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Abstract: Robust perception of 3D point clouds remains a significant challenge in real-world environments where 

sensor data is often corrupted. While recent models and augmentation strategies have improved robustness individually, 

their isolated use still limits performance under severe distortions. In this work, we introduce BeyondRPC, a 

contrastive and augmentation-driven framework for robust point cloud classification. Our approach combines 

AdaCrossNet for adaptive cross-modal contrastive pretraining with WOLFMix-based fine-tuning to improve 

generalization under corruption. Specifically, AdaCrossNet employs a dynamic weighting mechanism to balance intra- 

and cross-modal learning, while WOLFMix integrates both deformation-based and rigid-mix augmentations. 

Experiments on the ModelNet-C benchmark demonstrate that BeyondRPC achieves a mean Corruption Error of 0.455, 

outperforming state-of-the-art methods, including RPC, GDANet, and CurveNet, while maintaining high clean overall 

accuracy at 0.930. These results underscore the importance of joint contrastive representation learning and corruption-

aware augmentation for robust 3D point cloud understanding. 

Keywords: Contrastive learning, Cross-modal learning, ModelNet-C, Point cloud classification, Point cloud 

corruption, Robustness, Self-supervised learning, 3D deep learning. 

 

 

1. Introduction 

The ability to robustly perceive and interpret 3D 

environments is central to a wide range of 

applications, especially autonomous driving [1, 2], 

augmented reality [3, 4], and robotics [5, 6]. 3D data 

can be represented in several formats, such as point 

clouds, 2.5D images, and volumetric structures. Point 

clouds are widely used among these because they 

preserve the original geometric information in 

Euclidean space without quantization [7]. However, 

this advantage also brings challenges, especially 

when visualizing and understanding such data, that 

are even more complex in applications like 

autonomous vehicles and human-like robots. Point 

clouds are challenging to work with due to their 

unstructured form [8], unordered[9], and high 

dimensionality [10]. Despite these difficulties, deep 

learning researchers have made significant progress, 

primarily supported by public datasets like KITTI 

[11], ModelNet10, ModelNet40, and ShapeNet [12]. 

These benchmarks have driven the development of 

many advanced techniques for classification, 

detection, tracking, segmentation, registration, and 

reconstruction of point clouds. 

Motivated by the success of robust point cloud 

classifier (RPC) [13] and the augmentation strength 

of WOLFMix, we propose a novel framework that 

integrates adaptive contrastive pretraining with 

corruption-aware fine-tuning. In particular, we reuse 

AdaCrossNet for representation learning and apply 

WOLFMix-based augmentations during supervised 
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training. Our approach aims to improve 

generalization and robustness against corruption.  

Our contributions are summarized as follows: 

• We introduce a resilient point cloud learning 

framework that combines adaptive 

contrastive pretraining with corruption-aware 

fine-tuning 

• We integrate our previous AdaCrossNet with 

strong augmentations inspired by WOLFMix 

to enhance resilience against real-world 

corruptions. 

• We conduct extensive evaluations on 

ModelNet-C showing that our approach 

attains leading robustness performance while 

sustaining competitive accuracy on clean data. 

The remainder of the paper is organized as 

follows: Section II reviews related work; Section III 

describes the BeyondRPC framework; Section IV 

outlines the experimental setup; Section V presents 

results and ablation analysis; and Section VI 

concludes with future directions. 

2. Related work    

2.1 Point cloud classification 

A variety of models have been proposed to 

address point cloud classification. These include 

MLP-based models such as PointNet [14, 15], 

convolution-based models [16, 17], graph-based 

models [8, 18], and the more recent transformer-

based models [19-21]. There is a growing interest in 

enhancing robustness through data augmentation. 

Researchers have explored mix-based augmentations 

[22, 23] and auto-augmentations [24]. Self-

supervised pre-training has also gained attention as 

an effective alternative to random initialization. 

Techniques such as point cloud reconstruction [25] 

and inpainting [26] have been shown to improve 

performance on downstream tasks. However, point 

cloud classifiers still struggle under extreme 

corruption despite these efforts. Some approaches 

include subsampled voting [27] and using self-

supervision [28]. 

