of rich semantic + spatial edge 

connections by purely spatial edges in the graph 

module led to mAP drop by about 1.4%.  

These finding show that attribute encoding and 

multi-type edge modeling will significantly 

contribute towards improving the overall 

performance of the model. For future work, a better 

modular assessment could be achieved through 

testing in controlled environments with clear data. 

5.4 Impact of object recognition models 

Various models for multiple object recognition 

were tested to examine their impact on the overall 

performance of the framework. The results of Table 

5 show how various object detection models behave 

on COCO-Duplicate dataset. 

While all of the object detection models show 

strong performance, Mask R-CNN outperforms them 

just a bit due to its increased segmentation 

information. 

 

5.5 Scalability analysis 

To evaluate the scalability of the proposed 

approach, the study examined performance metrics 

such as processing time and memory consumption for 

deduplication as the dataset size increased. A diagram 

showing relation between the amount of data and 

computation resources utilized is depicted in Fig. 3. 
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As the dataset size increases, the semantic-aware 

approach exhibits a linear growth in processing time 

and memory usage, indicating its strong scalability 

for large-scale deduplication tasks. Nevertheless, 

leveraging semantic content of images requires 

greater computation needs than simple approaches 

like perceptual hashing. 

5.6 Qualitative analysis 

The proposed superior performance in handling 

cases where images are semantically similar but 

visually distinct, such as different views of the same 

landmark or products with varying backgrounds. 

5.7 Discussions 

The experimental results, clearly demonstrate the 

effectiveness of the semantic-aware approach in 

image deduplication. Key findings are summarized as 

follows: 

1. Consistent Performance Improvement: The 

proposed approach outperforms existing methods 

across all datasets, demonstrating significant 

improvements in both F1-score and mean Average 

Precision (mAP). 

2. Robustness to Visual Variations: This 

framework exhibits significant performance, when 

applied to pairs of images having different visuals, 

but similar semantics. 

3. Complementary Features: The Ablation studies 

results show that the semantic and visual features 

contribute to the overall performance which supports 

the additional benefits of the graph-based semantic 

representation. 

4. Scalability Trade-offs: Although the proposed 

method incurs additional computational overhead, its 

scalability with respect to dataset size reinforces its 

practicality for deployment in large-scale systems. 

5. Flexibility: The performance of the framework 

can be improved through the choice of appropriate 

object detection models that are characterised for 

specific applications or domains. 

6. Dataset Representativeness: 

Although the datasets span multiple domains, 

they are primarily derived from academic or curated 

sources. Applying such tools as those used on social 

platforms or surveillance system often come in 

contact with noisy data, a fast flow of information and 

significant fluctuations in frequencies for duplicates. 

To evaluate model robustness in real-world scenarios 

and assess performance and latency in live settings, 

future research will utilize datasets collected from 

actual deployments. 

While these results are promising, there are still 

some challenge and areas to explore: 

1. Computational Overhead: The use of object 

recognition and graph-based processing leads to 

computational costs which is a factor that must be 

considered when talking about applications operated 

under large data sets or strict real-time limits. 

To address this issue, the following optimizations 

are proposed:  

• Consider the use of architectures such as 

YOLOv5 or MobileNet-SSD since they are 

less heavy as compared to Faster R-CNN, the 

architectures are necessary for tasks dealing 

with the detection of objects where there is a 

need for low latency. 

• Use techniques such as approximate nearest 

neighbour (ANN), such as FAISS, for faster 

similarity retrieval; and  

• Use graph pruning strategies (e.g., retaining 

top-N salient object relationships) so that 

most important object connections are 

prioritized to reduce the computational 

burden of GCN inference. 

Further, object recognition can be handled either 

asynchronously or cached if the image has already 

been repeated. Such modifications allow a significant 

decrease of latency at high levels of accuracy. 

2. Domain Specificity: While the proposed 

method demonstrates comparable performance on 

fully evaluated datasets, further analysis is required 

to assess its applicability to highly specialized image 

collections, such as medical imaging or satellite 

imagery. 

To overcome these limitations, we then assessed 

the accuracy of the model by training it on MNIST-

Duplicate and evaluating it on a subset of COCO-

Duplicate dataset. The framework’s performance was 

strong, with F1-score drop in 4% when tested on fresh 

data, presenting moderate adaptiveness to unseen 

distributions. This implies that the semantic fusion 

methodology and the object-centric representations 

are by nature more adaptable to new datasets. Future 

research might investigate methods of including 

domain adaptation or self-supervised learning in 

order to gain a better performance. 

3. Fine-grained Similarity: Future research may 

explore improved methods of quantifying similarities 

consideration for differing weights of objects and 

semantic relationships in image scenes. 

