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Abstract: This paper proposes a traceable image data sharing system that integrates reversible watermarking and 

blockchain technology. A 1024-bit signature derived from image content and the applicant data, is embedded into the 

image as the watermark. We integrate blockchain technology to record copyright information and auxiliary 

watermarking variables of the shared data to provide immutable and transparent ownership records. To strengthen 

security, Arnold transform is applied to scramble the watermark and embedded in the discrete cosine transform (DCT) 

coefficients by taking into account the contrast sensitivity function to maintain imperceptibility. In the event of 

unauthorized sharing or misuse of image data, the embedded watermark can be extracted and traced, allowing us to 

identify and track responsibility for unauthorized image use. Experiments were conducted using 10 color images from 

diverse domains, including general images (USC-SIPI), medical datasets (CHASEDB1, ISIC, KVASIR), and 

biometric datasets (FERET). Experimental results show that the method achieves high imperceptibility with average 

peak signal-to-noise ratio (PSNR) values of 56.28 dB, and average structural similarity index (SSIM) scores close to 

1.0 across test payloads ranging from 1 Kb to 16 Kb, robustness against common distortions and adversarial attacks 

with watermark normalized correlation (NC) scores above 0.92, and accurate traceability across 1,000 distributed 

copies with various distortions and adversarial attacks. Comparative evaluations confirm that the proposed method 

outperforms existing watermarking schemes in both robustness and traceability performance. 

Keywords: Blockchain technology, Data traceability, Digital fingerprint, Image data sharing, Image watermarking, 

Security. 

 

 

1. Introduction 

The growth of the internet has enabled the 

widespread and instant distribution of images, both 

for personal and institutional purposes. In the medical 

field, for instance, hospitals often need to share 

patient scan results or medical images with other 

institutions for further diagnosis, collaborative 

research, or referrals between healthcare facilities. 

However, the risk of security breaches arises 

when the data is distributed illegally by one of the 

recipient institutions. This situation becomes even 

more complex due to the difficulty of tracing the 

source of the leak, especially when the data is shared 

with many parties. Without a secure and structured 

data sharing mechanism, the personal information 

contained in the images could fall into the wrong 

hands, leading to potential misuse and violation of 

individual privacy. 

Most current data sharing security systems focus 

only on access control, without any mechanism to 

trace the distribution trace when a leak occurs. 

Approaches such as encryption and authentication 

are indeed able to limit access to authorized parties 

but have not addressed the problem of tracing data 

after it is shared. This argument is reinforced by the 

review by Gupta et al. [1] showing that many image 

security technologies are still oriented towards 

protecting data confidentiality and integrity, but 

ignore the aspects of distribution tracing and post-

access accountability. Similar findings were also 

found in the study of Chen and Huang [2], who 

developed fine-grained access controls on encryption 

systems, but did not include strategies to identify the 

source of data leakage after access rights were 



Received:  May 21, 2025.     Revised: July 16, 2025.                                                                                                        433 

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025           DOI: 10.22266/ijies2025.0930.27 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

granted. Wang [3] also showed that the main focus of 

current systems is still on securing during the access 

and sharing process, without attention to post-

distribution tracing. This focus on access control over 

distribution tracking indicates a gap in the design of 

current image security systems, especially in the 

context of data sharing involving multiple parties. 

In a data-sharing environment involving multiple 

parties, the ability to trace data distribution in detail 

is a key requirement. When an image is shared with 

various institutions or individuals, it increases the 

risk of the data being distributed illegally. Therefore, 

a security system that merely restricts access to data 

is not sufficient; a mechanism is needed that enables 

tracking of who receives the data, when, and in what 

context it was shared. Technical challenges arise 

because each copy of an image typically has an 

identical appearance. Therefore, an approach is 

required that allows tracking of distribution without 

altering the visual content of the image itself. 

Watermarking is an ideal solution for embedding 

identity information into digital images without 

compromising the visual aspects of the image. Digital 

image watermarking is a technique that uses digital 

images as a carrier to embed additional data, either in 

the form of visible watermarks or invisible 

watermarks. In general, watermarking systems 

consist of two main stages, namely the embedding 

process and the extraction process. Based on their 

resistance to interference or manipulation, 

watermarks are divided into two categories: robust 

watermarks, which remain recognizable even if the 

image is compressed, cropped, or otherwise 

manipulated; and fragile watermarks, which are 

easily damaged and used to detect image integrity. In 

terms of where the data is inserted, watermarking 

techniques can be applied in the spatial domain, by 

inserting data directly into pixel values, or in the 

frequency domain, such as Discrete Cosine 

Transform (DCT) and Discrete Wavelet Transform 

(DWT), which offer higher resistance to compression 

and other visual attacks. Additionally, watermarking 

can be classified based on its reversibility. 

Irreversible watermarking does not allow the original 

image to be fully restored after embedding, while 

reversible watermarking enables the watermark 

information to be completely removed and the 

original image restored to its original form [5]. 

However, embedding a watermark alone is still 

not sufficient without a system capable of openly 

recording and verifying the distribution process [4]. 

Therefore, to support effective data traceability, an 

additional solution is required to ensure transparency 

and accountability across the entire digital data-

sharing ecosystem. 

The emergence of Bitcoin in 2008 marked the 

beginning of the development of blockchain 

technology as a decentralized digital infrastructure 

[5]. Although initially designed to support 

cryptocurrency systems, blockchain’s main features 

such as transparency, immutability, and consensus 

mechanisms have attracted researchers to be applied 

to various applications outside the financial realm. In 

the context of digital data distribution, blockchain 

allows the recording of transactions such as the time 

of distribution, the identities of the sender and 

recipient, and other metadata into blocks that are 

chronologically linked and cannot be changed 

without network consensus. By storing every 

distribution activity into a distributed digital ledger, 

this system allows independent verification by all 

parties involved, making it a very relevant advantage 

in data sharing systems that require high 

accountability. 

To embed copyright information and prevent 

intellectual property violations, various approaches 

have been developed in image watermarking 

technologies. Faheem et al. [6] combined the Least 

Significant Bit technique with image gradient 

analysis to determine optimal embedding locations, 

further enhanced by chaotic map-based encryption to 

improve security. Mohammed et al. [7] proposed a 

blind watermarking method that integrates DCT-

DWT transformation and adaptive color channel 

selection to maintain robustness and imperceptibility. 

Abadi and Moallem [8] introduced a hybrid approach 

based on DWT and DCT, incorporating a three-stage 

voting system effective against noise-based 

distortions. Dong et al. [9] proposed a hybrid domain 

color image watermarking scheme that combines 

DWT, DCT, and Singular Value Decomposition 

(SVD), enhanced by watermark encryption using the 

Lorenz hyperchaotic map. Zhou et al. [10] proposed 

a robust image watermarking algorithm that embeds 

grayscale watermark pixel values directly into the 

DCT domain of a color host image, combined with 

block selection and geometric correction. 

In the domain of reversible watermarking, Li et al. 

[11] refined generalized histogram shifting 

techniques to improve resistance against 

misalignment attacks. Fan et al. [12] applied modulo 

operations and prediction-error expansion on 

interpolated images to enhance embedding capacity 

while preserving visual quality. Similarly, Tanwar 

and Panda [13] developed a hybrid method 

combining histogram shifting and prediction error 

expansion with a local variance-based embedding 

strategy to reduce distortion. 

Watermarking plays a central role when 

integrated with Digital Rights Management (DRM) 
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to verify ownership and restrict data access [14]. 

Traditional DRM systems are often constrained by 

centralized storage, raising concerns about 

vulnerabilities such as data tampering and copyright 

manipulation. In response, blockchain technology 

has gained traction in DRM applications to address 

these limitations. For instance, the DRPChain system 

[15] embeds copyright information into digital 

images in the form of QR codes as watermarks, with 

watermarked images stored off-chain using 

InterPlanetary File System (IPFS). Copyright 

metadata, perceptual hashes, IPFS addresses, and 

digital signatures are registered in each blockchain 

transaction. Additionally, redactable blockchain 

approaches have introduced mechanisms for illegal 

content removal through chameleon hashing, while 

preserving originality verification via perceptual 

hashing and implementing a reputation-based 

incentive system [16]. 

However, DRM alone is insufficient to address 

the broader challenges of data sharing. DRM systems 

primarily focus on copyright protection and 

distribution control. For example, in typical DRM 

implementations, a digital image may be 

watermarked with owner information solely for 

proving ownership in the event of misuse. In contrast, 

secure data-sharing scenarios require personalized 

watermarks to be embedded each time the data is 

distributed to a recipient, allowing traceability in the 

event of unauthorized redistribution. 

Several studies have addressed user traceability 

in the context of unauthorized data distribution. The 

BE-TRDSS scheme [17], for instance, utilizes 

Ciphertext-Policy Attribute-Based Encryption with 

hidden access policies and stores ciphertext indexes 

and revocation lists on the blockchain. This enables 

the revocation of malicious users through identity 

tracking embedded in private keys. Wang and Guan 

[18] proposed a system that stores encrypted data on 

IPFS, secures the encryption hash using Elliptic 

Curve Cryptography (ECC), and records data-sharing 

activities on a smart contract–driven visual log. This 

enables real-time traceability for both data owners 

and recipients. In the medical domain, MRDACE 

[19] logs medical access metadata on a permissioned 

blockchain using a Proof-of-Authority mechanism. It 

supports tamper-resistant activity logging and 

automated decision-making through incentive 

functions that evaluate data requester privilege scores. 

The system also allows anonymous access for 

research institutions while preserving patient 

ownership controls. Meanwhile, Lai et al. [20] 

introduced a certificateless traceable ring signature 

scheme based on distributed key generation to ensure 

user traceability while maintaining privacy in 

Electronic Health Record (EHR) sharing 

environments. Their system employs Self-

Controlling Objects (SCOs) for decryption 

management, stores data on IPFS, and leverages 

blockchain as an audit trail and authorization layer for 

proxy-based data sharing nodes. 

In this study, we propose an image data sharing 

approach that combines reversible watermarking 

techniques and blockchain technology to build an 

image data sharing system that focuses on data 

traceability. The watermarking technique is used to 

embed a fingerprint created from the combination of 

the shared data with the requester’s information. 

Meanwhile, blockchain is utilized as a decentralized 

metadata storage infrastructure. Information related 

to the data distribution process, such as the data 

owner, data requester, timestamp, and watermarking 

technique variables are stored as a transaction on the 

blockchain. 