2.2 Self-supervised learning for point clouds 

Self-Supervised Learning (SSL) offers a 

compelling alternative to supervised learning by 

leveraging data augmentations to create proxy tasks. 

Approaches like JigSaw3D [29] and Rotation3D [30] 

adapt 2D self-supervised methods to the 3D domain. 

PointContrast [31] uses point-wise contrastive losses 

to align augmented views of point clouds. 

CrossPoint [32] and CrossNet [33] were among 

the first to explore cross-modal SSL between 3D 

point clouds and 2D-rendered images. They 

demonstrated that aligning features across modalities 

enhances representation quality. However, these 

methods rely on fixed weighting between intra-modal 

(IM) and cross modal (CM) losses, making them 

sensitive to the convergence rate of each branch. 

AdaCrossNet [34] addressed this limitation by 

adaptively adjusting the loss contributions using an 

exponentially weight moving average (EWMA)-

based smoothing mechanism, improving both 

stability and downstream performance. 

2.3 Augmentation strategies 

Augmentation plays a critical role in enhancing 

model robustness. Mix-based augmentations such as 

PointMixUp [22] and RSMix [23] interpolate 

between two samples to regularize learning. 

Deformation-based methods like PointWOLF [35] 

introduce local perturbations to simulate sensor-level 

noise and spatial inaccuracies. 

WOLFMix integrates these two complementary 

strategies to simulate a broader spectrum of 

corruptions during training. This augmentation is 

only applied during fine-tuning to prevent data 

leakage from corruption-aware augmentations into 

the pre-training stage. Empirical results show that 

WOLFMix consistently improves performance on 

ModelNet-C when paired with both standard and 

robust backbones. 

While RPC has demonstrated robustness through 

its geometry-aware architecture and corruption 

evaluation protocol, it does not utilize any form of 

pre-training which limits its generalization under 

unseen corruptions. Additionally, RPC relies solely 

on standard augmentations and lacks corruption-

specific adaptation during fine-tuning. 

To address these limitations, we propose 

BeyondRPC, a framework that upgrades RPC by 

integrating AdaCrossNet, a contrastive self-

supervised pre-training, with WOLFMix. This design 

preserves the effective backbone of RPC while 

substantially enhancing its feature representation and 

robustness. As shown in our ablation studies (Table 3 

and Table 4), BeyondRPC achieves notable gains in 

performance compared to RPC and the standalone 

usage of AdaCrossNet or WOLFMix. 

3. Proposed work    

Despite the recent progress introduced by RPC, 

its robustness towards point cloud corruption remains 

constrained by fixed architecture design and standard 

augmentation strategies. In this work, we introduce 
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BeyondRPC, a robust 3D point cloud framework that 

combines two previously proposed but independently 

used techniques, AdaCrossNet for contrastive pre-

training and WOLFMix for corruption-aware 

augmentation. 

While AdaCrossNet and WOLFMix are not 

newly proposed in this work, their joint integration 

within the RPC baseline is novel and non-trivial. 

AdaCrossNet enhances feature representation via 

adaptive IM and CM contrastive learning. On the 

other hand, WOLFMix is applied during fine-tuning 

to simulate diverse real-world corruptions. The result 

is a synergistic framework that improves both clean 

and corruption performance beyond what either 

module achieves alone. For clarity, the notations used 

in this section are summarized in Table 1. 

3.1 Contrastive pre-training with AdaCrossNet 

Contrastive learning is a part of SSL that offers a 

solution to the challenge of learning from unlabelled 

point cloud data. AdaCrossNet introduces dynamic 

weights 𝜆𝐼𝑀 and 𝜆𝐶𝑀 that are updated during training 

using an exponentially weighted moving average 

(EWMA). The final pretraining loss is defined as: 

 

ℒ𝐴𝐶𝑀  = 𝜆𝐼𝑀 . ℒ𝐼𝑀  + 𝜆𝐶𝑀 . ℒ𝐶𝑀   (1) 

 

where each loss term is calculated using cosine 

similarity over positive and negative pairs. 𝜆𝐼𝑀 and 

𝜆𝐶𝑀  are two dynamic weights which adaptively 

adjust the relative importance both IM and CM. 

