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Abstract: Image deduplication is an important process when working with large scale image sets, which finds its
application in various areas, starting with censorship and extending to storage optimization. Conventional approaches
often rely on pixel-based feature matching or perceptual hashing techniques, which fail to capture the semantic
similarity of images. This paper introduces a new approach to image deduplication to be based on the object recognition
mechanism to provide information to be used in the process of deduplication. By leveraging deep learning techniques
for object detection and classification, the proposed method allows for an increased level of precision in detecting
similar and identical images even in case of considerable variations of the visual features. The performance evaluation
of the proposed semantic-aware deduplication framework demonstrates an F1-score of 0.947 and a mean Average
Precision (mAP) of 0.939 on the MNIST-Duplicate dataset. The framework achieves improvements ranging from 2%
to 4% over optimized deep learning baselines across several benchmark datasets. Incorporating semantic
understanding into image deduplication enhances accuracy and overall effectiveness, paving the way for broader
adoption of intelligent systems in the field of image management.
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1. Introduction

The exponential growth of digital images in
recent years has presented significant challenges in
data management, storage optimization, and content
curation. Image deduplication, the process of
identifying and removing similar or identical images
in large datasets, is critical for managing the
proliferation of duplicate images on social media, e-
commerce platforms, and digital asset management
systems [1]. Previous methods that have been applied
to image deduplication have mainly relied on low
level visual features or perceptual hashing methods
[2, 3]. Although these methods have proved effective
in some ways, they are not very strong when
performing feature matching on images that are
semantically similar but differ in terms of their
appearance due to various factors such as
illumination, change in view angle or even some
transformations [4].
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This paper proposes a novel framework for image
deduplication that leverages semantic information
derived from object recognition algorithms. To
address the limitations of traditional approaches, the
proposed solution employs deep learning models for
object detection and classification, enabling the
identification of high-level semantic similarities
between images. This integration significantly
enhances the accuracy and robustness of the
deduplication process.

Hence, the foremost contributions of this research
are as follows:

1. A semantic-aware image deduplication
framework that integrates object recognition
techniques with traditional visual feature analysis.

2. A novel similarity metric that combines visual
and semantic information to identify duplicate and
near-duplicate images.

3. An extensive evaluation of the proposed
method on diverse datasets, demonstrating its
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superior  performance
deduplication techniques.

4. An analysis of the computational requirements
and scalability of the semantic-aware approach in
real-world applications.

The remainder of this paper is organized as
follows: Section 2 presents a literature review of
work most closely related to the image deduplication
and object recognition. As for section 3, it gives
details on the proposed semantic-aware deduplication
framework. Section 4 introduces the experimental
framework and the method that is adopted in the
study. Section 5 presents the results obtained and the
comparison with the approaches described in the
literature. In the last part of the paper, Section 6
provides the conclusion and recommendations for
subsequent research.

compared to existing

2. Related work
2.1 Traditional image deduplication techniques

Duplicate image detection belongs to the class of
image similarity search which has been studied for
several decades with numerous technigues to solve
the problem presented.

Early methods were mainly based on the pixel-
level match which were very computationally
intensive and are affected easily by changes of small
details in the images [5].

Further work has incorporated techniques such as
image hashing [6, 45], feature extraction [8, 9], and
also methods like Hamming Embedding [7], which
helped reduce binary search complexity by
representing features in compact form.

2.1.1. Perceptual hashing

Perceptual hashing algorithms, e.g., pHash [6]
and aHash [45], seek to encode short signatures for
an image that will be resilient to small changes but
preserve its global structure. These algorithms
typically begin by resizing the image to a fixed size,
converting it to grayscale, and then generating a hash
based on the discrete cosine transform (DCT) or
average pixel values. Perceptual hashing techniques
are computationally efficient and effective for
detecting exact or near-exact duplicates, but may
have difficulty with semantically similar images that
are visually very different [8].

Drawback: These approaches are usually
ineffective when images experience significant
semantic changes, for example, object repositioning,
occlusion, or background change [8]. They heavily
draw on low level pixel information and ignore high
level semantics.
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2.1.2. Content based image retrieval (cbir)

Content-based image retrieval methods are able
to use low-level visual features, such as color
histograms, texture descriptors, edge information, etc.
to represent the images [9]. These features are then
employed for the computation of similarity scores
between images making possible the detection of
duplicates and near-duplicates. Common CBIR-
based methods involve using local feature descriptors
(SIFT- Scale Invariant Feature Transform [9], and
SURF-Speeded up Robust Features [10]. If compared
with simple forms of hashing, CBIR methods are
more resilient but nevertheless may suffer from
insensitivity to high-level semantic similarities of
images [11, 12].

Drawback: CBIR is better than hashing but also
concentrates on low-to mid-level characteristics.
Consequently, it has difficulties with visually
different images that have similar semantic content,
for example, various views of the same object [12].

2.2 Deep learning in image analysis

The emergence of deep learnings has transformed
the computer vision area with notable improvements
in different image analysis task: object detection,
semantic segmentation, and image classification [13].
Convolutional Neural Networks (CNNs) have
become the prevailing network for image related
tasks and its performance on benchmark datasets is
impressive [12].

