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Abstract: This paper proposes a traceable image data sharing system that integrates reversible watermarking and
blockchain technology. A 1024-bit signature derived from image content and the applicant data, is embedded into the
image as the watermark. We integrate blockchain technology to record copyright information and auxiliary
watermarking variables of the shared data to provide immutable and transparent ownership records. To strengthen
security, Arnold transform is applied to scramble the watermark and embedded in the discrete cosine transform (DCT)
coefficients by taking into account the contrast sensitivity function to maintain imperceptibility. In the event of
unauthorized sharing or misuse of image data, the embedded watermark can be extracted and traced, allowing us to
identify and track responsibility for unauthorized image use. Experiments were conducted using 10 color images from
diverse domains, including general images (USC-SIPI), medical datasets (CHASEDB1, ISIC, KVASIR), and
biometric datasets (FERET). Experimental results show that the method achieves high imperceptibility with average
peak signal-to-noise ratio (PSNR) values of 56.28 dB, and average structural similarity index (SSIM) scores close to
1.0 across test payloads ranging from 1 Kb to 16 Kb, robustness against common distortions and adversarial attacks
with watermark normalized correlation (NC) scores above 0.92, and accurate traceability across 1,000 distributed
copies with various distortions and adversarial attacks. Comparative evaluations confirm that the proposed method
outperforms existing watermarking schemes in both robustness and traceability performance.

Keywords: Blockchain technology, Data traceability, Digital fingerprint, Image data sharing, Image watermarking,
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1. Introduction

The growth of the internet has enabled the
widespread and instant distribution of images, both
for personal and institutional purposes. In the medical
field, for instance, hospitals often need to share
patient scan results or medical images with other
institutions for further diagnosis, collaborative
research, or referrals between healthcare facilities.

However, the risk of security breaches arises
when the data is distributed illegally by one of the
recipient institutions. This situation becomes even
more complex due to the difficulty of tracing the
source of the leak, especially when the data is shared
with many parties. Without a secure and structured
data sharing mechanism, the personal information
contained in the images could fall into the wrong
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hands, leading to potential misuse and violation of
individual privacy.

Most current data sharing security systems focus
only on access control, without any mechanism to
trace the distribution trace when a leak occurs.
Approaches such as encryption and authentication
are indeed able to limit access to authorized parties
but have not addressed the problem of tracing data
after it is shared. This argument is reinforced by the
review by Gupta et al. [1] showing that many image
security technologies are still oriented towards
protecting data confidentiality and integrity, but
ignore the aspects of distribution tracing and post-
access accountability. Similar findings were also
found in the study of Chen and Huang [2], who
developed fine-grained access controls on encryption
systems, but did not include strategies to identify the
source of data leakage after access rights were
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granted. Wang [3] also showed that the main focus of
current systems is still on securing during the access
and sharing process, without attention to post-
distribution tracing. This focus on access control over
distribution tracking indicates a gap in the design of
current image security systems, especially in the
context of data sharing involving multiple parties.

In a data-sharing environment involving multiple
parties, the ability to trace data distribution in detail
is a key requirement. When an image is shared with
various institutions or individuals, it increases the
risk of the data being distributed illegally. Therefore,
a security system that merely restricts access to data
is not sufficient; a mechanism is needed that enables
tracking of who receives the data, when, and in what
context it was shared. Technical challenges arise
because each copy of an image typically has an
identical appearance. Therefore, an approach is
required that allows tracking of distribution without
altering the visual content of the image itself.

Watermarking is an ideal solution for embedding
identity information into digital images without
compromising the visual aspects of the image. Digital
image watermarking is a technique that uses digital
images as a carrier to embed additional data, either in
the form of visible watermarks or invisible
watermarks. In general, watermarking systems
consist of two main stages, namely the embedding
process and the extraction process. Based on their
resistance to interference or manipulation,
watermarks are divided into two categories: robust
watermarks, which remain recognizable even if the
image is compressed, cropped, or otherwise
manipulated; and fragile watermarks, which are
easily damaged and used to detect image integrity. In
terms of where the data is inserted, watermarking
techniques can be applied in the spatial domain, by
inserting data directly into pixel values, or in the
frequency domain, such as Discrete Cosine
Transform (DCT) and Discrete Wavelet Transform
(DWT), which offer higher resistance to compression
and other visual attacks. Additionally, watermarking
can be classified based on its reversibility.
Irreversible watermarking does not allow the original
image to be fully restored after embedding, while
reversible watermarking enables the watermark
information to be completely removed and the
original image restored to its original form [5].