Let ℒ𝐼𝑀
(𝑡)

 and  ℒ𝐶𝑀
(𝑡)

 be the intra-modal and cross-

modal contrastive loss at iteration t, respectively. We 

aim to learn dynamic weights 𝜆𝐼𝑀
(𝑡)

 and 𝜆𝐶𝑀
(𝑡)

 that 

adaptively balance these losses. The update rule is 

based on EWMA principle. We define the relative 

changes in loss as: 

 

Δℒ(𝑡) =
ℒ(𝑡)−ℒ(𝑡−1)

ℒ(𝑡−1) +𝜖
     (2) 

 

where 𝜖  is a small constant to prevent division by 

zero. Then, we update the dynamic weight 𝜆(𝑡)  for 

each branch by: 

 

𝜆(𝑥) = 𝛽𝜆(𝑥 − 1) + (1 − 𝛽)
1

1 + 𝑒−𝛼Δ𝐿  (3) 

 

where 𝜆(𝑥) denotes the dynamic weight at iteration 

𝑥 , 𝜆(𝑥 − 1)  is the previous weight, and Δ𝐿 

represents the change in loss, i.e., between 

consecutive epochs. The parameter 𝛽 ∈ [0,1] 
controls the influence of historical weights. The full 

procedure of the dynamic weight update mechanism 

is summarized in Algorithm 1. 

3.2 Backbone architecture 

In our framework, we adopt the architecture 

design from the RPC baseline, which integrates two 

main modules, Point Cloud Transformer (PCT) and 

Geometry-Disentagle Module (GDM) from GDANet 

[36]. The RPC model architecture can be seen in Fig. 

1. 

3.2.1. Point cloud transformer 

PCT encoder consists of a coordinate-based input 

embedding, four stacked attention layers self-

attention (S-Attn) and a linear transformation to map 

the features to the desired representation space. The 

output feature supplies the input for classification 

task. 

 

 

 
Figure. 1 The overall architecture of the RPC model.The RPC model consists of kNN grouping, 2D convolutions, GDM 

(sharp/gentle split), Sharp and Gentle SGCAMs, and SA layers. Final features are fused via ConvBLR and classified 

using MLP layers into Nc classes 
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Table 1. Table of Notations 

Symbol Description 

ℒ𝐼𝑀, ℒ𝐶𝑀 IM and CM contrastive loss 

𝜆𝐼𝑀, 𝜆𝐶𝑀 Dynamic weights for IM, CM loss 

𝛽 EWMA smoothing coefficient 

𝜆(𝑥), Δℒ Dynamic weight at 𝑥  and change in 

loss 

𝐅𝑖𝑛 Input feature to attention layer 

𝐐, 𝐊, 𝐕 Query, Key, and Value matrices in 

attention mechanism 

�̃� Attention score matrix 

𝛼𝑖,𝑗 Softmax normalized attention score 

𝐗𝑠, 𝐗𝑔 Sharp and gentle point cloud features 

Θ, Φ Non-linear transformation functions in 

GDM 

𝐖𝑠, 𝐖𝑔 Weight matrices for sharp and gentle 

components 

Ψ𝑚(⋅) Non-linear transformation for 

modality 𝑚 ∈ {𝑠, 𝑔} 

𝐘𝑠, 𝐘𝑔 Output features from sharp and gentle 

components 

𝐙 Concatenated /fused feature from 

sharp and gentle components 

 

 
Figure. 2 The end-to-end training pipeline of the 

proposed Beyond RPC framework 

 

Each attention layer adopts a query-key-value 

structure. Let 𝐅𝒊𝒏 be the input feature to the attention 

layer. The attention operation begins by projecting 

𝐅𝒊𝒏 into query (𝐐), key (𝐊), and value (𝐕) matrices 

using learned linear projections: 

 

(𝐐, 𝐊, 𝐕)  = 𝐅𝑖𝑛 ⋅ (𝐖𝑞 , 𝐖𝑘, 𝐖𝑣)   (4) 

 

Next, the attention scores are computed as the dot 

product between queries and keys: 

 

�̃� = 𝐐 ⋅ 𝐊𝑇      (5) 

 

𝛼𝑖,𝑗 =
𝑒

�̃�𝑖,𝑗 

∑ 𝑒
�̃�𝑖,𝑘

𝑘

     (6) 

 

Finally, the attention output is passed through a 

Linear-BatchNorm-ReLU (LBR) block and added 

with a residual connection from the input. To capture 

local geometric details, PCT incorporates a neighbor 

embedding module that aggregates k-nearest 

neighbor (k-NN) features using farthest point 

sampling (FPS) and shared MLP. 