2.2.1. Object detection and retention

The object detection and recognition have
considerably improved with the advent of deep
learning models, like R-CNN [13], Fast R-CNN [14]
and YOLO (YYou Only Look Once) [15]. Such models
can correctly identify and localize multiple objects in
an image, providing a wealth of semantic information
on the image content. Such recent advances as Mask
R-CNN [16] and EfficientDet [17] have further
enhanced the performance and performance efficacy
of the object detection systems.

Drawback: But, deep features capture holistics
appearance greatly. They are likely to miss fine
grained semantic relationships (interaction of objects,
or context) and end up having sub-optimal
deduplication of complex scenes [23].

2.2.2. Image similarity using deep features

Researchers have experimented with the
exploitation of deep learning features in image
similarity tasks such as image retrieval and
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deduplication [18]. It is possible to design compact
and semantically rich representations of images, by
extracting features from pre-trained CNN models,
such as VGGNet [19], or ResNets [20]. These deep
features have also been shown to outperform
traditional handcrafted features in capturing both
low- and high-level image characteristics [23].
Additionally, feature aggregation methods such as
SPoC [21] enhance retrieval performance by
effectively capturing spatial cues from CNN feature
maps.

2.3 Recent advances (2024-2025)

Recent studies have turned to transformer
architectures, semantic hashing and self-supervised
learning in an attempt to increase knowledge around
semantic similarity understanding:

Sun et al. (2024) proposed SimEnc, a high-
performance  similarity-preserving  encryption
scheme with semantic hashing integrated into
message-locked  encryption for  deduplicating
encrypted Docker images, cutting the storage to state-
of-the-art levels and performance on containerized
datasets [40].

Liu et al. (2025) proposed a semantically guided
deep supervised hashing model (SGDSH) with multi-
scale feature fusion and semantic guidance to greatly
improve the multi-label image retrieval performance,
outperforms the traditional CNN based methods in
retrieval accuracy and efficiency [41].

Further, self-supervised learning methods have
received interest in learning the semantic
representations without strong supervision.

Alkhouri et al. (2024) proposed an autoencoding
sequential deep image prior whereby iteratively
denoised and autoencoded images are reconstructed
[42], which demonstrate the possibility of self-

supervised  priors  for  scalable, label-free
deduplication applications.
Wen et al. (2025) proposed SEDDS)y a

deduplication system for encrypted image data, that
models object relationships and embeds auxiliary
information using adaptive reversible data hiding that
not only increases security but also improves
semantic matching [43].

Drawback: Although this helps, many approaches
still fail to have an explicit modeling of object
relations or spatial configurations between objects,
both of which are necessary for detecting subtle
duplicates.

2.4 Semantic-based approaches in image analysis

Although deep learning has made great strides in
improving the accuracy of image analysis tasks,
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active interest is increasing in incorporating explicit
semantic information in the hope of further
performance improvement. Semantic-based
approaches aim to bridge the gap between low-level
visual features and high-level semantic concepts,
resulting in more robust and interpretable image
analysis systems [8]. Techniques such as semantic
segmentation [24, 25] and visual relationship
detection [26, 27] offer deeper insights into image
content by associating visual elements with
contextual meaning. Visual semantic reasoning
methods [22] further advance the field by learning
cross-modal associations between images and
abstract concepts. Recent approaches also leverage
semantic hash centers to enhance retrieval efficiency
by explicitly separating semantic classes in the
Hamming space, thereby improving discriminative
representation [38].

Such graph-based approaches as scene graph
embeddings [28] help to make the object
relationships even more expressive, which promises
promising avenues towards robust deduplication.

2.4.1. Semantic segmentation

Visual and semantic approaches, which use
semantic segmentation methods, of associating class
labels with every pixel on an image, have shown the
potential value in using visual and semantic
information [23]. Those models such as DeeplLab
[24] and PSPNet [25] can achieve state-of-the-art
results on diverse semantic segmentation benchmarks,
and they can provide the fine-grained semantic
information of image content.

2.4.2. Visual relationship detection

The recent activity of visual relationship
detection attempts to not only locate various objects
in an image but also the relation between them [26].
The deeper understanding of semantics on the higher
level can enhance valuable context for the image
analysis task such as deduplication. Examples of such
models like VTranskE [27] and Neural Motifs [28] had
impressive results in expressing intense semantic
relations in the images.

2.5 Gap in current research

Despite significant advancements in image
deduplication and semantic image analysis, a
substantial gap remains in effectively leveraging
semantic information to enhance deduplication
accuracy. Most of the existing deduplication
techniques still rely heavily on visual features, or
perceptual hashing, which may end up not
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recognizing important semantic similarities between
images. Although there has been some recent work
on using deep features for tasks of image similarity
[29, 30], the work that explicitly incorporates object
recognition and semantic relationships to the
deduplication task appears to be quite limited.

This work attempts to fill this gap by presenting a
semantic-aware image deduplication framework,
which uses state-of-the-art object recognition
methods to improve the accuracy and robustness of
duplicate detections. The proposed approach aims to
surpass existing methods by integrating both visual
and semantic information, with a particular focus on
accurately identifying semantically similar but
visually dissimilar images.