Unlike traditional DRM systems that mainly 

focus on ownership verification and unauthorized 

access prevention, our method provides data 

traceability by embedding user-specific fingerprints 

for each image distribution. In contrast to robust 

watermarking schemes, which generally do not allow 

the recovery of the original image because they 

happen to be irreversible, our approach utilizes 

reversible watermarking to ensure that the original 

image can be fully recovered, making it suitable for 

medical images because data integrity 

matters. Previous blockchain-based DRM solutions 

typically record only copyright metadata do not 

perform any verification or testing regarding data 

traceability. Our proposed method fills this gap 

through combining reversible watermarking with 

blockchain-based distribution metadata storage. This 

integration enables data tracking and identification of 

misuse origin even after multiple redistributions. 

The remainder of this paper is organized as 

follows. Section 2 presents the preliminaries. Section 

3 outlines the proposed method. Section 4 discusses 

the results and analysis. Section 5 describes the 

implementation of the proposed system, and Section 

6 concludes the paper. 

2. Preliminaries 

2.1 Discrete cosine transform 

Discrete Cosine Transform (DCT) is a widely 

used technique for converting spatial domain image 

data into the frequency domain. Originally proposed 

by Ahmed et al. [21], DCT is a special case of the 

Fourier transform and is renowned for its energy 

compaction and computational efficiency. For a 
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grayscale image 𝑓(𝑥, 𝑦) of size 𝑁 × 𝑁, the forward 

two-dimensional DCT is defined in Eq. (3), where the 

resulting DCT coefficients are denoted by 𝐹(𝑢, 𝑣) as 

computed in Eq. (1), 𝑢, 𝑣 = 0,1, … , 𝑁 − 1, and the 

scaling factors are defined in Eq. (2). The inverse 

transformation, which reconstructs the image from 

the frequency coefficients, is defined in Eq. (3). 
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] 𝑐𝑜𝑠 [

(2𝑦 + 1)𝑣𝜋

2𝑁
] (3) 

2.2 Human visual system and RGB- YCbCr color 

space 

The Human Visual System (HVS) exhibits non-

uniform sensitivity to spatial frequencies, where the 

eye responds most strongly to frequencies in the mid-

range and less effectively to very low or very high 

ones. This behaviour can be modelled 

mathematically by the Contrast Sensitivity Function 

(CSF), which quantifies the visibility threshold of 

contrast at a given spatial frequency. One of the most 

referenced models is proposed by Mannos and 

Sakrison [22], as shown in Eq. (4), where human 

perception is shown to be dominated by luminance 

sensitivity over chrominance. 

In the frequency domain when applying the DCT, 

the CSF can be used to construct a perceptual weight 

matrix that regulates the insertion strength based on 

the sensitivity of each frequency component. Each 

weight is calculated by considering the CSF at the 

spatial frequency 𝑓(𝑢, 𝑣) , obtained from the DCT 

index position (𝑢, 𝑣) , as defined in Eq. (5). This 

perception-aware weighting enables adaptive and 

efficient watermarking by emphasizing components 

with lower visual significance. 

YCbCr is a widely used color space in digital 

photography and video processing pipelines. It 

separates an image into one luminance component 

(Y) and two chrominance components (Cb and Cr), 

which represent the blue-difference and red-

difference color information, respectively [23]. The 

transformation from RGB to YCbCr is given in Eq. 

(6), while the inverse transformation from YCbCr 

back to RGB is described in Eq. (7). 

 

𝐶𝑆𝐹(𝑓) = 2.6 ⋅ (0.0192 + 0.114𝑓) ⋅ 𝑒−(0.114𝑓)
1.1

 (4) 
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⋅ √𝑢2 + 𝑣2 (5) 
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𝑌
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2.3 Logistic map 

The logistic map is a simple yet powerful chaotic 

system widely used in secure image processing due 

to its pseudo-random behavior and high sensitivity to 

initial conditions. It is mathematically described in 

Eq. (8) where 𝑥𝑛 ∈ (0,1) and the control parameter 𝑟 

is typically chosen within 3.57 <  𝑟 ≤ 4 to ensure 

fully chaotic behavior. By starting from an initial 

value 𝑥0 as a secret key, the logistic map produces a 

deterministic but unpredictable sequence of real 

numbers within the unit interval. 

  

𝑥𝑛+1 = 𝑟 𝑥𝑛(1 − 𝑥𝑛) (8) 

 

In image watermarking, these chaotic sequences 

can be used to generate secure block orders. For 

example, after generating a logistic sequence of 

length equal to the number of image blocks, sorting 

the sequence and assigning ranks provides a unique 

pseudo-random permutation of block indices. This 

randomized ordering greatly increases security, since 

only users with knowledge of 𝑥0 and 𝑟 can reproduce 

the correct sequence to embed or extract the 

watermark. 

2.4 Two-dimensional Arnold transform  

The two-dimensional Arnold transform is a 

widely adopted technique for image scrambling. It 

operates on a matrix of size 𝑁 × 𝑁, and its forward 

transformation is defined in Eq. (9), where (𝑥1, 𝑦1) 
denotes the coordinates of a pixel in the original 

image, and (𝑥2, 𝑦2) represents the coordinates after 

transformation. The parameter 𝑁  indicates the 

dimension of the square image matrix. To reverse the 

transformation and restore the original image, the 

inverse Arnold transform is applied as defined in Eq. 

(10). 

 

(
𝑥2
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1 2
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(
𝑥1
𝑦1
) = (

2 −1
−1 1

) (
𝑥2
𝑦2
)  mod 𝑁 (10) 

2.5 InterPlanetary file system 

The InterPlanetary File System [24] is a 

decentralized peer-to-peer protocol which designed 

for the purpose of retrieving file or data as well as 

storing them depending on their respective content, 

instead of location. IPFS uses content addressing 

through cryptographic content identifiers (CID) in 

order to retrieve data by using its unique hash, unlike 

customary web systems that rely on location-based 

addressing (e.g., URLs). Merkle Directed Acyclic 

Graphs (Merkle DAGs) are generally used to 

organize content within IPFS and each node (file or 

directory) is distinctly identified by its CID. This 

structure has immutability, deduplication, as well as 

tamper resistance because any node modification will 

definitely change its hash and propagate to all 

connected ancestors forming an entirely new DAG. 

CID linking by way of the Merkle DAG allows for 

representation of the complete file system. This 

system can then be verified in an efficient manner. A 

Distributed Hash Table (DHT) is used by IPFS with 

content discovery for discovering all peers and also 

data across the network without needing any central 

server. 

2.6 Elliptic curve digital signature algorithm 

Elliptic Curve Digital Signature Algorithm 

(ECDSA) is a lightweight cryptographic scheme 

based on the mathematics of elliptic curves. It is 

widely used to sign messages in a secure and concise 

manner [25]. The scheme starts by generating a key 

pair (𝑑, 𝑄), where 𝑑 is the private signing key and 

𝑄 =  𝑑𝐺  is the corresponding public key derived 

using scalar multiplication on the elliptic curve. 

To sign a message 𝑚 , the signer chooses a 

random nonce 𝑘 , such that 1 ≤ 𝑘 ≤ 𝑛 − 1 . Then, 

calculate the elliptic curve points (𝑥1, 𝑦1) = 𝑘𝐺, and 

set 𝑟 = 𝑥1 mod 𝑛. The final signature is a pair (𝑟, 𝑠), 
both of which must be nonzero. The nonce 𝑘 must 

remain secret and unique for each message. 

2.7 Blockchain technology 

Blockchain is a decentralized and distributed 

ledger system that allows data to be recorded securely, 

transparently, and immutably across a network of 

computers. Originally introduced as the foundational 

technology behind Bitcoin [5], blockchain has since 

evolved into a general-purpose infrastructure 

applicable to a wide range of domains, including 

finance, supply chain, healthcare, and digital data 

management. At its core, a blockchain consists of a 

series of data blocks that are chronologically linked 

using cryptographic hashes. Each block typically 

contains a set of transactions, a timestamp, a 

reference to the previous block (in the form of a hash), 

and a nonce used in the consensus mechanism. This 

structure ensures that any alteration to a block’s 

content will invalidate the subsequent chain, 

providing strong tamper-evidence. 

To achieve distributed agreement on the state of 

the ledger, blockchain networks implement 

consensus algorithms such as Proof of Work (PoW), 

Proof of Stake (PoS), or other variants. These 

mechanisms enable all participating nodes to agree 

on a single version of the truth without relying on a 

centralized authority. One of the defining features of 

blockchain is its immutability. Once data has been 

recorded and confirmed by the network, it cannot be 

modified retroactively without consensus from the 

majority of the network. 

2.8 Comparative watermarking methods 

To evaluate the effectiveness of the proposed 

method, this study includes two existing 

watermarking schemes as comparative baselines: the 

method by Dong et al. [9] and the method by Zhou et 

al. [10]. The details of each method are described in 

the following subsections. 