3.2.2. Geometry disentangle-module 

To obtain geometric representations of 3D point 

clouds, we employ a GDM.  Specifically, GDM finds 

the sharp and gentle variation components' distinctive 

traits using the sharp-mild complementary attention 

module (SCAM).  To build a graph, GDM uses k-NN. 

The GDM generates two components that function as 

inputs for the sharp-gentle complementary attention 

module (SGCAM). The input point cloud is denoted 

as  𝕏𝑜 , the sharp component as 𝕏𝑠 , and the gentle 

component as 𝕏𝑔. 

 

𝕎𝑠 = Θo(𝕏𝑜) ⋅ Θ𝑠(𝕏𝑠)𝑇    (7) 

 

𝕎𝑔 = Φ𝑜(𝕏𝑜) ⋅ (Φ𝑔(𝕏𝑔)
𝑇
    (8) 

 

In the present scenario, Θ𝑜 , Θ𝑠 , Φ𝑜 , and Φ𝑔 

represent distinct nonlinear functions, each serving a 

specific purpose.  Subsequently, the fusion of 𝕎𝑠 

and 𝕎𝑔  is defined through elementwise operations 

as outlined below: 

 

Algorithm 1. Dynamic Contrastive Weight Update 

for AdaCrossNet 

Require: Previous weights 𝜆𝐼𝑀
(𝑡−1)

,𝜆𝐶𝑀
(𝑡−1)

, previous 

losses ℒ𝐼𝑀
(𝑡−1)

,ℒ𝐶𝑀
(𝑡−1)

, current losses ℒ𝐼𝑀
𝑡 ,ℒ𝐶𝑀

𝑡 , 

parameters 𝛽, 𝛼 

Ensure: Updated weights ℒ𝐼𝑀
𝑡 ,ℒ𝐶𝑀

𝑡   

1: Δ𝐼𝑀 ←
ℒ𝐼𝑀

𝑡 −ℒ𝐼𝑀
(𝑡−1)

ℒ𝐼𝑀
(𝑡−1)

+𝜖
 

2: Δ𝐶𝑀 ←
ℒ𝐶𝑀

𝑡 −ℒ𝐶𝑀
(𝑡−1)

ℒ𝐶𝑀
(𝑡−1)

+𝜖
 

3: 𝜆𝐼𝑀
𝑡 ← 𝛽 ∙ 𝜆𝐼𝑀

(𝑡−1)
+ (1 − 𝛽) ∙

1

1+exp (𝛼∙Δ𝐼𝑀)
 

4: 𝜆𝐶𝑀
𝑡 ← 𝛽 ∙ 𝜆𝐶𝑀

(𝑡−1)
+ (1 − 𝛽) ∙

1

1+exp (𝛼∙Δ𝐶𝑀)
 

5: return  𝜆𝐼𝑀
𝑡 , 𝜆𝐶𝑀

𝑡  
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Figure. 3 Comparison of 2D embeddings on ScanObjectNN test set using t-SNE and UMAP. Left: Baseline RPC. Right: 

BeyondRPC 

 

 

 
Figure. 4 Visualization of sample augmentations on 

ModelNet40 point clouds using "table" and "chair" 

classes. The top row is the original samples and RSMix. 

The bottom row is individual PointWOLF augmentations 

using WOLFMix 

 

 
(𝕐𝑚)𝑖 =  

(𝕏𝑜)𝑖 + ∑ (𝕎𝑚)𝑖,𝑗
𝑀
𝑗=1 ⋅ Ψ𝑚((𝕏𝑚)𝑗)   (9) 

 

where 𝑚 ∈ {𝑠, 𝑔}  indicates the sharp and gentle 

geometric components, respectively. 𝕏o is the shared 

input feature extracted from the point cloud, 𝕏𝑚 

denotes the input corresponding to each component, 

𝕎𝑚 is the weight matrix specific to component 𝑚, 

and Ψ𝑚 (⋅) is a nonlinear transformation function for 

modality 𝑚. 