2.6 Research positioning

In contrast to earlier methods, which mainly
emphasize visual similarity at the global or feature
level, the developments in this field are focused on
local parts and blocks of pixels for visual similarity.

The semantic-aware deduplication framework
introduces two key innovations, outlined as follows:

1. Object-Centric Understanding: We identify
and find objects in images and extract
semantic entities and their attributes.

2. Graph-Based Relationships: Spatial and
semantic relationships between objects are
modeled using graph-based representations,
enabling fine-grained semantic matching.

By merging visual features, object semantics and
object relationships, our framework is capable of
detecting duplicates which often involves difficult
cases where although the images might be quite
different they depict the same semantical content.

3. Proposed semantic aware deduplication
framework

This section presents a novel semantic-aware
image deduplication framework that integrates object
recognition techniques with conventional visual
feature analysis, thereby enhancing the accuracy of
duplicate and near-duplicate image identification.
Key components of the proposed framework are as
depicted in Fig. 1.

3.1 System architecture

The framework that is proposed consists of the
following major components.

1. Image Pre-processing Module

2. Visual Feature Extraction Module

3. Object Recognition Module

4. Semantic Feature Extraction Module
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Figure. 1 Overview of the Semantic-Aware Image
Deduplication Framework

5. Similarity Computation Module

6. Decision Module

All of these components serves an essential part
in the overall deduplication process that combines the
visual and semantic information in order to make the
accurate similarity estimations.

3.2 Image pre-processing

The image pre-processing module acts to pre-
process input images for the following processing.
This stage involves several steps:

1. Resizing: Input images are all converted to a
standard resolution (i.e., 224x224 pixels) in order to
normalize the way of processing images with
different sizes.

2. Color Space Conversion: Images are rasterized
to a pool of consistent color space (such as RGB if
needed).

3. Normalization: Pixel values are also
normalized to the common range (e.g., [0, 1]) in order
to enhance the stability of not only an extraction of
features but also an identification of objects.

4. Data Augmentation: For the purpose of
training data augmentation techniques like, flipping,
color jittering and random cropping may be applied
to make model more robust.

3.3 Visual feature extraction

The visual feature extraction module employs a
deep convolutional neural network (CNN) to extract
low-level and mid-level visual features from pre-
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processed images. A pre-trained CNN architecture
either ResNet-50 [20] or EfficientNet [31] is selected
as the backbone for feature extraction, leveraging
their proven effectiveness in capturing hierarchical
visual representations.

ResNet-50 was chosen because it demonstrated
very good generalization over a wide range of vision
tasks and that robust pre-trained weights were
available. Its performance / computational cost
balance makes it appropriate for large scale
deduplication. With more modern counterparts such
as Vision Transformers there are, ResNet-50
provides stable convergence and tools of
interpretation that is important for fusion with
semantic modules.

The output of this module is a high dimensional
feature vector that summarizes the image variability
in several visual attributes.

3.3.1. Transfer learning and fine-tuning

To adapt the pre-trained CNN to the specific
requirements of the image deduplication task, a
transfer learning approach is employed. The network
is fine-tuned on a dataset comprising labeled image
pairs—classified as duplicates and non-duplicates—
enabling it to learn features relevant to deduplication.
During this fine-tuning process, a Siamese network
architecture [32] is utilized to directly learn a
similarity metric from the image pairs.

3.4 Object recognition

The proposed framework contains a semantic-
aware object recognition module. It uses the state of
the art object detection and recognition model to
locate and detect objects in input images. A two-stage
object detection strategy is employed, utilizing
models such as Faster R-CNN [33] or Mask R-CNN
[16], pre-trained on the large-scale COCO dataset
[34].

Faster R-CNN is selected due to its high accuracy
in object localization and classification in particular,
for complex scenes. It surpasses single shot detectors
in precision which is of crucial importance if
semantic consistency is the essence of deduplication.
In addition, the COCO dataset utilized for pre-
training allows generalization into domains which
have not been seen before this because of the wide
variety of object classes represented.

The tasks that the object recognition module
conducts are:

1. Object Detection: Locates bounding boxes to
possible objects in the image.
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2. Object Classification: Annotation of class
labels to detected objects with accompanying
confidence scores.

3. Object Localization: Gives exact spatial
information for every detected object.

The result of this module is a list of detected
objects, their class labels, scores of confidence and
bounding box coordinates.

3.5 Semantic feature extraction

The semantic feature extraction module takes the
output of object recognition module to create a
semantic  description of the image. This
representation encodes high-level information about
the objects contained in the image, the relationships
between the objects, and a configuration in their
spatial relations.

3.5.1. Object-based semantic embedding

The paper proposes an object-based semantic
embedding which converts the detected objects and
their attributes to a fixed-length wvector. This
embedding includes:

1. Object Class Distribution: A histogram chart of
the object classes that reside in the image, of their
respective confidence scores and relative sizes.

2. Spatial Relationships: Encoding of relative
object positions and sizes through a spatial pyramid
representation [35].

3. Attribute Information: Object attribute
inclusion (e.g., color, texture) when available from
the objects recognition model.