However, embedding a watermark alone is still
not sufficient without a system capable of openly
recording and verifying the distribution process [4].
Therefore, to support effective data traceability, an
additional solution is required to ensure transparency
and accountability across the entire digital data-
sharing ecosystem.
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The emergence of Bitcoin in 2008 marked the
beginning of the development of blockchain
technology as a decentralized digital infrastructure
[5]. Although initially designed to support
cryptocurrency systems, blockchain’s main features
such as transparency, immutability, and consensus
mechanisms have attracted researchers to be applied
to various applications outside the financial realm. In
the context of digital data distribution, blockchain
allows the recording of transactions such as the time
of distribution, the identities of the sender and
recipient, and other metadata into blocks that are
chronologically linked and cannot be changed
without network consensus. By storing every
distribution activity into a distributed digital ledger,
this system allows independent verification by all
parties involved, making it a very relevant advantage
in data sharing systems that require high
accountability.

To embed copyright information and prevent
intellectual property violations, various approaches
have been developed in image watermarking
technologies. Faheem et al. [6] combined the Least
Significant Bit technique with image gradient
analysis to determine optimal embedding locations,
further enhanced by chaotic map-based encryption to
improve security. Mohammed et al. [7] proposed a
blind watermarking method that integrates DCT-
DWT transformation and adaptive color channel
selection to maintain robustness and imperceptibility.
Abadi and Moallem [8] introduced a hybrid approach
based on DWT and DCT, incorporating a three-stage
voting system effective against noise-based
distortions. Dong et al. [9] proposed a hybrid domain
color image watermarking scheme that combines
DWT, DCT, and Singular Value Decomposition
(SVD), enhanced by watermark encryption using the
Lorenz hyperchaotic map. Zhou et al. [10] proposed
a robust image watermarking algorithm that embeds
grayscale watermark pixel values directly into the
DCT domain of a color host image, combined with
block selection and geometric correction.

In the domain of reversible watermarking, Li et al.
[11] refined generalized histogram  shifting
techniques to improve resistance  against
misalignment attacks. Fan et al. [12] applied modulo
operations and prediction-error expansion on
interpolated images to enhance embedding capacity
while preserving visual quality. Similarly, Tanwar
and Panda [13] developed a hybrid method
combining histogram shifting and prediction error
expansion with a local variance-based embedding
strategy to reduce distortion.

Watermarking plays a central role when
integrated with Digital Rights Management (DRM)
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to verify ownership and restrict data access [14].
Traditional DRM systems are often constrained by
centralized storage, raising concerns about
vulnerabilities such as data tampering and copyright
manipulation. In response, blockchain technology
has gained traction in DRM applications to address
these limitations. For instance, the DRPChain system
[15] embeds copyright information into digital
images in the form of QR codes as watermarks, with
watermarked images stored off-chain using
InterPlanetary File System (IPFS). Copyright
metadata, perceptual hashes, IPFS addresses, and
digital signatures are registered in each blockchain
transaction. Additionally, redactable blockchain
approaches have introduced mechanisms for illegal
content removal through chameleon hashing, while
preserving originality verification via perceptual
hashing and implementing a reputation-based
incentive system [16].

However, DRM alone is insufficient to address
the broader challenges of data sharing. DRM systems
primarily focus on copyright protection and
distribution control. For example, in typical DRM
implementations, a digital image may be
watermarked with owner information solely for
proving ownership in the event of misuse. In contrast,
secure data-sharing scenarios require personalized
watermarks to be embedded each time the data is
distributed to a recipient, allowing traceability in the
event of unauthorized redistribution.

Several studies have addressed user traceability
in the context of unauthorized data distribution. The
BE-TRDSS scheme [17], for instance, utilizes
Ciphertext-Policy Attribute-Based Encryption with
hidden access policies and stores ciphertext indexes
and revocation lists on the blockchain. This enables
the revocation of malicious users through identity
tracking embedded in private keys. Wang and Guan
[18] proposed a system that stores encrypted data on
IPFS, secures the encryption hash using Elliptic
Curve Cryptography (ECC), and records data-sharing
activities on a smart contract—driven visual log. This
enables real-time traceability for both data owners
and recipients. In the medical domain, MRDACE
[19] logs medical access metadata on a permissioned
blockchain using a Proof-of-Authority mechanism. It
supports tamper-resistant activity logging and
automated decision-making through incentive

functions that evaluate data requester privilege scores.