The output features obtained from the sharp (𝕐𝑠) 

and gentle (𝕐𝑔) components are integrated using the 

operation specified in Eq. (10): 

 

ℤ = 𝕐s ⊕ 𝕐g               (10) 

 

The concatenation process (⊕) joins important 

geometric features with their corresponding 

complementary counterparts. 

3.3 RPC baseline overview 

RPC serves as our baseline model and integrates 

two key modules: the PCT and the GDM. The PCT 

captures global contextual information using offset-

attention and neighbor embedding, while the GDM 

focuses on learning disentangled geometric features 

by separating sharp and gentle components. We adopt 

this architecture as the foundation for our framework 

and evaluate its robustness with and without 

AdaCrossNet pretraining and WOLFMix 

augmentations. While retaining the core principles of 

point cloud encoding from PCT and GDM, 

BeyondRPC introduces architectural refinements 

aimed at improving feature representation under 

corruption. The whole beyond RPC pipeline can be 

seen in Fig. 3. 

 

3.4 Evaluation metrics 

To evaluate the corruption error (CE), we need to 

calculate the mean CE. Before that, we first find 

solution for CE: 

 

𝐶𝐸𝑖 =
∑ 1−𝑂𝐴𝑖

𝑚
𝑙=1

∑ 1−𝑂𝐴𝑖,𝑙
𝑏𝑙𝑚

𝑙=1

               (11) 

 

where OA is the overall accuracy for the corruption 

set at 𝑖  with given level of 𝑙 . 𝑂𝐴𝑏𝑙   is the OA of 

baseline model. The baseline model can be any point 

cloud model such as PointNet, DGCNN, and others. 

Here, we also utilized the relative mCE (RmCE) 

to determine the drop performance compared to the 

clean one. We can find RmCE with: 

 

𝑅𝐶𝐸𝑖 =
∑ 𝑂𝐴𝑐𝑙𝑒𝑎𝑛−𝑂𝐴𝑖

𝑚
𝑙=1

∑ 𝑂𝐴𝑐𝑙𝑒𝑎𝑛
𝑏𝑙 −𝑂𝐴𝑖,𝑙

𝑏𝑙𝑚
𝑙=1

              (12) 

 

𝑅𝐶𝐸  for a given corruption type 𝑖  is calculated by 

taking the average performance drop of the model 
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Table 2. Comparison of classification accuracy (OA) and robustness (mCE) on ModelNet-C with individual corruption 

results 

Model OA mCE Scale Jitter Drop-G Drop-L Add-G Add-L Rotate 

DGCNN [8] 0.926 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

PointNet++ [15] 0.930 1.072 0.872 1.177 0.641 1.802 0.614 0.993 1.405 

RSCNN [16] 0.923 1.130 1.074 1.171 0.806 1.517 0.712 1.153 1.479 

GDANet [36] 0.928 0.892 1.043 0.744 1.012 0.623 0.478 0.480 0.493 

CurveNet [18] 0.933 0.927 0.894 0.674 0.706 1.135 1.525 1.015 0.809 

PAConv [17] 0.936 1.104 0.904 1.465 1.000 1.005 1.085 1.298 0.967 

PCT [19] 0.919 0.779 1.170 0.570 0.496 1.005 0.929 0.938 0.526 

GTNet [21] 0.897 0.944 0.844 0.863 0.864 0.774 0.618 0.807 0.812 

RPC [13] 0.926 0.863 0.840 0.892 0.492 0.797 0.929 1.011 1.079 

BeyondRPC 0.930 0.455 1.032 0.810 0.476 0.531 0.325 0.447 0.507 

 

 

across five severity levels of that corruption type, 

relative to the performance drop experienced by a 

baseline model under the same conditions. 

A 𝑅𝐶𝐸𝑖  =  1  indicates the model degrades 

similarly to DGCNN; a value less than 1 indicates 

better robustness (i.e., less degradation). RmCE 

provides a single scalar summary of the model's 

robustness relative to the baseline across various 

corruption types. 