3.5.2. Graph-based semantic representation

To model more complex relationships between
objects, we also suggest a graph-based semantic
representation. In this method, detected objects are
shown in the form of nodes in the graph and the edges
in the graph represent spatial and semantic relations
of the objects. We employ the use of a Graph
Convolutional Network (GCN) [36] to learn a
compressed form of this object relationship graph.

Every node here maps to each of the individual
detected objects and is set up based on its semantic
embedding (object class, confidence value, and
bounding box coordinates). Edges are constructed
relying on spatial proximity cues (loU > 0.1 or points
within a certain distance) and co-occurrence priors
obtained from the COCO dataset [34]. To control for
graph size, we only keep top-K objects per image (K=
10-15) ranked by confidence and size. This ensures
that the computed graph is tractable, but at the same
time indicative of salient objects. This represent ~10—
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15% overhead in runtime during graph construction
and inference, but it is likewise parallelizable and
acceptable for off-line or batch deduplication use
cases.

3.6 Similarity computation

The similarity computation module fuses the
visual and semantic features together to compute an
overall similarity score for image pairs together. A
multi-modal similarity metric is introduced,
incorporating both visual and semantic similarity
components:

Sy, I) =a-S,(V,V2) + (1 —a) - $5(51,52)

Where:

o S(I4,1,) is the total similarity score between

images I; and I,.

o S,(V,V,) is the similarity of the visual based

on the extracted visual features.

o 5.(51,S,) is the similarity of meaning

following the use of semantic representation.

e « isaquantitative parameter which represents

the weightage in terms of the contributions of
visual as well as the semantic similarities.

The parameter value of a is empirically optimized
through grid search over the validation set, where
values [0.1, 0.9] are explored. The selection of final
value is determined by the maximum value in the F1-
score. Over the various datasets, o changed from 0.4
to 0.6, and hence the modalities both contribute
meaningfully.  This also reflects moderate
generalizability of the weight from domains. In actual
deployments o can be adaptively tuned via meta-
learning tricks or uncertainty-weighted averaging.

3.6.1. Visual similarity

The visual similarity S_v is calculated by means
of a distance metric (cosine similarity, Euclidean
distance) of the visual feature vectors obtained from
the CNN.

3.6.2. Semantic similarity

The Semantic similarity is calculated with the use
of a combination of techniques:

1. Object Set Similarity: Jaccard similarity
between detected-object sets in both images.

2. Semantic Embedding Similarity: Similarity by
cosine distance between the object-based semantic
embeddings.

3. Graph Similarity: Leveraging the graph-based
representation, similarity between object relationship
graphs is measured using graph matching techniques,
including graph kernels.
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3.7 Decision module

The decision module can decide whether two
images are duplicates or near duplicates on the basis
of similarity score generated. A threshold-based
approach is employed, wherein image pairs are
labeled as duplicates if their similarity exceeds a
predefined threshold. This threshold is empirically
determined using a validation dataset, based on the
trade-off between precision and recall.

3.7.1. Adaptive thresholding

In order to cover distinctions in various image
domains and use-cases, the proposed framework
implements an adaptive thresholding mechanism.
This approach varies the decision threshold by image
characteristics and application specifically (prefer
precision or recall or both).

It is possible to introduce advanced methods of
operation to enhance adaptivity. Methods such as
Platt scaling and isotonic regression are used to
calibrate outputs of probabilities from similarity
scores, and input-aware thresholding tunes sensitivity
based on heuristics associated with difficulty — e.g.
the number of detected objects or the variability of
embeddings. These methods are especially helpful in
the case of robustness of datasets with high variability,
e.g., the datasets with borderline or ambiguous
duplicates.

3.7.2. Confidence estimation

Apart from the binary duplicate/non-duplicate
choice, the proposed framework gives confidence
estimate of each classification. This confidence score
is calculated from the distance between the computed
similarity score and the decision threshold thus
making it possible to make more refined decisions in
borderline cases.

3.8 Training and optimization

The whole framework is trained end-to-end on a
large dataset of labeled image pairs (duplicate and
non-duplicate). We use a multi-task learning strategy,
optimizing simultaneously for visual and semantic
similarity. The loss function combines:

1. Contrastive loss for visual similarity learning

2. Cross-entropy loss for object recognition

3. Loss for learning semantic relationship in a
graph-based approach

Optimization is carried out with stochastic
gradient descent with momentum or adaptive
learning rate techniques such as Adam [37].
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3.9 Theoretical justification

The proposed semantic-aware deduplication
framework can theoretically be justified in its
effectiveness on the basis of principles which are
drawn from feature space representations and graph
theory.

3.9.1. Multi-modal feature space

Traditional approaches of image deduplication
compute the similarity between two images I1 and 12
based on a single feature modality such as:

Where V is the term for visual features (e.g., CNN
embeddings). Nonetheless, a visual features-only
approach may be insufficient if images are subject to
major appearance transformations (e.g. viewpoint
transforms, background noise).