2.8.1. Overview of Dong’s algorithm 

Dong et al. [9] proposed a hybrid domain color 

image watermarking scheme that combines DWT, 

DCT, and Singular Value Decomposition (SVD), 

enhanced by watermark encryption using the Lorenz 

hyperchaotic map. DWT is a multi-resolution 

transform that decomposes an image into sub-bands 

𝐿𝐿  (Low-Low), LH (Low-High), 𝐻𝐿  (High-Low), 

and  𝐻𝐻  (High-High), where the 𝐿𝐿  sub-band 

captures the main low-frequency information with 

strong stability, making it suitable for watermark 

embedding. SVD is a matrix factorization technique 

that decomposes an image matrix 𝐴  into three 

matrices 𝑈 , Σ , and 𝑉𝑇 , expressed as 𝐴 = 𝑈Σ𝑉𝑇 , 

where 𝑈  and 𝑉  are orthogonal matrices and Σ  is a 

diagonal matrix containing the singular values σ𝑖 . 
These singular values represent the intrinsic energy 

and structural features of the image and are relatively 

robust to compression, noise, or geometric changes, 

making them effective for watermark embedding. In 

this method, the embedded watermark has a fixed 

size of exactly one-fourth the dimensions of the cover 

image (i.e., if the cover is 𝑀 × 𝑁, the watermark is 
𝑀

2
×
𝑁

2
.) 
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The key steps of the data embedding and 

extraction can be summarized as follows: 

2.8.1.1. Watermark embedding steps: 

1. Read the grayscale watermark and encrypt it 

with a Lorenz hyperchaotic map 

2. Perform SVD on the encrypted watermark to get 

𝑈𝑤, 𝑆𝑤, 𝑉𝑤 

3. Read the cover image, convert to YCbCr color 

space, and select the Y channel 

4. Compute the embedding factor 𝛼 adaptively 

using Bhattacharyya distance between the 

watermark and the cover image 

5. Perform one-level DWT on the Y channel to 

obtain four sub-bands: 𝐿𝐿, LH, 𝐻𝐿, and 𝐻𝐻 

6. Apply DCT on the 𝐿𝐿 sub-band (𝐿𝐿𝐷) 

7. Perform SVD on the transformed 𝐿𝐿𝐷  to get 

𝑈𝐻 , 𝑆𝐻 , 𝑉𝐻 

8. Blend singular values: 𝑆𝐻
′ = α × 𝑆𝑤 + (1 −

α) × 𝑆𝐻 

9. Reconstruct 𝐿𝐿𝐷′  by inverse SVD: 𝐿𝐿𝐷′ =
𝑈𝐻 × 𝑆𝐻

′ × 𝑉𝐻
𝑇 

10. Apply inverse DCT on 𝐿𝐿𝐷′ to reconstruct 𝐿𝐿′ 
11. Rebuild the Y component with inverse DWT of 

𝐿𝐿′, 𝐿𝐻, 𝐻𝐿, 𝐻𝐻 

12. Convert YCbCr back to RGB to obtain the final 

watermarked image 

2.8.1.2. Watermark extraction 

1. Read the watermarked image, convert to YCbCr, 

select the Y component 

2. Apply one-level DWT to obtain 

𝐿𝐿𝑊𝑀 , 𝐿𝐻𝑊𝑀 , 𝐻𝐿𝑊𝑀 , 𝐻𝐻𝑊𝑀 

3. Apply DCT to 𝐿𝐿𝑊𝑀 

4. Perform SVD on DCT( 𝐿𝐿𝑊𝑀 ) to get 

𝑈𝑊𝑀 , 𝑆𝑊𝑀 , 𝑉𝑊𝑀 

5. Recover the singular values ( 𝑆𝑊
′  ) of the 

encrypted watermark using Eq. (11), where 𝑆𝑊𝑀 

is the singular value matrix extracted from the 

watermarked image, and 𝑆𝐻  is the stored 

singular value matrix of the original host image. 

6. Reconstruct encrypted watermark using inverse 

SVD: 𝑊𝐸
′ = 𝑈𝑤 × 𝑆𝑤

′ × 𝑉𝑤
𝑇 

7. Decrypt using inverse Lorenz hyperchaotic 

mapping to get the final extracted watermark. 

  

𝑆𝑤
′ =

𝑆𝑊𝑀 − (1 − 𝛼) × 𝑆𝐻
𝛼

 (11) 

 

2.8.2. Overview of Zhou’s algorithm 

Zhou et al. [10] proposed a robust image 

watermarking algorithm that embeds grayscale 

watermark pixel values directly into the DCT domain 

of a color host image. The key steps of the watermark 

embedding and extraction can be summarized as 

follows: 

2.8.2.1. Watermark embedding steps: 

1. Scramble the grayscale watermark image using 

the Arnold transform with a secret key 

2. Convert the host RGB image to the YCbCr color 

space and select the Cb channel 

3. Apply one-level DWT on the Cb channel to 

decompose it into four sub-bands 

(𝐿𝐿, 𝐿𝐻,𝐻𝐿, 𝐻𝐻) 

4. Select the 𝐿𝐿  sub-band for watermark 

embedding and divide it into non-overlapping 

8 × 8 blocks 

5. Calculate the block texture values using a DCT-

based texture algorithm and sort the blocks by 

ascending texture (smoother blocks get priority). 

Store the block order as secret key 𝐾𝑏 

6. For each selected block, subdivide it into four 

non-overlapping 4 × 4 sub-blocks 

7. Perform 2D DCT on each 4 × 4  sub-block to 

obtain its frequency coefficients 

8. Calculate the average direct current (DC) 

coefficient across the four sub-blocks and set 

this as the new DC coefficient reference 

9. Embed the scrambled watermark pixel values as 

a ratio into two low-frequency alternating 

current (AC) coefficients of each DCT block, 

using the Eq. (12) where 𝑤  is the water mark 

pixel, and 𝑘 is the embedding strength factor 

10. Apply inverse DCT to reconstruct the modified 

4 × 4  sub-blocks, then combine them back to 

form the modified 8 × 8 block 

11. After processing all selected blocks, perform 

inverse DWT on the modified 𝐿𝐿 together with 

unchanged 𝐿𝐻,𝐻𝐿, 𝐻𝐻  to reconstruct the 

modified Cb component, then convert back from 

YCbCr to RGB to obtain the watermarked image 

 

𝐴𝐶𝑤 = sign(AC) ×
w × k

DC + 1
 (12) 

 

2.8.2.2. Watermark extraction steps: 

1. Convert the watermarked RGB image to YCbCr 

color space and select the Cb channel 

2. Apply one-level DWT to obtain 𝐿𝐿, 𝐿𝐻,𝐻𝐿, 𝐻𝐻 

3. Select the 𝐿𝐿  sub-band and divide it into 8×8 

non-overlapping blocks 

4. Use the stored block ordering key (𝐾𝑏 ) to 

identify the watermarked blocks 

5. For each watermarked block, subdivide into four 

4×4 sub-blocks 
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6. Perform 2D DCT on each sub-block to extract 

the modified frequency coefficients 

7. Recover the embedded watermark pixel values 

from the two low-frequency AC coefficients, 

using Eq. (13) 

8. Combine the recovered pixel values in the 

correct sequence to reconstruct the scrambled 

watermark 

9. Apply the inverse Arnold transform with the 

secret key to recover the final extracted 

watermark image. 

 

𝐴𝐶𝑤 = |
𝐴𝐶 × (𝐷𝐶 + 1)

𝑘
| (13) 

3. Proposed method 

An overview of the process of the proposed 

concept is shown in Fig. 1. The process requires the 

private key of the data owner and the public key of 

the data requester. The initial stage involves creating 

a digital signature. We utilize the ECDSA 

cryptographic algorithm based on the 

BRAINPOOLP512r1 curve [26], which produces a 

1024-bit digital signature. This signature is generated 

by signing the concatenation of the image hash and 

the requester’s public key. This fingerprint is 

embedded into the image as the primary watermark 

payload. 

The watermark embedding process produces 

three outputs: the image delta which is the pixel 

difference value between the watermarked image 

with the original image, the extraction key to extract 

the watermark, and the watermarked image itself. In 

the context of medical images, reversibility is an 

important aspect because the original image contains 

critical information for diagnosis. 

To achieve reversibility, image delta is used to 

recover the original image. The image delta is 

encrypted using the data requester’s public key and 

stored in the IPFS as well as the extraction key, so 

that only the data requester can recover the original 

image, even though the image delta information is 

publicly accessible. Next, the hash value of the 

watermarked image is calculated, followed by the 

extraction of image features. 

We utilize blockchain technology to store 

information related to the watermarking process and 

data distribution information. Information regarding 

the identity of the data owner, identity of the data 

requester, fingerprint value, CID of the extraction key 

and image delta in IPFS, hash value of the 

watermarked image, and image features are recorded 

as transactions on the public blockchain. The 

watermarked image can then be shared with the data 

requester. 

3.1 Proposed watermarking schemes 

3.1.1. Data embedding process 

The watermark embedding process, as illustrated 

in Fig. 2, begins by dividing the cover image into 

blocks of size 8 × 8 . Next, a block sequence is 

generated using a logistic map controlled by secret 

key parameters 𝑥0, and 𝑟. After generating the block 

order, each block is converted to the YCbCr color 

space. The secret bits are embedded into the Y, Cr, 

Cb components of the image. Each DCT block has 

8 × 8 size, containing 64 coefficients ordered 

containing 64 coefficients ordered using zigzag 

scanning. Each coefficient is denoted by 𝐷(𝑞), where 

𝑞 ∈ 1,2,3, … ,64. 

A scrambled watermark 𝑏  of 𝐵  bits is then 

produced using the Arnold transform, with the 

iteration count acting as the secret key parameter 𝐾𝑎. 

Each 𝑛 − 𝑡ℎ  watermark bit ( 𝑏𝑛 ) is embedded 

iteratively in 𝑅  different locations of the DCT 

coefficients to improve robustness against attacks. 

The embedding locations are determined based on the 

index 𝑞𝑛
(𝑘)

, where 𝑞𝑠 is the starting point, and 𝑅 is the 

 
Figure. 1 General design of the proposed system 
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embedding count per bit. The embedding position is 

defined in Eq. (14). 

 

𝑞𝑛
(𝑘)

= 𝑞𝑠 + (𝑘 − 1)𝐵 + (𝑛 − 1), 
for 𝑘 = 1,2, … , 𝑅 

(14) 

 

Each watermark bit 𝑏𝑛 is represented as a value 

𝑤𝑛 , where 𝑤𝑛 = +1  if 𝑏𝑛 = 1 , and 𝑤𝑛 = −1  if 

𝑏𝑛 = 0, as defined in Eq. (15). 

 

𝑤𝑛 = {
+1, 𝑖𝑓 𝑏𝑛 = 1
−1, 𝑖𝑓 𝑏𝑛 = 0

 (15) 

 

The DCT coefficient at the defined position is 

then modified using Eq. (16), where 𝛼 (alpha) is the 

embedding strength, 𝛾 (𝑞𝑛
(𝑘)
)  represents the 

perceptual weight corresponding to the frequency 

component located at position 𝑞𝑛
(𝑘)

. 

 

𝐷′ (𝑞𝑛
(𝑘)
) = 𝐷 (𝑞𝑛

(𝑘)
) + 𝛼 ⋅ 𝛾 (𝑞𝑛

(𝑘)
) ⋅ 𝑤𝑛 (16) 

 

The original coefficient value is stored as a key 

reference for future extraction. The variable 𝐾𝑝,𝑞 

stores the original DCT coefficient value before 

modification, where 𝑝 denotes the index of the 8 × 8 

block decomposed into DCT domain, and 𝑞 denotes 

the zigzag index of the coefficient in block 𝑝  as 

defined in Eq. (17). 