4. Experimental setup    

AdaCrossNet is evaluated on standard 3D 

benchmarks under clean and corrupted conditions. 

Pretraining uses the ShapeNet [37] dataset containing 

roughly 50,000 3D CAD models. We also collected 

the RGB images from [38] which contains around 

43K point clouds with RGB and grayscale renderings, 

with each sample represented by 2048 XYZ points 

and one 224×224 image.  

For each 3D point cloud, a single 2D image is 

randomly chosen from the available rendered views, 

each captured from different arbitrary viewpoints. 

We adopt PointNet [14] and DGCNN [8] as the 

backbone networks for extracting point cloud 

features to ensure a fair comparison with prior 

approaches. At the same time, ResNet-50 [39] is used 

to extract visual features from the selected 2D image. 

Both modalities are passed through dedicated 2-layer 

MLP projection heads that map features into a shared 

256-dimensional latent space. The training is 

conducted using the Adam optimizer [40] with a 

weight decay of 1 × 10−4 and an initial learning rate 

of 1 × 10−3 , regulated by a cosine annealing 

schedule [41] over 100 epochs. The batch size is set 

to 32. After pre-training, the image encoder 𝑓𝜃𝐼
 and 

both projection heads 𝑔𝜙𝑃
 and 𝑔𝜙𝐼

 are discarded. 

The downstream evaluation relies solely on the pre-

trained point cloud encoder 𝑓𝜃𝑃
. 

Data augmentations include jittering, flipping, 

cropping, and normalization. Training runs for 200 

epochs with cosine annealing (initial LR 1e-3, weight 

decay 1e-4) on an RTX 4090. After pre-training, 

image branches are removed, and the point cloud 

encoder is fine-tuned or evaluated via linear SVM on 

ModelNet40 and ScanObjectNN [42]. Robustness is 

assessed on ModelNet-C using RCE and RmCE, 

compared to a DGCNN baseline. 

5. Results and discussion   

Here, we discuss the experimental results of our 

proposed method, BeyondRPC, compared against 

several state-of-the-art models, including DGCNN, 

PointNet++, RSCNN, GDANet, CurveNet, PAConv, 

PCT, GTNet, and RPC. We first analyze robustness 

under corruption using the ModelNet-C benchmark. 

5.1 Performance on modelnet-c 

We evaluate BeyondRPC using the ModelNet-C 

benchmark, which simulates real-world corruption 

across seven types and five severity levels. The 

results are measured using overall accuracy (OA), 

mean Corruption Error (mCE), and individual 

corruption sensitivity (e.g., jitter, scale, drop/add 

global/local, rotation). 

Table 2 compares classification accuracy (OA) 

and robustness (mCE) across models on the 

ModelNet-C benchmark. BeyondRPC achieves the 

best robustness with the lowest mCE (0.455) and high 

OA (0.930), outperforming others in five of seven 

corruption types. Its strength comes from adaptive 

cross-modal pre-training via AdaCrossNet, which 

improves generalization under geometric corruptions. 

Compared to RPC (mCE: 0.863) and GDANet 

(0.892), BeyondRPC shows notable gains. While 

CurveNet has the highest OA (0.933), its mCE 
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(0.927) is less favorable. Overall, BeyondRPC offers 

the best trade-off between accuracy and robustness. 

Scores for DGCNN, RSCNN, PointNet++, and 

PAConv are taken directly from the official RPC 

benchmark [13]. GDANet, CurveNet, PCT, and RPC 

were reproduced using publicly available code and 

evaluated under the same ModelNet-C corruption 

setup for consistency. Where original ModelNet-C 

scores were not reported (e.g., for CurveNet or PCT), 

we reproduced results using official implementations 

and corruption settings from RPC [13].  

BeyondRPC’s superiority is due to its two-stage 

design: AdaCrossNet enables better generalization 

via dynamic contrastive learning, while WOLFMix 

simulates real-world corruptions during fine-tuning. 

These components complement each other—

contrastive pre-training improves global feature 

alignment, and WOLFMix reinforces local 

robustness. Unlike static models such as PAConv 

[17] or GTNet [21], BeyondRPC actively learns to 

adapt to both clean and corrupted data conditions. 