The proposed method models similarity within a
multi-modal feature space that integrates both visual
and semantic representations:

Sy, I) = a-S,(V,V2) + (1 — a) - $s(51,52)

Where:

e S, captures visual similarity.

e S, is based on the detection of objects and
their relationships to capture semantic
similarity.

e «a €[0,1] controls the fusion weight between
visual and semantic similarity components.

From a theoretical point of view, this formulation
coincides with the notion of multi-view learning,
where each modality (visual and semantic) gives a
different but complementary perspective for the same
sample. The linear combination serves as a convex
fusion step that maintains the capacity to discriminate
between sources of information and reduces over-
dependence upon single modality. The control of
modality influence is achieved by the weight a which
in the case of being selected by means of validation-
based tuning guarantees a Pareto-optimal trade-off
between precision and recall across domains [44].

By combining complementary modalities, the
chances of detecting even appearance variations as
duplicates become theoretically higher based on
multi-view learning theory.

4. Experimental and evaluation
methodology

setup

To evaluate the performance of the proposed
semantic-aware image deduplication framework, a
range of experiments in various datasets has been
conducted in the first hand. The following sections,
describe the experimental setup, including datasets,
evaluation metrics and baseline approaches for
comparison.
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4.1 Datasets

The study employed the following datasets in the
experimental evaluation:

1. MNIST-Duplicate: A synthetic dataset
generated by transforming (rotation, scaling,
translation) MNIST digits at random for 100, 000
images pairs (50,000 duplicate pairs; 50,000 non
duplicate pairs).

2. Oxford Buildings Dataset: A real-world dataset
consisting of 5,062 images of Oxford landmarks,
accompanied by ground truth knowledge on
duplicate or near-duplicate images [40].

3. Web Image Dataset (WID): A colossal dataset,
1 million web images with known duplicate and near-
duplicate pairs, gathered from multiple online
sources [41]. Although WID emulates large scale
environments, it cannot fully support the complexity
and noise of live social media or surveillance data.
This gap is acknowledged, and future work will focus
on extending the evaluation to industry-scale datasets
such as Twitter streams, Facebook Al Similarity
Search (FAISS) logs, and real-time CCTV feeds—
subject to availability and compliance with privacy
regulations.

4. COCO-Duplicate: A custom dataset that was
developed using COCO dataset [34] based on
differences and modifications made to create
duplicate and near-duplicate  pairs, which
concentrated on image with multiple objects. A
summary of our experimental datasets is presented in
Table 1.

4.2 Evaluation metrics

To evaluate the performance of the proposed
semantic-aware image deduplication framework, the
following metrics were used:

1. Precision: The percentage of duplicates which
were correctly identified by the algorithm to the total
number of duplicates detected.

2. Recall: The proportion of right identified
duplicate pairs to the total number of actuals
duplicate pairs in the data set.

3. Fl-score: Balanced measure of the model’s
performance given from harmonic mean of precision
and recall.

4. Mean Average Precision (mAP): A metric
dependent on the ranking of duplicate images,
especially valuable for assessment of near-duplicate
detection.

5. Receiver Operating Characteristic (ROC)
curve: A plot of the true positive ratio against the
false positive ratio taking on multiple threshold
values.
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Table 1. Overview of datasets used in the experiments

Dataset Images | Duplicate Pairs | Non-Duplicate Pairs | Object Types | Transformation Types
MNIST- 200,000 50,000 50,000 Digits Rotation, Scaling,
Duplicate Translation
Oxford 5,062 2,531 2,531 Buildings, Viewpoint changes,
Buildings Landmarks Lighting variations
Web Image | 1,000,000 100,000 900,000 Various Multiple (natural
Dataset (WID) variations)
COCO- 200,000 50,000 50,000 Multiple object Cropping, Color
Duplicate categories adjustments, Object
addition/removal

6. Area Under the ROC Curve (AUC): Overall
performance across all possible thresholds, in terms
of a single scalar value.

4.3 Baseline methods

A comparative study was conducted between the
proposed semantic-aware framework and the
following baseline methods:

1. Perceptual Hashing (pHash): Classical image
hashing scheme based on the discrete cosine
transform [6].

2. SIFT + BoVW: Scale-Invariant Feature
Transform descriptors in Bag of Visual Words
representations [9].

3. Deep Siamese Network: A convolutional
neural network that utilizes contrastive loss function
training [32].

4. DeepRank: A deep learning oriented way of
ranking image similarities [46].

5. DupNet: A recently developed deep learning
approach for image deduplication, [39].

4.4 Implementation details

The proposed semantic-aware image
deduplication framework was implemented using
PyTorch version 1.8.0. The visual feature extraction
module used the pre-trained ResNet-50 on ImageNet
architecture, and the object recognition module used
a pre-trained Faster R-CNN COCO model. The
Graph Convolutional Network with 3 layers was used
to extract the semantic feature of the underlying
module.

Training was carried out on 4 NVIDIA Tesla
V100 at 32GB per GPU. For optimization, the Adam
optimizer [37] was used with a learning rate of le-4
and a batch size of 64 image pairs. The model was
trained for a total of 50 epochs; the learning rate was
reduced by a factor of 0.1; it was done every 20
epochs.