The system also allows anonymous access for
research institutions while preserving patient
ownership controls. Meanwhile, Lai et al. [20]
introduced a certificateless traceable ring signature
scheme based on distributed key generation to ensure
user traceability while maintaining privacy in
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Electronic  Health Record (EHR) sharing
environments. Their system employs Self-
Controlling Objects (SCOs) for decryption

management, stores data on IPFS, and leverages
blockchain as an audit trail and authorization layer for
proxy-based data sharing nodes.

In this study, we propose an image data sharing
approach that combines reversible watermarking
techniques and blockchain technology to build an
image data sharing system that focuses on data
traceability. The watermarking technique is used to
embed a fingerprint created from the combination of
the shared data with the requester’s information.
Meanwhile, blockchain is utilized as a decentralized
metadata storage infrastructure. Information related
to the data distribution process, such as the data
owner, data requester, timestamp, and watermarking
technique variables are stored as a transaction on the
blockchain.

Unlike traditional DRM systems that mainly
focus on ownership verification and unauthorized
access prevention, our method provides data
traceability by embedding user-specific fingerprints
for each image distribution. In contrast to robust
watermarking schemes, which generally do not allow
the recovery of the original image because they
happen to be irreversible, our approach utilizes
reversible watermarking to ensure that the original
image can be fully recovered, making it suitable for
medical images  because  data integrity
matters. Previous blockchain-based DRM solutions
typically record only copyright metadata do not
perform any verification or testing regarding data
traceability. Our proposed method fills this gap
through combining reversible watermarking with
blockchain-based distribution metadata storage. This
integration enables data tracking and identification of
misuse origin even after multiple redistributions.

The remainder of this paper is organized as
follows. Section 2 presents the preliminaries. Section
3 outlines the proposed method. Section 4 discusses
the results and analysis. Section 5 describes the
implementation of the proposed system, and Section
6 concludes the paper.

2. Preliminaries
2.1 Discrete cosine transform

Discrete Cosine Transform (DCT) is a widely
used technique for converting spatial domain image
data into the frequency domain. Originally proposed
by Ahmed et al. [21], DCT is a special case of the
Fourier transform and is renowned for its energy
compaction and computational efficiency. For a
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grayscale image f(x,y) of size N x N, the forward
two-dimensional DCT is defined in Eqg. (3), where the
resulting DCT coefficients are denoted by F(u, v) as
computed in Eq. (1), u,v=0,1,..., N —1, and the
scaling factors are defined in Eq. (2). The inverse
transformation, which reconstructs the image from
the frequency coefficients, is defined in Eq. (3).

N-1N-1
awa) z f (x,y)cos [(Zx -Z}-Nl)un] cos [(2}1 ‘2*'1\]1)1771] (1)
x=0 y=0
1 0 1 0
e u = r— v =
J\/N !W
= ) = 2
a(u) 5 L a(v) 2 o @
W N

N-1N-1
u

Z a (wWa(w)F (u, v)cos [(Zx -zi—Nl)un] cos [(23’ ‘2"N1)vn] (3)

=0 v=0

2.2 Human visual system and RGB- YCDbCr color
space

The Human Visual System (HVS) exhibits non-
uniform sensitivity to spatial frequencies, where the
eye responds most strongly to frequencies in the mid-
range and less effectively to very low or very high
ones. This behaviour can be modelled
mathematically by the Contrast Sensitivity Function
(CSF), which quantifies the visibility threshold of
contrast at a given spatial frequency. One of the most
referenced models is proposed by Mannos and
Sakrison [22], as shown in Eq. (4), where human
perception is shown to be dominated by luminance
sensitivity over chrominance.

In the frequency domain when applying the DCT,
the CSF can be used to construct a perceptual weight
matrix that regulates the insertion strength based on
the sensitivity of each frequency component. Each
weight is calculated by considering the CSF at the
spatial frequency f(u,v), obtained from the DCT
index position (u,v), as defined in Eqg. (5). This
perception-aware weighting enables adaptive and
efficient watermarking by emphasizing components
with lower visual significance.

YCbCr is a widely used color space in digital
photography and video processing pipelines. It
separates an image into one luminance component
(YY) and two chrominance components (Cb and Cr),
which represent the blue-difference and red-
difference color information, respectively [23]. The
transformation from RGB to YCbCr is given in Eq.
(6), while the inverse transformation from YCbCr
back to RGB is described in Eq. (7).
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CSF(f) = 2.6 - (0.0192 + 0.114f) - e~©114N™"  (4)

y(u,v) = M.f(u, v) = % Jiz+ vz (5)

max(CSF)
Y 0 0.29890  0.58660 0.11450][R
[Cb}= 0.5|+|-0.16874 —0.33126 0.50000 G] (6)
crl los 0.50000 —0.41869 -0.8131/LB
R 1 0 1.40200 1Y 0
Gl=11 -034414 —0.71414||cb|[-]05| (7)
B 1 1.7720 0 Cr 0.5

2.3 Logistic map

The logistic map is a simple yet powerful chaotic
system widely used in secure image processing due
to its pseudo-random behavior and high sensitivity to
initial conditions. It is mathematically described in
Eq. (8) where x,, € (0,1) and the control parameter r
is typically chosen within 3.57 < r < 4 to ensure
fully chaotic behavior. By starting from an initial
value x, as a secret key, the logistic map produces a
deterministic but unpredictable sequence of real
numbers within the unit interval.