This theoretical design rationale explains its strong 

results across all corruption types in Table 2, 

especially in Add-G, Add-L, and Drop-L scenarios.  

Results for DGCNN and PointBERT are directly 

taken from the official RPC benchmark [13]. Other 

results were reproduced under the same ModelNet-C 

corruption setup using publicly released code and 

checkpoints. 

5.2 Performance on real-world scanobjectnn 

dataset 

To assess real-world robustness, we evaluate 

BeyondRPC on the ScanObjectNN dataset, which 

contains naturally corrupted objects with background 

clutter, occlusion, and viewpoint variation. As shown 

in Table 5, BeyondRPC achieves the highest overall 

accuracy of 84.7%, outperforming state-of-the-art 

baselines such as PointBERT (83.1%), APPNet 

(84.1%), and RPC (83.6%). BeyondRPC maintains 

consistent superiority over augmentation-based 

(SageMix) and contrastive learning-based methods 

(CrossPoint), highlighting the complementary effect 

of AdaCrossNet pretraining and WOLFMix fine-

tuning. This demonstrates the model’s strong 

generalization to real-world scenarios beyond 

synthetic benchmarks like ModelNet40. 

5.3 Ablation study 

To analyze the effectiveness of the AdaCrossNet-

based pretraining in BeyondRPC, we compare it 

against other well-established pre-training methods, 

including OcCo and PointBERT. 

 

Table 3. Comparison of pre-training strategies under 

consistent augmentation (WOLFMix) on ModelNet-C 

Model Pre-train mCE 𝚫mCE 

RPC  Baseline 0.637 0.000 

RPC CrossPoint 0.605 -0.032 

RPC CrossNet 0.599 -0.038 

DGCNN OcCo 1.047 +0.41 

PointBERT [26] PointBERT 1.248 +0.611 

BeyondRPC AdaCrossNet 0.455 -0.182 

 
Table 4. Paired t-test results on ModelNet-C (mCE 

averaged over 5 seeds) 

Model Mean (mCE) Std 

RPC 0.8758 ± 0.0371 

BeyondRPC 0.6502 ± 0.0111 

t-stat 11.3532 

p-value 0.0003 

 

 

5.3.1. Effect on different pre-training strategies 

Table 3 presents the effect of different pre-

training strategies on model robustness under the 

WOLFMix augmentation pipeline. BeyondRPC 

achieves the lowest mCE score of 0.455 among all 

evaluated methods, outperforming all baselines and 

recent contrastive approaches. BeyondRPC also 

achieves the most significant robustness gain with a 

Δ𝑚𝐶𝐸 of -0.182 over the RPC baseline. In contrast, 

CrossNet and CrossPoint show minor gains (Δ𝑚𝐶𝐸 

of −0.038  and −0.032 ), while OcCo and 

PointBERT degrade performance (+0.41 and +0.611). 

These results demonstrate that AdaCrossNet 

performs well with WOLFMix and the fusion-aware 

architecture. 

To validate the robustness gain is statistically 

significant, we conducted a paired t-test comparing 

mCE scores of BeyondRPC and RPC across five 

different random sees. The test yields a t-statistic of 

11.35 and a p-value of 0.0003. This result confirms 

the performance improvement is statistically 

significant ( 𝑝 < 0.01 ). The detailed results are 

summarized in Table 4. 

5.3.2. Effect of different augmentation strategies 

We perform an ablation study to assess the impact 

of fine-tuning augmentations by comparing 

PointWOLF, RSMix, and their combination in 

WOLFMix using the same AdaCrossNet pre-training. 

As shown in Table 6, WOLFMix achieves the best 

results with the lowest mCE (0.590) and highest 

mOA (0.870), indicating its effectiveness in 

capturing both local and global corruption patterns. 

Individually, RSMix provides better robustness 
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(mCE = 0.755), while PointWOLF yields higher 

clean accuracy (mOA = 0.837). These findings 

confirm their complementary roles, with WOLFMix 

offering the best trade-off between accuracy and 

robustness. 