International Journal of Intelligent Engineering and Systems, Vol.18, No.7, 2025

4.5 Experimental protocol

The experiments were conducted following the
protocol outlined below:

1. Data Preparation: 60% of each dataset was
used for training, 20% for validation, and the
remaining 20% were saved for testing. Special care
was taken to avoid the split of duplicate pairs between
sets.

2. Model Training: The developed semantic-
aware framework and baseline models were trained
on the training set, with hyper parameters tuned on
the validation set.

3. Threshold Selection: The optimal decision
threshold was determined using the validation set for
every method in order to maximize the F1-score.

4. Performance Evaluation: All methods were
guantitatively evaluated on the test set using the
selected thresholds, and the performance metrics
described in Section 4.2 were computed.

5. Ablation Studies: The studies were conducted
to highlight the contribution of various components
of the proposed framework, namely:

e Visual features only, semantic features only

or a combination of both.

e Effect of various object recognition models

e Contribution of graph-based semantic

representation

6. Scalability Analysis: The computational
demands and scalability of the proposed approach
were evaluated by measuring processing time and
memory utilization across incrementally sized
datasets.

4.6 Statistical analysis

To ensure statistical significance of the results,
the study conducted the following analyses:

1. Confidence Intervals: Bootstrap resampling
with 1,000 iterations was used to compute 95%
confidence intervals for all evaluation metrics
reported in the study.
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Table 2. Performance comparison of different methods across datasets (mean + 95% CI)
Method F1-score (MNIST- mMAP (MNIST- F1-score (COCO- mMAP (COCO-
Duplicate) Duplicate) Duplicate) Duplicate)
pHash [6] 0.823 0.801 0.701 0.673
SIFT + BoVW [9] 0.856 0.832 0.754 0.729
Deep Siamese [32] 0.912 0.897 0.873 0.859
DeepRank [46] 0.925 0.913 0.889 0.876
DupNet [39] 0.931 0.922 0.902 0.893
Proposed Method 0.947 0.939 0.929 0.921
(Semantic-Aware)
ROC Curves for Different Methods methods, including perceptual hashing techniques [6 ,
"] —— 45], content-based image retrieval algorithms [8, 9],
3 L deep learning-based feature extraction approaches
£ 075 / [32], and recent semantic-aware models.
. Y/ To evaluate the performance of the proposed
s oos 7 method, the study selected prominent techniques
J from each category for comparative analysis. The
0251 selected methods include pHash [6], SIFT combined
with Bag-of-Visual-Words (BoVW) [9], Deep
o - o — — 1 Siamese Network [32], DeepRank [46], and DupNet
‘ ‘ ' R [H‘F‘a\r@ﬁfasm.t Rate [39]

Figure. 2 ROC curves for different methods on the Web
Image Dataset

Table 3. AUC values for different methods on the Web
Image Dataset

Method AUC

pHash 0.867

SIFT + BovW 0.901

Deep Siamese 0.953

DeepRank 0.961

DupNet 0.968

Proposed Method (Semantic-Aware) 0.984

2. Paired t-tests: Paired t-tests were conducted to
compare the proposed method against each baseline
at a significance level of o = 0.05.

3. McNemar's Test: For binary classification
decisions (duplicate vs. non-duplicate), McNemar’s
test was applied to evaluate the statistical significance
of the differences observed between the proposed
method and the baseline techniques.methods.

5. Results and discussion

This section presents the results of the
experimental evaluation and provides an in-depth
analysis of the proposed semantic-aware image
deduplication framework in comparison with existing
baseline techniques. The study reviewed a range of
well established and emerging image deduplication
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These methods were selected to represent key
advancements in the field, encompassing both
traditional image processing technigues and the latest
developments in deep learning.

5.1 Overall performance comparison

Table 2 presents the performance comparison
between the proposed method and baseline
approaches across all datasets, using metrics such as
precision, recall, Fl-score, and mean average
precision (MAP).

The proposed semantic-aware framework
outperforms all conventional methods when
evaluated across multiple standardized datasets.
Notably, it achieves an Fl-score improvement of
approximately 1.6% over DupNet and 3.2% over
DeepRank on the COCO-Duplicate dataset.
Furthermore, the framework demonstrates a
significant performance gain exceeding 20% in F1-
score compared to traditional methods such as pHash
and SIFT + BoVW.

The results show that having a combination of
semantic object knowledge and graph-based
structures significantly improves the accuracy of
image deduplication, particularly in the case of
complex real-world images.

5.2 Roc curve analysis

Fig. 2 presents the ROC curves of all evaluated
methods on the Web Image Dataset (WID),
highlighting the relationship between the true
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positive rate and false positive rate across various
threshold values

The  proposed  semantic-aware  method
consistently outperforms alternative approaches
across a range of false positive rate thresholds. This
superior performance is attributed to its higher true
positive rate on the ROC curve, reflecting its
enhanced capability to accurately detect duplicate
images.

To comprehensively evaluate the proposed
framework, the study compared it against several
well-established baseline methods, including:
Perceptual Hashing (pHash) [6],

SIFT + Bag of Visual Words (BoVW) [9],
Deep Siamese Network [32],

DeepRank [46], and

DupNet [39].