 

𝐾𝑝,𝑞 = 𝐷 (𝑞𝑛
(𝑘)
) (17) 

 

In this implementation, watermark bits are 

embedded into the intermediate-frequency 

coefficients of the 8 × 8 DCT block, following the 

zigzag scan order. Specifically, the embedding 

process starts from coefficient index 𝑞𝑠 = 3  and 

continues up to index 19, which offer a good balance 

between image quality and robustness against image 

processing attacks. 

3.1.2. Data extraction process 

As illustrated in Fig. 3, the watermark extraction 

process begins by decomposing the watermarked 

 
Figure. 2 The proposed watermark embedding scheme 

 

 

 
Figure. 3 The proposed watermark extraction scheme 
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image into blocks of size 8 × 8 , with the block 

sequence determined using the extraction keys 𝑥0   

and 𝑟  held by the data owner. Each block is then 

converted to the YCbCr color space, followed by 

applying the 2D-DCT on each channel. Watermark 

extraction is done by comparing the watermarked 

DCT coefficients with the original DCT coefficients 

stored as references (e.g., in the blockchain). The 

difference between these values is calculated and 

summed to estimate the hidden watermark in the 

image. The cumulative value for each bit 𝑛  is 

computed as defined in Eq. (18). 

 

𝑆
∼

𝑛 = ∑(𝐷′ (𝑞𝑛
(𝑘)
) − 𝐷 (𝑞𝑛

(𝑘)
))

𝑅

𝑘=1

 (18) 

 

Once the cumulative value 𝑆
∼

𝑛  is obtained, the 

watermark bit is extracted by checking whether the 

value is greater than zero. The extracted watermark 

bit 𝑏̂𝑛 is determined as defined in Eq. (19): 

 

𝑏̂𝑛 = {
1, 𝑖𝑓 𝑆

∼

𝑛 > 0

0, 𝑖𝑓 𝑆
∼

𝑛 ≤ 0
 (19) 

 

Unscrambling the watermark requires the Arnold 

transform key 𝐾𝑎. To restore the original image, the 

image delta values are added to the watermarked 

image to produce an estimate that closely 

approximates the original image. 

3.2 Blockchain design 

In this system, we leverage features that ensure 

data integrity and transparency, such as non- 

repudiation, traceability, and the distribution of data 

control, such as key reference for watermark data 

extraction. To store the necessary information, we 

utilize a public blockchain as the underlying database. 

This public blockchain allows anyone to access the 

stored data while ensuring that the data remains 

immutable and cannot be repudiated by any party. 

The data stored in the blockchain includes: 

• Information of the data owner 

• Information of the data demander 

• IPFS CID of the watermarking extraction key 

• IPFS CID of the image delta 

• Hash values of original and watermarked image 

• Feature values of the image (e.g., height, width, 

PDQ hash, etc.) 

• The embedded watermark value (fingerprint) 

Each of these elements contributes to traceability 

and the authenticity of information. The data 

recorded on the blockchain does not contain 

confidential content, but rather serves to support 

authentication and verification processes. For 

example, the extraction key in the watermarking 

process does not pose a disclosure risk, as it is solely 

used to verify the presence of a watermark rather than 

to conceal sensitive information. Furthermore, 

critical extraction keys such as those used in the 

logistic map are not stored, they remain known only 

to the data owner. 

To optimize performance and reduce on-chain 

storage costs, we deployed a lightweight smart 

contract on the Polygon Mainnet. The contract 

refered as PublicLog, is shown in Fig. 4, is 

implemented in Solidity and uses an event-based 

logging mechanism.  

To reduce on-chain gas consumption, we used a 

compact string format to encode all distribution 

metadata into a single payload string. Instead of using 

verbose key-value pairs or JSON structures, the 

payload is composed of sequential fields separated by 

pipe symbols "|". Each field holds a specific piece of 

metadata. This format is designed for minimal 

 

pragma solidity ^0.8.0; 

 

contract PublicLog { 

    event RecordAdded( 

        address indexed sender, string data, uint 

timestamp 

    ); 

 

    function addRecord(string memory data) public { 

        emit RecordAdded( 

            msg.sender, data, block.timestamp 

        ); 

    } 

} 

Figure. 4 Solidity smart contract 

 

 

Table 1. Structure of the encoded payload format 

Field 
No. 

Description Example 

1 Owner name Alice 

2 CID of owner public key QmRv...ecrR 

3 Requester name Bob 

4 CID of requester public key QmQ2...VjjW 

5 Watermark fingerprint 0x31c8fb19... 

6 
CID of watermark 

extraction key 
QmR2...reeW 

7 CID of image delta QmNg...BqSm 

8 Image height 512 

9 Image width 512 

10 PDQ hash of the image a9c3e1... 

11 Hash of the original image f13bcd... 

12 
Hash of the watermarked 

image 
cdd492... 
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storage overhead. The structure of the encoded 

payload is shown in Table 1. To further reduce on-

chain size and optimize cost efficiency, the actual 

public keys of both the data owner and the requester 

are stored off-chain in the IPFS. Only the content 

identifiers of these public key files are recorded on 

the blockchain. This approach avoids the high storage 

cost associated with recording large key strings on-

chain. 

3.3 Data identification process 

As illustrated in Fig. 5, the process begins by 

computing the perceptual hash (PDQHash) of the 

target image to extract its perceptual features. These 

features are then compared with hashes stored in 

blockchain transactions. Transactions with a 

PDQHash similarity score (𝑆1) greater than or equal 

to a predefined threshold 𝑇1  are shortlisted as 

potential matches. For each matched transaction, the 

system performs watermark extraction using the 

associated watermark key and also retrieves the 

expected fingerprint. This fingerprint is then 

compared against the extracted one through a 

watermark matching process to calculate a 

Normalized Correlation (NC) score. The system then 

selects the transaction with the highest NC score. If 

the highest score exceeds a second threshold 𝑇2, the 

watermark is considered valid and the associated 

transaction is confirmed as the origin of the image. 

Otherwise, the system concludes that no watermark 

is detected or the source cannot be reliably identified. 
 

4. Experiment results and discussions 

4.1 Experiment setup 

The complete set of test images used in this 

experiment is presented in Fig. 6. The experiments 

were conducted using 10 color images originating 

from diverse application domains, including general 

images as well as medical images. All images had a 

resolution of 512×512 pixels. Four of these images, 

Airplane, House, Peppers, and Sailboat were 

obtained from the USC-SIPI Image Database [27]. In 

addition, this study incorporated medical images, 

such as the Retina image from the CHASEDB1 

dataset [28]. Two colon polyp images (Polyp-1 and 

Polyp-2) were selected from the KSAVIR dataset 

[29], which provides endoscopic data for 

gastrointestinal lesion detection. The Skin image was 

collected from the ISIC dataset [30]. Finally, two eye 

images, namely “Left Eye” and “Right Eye”, were 

obtained from the FERET dataset [31], which is 

frequently used in biometric research involving iris 

and facial recognition. 

To evaluate the effectiveness of the proposed 

method, comparative experiments were conducted by 

 
Figure. 5 Data identification process from blockchain records 

 

 

 
Figure. 6 Image set for experiment 
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embedding the same watermark payload into each 

image using three different approaches: (1) the 

proposed method, (2) the method by Dong et al. [9], 

and (3) the method by Zhou et al. [10], as previously 

described in Section 2. 

4.1.1. Experimental environment 

The experiments were conducted on a MacBook 

Air device equipped with an Apple M1 chip, 8 GB of 

RAM, and a 256 GB SSD. The operating system used 

was macOS, and the experiments were implemented 

using Python version 3.11.10. 

4.1.2. Imperceptibility evaluation setup 

This experiment investigates the effect of varying 

alpha values on image quality by measuring the Peak 

Signal-to-Noise Ratio (PSNR) across all color 

channels. PSNR is computed based on the mean 

squared error (MSE) between the original image 

𝐼(𝑖, 𝑗) and the watermarked image 𝐾(𝑖, 𝑗), as defined 

in Eq. (20). Here, 𝑚  and 𝑛  represent the image 

dimensions. Higher PSNR values indicate lower 

distortion and thus better imperceptibility. 

 

PSNR = 10 ⋅ log10(
2552

1

𝑚𝑛
∑ ∑ [𝑛

𝑗=1
𝑚
𝑖=1 𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2

) (20) 

 

The next experiment evaluates the impact of 

different payload sizes (1 Kb, 2 Kb, 4 Kb, 8 Kb, and 

16 Kb) on image quality using both PSNR and the 

Structural Similarity Index Measure (SSIM). SSIM 

evaluates perceptual similarity based on luminance 𝜇, 

contrast 𝜎 , and structural correlation 𝜎𝑥𝑦 , as 

described in Eq. (21). Constants 𝐶1 and 𝐶2 are used 

to stabilize the calculation against division by zero. 

SSIM values close to 1 imply near-identical structural 

content between the original and watermarked 

images. 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 (21) 

 

4.1.3. Robustness evaluation setup 

Robustness is assessed using normalized 

corelation (NC) between the original watermark 

𝑊(𝑖) and the extracted watermark 𝑊̂(𝑖), as shown in 

Eq. (22). The value 𝑁 represents the total number of 

bits in the watermark. An NC value close to 1 

indicates strong similarity and effective recovery. 

 

NC =
∑ 𝑊𝑁
𝑖=1 (𝑖) ⋅ 𝑊̂(𝑖)

√∑ 𝑊𝑁
𝑖=1 (𝑖)2 ⋅ √∑ 𝑊̂𝑁

𝑖=1 (𝑖)2
 

(22) 

 

This experiment examines the robustness of the 

proposed method under various image distortion and 

adversarial attacks. The tested scenarios include: no 

attack, JPEG2000 compression (Quality Factor = 30), 

salt-and-pepper noise (density = 0.05), Gaussian 

noise (variance = 0.01), Gaussian blur (3 × 3 kernel 

size, σ = 1), sharpening (𝛼 =  1.5), median filtering 

( 3 × 3 ), contrast adjustment ( 𝛼 =  1.5, 𝛽 =  0 ), 

resizing ( 256 × 256  pixels), black-box insertion 

(75 × 75 pixels). 

In addition, a copy attack scenario is included, 

which is an atempt to remove or weaken the 

embedded watermark by averaging multiple 

watermarked images. This approach assumes that an 

attacker has access to several watermarked versions 

of the same image, and generates a composite by 

averaging the pixel values across them. The resulting 

image is expected to dilute the watermark signal, 

potentially making detection more difficult. In this 

experiment, the copy attack is configured using 10 

reference images in addition to the target. 