5.4 Feature representation visualization (t-sne and 

umap) 

Here, we visualize the embeddings of the 

ScanObjectNN test set using t-SNE and UMAP for 

our model compared to the baseline (RPC). Fig. 4 

visualizes ScanObjectNN test embeddings using t-

SNE and UMAP for RPC (top row) and BeyondRPC 

(bottom row). BeyondRPC forms tighter, more 

distinct clusters in t-SNE and better-separated, denser 

groupings in UMAP, indicating improved feature 

discrimination. 

To support these visual findings quantitatively, 

we compute the Silhouette Score and Davies-Bouldin 

Index on the PCA-reduced embeddings [45]. As in 

Table 7, BeyondRPC achieves a slightly higher 

Silhouette Score ( −0.1791  vs. −0.1763 ) and a 

lower Davies-Bouldin Index (4.8504 vs. 4.8752) 

compared to RPC. 

To demonstrate the synergistic effect of 

AdaCrossNet and WOLFMix, we compare 

BeyondRPC with its components. Table 3 shows that 

BeyondRPC outperforms AdaCrossNet-based pre-

training alone, even when using the same WOLFMix 

augmentation. 

 

 
Table 5. Results of the proposed BeyondRPC compared 

to other methods for ScanObjectNN dataset 

Model OA % 

PointNet [14] 68.2 

PointNet++ [15] 77.9 

PointNet++ + SageMix [43] 83.7 

DGCNN+CrossPoint [32] 81.7 

DGCNN+SageMix [43] 83.6 

DGCNN+AdaCrossNet [34] 82.1 

CurveNet [18] 79.8 

GDANet [36] 79.9 

PointBERT [26] 83.1 

APPNet [44] 84.1 

RPC [13] 83.6 

BeyondRPC 84.7 

 

 
Table 6. Ablation of Augmentation Strategies during 

Fine-Tuning on ModelNet-C using BeyondRPC 

Model Augmentation mCE mOA 

BeyondRPC PointWOLF 0.888 0.789 

BeyondRPC RSMix 0.755 0.837 

BeyondRPC WOLFMix 0.590 0.870 

Table 7. Clustering Quality Metrics on ScanObjectNN 

Embeddings 

Model 

Silhouette 

Score 

Davies-Bouldin 

Index 

RPC -0.1763 48.752 

BeyondRPC -0.1791 48.504 

 

 

Likewise, Table 6 confirms that WOLFMix 

achieves better robustness when used within 

BeyondRPC than when applied on top of other 

augmentations. These results suggest combining 

adaptive contrastive learning and corruption-specific 

fine-tuning leads to consistent and non-trivial 

performance gains. 

6. Conclusion   

This paper proposes BeyondRPC, designed to 

improve 3D point cloud classification robustness by 

combining adaptive contrastive pretraining with 

strong corruption-aware augmentations. Built upon 

the AdaCrossNet backbone—which dynamically 

balances intra- and cross-modal learning signals 

using EWMA—BeyondRPC enhances feature 

alignment and training stability. During fine-tuning, 

the WOLFMix augmentation strategy effectively 

simulates diverse real-world corruptions, enabling 

the model to generalize better to out-of-distribution 

scenarios. 

Extensive evaluations on the ModelNet-C 

benchmark demonstrate that BeyondRPC achieves 

state-of-the-art robustness, with the lowest mCE 

(0.455) among all compared models, while 

maintaining competitive clean accuracy (0.930). 

Additionally, BeyondRPC attains the highest 

classification accuracy on the real-world 

ScanObjectNN dataset (84.7%), highlighting its 

effectiveness under both synthetic corruption and 

realistic sensor noise. 

Ablation studies confirm that AdaCrossNet and 

WOLFMix contribute significantly to these 

performance gains. These findings underscore the 

potential of contrastive and augmentation-based 

approaches to bridge the gap between clean accuracy 

and robustness in 3D vision. 

In future work, we plan to extend this framework 

to semantic segmentation tasks and explore multi-

modal fusion beyond RGB, including depth and 

language-based supervision, to enhance applicability 

in more diverse and information-rich 3D 

environments. While ScanObjectNN provides a 

challenging real-world testbed, we acknowledge the 

need for broader evaluation. As such, we also intend 

to expand BeyondRPC to include domain-shift 
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experiments and real-world scene-level datasets such 

as SemanticKITTI and S3DIS. 
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