The Area under the Curve (AUC) values are
summarized in Table 3 for each method compared.

5.3 Ablation studies

To analyse how a particular element of our
framework influences performance, we conducted
ablation studies. The results for the ablation studies
are presented on Table 4 using the COCO-Duplicate
dataset.

The results obtained from the ablation studies
suggest that the use of visual and semantic
information together plays a significant role in
enhancing the performance of the models.

Table 4. Ablation study results on COCO-Duplicate

dataset
Method AUC
Visual features only 0.891 + 0.005
Semantic features only 0.903 + 0.004
Combined (no graph) 0.918 + 0.003
Full model (with graph) 0.929 + 0.003

Table 5. Performance with different object detection
models on COCO-Duplicate dataset.

Object Detection F1l-score MAP
Model

Faster R-CNN 0.929 + 0.921
0.003

Mask R-CNN 0932+ 0.924
0.003

YOLO v4 0.925+ 0.917
0.004

EfficientDet 0.930 + 0.922
0.003
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Figure. 3 Scalability analysis - Processing time and
memory usage vs. dataset size

The incorporation of graph-based semantic
representations further enhances the precision of the
proposed system.

To analyse the influence of different sub-modules,
the study conducted additional ablation experiments
focusing on object attributes and graph edge types.
Removing semantic embeddings from the object-
level attributes, such as color and size led to a
decrease of ~1.1% in F1-score of COCO-Duplicate
proving their quantifiable effect. Moreover, a
replacement of rich semantic + spatial edge
connections by purely spatial edges in the graph
module led to mAP drop by about 1.4%.

These finding show that attribute encoding and
multi-type edge modeling will significantly
contribute  towards improving the overall
performance of the model. For future work, a better
modular assessment could be achieved through
testing in controlled environments with clear data.

5.4 Impact of object recognition models

Various models for multiple object recognition
were tested to examine their impact on the overall
performance of the framework. The results of Table
5 show how various object detection models behave
on COCO-Duplicate dataset.

While all of the object detection models show
strong performance, Mask R-CNN outperforms them
just a bit due to its increased segmentation
information.

5.5 Scalability analysis

To evaluate the scalability of the proposed
approach, the study examined performance metrics
such as processing time and memory consumption for
deduplication as the dataset size increased. A diagram
showing relation between the amount of data and
computation resources utilized is depicted in Fig. 3.
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As the dataset size increases, the semantic-aware
approach exhibits a linear growth in processing time
and memory usage, indicating its strong scalability
for large-scale deduplication tasks. Nevertheless,
leveraging semantic content of images requires
greater computation needs than simple approaches
like perceptual hashing.

5.6 Qualitative analysis

The proposed superior performance in handling
cases where images are semantically similar but
visually distinct, such as different views of the same
landmark or products with varying backgrounds.

5.7 Discussions

The experimental results, clearly demonstrate the
effectiveness of the semantic-aware approach in
image deduplication. Key findings are summarized as
follows:

1. Consistent Performance Improvement: The
proposed approach outperforms existing methods
across all datasets, demonstrating significant
improvements in both F1-score and mean Average
Precision (mAP).

2. Robustness to Visual Variations: This
framework exhibits significant performance, when
applied to pairs of images having different visuals,
but similar semantics.

3. Complementary Features: The Ablation studies
results show that the semantic and visual features
contribute to the overall performance which supports
the additional benefits of the graph-based semantic
representation.

4. Scalability Trade-offs: Although the proposed
method incurs additional computational overhead, its
scalability with respect to dataset size reinforces its
practicality for deployment in large-scale systems.

5. Flexibility: The performance of the framework
can be improved through the choice of appropriate
object detection models that are characterised for
specific applications or domains.

6. Dataset Representativeness:

Although the datasets span multiple domains,
they are primarily derived from academic or curated
sources. Applying such tools as those used on social
platforms or surveillance system often come in
contact with noisy data, a fast flow of information and
significant fluctuations in frequencies for duplicates.
To evaluate model robustness in real-world scenarios
and assess performance and latency in live settings,
future research will utilize datasets collected from
actual deployments.

While these results are promising, there are still
some challenge and areas to explore:
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1. Computational Overhead: The use of object
recognition and graph-based processing leads to
computational costs which is a factor that must be
considered when talking about applications operated
under large data sets or strict real-time limits.

To address this issue, the following optimizations
are proposed:

e Consider the use of architectures such as
YOLOV5 or MobileNet-SSD since they are
less heavy as compared to Faster R-CNN, the
architectures are necessary for tasks dealing
with the detection of objects where there is a
need for low latency.

e Use techniques such as approximate nearest
neighbour (ANN), such as FAISS, for faster
similarity retrieval; and

e Use graph pruning strategies (e.g., retaining
top-N salient object relationships) so that
most important object connections are
prioritized to reduce the computational
burden of GCN inference.

Further, object recognition can be handled either
asynchronously or cached if the image has already
been repeated. Such modifications allow a significant
decrease of latency at high levels of accuracy.