Furthermore, the robustness evaluation includes 

three adversarial attacks: Fast Gradient Sign Method 

( 𝜖 =  0.1 ), Basic Iterative Method ( 𝜖 =  0.5, 𝛼 =
 0.5), and Projected Gradient Descent (𝜖 =  0.4, 𝛼 =
 0.7 ). Further details regarding the design and 

implementation of the adversarial attack scenarios 

are described in the following subsection. 

4.1.3.1. Adversarial attack setup 

Although the proposed watermarking scheme 

does not employ any machine learning models for 

embedding or extraction, this experiment includes an 

adversarial attack evaluation to test the resilience of 

the watermark against structured pixel perturbations. 

Adversarial attacks are traditionally designed to 

mislead deep learning classifiers by applying 

carefully crafted, imperceptible perturbations. To 

simulate this worst-case scenario, we employed a pre-

trained MobileNetV2 classifier as a surrogate model. 

Adversarial perturbations were then generated 

against this model using three standard techniques 

Fast Gradient Sign Method, Basic Iterative Method, 

and Projected Gradient Descent: 

a) Fast Gradient Sign Method 

Fast Gradient Sign Method (FGSM) is a white-

box adversarial attack technique that perturbs an 

input image by leveraging the gradient of the loss 

function with respect to the input. Specifically, it adds 
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a small perturbation in the direction of the sign of this 

gradient, scaled by a parameter 𝜀, with the goal of 

maximizing the model’s loss while minimally 

altering the image perceptually. Mathematically, the 

FGSM perturbation is defined in Eq. (23), where 𝑥 is 

the original input image, 𝐽 is the loss function, 𝜃 the 

model parameters, and ϵ the perturbation magnitude. 

 

xadv = x + ϵ × sign(∇xJ(θ, x, y)) (23) 

 

For this experiment, we consider the ϵ = 0.01, 

representing moderate level of adversarial 

perturbation. 

b) Basic Iterative Method 

In addition to FGSM, the Basic Iterative Method 

(BIM) was also applied to evaluate the robustness of 

the proposed watermarking approach under iterative 

adversarial perturbations. BIM is an extension of 

FGSM, which performs multiple small-step gradient-

based updates instead of a single step. By repeatedly 

applying FGSM-like perturbations with a small step 

size and projecting the adversarial image back to a 

valid 𝜀-neighborhood of the original image after each 

iteration, BIM can generate stronger adversarial 

examples with higher success rates of fooling a target 

model. Mathematically, BIM is described as an 

iterative process as defined in Eq. (24), where α is the 

step size, ϵ is the maximum perturbation budget, and 

𝐶𝑙𝑖𝑝𝑥,ϵ  ensures that the adversarial sample stays 

within the allowed range around the original input. 

As in the FGSM setup, a pretrained MobileNetV2 

network was used as a surrogate to estimate the 

gradient and simulate a deep learning–based 

adversarial scenario. 

 

𝑥(𝑖+1) = Clip
𝑥,ϵ
{𝑥(𝑖)

+ α × sign (∇𝑥𝐽(θ, 𝑥
(𝑖), 𝑦))} 

(24) 

 

For this experiment, BIM was configured with 

ϵ =  0.5 and α =  0.5, over 10 iterations, to provide 

a moderate but realistic adversarial perturbation 

scenario that can challenge the watermark extraction 

process. 

c) Projected Gradient Descent 

In addition to FGSM and BIM, the Projected 

Gradient Descent (PGD) method was also applied to 

further evaluate the adversarial robustness of the 

proposed watermarking scheme. PGD is similar to 

BIM in that it performs multiple small-step gradient-

based updates according to the same iterative rule 

described in Eq. (24), but differs by introducing a 

random initialization within the ϵ -ball around the 

input image. This random start allows PGD to 

explore a broader region of the input space and avoid 

relying solely on a single starting point. After each 

update, the perturbation is projected back to stay 

within the allowed 𝜖-neighborhood. As with the other 

attacks, a pretrained MobileNetV2 network was used 

as a surrogate model to compute the required 

gradients and generate the perturbations. In this 

experiment, PGD was configured with 𝜖 = 0.4, 𝛼 =
 0.7, and 10 iterations, to simulate a moderate and 

realistic adversarial scenario for testing the 

watermark extraction robustness. 

4.1.4. Traceability evaluation setup 

The next experiment aims to evaluate the 

traceability capability of the proposed watermarking 

scheme, while also comparing it with the methods of 

Dong et al. [9] and Zhou et al. [10] Each image was 

distributed to 100 recipients, with an identifying 

watermark embedded for each recipient, and the 

distribution records were stored on a public 

blockchain. After distribution, a total of 50 images 

were selected for source identification testing, 

consisting of 30 watermarked images recorded on the 

blockchain, 15 watermarked images not recorded on 

the blockchain, and 5 original images without 

watermarking. 

All 50 test images were then subjected to the 

attack scenarios described in the previous 

experimental setup. Since each test image was tested 

under 10 different attack scenarios, this resulted in a 

total of 5,000 attacked image, which were then 

analyzed to identify their sources. Detection 

performance was evaluated using accuracy, precision, 

recall, and F1-score metrics, as defined in Eq. (25), 

(26), (27), and (28) respectively. The detection results 

were categorized as follows: 

• True Positive (TP): a watermarked image 

recorded on the blockchain is correctly 

identified with its true source. 

• True Negative (TN): an image not recorded on 

the blockchain (or an original image without 

watermarking) does not produce a detection 

result in the system. 

• False Positive (FP): an image not recorded on 

the blockchain is incorrectly identified as if it 

were recorded. 

• False Negative (FN): an image recorded on the 

blockchain is not correctly identified, or its 

detected source does not match the blockchain 

record. 

The detection process is illustrated in Fig. 5, as 

described in the previous section. For this experiment, 
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we set the image similarity threshold to 𝑇1 = 80% 

and the normalized correlation threshold to 𝑇2 = 0.7. 

 

Accuracy =
TP + TN

TP + TN + FP + FN
 (25) 

 

Precision =
TP

TP + FP
 (26) 

 

Recall =
TP

TP + FN
 (27) 

 

F1-Score = 2 ×
Precision × Recall

Precision + Recall
 (28) 

 

4.1.5. Blockchain benchmark setup 

To benchmark the smart contract implementation 

in a real-world setting, we conducted a performance 

evaluation on the Polygon Mainnet. This simulation 

models a real-world image sharing scenario, in which 

each of the 10 test images was distributed to 100 

recipients, resulting in 1,000 unique data-sharing 

transactions. Each transaction involves calling the 

addRecord function of the smart contract to record 

metadata such as data owner information (name and 

IPFS CID of the public key), data requester 

information (name and IPFS CID of the public key), 

embedded watermark fingerprint, watermark key 

IPFS CID, image features including perceptual hash, 

and the watermarked and original image hash, as 

detailed in the blockchain design. The test was 

designed to measure: (1) average gas cost per 

transaction, (2) estimated monetary cost based on 

Polygon Mainnet gas prices and token valuation, and 

(3) transaction throughput (transactions per second). 

4.1.6. IPFS implementation and evaluation setup 

IPFS was implemented on a virtual private server 

(VPS) with system specifications summarized in 

Table 2. To deploy IPFS, we installed go-ipfs version 

0.21.0 on this server as the reference implementation 

of the IPFS protocol. A reverse proxy was configured 

using Nginx, which also handled HTTP Basic 

Authentication to restrict access during the upload 

process. The evaluation consisted of two main 

phases: uploading and retrieving watermark-related 

payloads (image delta files). In the upload phase, 

1,000 files were added to IPFS, and their latency and 

upload availability were recorded. In the retrieval 

phase, each uploaded file was retrieved 10 times, 

resulting in a total of 10,000 retrieval operations. For 

each operation, latency and retrieval availability were 

measured to evaluate the performance of the IPFS 

node in a constrained server environment. 

4.2 Results and discussion 

4.2.1. Effect of alpha values on PSNR across color 

channels 

Fig. 7 shows the results of an experiment 

measuring the average PSNR values when a 10 Kb 

payload is embedded using different values of the 

embedding strength parameter 𝛼, ranging from 0.1 to 

25. The embedding was performed using the 

proposed method with duplication factor 𝑅 = 1. It 

can be observed that increasing the value of 𝛼 leads 

to a gradual decline in PSNR, indicating reduced 

visual quality due to stronger watermark embedding. 

The highest PSNR is obtained when 𝛼  is 0.1, 

reaching over 56 dB, while the lowest value is around 

43.3 dB when 𝛼 reaches 25. This trend highlights the 

trade-off between embedding strength and 

imperceptibility, where a stronger embedding (higher 

𝛼 values) improves watermark robustness at the cost 

of image quality. 

4.2.2. Impact of payload size on PSNR and SSIM 

Table 3 presents the results of the imperceptibility 

evaluation measured using PSNR on all test images. 

The embedded payloads range from 1 Kb to 16 Kb. 

For this experiment, the proposed method (Prop.) 

uses an embedding strength parameter of 𝛼 =  0.1. 

As presented in Table 3, the proposed method 

consistently produces higher PSNR values across all 

 

 
Figure. 7 Average PSNR by alpha value 

 

 

Table 2. Server specifications 

Component Specification 

Provider 
Vultr VPS (Microsoft Hyper-V 

virtualization) 

CPU 1 vCPU Intel Core (Broadwell), 2.39 GHz 

RAM 1 GB (951 MiB physical, 2.3 GB swap) 

Storage 25 GB SSD 

Operating 

System 

Ubuntu 22.04.5 LTS, Linux kernel 5.15, 

x86_64 

Location Tokyo, Japan 
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payload sizes and images. The PSNR values for the 

proposed method generally range from average 62.23 

dB at 1 Kb to average 50.29 dB at 16 Kb, indicating 

a gradual decline in image fidelity as the payload size 

increases, which is expected in watermarking 

systems. The method by Zhou et al. [10] shows a 

more noticeable decrease in PSNR as the payload 

increases, with values in several cases falling below 

40 dB at the highest payload size. This indicates that 

the visual impact of watermarking becomes more 

significant under heavier embedding in their 

approach. In contrast, the method by Dong et al. [9] 

yields relatively stable PSNR values across all 

payload sizes. This is attributed to the properties of 

Dong’s method, which requires the watermark length 

to be fixed at one-fourth of the image dimensions. To 

match this requirement in our test, payloads smaller 

than the fixed size were padded with zero bits. As a 

result, the effective amount of embedded data 

remained constant regardless of actual payload size, 

producing consistent PSNR outcomes. 