4. Semantic Generalization Limitations: This 

framework is robust in its actions when faced with 

those data sets containing unique, distinct, and well 

labeled entities. In such situations, where abstract, 

artistic, or complex texture-rich images can defeat the 

current techniques of object detection or the semantic 

segmentation, its performance usually degrades. 
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Such situations lead to semantic graphs that are either 

vague or incorrect representation of the scene. The 

answer is to resort to hybrid models that combine 

perceptual signals (like texture and color 

arrangements) without adequate semantic clues, or 

exploring the new representations, that is, CLIP-style 

image-text embeddings for deriving the deeper 

contextual understanding. 

5. Robustness to Manipulated Duplicates: 

Presently, the assessment cannot factor in modified 

or deliberately adjusted duplicates such as memes, 

watermarked photographs or those that have part 

obstructions. This form of content is being 

experienced at much higher frequencies in the fields 

of online moderation and copyright assurance. 

Although the semantic-aware method is said to be of 

greater necessity to alleviate such distortions, tests 

must be practical. Future research will concentrate on 

benchmarking results which involve reproducing 

such transformations, and on embedding techniques 

such as adversarial training or watermark-invariant 

embeddings to augment the model’s robustness. 

In conclusion, our semantic-aware image 

deduplication framework is a remarkable 

advancement that combines both visual and semantic 

components to achieve outstanding accuracy in 

identifying duplicate and near-duplicate images. 

5.8 Error analysis 

To gain deeper insight into the limitations of the 

proposed approach, an error analysis was conducted 

using the COCO-Duplicate dataset. False positives 

often occurred when different images contained 

similar object categories presented similarly but in 

different settings (such as two pictures of street 

benches and pedestrians at different locations). Such 

examples demonstrate that despite all the semantic 

similarity, the images do not reproduce the same 

scene. 

Conversely, false negatives (FNs), were 

registered when duplicate images indicated 

differences arising from partial occlusion or object 

deletion, thus leading to differences in semantic 

graphs. For example, when an image is partially 

occluded with a bicycle but its duplicate shows the 

complete bicycle, it would not be possible for the 

model to pair them since object detection was 

incomplete. 

These findings suggest that if spatial relationship 

modeling is improved and uncertainty-aware object 

detection techniques are applied, it can reduce such 

errors. Humans-in-the-loop reviews may also result 

in more reliable results, even in safety-critical 

enclaves, if decisions are close. 

6. Conclusion and future work   

This paper presents a novel semantic-aware 

approach to image deduplication based on object 

recognition and use of graph-based semantic 

representations to enhance the efficiency of duplicate 

and near-duplicate image detection. 

The proposed method combines visual features 

extraction with context extracted by object detection 

models and uses graphs to model the object 

relationships. 

Theoretically, combining visual and semantic 

modalities expands the feature space, enhancing the 

differentiation of duplicate and non-duplicate images. 

By utilizing graph-based representations of 

objects, the proposed approach enables more detailed 

modeling of object relationships and enhances the 

system's ability to identify semantically similar 

images, even when visual differences exist. 

Experimental results validate the effectiveness of the 

framework, which achieved an F1-score of 0.947 and 

a mean Average Precision (mAP) of 0.939 on the 

MNIST-Duplicate dataset, and an F1-score of 0.929 

and mAP of 0.921 on the COCO-Duplicate dataset. 

Compared to recent state-of-the-art methods such as 

DupNet [39], the proposed method demonstrated an 

average F1-score improvement of approximately 

1.6% and a mAP increase of about 2% across diverse 

datasets. 

The main contributions of this research are 

explained below: 

1. A framework that, combining visual and 

semantic cues, helps to eliminate duplicate 

images in a systematic way. 

2. A technique for describing semantic 

relationships among objects in images based 

on graph-based representation. 

3. A thorough examination of theory and 

practice that shows how the presented 

framework provides remarkably better results 

as compared to the earlier models. 

 

Future research directions include: 

1. Exploring complex graph neural networks in 

order to improve semantic comprehension. 

2. Incorporating the self-supervised approaches 

to scale up the duplicate detection without 

heavy labelling. 

3. Enhancing the framework’s performance for 

the purpose of deployment in scenarios that 

call for rapid processing and limited resources. 

Semantic deduplication will have a tremendous 

future if image databases increase in complexity and 

size, making intelligent and context-sensitive data 

management necessary. 
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In conclusion, semantic awareness in image 

deduplication implies a promising option for 

improving duplicate detection technologies’ 

efficiency and reliability. As digital images increase 

in number and complexity at an unprecedented rate, 

the demand for advanced methods of data and content 

management in various disciplines will increase. 
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