2. Domain Specificity: While the proposed
method demonstrates comparable performance on
fully evaluated datasets, further analysis is required
to assess its applicability to highly specialized image
collections, such as medical imaging or satellite
imagery.

To overcome these limitations, we then assessed
the accuracy of the model by training it on MNIST-
Duplicate and evaluating it on a subset of COCO-
Duplicate dataset. The framework’s performance was
strong, with F1-score drop in 4% when tested on fresh
data, presenting moderate adaptiveness to unseen
distributions. This implies that the semantic fusion
methodology and the object-centric representations
are by nature more adaptable to new datasets. Future
research might investigate methods of including
domain adaptation or self-supervised learning in
order to gain a better performance.

3. Fine-grained Similarity: Future research may
explore improved methods of quantifying similarities
consideration for differing weights of objects and
semantic relationships in image scenes.

4. Semantic Generalization Limitations: This
framework is robust in its actions when faced with
those data sets containing unique, distinct, and well
labeled entities. In such situations, where abstract,
artistic, or complex texture-rich images can defeat the
current techniques of object detection or the semantic
segmentation, its performance usually degrades.
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Such situations lead to semantic graphs that are either
vague or incorrect representation of the scene. The
answer is to resort to hybrid models that combine
perceptual signals (like texture and color
arrangements) without adequate semantic clues, or
exploring the new representations, that is, CLIP-style
image-text embeddings for deriving the deeper
contextual understanding.

5. Robustness to Manipulated Duplicates:
Presently, the assessment cannot factor in modified
or deliberately adjusted duplicates such as memes,
watermarked photographs or those that have part
obstructions. This form of content is being
experienced at much higher frequencies in the fields
of online moderation and copyright assurance.
Although the semantic-aware method is said to be of
greater necessity to alleviate such distortions, tests
must be practical. Future research will concentrate on
benchmarking results which involve reproducing
such transformations, and on embedding techniques
such as adversarial training or watermark-invariant
embeddings to augment the model’s robustness.

In conclusion, our semantic-aware image
deduplication  framework is a remarkable
advancement that combines both visual and semantic
components to achieve outstanding accuracy in
identifying duplicate and near-duplicate images.

5.8 Error analysis

To gain deeper insight into the limitations of the
proposed approach, an error analysis was conducted
using the COCO-Duplicate dataset. False positives
often occurred when different images contained
similar object categories presented similarly but in
different settings (such as two pictures of street
benches and pedestrians at different locations). Such
examples demonstrate that despite all the semantic
similarity, the images do not reproduce the same
scene.

Conversely, false negatives (FNs), were
registered when duplicate images indicated
differences arising from partial occlusion or object
deletion, thus leading to differences in semantic
graphs. For example, when an image is partially
occluded with a bicycle but its duplicate shows the
complete bicycle, it would not be possible for the
model to pair them since object detection was
incomplete.

These findings suggest that if spatial relationship
modeling is improved and uncertainty-aware object
detection techniques are applied, it can reduce such
errors. Humans-in-the-loop reviews may also result
in more reliable results, even in safety-critical
enclaves, if decisions are close.
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6. Conclusion and future work

This paper presents a novel semantic-aware
approach to image deduplication based on object
recognition and use of graph-based semantic
representations to enhance the efficiency of duplicate
and near-duplicate image detection.

The proposed method combines visual features
extraction with context extracted by object detection
models and uses graphs to model the object
relationships.

Theoretically, combining visual and semantic
modalities expands the feature space, enhancing the
differentiation of duplicate and non-duplicate images.

By utilizing graph-based representations of
objects, the proposed approach enables more detailed
modeling of object relationships and enhances the
system's ability to identify semantically similar
images, even when visual differences exist.
Experimental results validate the effectiveness of the
framework, which achieved an F1-score of 0.947 and
a mean Average Precision (mAP) of 0.939 on the
MNIST-Duplicate dataset, and an F1-score of 0.929
and mAP of 0.921 on the COCO-Duplicate dataset.
Compared to recent state-of-the-art methods such as
DupNet [39], the proposed method demonstrated an
average F1-score improvement of approximately
1.6% and a mAP increase of about 2% across diverse
datasets.

The main contributions of this research are
explained below:

1. A framework that, combining visual and
semantic cues, helps to eliminate duplicate
images in a systematic way.

2. A technique for describing semantic
relationships among objects in images based
on graph-based representation.

3. A thorough examination of theory and
practice that shows how the presented
framework provides remarkably better results
as compared to the earlier models.

Future research directions include:

1. Exploring complex graph neural networks in
order to improve semantic comprehension.

2. Incorporating the self-supervised approaches
to scale up the duplicate detection without
heavy labelling.

3. Enhancing the framework’s performance for
the purpose of deployment in scenarios that
call for rapid processing and limited resources.

Semantic deduplication will have a tremendous

future if image databases increase in complexity and
size, making intelligent and context-sensitive data
management necessary.
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In conclusion, semantic awareness in image
deduplication implies a promising option for
improving  duplicate  detection technologies’
efficiency and reliability. As digital images increase
in number and complexity at an unprecedented rate,
the demand for advanced methods of data and content
management in various disciplines will increase.
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