Table 4 supports the PSNR results by showing the 

SSIM value for the same experimental settings. The 

proposed method consistently achieves SSIM values 

that are either equal to or very close to 1.000, across 

all payload sizes and test images. This indicates that 

the visual distortion introduced by the watermark 

embedding remains minimal and largely 

imperceptible to the human visual system. At the 

largest payload size of 16 Kb, the proposed method 

still maintains SSIM values above 0.995 for most 

images, such as 0.996 for Airplane, 0.997 for Sailboat, 

and 0.996 for Right Eye. In contrast, the method by 

Zhou et al. [10] shows more noticeable degradation 

at higher payloads, with SSIM values declining to 

0.983 for Airplane, 0.955 for Skin, and 0.951 for 

Polyp-2. Meanwhile, the method by Dong et al. [9] 

remains relatively stable but generally lower than the 

proposed method. These SSIM results reinforce the 

earlier PSNR findings, confirming that the proposed 

scheme is effective at preserving image quality even 

under increased payload. 

4.2.3. Robustness evaluation 

To assess robustness under extreme conditions, 

the proposed method was configured with a 

duplication factor of 𝑅 = 5  and an embedding 

strength 𝛼 = 25 to improve resistance against both 

conventional distortions and adversarial attacks. 

Table 5 presents a comprehensive comparison of 

visual watermark detection results on the "Right Eye" 

image under various image processing and 

Table 3. PSNR comparison by payload size 

Image 
1 Kb 2 Kb 4 Kb 8 Kb 16 Kb 

[9] [10] Prop. [9] [10] Prop. [9] [10] Prop. [9] [10] Prop. [9] [10] Prop. 

Airplane 38.14 47.33 61.90 38.11 45.17 58.97 38.00 42.99 56.00 37.98 40.43 52.98 38.03 37.45 49.97 

House 38.68 50.88 62.02 38.64 47.16 59.08 38.53 44.85 56.11 38.50 41.68 53.10 38.56 38.81 50.10 

Peppers 41.35 47.71 62.08 41.29 44.59 59.18 41.15 42.39 56.21 41.11 39.70 53.21 41.19 37.30 50.19 

Sailboat 40.63 45.30 62.11 40.58 43.51 59.17 40.44 41.64 56.15 40.41 39.64 53.12 40.48 37.67 50.11 

Skin 39.36 52.31 62.45 39.32 48.94 59.56 39.22 45.96 56.59 39.20 42.82 53.62 39.25 39.68 50.61 

Polyp-1 38.70 52.79 62.47 38.66 50.22 59.53 38.56 47.26 56.54 38.56 43.92 53.53 38.61 40.65 50.52 

Polyp-2 37.92 51.46 62.49 37.88 48.38 59.56 37.79 45.34 56.57 37.78 42.18 53.53 37.82 38.95 50.53 

Retina 42.82 52.79 62.45 42.78 50.62 59.56 42.65 48.37 56.58 42.60 45.70 53.57 42.68 42.58 50.56 

Left Eye 38.74 54.85 62.14 38.71 51.37 59.13 38.59 48.59 56.13 38.57 45.37 53.11 38.62 42.02 50.12 

Right Eye 37.71 52.42 62.18 37.69 50.04 59.21 37.58 47.55 56.24 37.55 44.70 53.19 37.60 41.69 50.18 

Average 39.41 50.78 62.23 39.37 48.00 59.30 39.25 45.49 56.31 39.23 42.61 53.30 39.28 39.68 50.29 

 

Table 4. SSIM comparison by payload size 

Image 
1 Kb 2 Kb 4 Kb 8 Kb 16 Kb 

[9] [10] Prop. [9] [10] Prop. [9] [10] Prop. [9] [10] Prop. [9] [10] Prop. 

Airplane 0.997 0.998 1.000 0.997 0.997 0.999 0.997 0.996 0.999 0.997 0.992 0.998 0.997 0.983 0.996 

House 0.997 0.999 1.000 0.997 0.999 1.000 0.997 0.998 0.999 0.997 0.996 0.998 0.997 0.991 0.997 

Peppers 0.996 0.998 1.000 0.996 0.996 1.000 0.996 0.993 0.999 0.996 0.988 0.999 0.996 0.976 0.997 

Sailboat 0.998 0.998 1.000 0.998 0.998 1.000 0.998 0.996 0.999 0.998 0.993 0.999 0.998 0.988 0.997 

Skin 0.988 0.998 1.000 0.988 0.995 0.999 0.988 0.990 0.999 0.988 0.978 0.998 0.988 0.955 0.995 

Polyp-1 0.996 0.999 1.000 0.996 0.998 1.000 0.996 0.996 0.999 0.996 0.991 0.999 0.996 0.979 0.998 

Polyp-2 0.988 0.998 1.000 0.988 0.995 0.999 0.988 0.990 0.999 0.988 0.977 0.998 0.988 0.951 0.996 

Retina 0.989 0.999 1.000 0.989 0.997 0.999 0.989 0.996 0.999 0.989 0.992 0.998 0.989 0.981 0.996 

Left Eye 0.989 0.999 1.000 0.989 0.997 0.999 0.989 0.995 0.999 0.989 0.990 0.997 0.989 0.980 0.995 

Right Eye 0.992 0.999 1.000 0.992 0.997 0.999 0.992 0.996 0.999 0.992 0.992 0.998 0.992 0.983 0.996 

Average 0.993 0.999 1.000 0.993 0.997 0.999 0.993 0.995 0.999 0.993 0.989 0.998 0.993 0.977 0.996 
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adversarial attacks. Each row corresponds to a 

specific attack scenario, and for each method, the 

extracted watermark is shown alongside its NC value 

with respect to the original embedded watermark. 

The binary visualizations highlight incorrect bits in 

red, where red pixels denote bit errors in the extracted 

watermark. In contrast, both black and white pixels 

represent correctly extracted bits regardless of their 

binary value (0 or 1). 

In the absence of any attack, all methods yield 

high NC values, with the proposed method and the 

Dong’s method maintaining perfect recovery. Under 

mild distortions such as Sharpening, Contrast 

Adjustment, and Salt & Pepper noise, the proposed 

method still achieves perfect or near-perfect 

extraction (NC ≥ 0.971), with minimal or no red 

pixels, indicating excellent robustness. Under 

stronger degradations such as Gaussian Noise, Resize, 

and Insertion, the method by Zhou et al. [10] shows 

significant degradation (e.g., NC = 0.606 for Resize 

and NC = 0.753 for Insertion), while the proposed 

method still maintains high accuracy, with 

substantially fewer bit errors compared to others. 

Importantly, the proposed method demonstrates 

superior resilience against adversarial attacks, such as 

FGSM (NC = 0.999), BIM (NC = 0.902), and PGD 

Table 5. Visual watermark detection results on the Right Eye image under various attacks 

Image [9] [10] Prop.  Image [9] [10] Prop. 

    

 

    

No attack NC=1 NC=0.980 NC=1  Sharpening NC=0.979 NC=0.935 NC=1 

    

 

    

JPEG2000 NC=0.962 NC=0.619 NC=0.998  Median Filter NC=0.929 NC=0.612 NC=0.946 

    

 

    

Salt & Pepper NC=0.864 NC=0.668 NC=0.971  Contrast Adj. NC=0.720 NC=0.350 NC=1 

    

 

 

   

Gaussian Noise NC=0.827 NC=0.642 NC=0.984  Resize NC=0.885 NC=0.606 NC=0.894 

    

 

    

Gaussian Blur NC=0.758 NC=0.603 NC=1  Insertion NC=0.742 NC=0.753 NC=1 

    

 

    

Copy Attack NC=1 NC=0.420 NC=0.961  BIM NC=0.787 NC=0.559 NC=0.902 

    

 

    

FGSM NC=0.921 NC=0.676 NC=0.999  PGD NC=0.834 NC=0.56 NC=0.924 
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(NC = 0.924), whereas the method in [9] and [10] 

experience considerable drops in NC (e.g., 

Zhou = 0.559 for BIM, 0.560 for PGD), and more 

pronounced bit errors. In the Copy Attack scenario, 

the proposed method still achieves reliable detection 

(NC = 0.961), whereas the method by Zhou et al. [10] 

fails to recover the watermark content (NC = 0.420). 

More detailed results for the other images can be 

found in Table 6-7. Despite its overall effectiveness, 

the proposed method does not consistently 

outperform the baselines across all attack types. In 

copy attacks, the method by Dong et al. [9] frequently 

achieves perfect watermark recovery (e.g., 

NC = 1.000 on several images), while the proposed 

method records lower NC values. A similar pattern 

emerges under adversarial attacks like BIM and PGD, 

where the method by Dong et al. [9] occasionally 

surpasses the proposed method, for example, in Skin 

(PGD: 0.998 vs. 0.955) and Polyp-1 (PGD: 0.997 vs. 

0.945). Nevertheless, the average NC scores for each 

image indicate that the proposed method consistently 

outperforms both the method in [9] and [10]. Across 

all ten images, the proposed method achieves higher 

average NC values, demonstrating greater overall 

robustness despite occasional weaknesses under 

specific attack scenarios. 

The watermarking algorithm by Dong et al. [9] 

exhibits significant vulnerability to various types of 

attacks due to its strong dependence on the accuracy 

of singular values as the basis for watermark 

extraction. The method performs embedding in the 

low-frequency domain, specifically in the LL sub-

band of the DWT transformed with DCT by 

modifying the singular values using a small 

Table 6. Extended robustness evaluation (1) 

Attack Type 
Airplane House Peppers Sailboat Skin 

[9] [10] Prop. [9] [10] Prop. [9] [10] Prop. [9] [10] Prop. [9] [10] Prop. 

PSNR (dB) 38.21 38.30 42.1 38.75 39.18 42.1 41.43 38.81 42.19 40.72 38.01 42.1 39.43 40.51 42.09 

No Attack 1.000 0.998 1.000 1.000 0.997 1.000 1.000 0.987 1.000 1.000 1.000 1.000 1.000 0.981 1.000 

JPEG2000 0.663 0.704 0.888 0.542 0.782 0.832 0.716 0.737 0.921 0.472 0.718 0.819 0.888 0.765 0.999 

Salt & Pepper 0.706 0.794 0.985 0.774 0.82 0.984 0.79 0.756 0.971 0.792 0.801 0.976 0.949 0.793 0.981 

Gaussian Noise 0.918 0.831 0.995 0.935 0.869 0.992 0.835 0.811 0.993 0.915 0.813 0.991 0.981 0.776 0.993 

Gaussian Blur 0.020 0.676 0.999 0.028 0.687 0.990 0.124 0.755 0.998 0.036 0.721 0.994 0.692 0.657 1.000 

Sharpen 0.993 0.888 0.995 0.993 0.889 0.995 0.930 0.764 1.000 0.964 0.821 0.998 0.993 0.930 0.997 

Median Filter 0.479 0.746 0.963 0.284 0.729 0.964 0.606 0.799 0.969 0.281 0.782 0.970 0.880 0.722 0.948 

Contrast Adj. 0.720 0.890 0.835 0.720 0.906 0.985 0.722 0.845 1.000 0.720 0.937 0.998 0.720 0.636 0.998 

Resize 0.010 0.720 0.892 0.012 0.719 0.879 0.091 0.805 0.885 0.020 0.767 0.886 0.834 0.688 0.895 

Insertion 0.898 0.989 1.000 0.815 0.997 1.000 0.810 0.977 1.000 0.878 0.993 1.000 0.767 0.981 1.000 

Copy Attack 1.000 0.452 0.977 1.000 0.436 0.981 1.000 0.441 0.984 1.000 0.453 0.975 1.000 0.425 0.988 

FGSM 0.993 0.862 1.000 1.000 0.851 1.000 0.967 0.858 1.000 0.998 0.843 1.000 0.993 0.842 1.000 

BIM 0.904 0.634 0.912 0.952 0.661 0.924 0.885 0.611 0.943 0.934 0.641 0.932 0.997 0.606 0.932 

PDG 0.973 0.667 0.941 0.98 0.657 0.955 0.934 0.656 0.949 0.968 0.627 0.956 0.998 0.638 0.955 

Average 0.734 0.775 0.956 0.717 0.786 0.963 0.744 0.772 0.972 0.713 0.780 0.964 0.907 0.746 0.978 

 

Table 7. Extended robustness evaluation (2) 

Attack Type 
Polyp-1 Polyp-2 Retina Left Eye Right Eye 

[9] [10] Prop. [9] [10] Prop. [9] [10] Prop. [9] [10] Prop. [9] [10] Prop. 

PSNR (dB) 38.77 41.24 42.1 37.98 39.77 42.12 41.91 41.27 42.32 38.81 42.27 42.47 37.77 42.22 42.67 

No Attack 1.000 0.994 1.000 1.000 0.994 1.000 1.000 0.874 1.000 1.000 0.980 1.000 1.000 0.978 1.000 

JPEG2000 0.397 0.67 0.93 0.859 0.773 0.999 0.773 0.655 0.997 0.962 0.619 0.998 0.959 0.681 1.000 

Salt & Pepper 0.873 0.765 0.968 0.901 0.803 0.975 0.926 0.687 0.953 0.864 0.668 0.971 0.818 0.685 0.942 

Gaussian Noise 0.947 0.816 0.993 0.953 0.839 0.992 0.961 0.690 0.977 0.827 0.642 0.984 0.680 0.667 0.992 

Gaussian Blur 0.103 0.674 0.995 0.725 0.657 1.000 0.455 0.658 1.000 0.758 0.603 1.000 0.539 0.603 0.997 

Sharpen 0.991 0.929 0.991 0.991 0.914 0.993 0.990 0.901 1.000 0.979 0.935 0.999 0.988 0.923 0.997 

Median Filter 0.160 0.72 0.967 0.905 0.729 0.954 0.799 0.702 0.965 0.929 0.612 0.946 0.922 0.655 0.952 

Contrast Adj. 0.720 0.643 0.998 0.720 0.836 0.997 0.720 0.524 1.000 0.720 0.350 1.000 0.720 0.398 0.992 

Resize 0.102 0.713 0.891 0.871 0.738 0.891 0.555 0.691 0.882 0.885 0.606 0.903 0.637 0.635 0.899 

Insertion 0.657 0.994 1.000 0.695 0.994 1.000 0.712 0.865 1.000 0.742 0.753 1.000 0.963 0.793 1.000 

Copy Attack 1.000 0.429 0.971 1.000 0.434 0.979 1.000 0.423 0.987 1.000 0.420 0.961 1.000 0.435 0.979 

FGSM 1.000 0.797 1.000 0.991 0.875 1.000 0.991 0.748 1.000 0.968 0.667 1.000 0.921 0.676 0.999 

BIM 0.989 0.596 0.913 0.967 0.625 0.923 0.997 0.608 0.898 0.891 0.538 0.91 0.787 0.559 0.902 

PGD 0.997 0.634 0.945 0.99 0.637 0.94 0.996 0.568 0.938 0.934 0.546 0.932 0.834 0.56 0.924 

Average 0.710 0.741 0.969 0.898 0.775 0.975 0.848 0.685 0.971 0.890 0.639 0.972 0.841 0.661 0.970 
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embedding factor α (~0.02). As a result, any 

modification to the image, such as contrast 

adjustment, gaussian noise, gaussian blur, or 

insertion attacks, directly affects the singular values 

of the image from which the watermark is to be 

extracted. This vulnerability arises because the 

extraction formula defined in Eq. (11) is highly 

sensitive to the accuracy of 𝑆𝑊𝑀 , which is derived 

from the DCT coefficients of the attacked image. Any 

distortion in these coefficients leads to deviations in 

the singular values from their expected values, thus 

impairing the watermark retrieval process. 

The watermarking method proposed by Zhou et 

al. [10] exhibits significant vulnerabilities to various 

digital attacks due to several fundamental design 

weaknesses. In the case of copy attacks, the method 

is particularly susceptible as it adopts a deterministic 

approach that consistently selects image blocks with 

the highest texture values in a fixed order, without 

incorporating any randomization. This results in 

predictable embedding locations, making the 

watermark more susceptible to manipulation or 

removal through copy attack techniques. 

Additionally, the method is sensitive to embedding 

strength due to its reliance on the DC coefficient, 

where contrast adjustments or high-intensity 

disturbances can disproportionately affect the 

watermark embedded in the AC coefficients. 

Furthermore, the method lacks a watermark recovery 

mechanism, such as re-embedding the watermark 

across multiple locations, which could enhance 

robustness and increase the likelihood of successful 

extraction under adverse conditions. 

Overall, the experimental results summarized in 

Table 6–7 demonstrates that the proposed method 

offers stronger robustness and reliability across a 

wide range of distortions. This resilience stems from 

three key design elements: (1) the use of logistic map-

based randomization to determine embedding 

locations, which mitigates predictability and reduces 

susceptibility to spatial attacks such as copy attacks; 

(2) a repeated embedding strategy that increases 

redundancy and enhances the chances of successful 

watermark recovery under partial degradation; and 

(3) the application of a stronger embedding strength, 

which improves robustness against both conventional 

distortions and adversarial perturbations while 

preserving acceptable perceptual quality. 

4.2.4. Traceability evaluation 

Table 8 presents a detailed breakdown of 

accuracy, precision, recall, and F1-score, grouped by 

each type of attack scenario. Based on the 

experimental results shown in the table, the proposed 

watermarking method consistently outperforms the 

approaches by Dong  et al. [9] and Zhou et al. [10] 

across all evaluation metrics accuracy, precision, 

recall, and F1-score under various attack scenarios. 

The proposed method achieves perfect scores (1.000) 

for all metrics under every type of attack. This 

indicates that the embedded identity fingerprints 

remain reliably detectable even after severe image 

distortions. In contrast, although the method by Zhou 

et al. [10] performs reasonably well under certain 

conditions (e.g., F1-score of 0.866 for FGSM), it 

suffers significant performance degradation under 

others, such as Gaussian Blur (F1 = 0.236) and BIM 

(F1 = 0.000). The method by Dong et al. [9], on the 

other hand, generally fails to identify the image 

source reliably, as reflected in its low average 

accuracy (0.205) and F1-score (0.104). 

Despite its strengths in watermark extraction as 

seen in previous section, the Dong et al. [9] method 

suffers from a critical vulnerability: it cannot reliably 

Table 8.  Traceability detection metrics under various attack scenarios 

Attack 
Accuracy Precision Recall F1 

[9] [10] Prop. [9] [10] Prop. [9] [10] Prop. [9] [10] Prop. 

No Attack 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 

JPEG2000 0.200 0.752 1.000 0.142 0.800 1.000 0.117 0.587 1.000 0.127 0.615 1.000 

Salt & Pepper 0.108 0.862 1.000 0.204 1.000 1.000 0.180 0.770 1.000 0.191 0.797 1.000 

Gaussian Noise 0.120 0.542 1.000 0.177 0.600 1.000 0.150 0.237 1.000 0.162 0.289 1.000 

Gaussian Blur 0.350 0.528 1.000 0.133 0.400 1.000 0.610 0.213 1.000 0.077 0.236 1.000 

Sharpen 0.840 1.000 1.000 0.169 1.000 1.000 0.136 1.000 1.000 0.150 1.000 1.000 

Median Filter 0.256 0.832 1.000 0.129 0.800 1.000 0.106 0.720 1.000 0.116 0.746 1.000 

Contrast 0.000 0.700 1.000 0.000 0.500 1.000 0.000 0.500 1.000 0.000 0.500 1.000 

Resize 0.298 0.736 1.000 0.510 0.800 1.000 0.047 0.560 1.000 0.049 0.598 1.000 

Insertion 0.378 1.000 1.000 0.026 1.000 1.000 0.020 1.000 1.000 0.023 1.000 1.000 

Copy Attack 0.000 0.400 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 

FGSM 0.090 0.906 1.000 0.190 1.000 1.000 0.147 0.843 1.000 0.159 0.866 1.000 

BIM 0.100 0.400 1.000 0.228 0.000 1.000 0.159 0.000 1.000 0.180 0.000 1.000 

PGD 0.124 0.400 1.000 0.249 0.000 1.000 0.200 0.000 1.000 0.218 0.000 1.000 

Average 0.205 0.718 1.000 0.154 0.636 1.000 0.134 0.531 1.000 0.104 0.546 1.000 
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distinguish between different watermarks embedded 

in the same host image. This phenomenon, known as 

cross-extraction, undermines the security of the 

SVD-based embedding scheme. Cross-extraction 

occurs when a watermark can be extracted using an 

incorrect key particularly when different watermarks 

are embedded into the same host image. This issue 

arises from the method’s reliance on the singular 

values of the LL component produced by DWT-DCT. 

The extraction formula in Eq. (11), is highly sensitive 

to variations in the host image parameters. When the 

same host image is used, the extracted 𝑆𝑊𝑀  values 

become highly similar across different watermarks, 

leaving 𝑆𝐻 and the scaling factor α both stored in the 

key as the main distinguishing elements, which 

remain nearly identical. Moreover, watermark 

reconstruction via inverse SVD is dominated by the 

spatial structures encoded in matrices 𝑈 and 𝑉, rather 

than the embedded singular values. Consequently, 

even an incorrect key may produce a visually 

plausible watermark pattern. This weakness violates 

two fundamental principles of secure watermarking: 

uniqueness and non-repudiation resulting in the 

method in [9] is unreliable for applications requiring 

ownership verification or digital content 

authentication. 

Overall, the average metric scores for the 

proposed method reach 1.000, significantly 

surpassing those of the method by Zhou et al. [10] 

(e.g., average F1-score = 0.546) and the method by 

Dong et al. [9] (average F1-score = 0.104). This 

demonstrates the high reliability of the proposed 

system in tracing image distribution sources with 

precision, even under extreme distortion conditions. 

4.2.5. Evaluation of smart contract performance 

A total of 1,000 transactions were submitted, 

simulating the distribution of 10 host images to 100 

different recipients each. Each transaction recorded 

metadata including the identities of the data owner 

and requester, perceptual hash, fingerprint, and IPFS 

references. The benchmark results are summarized as 

follows. 

The average processing time per transaction was 

recorded at 8.866 seconds, with a throughput of 43.91 

transactions per second in the Polygon Mainnet 

environment. In terms of gas consumption, each 

transaction required an average of 48,380 gas units, 

with an average gas price of 26.69 Gwei. When 

executed on the Polygon network, the total gas fee for 

all transactions amounted to approximately 1.291150 

POL (Polygon). Given the price of POL on July 9, 

2025, which was $0.2008, the estimated total 

monetary cost for these 1,000 transactions was only 

$0.2593. This demonstrates the scalability and cost-

efficiency of deploying the proposed traceability 

mechanism on Polygon Mainnet, making it highly 

suitable for real-world high-frequency image sharing 

applications. 

4.2.6. IPFS performance evaluation 

The performance evaluation of IPFS was 

conducted by measuring both upload and retrieval 

processes on the configured server described in 

Section 5.1.6. As summarized in Table 10, a total of 

1,000 image delta files were uploaded to the IPFS 

node, each with a success rate of 100%. The average 

latency for uploading was measured at 1.0087 

seconds, and no upload failures occurred. The 

average file size of the image delta files was 106.30 

KB. 

For the retrieval phase, each uploaded file was 

accessed 10 times, resulting in 10,000 retrieval 

operations. Similar to the upload phase, all retrievals 

were completed successfully with zero failure and 

100% availability. The average retrieval latency was 

slightly lower at 0.8155 seconds, indicating efficient 

content addressing and data propagation within the 

IPFS network under repeated access conditions. 

These results demonstrate that even in a resource-

constrained VPS environment, IPFS provides high 

availability, stable response times, and consistent 

performance when used as a decentralized storage 

layer for traceable image watermarking systems. 

4.2.7. Threat model and security analysis 

4.2.7.1. Threat model 

In the proposed system, we assume a threat model 

 

Table 9. Transaction performance evaluation 

Metric Measured Value 

Total transactions 1000 

Average time / transaction 8.866 seconds 

Transaction throughput 43.91 transaction per second 

Average gas / transaction 48380 gas units 

Average gas price 26.69 Gwei 

Total fee 1.291150 POL 

Total fee (USD) $0.2593 

 

 

Table 10. Performance evaluation of IPFS 

Parameter Upload Retrieve 

Success 1000 10000 

Failed 0 0 

Avg. Latency 1.0087 s 0.8155 s 

Availability 100% 100% 
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involving three types of entities: (a) Honest 

Participants: legitimate data owners and requesters 

who comply with the protocol, (b) Malicious 

Requesters: legitimate recipients who attempt to 

redistribute or reverse-engineer the watermark., and 

(c) External Adversaries: attackers who intercept 

images, probe smart contracts, or attempt to 

manipulate blockchain records. 

The system assumes secure key storage by 

legitimate users and relies on cryptographic 

mechanisms, particularly ECDSA and logistic-based 

randomization to protect against forgery and 

unauthorized trace reconstruction. 

4.2.7.2. Attack scenarios and mitigation strategies 

Table 11 presents a summary of the key attack 

scenarios that may compromise the integrity, 

authenticity, or traceability of the proposed system. 

Each row outlines a distinct threat, its corresponding 

adversarial objective, and the defense mechanism 

employed within the system design. As shown in the 

table, the use of randomized logistic map parameters 

ensures that unauthorized watermark extraction is 

computationally infeasible, even if IPFS-stored 

references are accessible. Furthermore, embedded 

ECDSA signatures act as tamper-proof verifiable 

claims, which effectively defend against metadata 

poisoning and ownership forgery. 

4.2.7.3. Security properties 

The proposed system provides several security 

guarantees essential for secure and traceable image 

sharing. Confidentiality is maintained by encrypting 

both the image delta and the watermark extraction 

key using the requester’s public key before storing 

them on IPFS. Without the corresponding private key, 

unauthorized parties cannot recover the original 

image or the embedded fingerprint. Integrity and 

authenticity are enforced through ECDSA signatures 

embedded in the image, which are generated using 

the data owner’s private key. These signatures are 

verifiable against the public key stored on the 

blockchain, ensuring that the fingerprint cannot be 

forged or tampered with. Availability is ensured by 

utilizing decentralized infrastructures: IPFS for 

storing watermark-related files and the Polygon 

mainnet for recording transaction metadata. Our 

deployment and testing show 100% availability in 

both upload and retrieval processes on IPFS, and 

Polygon provides high transaction uptime and 

accessibility, demonstrating strong operational 

reliability. Lastly, transparency is ensured through 

the use of a public blockchain and IPFS, allowing all 

metadata and distribution records to be independently 

audited without relying on a centralized authority. 

5. Conclusions 

This paper presented a novel image data sharing 

framework that integrates reversible robust 

watermarking with blockchain technology to enable 

traceable and secure image distribution. By 

embedding a unique 1024-bit ECDSA-based digital 

Table 11. Attack scenarios and mitigations 

Attack Type Description Mitigation Strategy 

Key 

Compromise 

Attacker obtains a requester’s private 

key and accesses encrypted IPFS data 

(e.g., extraction key). 

Even with access to the reference DCT coefficients 

(stored via IPFS), extraction remains infeasible without 

knowing the logistic map key that determines the block 

embedding order. 

Unauthorized 

Watermark 

Extraction 

Extraction attempt without knowledge 

of logistic map parameters. 

The block order is randomized using a logistic map with 

secret parameters, which are not stored on-chain. 

Extraction fails without these keys. 

Metadata 

Poisoning 

Attacker attempts to inject false 

ownership claims on the blockchain. 

The watermark embedded in each image is a verifiable 

ECDSA signature to the data owner, and the ECDSA is 

tied to specific content and requester identity. Verification 

ensures authenticity and binds the fingerprint to its 

rightful owner. 

Smart Contract 

Exploitation 

Malicious users submit arbitrary or fake 

records to the contract. 

The smart contract accepts open inserts, but fake records 

are ineffective: traceability is based on image-embedded 

ECDSA signatures, which can be cryptographically 

verified against the claimed owner. 

Watermark 

Copy Attack 

Attacker averages multiple 

watermarked images to suppress the 

embedded watermark signal. 

Watermark bits are redundantly embedded across multiple 

locations using logistic-map-based block selection. This 

redundancy and randomness reduce the effectiveness of 

averaging-based removal. 
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fingerprint that identifies both the image and the 

requester, the proposed method ensures 

accountability in every distribution event. The use of 

logistic map-based randomized embedding, 

perceptual weighting through CSF, and redundant bit 

insertion significantly enhances both robustness and 

imperceptibility, achieving average PSNR above 

50.29 dB for 16 Kb payload and SSIM values 

consistently close to 1.000. 

Extensive experiments under various distortion 

and adversarial scenarios confirmed that the 

proposed scheme outperforms the method by Dong et 

al. [9] and the method by Zhou et al. [10] in terms of 

watermark recovery accuracy (average NC = 0.97) 

and traceability (F1-score = 1.000). 

Beyond empirical performance, the method is 

supported by several theoretical design elements that 

differentiate it from existing schemes. The use of 

logistic map-based block randomization secures the 

watermark location, making the scheme resistant to 

spatial and averaging attacks. The redundant 

embedding of watermark bits increases resilience 

against both noise and adversarial perturbations. In 

addition, the contrast sensitivity-based perceptual 

weighting balances robustness and imperceptibility 

by adapting the embedding strength to human visual 

tolerance. 

Compared to existing methods by Dong et al. [9] 

and Zhou et al. [10], the proposed method offers 

clearer advantages. The method by Dong et al. [9] 

lacks traceability granularity and is vulnerable to 

cross-extraction due to its dependence on singular 

values. The method by Zhou et al. [10], although 

robust to some attacks, uses deterministic block 

selection and does not support reversibility, limiting 

its applicability in sensitive domains. In contrast, our 

approach combines traceability, reversibility, and 

verifiability, a combination not simultaneously 

addressed in prior work. 

Furthermore, deployment on the Polygon 

Mainnet and IPFS demonstrated the practicality of 

the proposed system in real-world environments, 

with low-cost, high-throughput smart contract 

interactions and reliable decentralized storage 

performance. The system demonstrates effective 

mitigation strategies against key compromise, 

unauthorized watermark extraction, metadata 

poisoning, and watermark copy attacks, as outlined in 

Table 11. Overall, the proposed approach offers a 

practical and verifiable mechanism for image 

provenance tracking and copyright management, 

especially in use cases that require both traceability 

and reversibility, such as medical image distribution 

and digital forensics. 
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