Xn+1 = Txn(l - xn) (8)

In image watermarking, these chaotic sequences
can be used to generate secure block orders. For
example, after generating a logistic sequence of
length equal to the number of image blocks, sorting
the sequence and assigning ranks provides a unique
pseudo-random permutation of block indices. This
randomized ordering greatly increases security, since
only users with knowledge of x, and r can reproduce
the correct sequence to embed or extract the
watermark.

2.4 Two-dimensional Arnold transform

The two-dimensional Arnold transform is a
widely adopted technique for image scrambling. It
operates on a matrix of size N x N, and its forward
transformation is defined in Eq. (9), where (x, ;)
denotes the coordinates of a pixel in the original
image, and (x,, y,) represents the coordinates after
transformation. The parameter N indicates the
dimension of the square image matrix. To reverse the
transformation and restore the original image, the
inverse Arnold transform is applied as defined in Eq.

(10).
(o) =G () mean
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2.5 InterPlanetary file system

Revised: July 16, 2025.

The InterPlanetary File System [24] is a
decentralized peer-to-peer protocol which designed
for the purpose of retrieving file or data as well as
storing them depending on their respective content,
instead of location. IPFS uses content addressing
through cryptographic content identifiers (CID) in
order to retrieve data by using its unique hash, unlike
customary web systems that rely on location-based
addressing (e.g., URLs). Merkle Directed Acyclic
Graphs (Merkle DAGs) are generally used to
organize content within IPFS and each node (file or
directory) is distinctly identified by its CID. This
structure has immutability, deduplication, as well as
tamper resistance because any node modification will
definitely change its hash and propagate to all
connected ancestors forming an entirely new DAG.
CID linking by way of the Merkle DAG allows for
representation of the complete file system. This
system can then be verified in an efficient manner. A
Distributed Hash Table (DHT) is used by IPFS with
content discovery for discovering all peers and also
data across the network without needing any central
server.

2.6 Elliptic curve digital signature algorithm

Elliptic Curve Digital Signature Algorithm
(ECDSA) is a lightweight cryptographic scheme
based on the mathematics of elliptic curves. It is
widely used to sign messages in a secure and concise
manner [25]. The scheme starts by generating a key
pair (d,Q), where d is the private signing key and
Q = dG is the corresponding public key derived
using scalar multiplication on the elliptic curve.

To sign a message m, the signer chooses a
random nonce k, such that 1 <k <n-—1. Then,
calculate the elliptic curve points (x;,y,) = kG, and
set r = x; mod n. The final signature is a pair (r, s),
both of which must be nonzero. The nonce k must
remain secret and unique for each message.

2.7 Blockchain technology

Blockchain is a decentralized and distributed
ledger system that allows data to be recorded securely,
transparently, and immutably across a network of
computers. Originally introduced as the foundational
technology behind Bitcoin [5], blockchain has since
evolved into a general-purpose infrastructure
applicable to a wide range of domains, including
finance, supply chain, healthcare, and digital data
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management. At its core, a blockchain consists of a
series of data blocks that are chronologically linked
using cryptographic hashes. Each block typically
contains a set of transactions, a timestamp, a
reference to the previous block (in the form of a hash),
and a nonce used in the consensus mechanism. This
structure ensures that any alteration to a block’s
content will invalidate the subsequent chain,
providing strong tamper-evidence.

To achieve distributed agreement on the state of
the ledger, blockchain networks implement
consensus algorithms such as Proof of Work (PoW),
Proof of Stake (PoS), or other variants. These
mechanisms enable all participating nodes to agree
on a single version of the truth without relying on a
centralized authority. One of the defining features of
blockchain is its immutability. Once data has been
recorded and confirmed by the network, it cannot be
modified retroactively without consensus from the
majority of the network.

2.8 Comparative watermarking methods

To evaluate the effectiveness of the proposed
method, this study includes two existing
watermarking schemes as comparative baselines: the
method by Dong et al. [9] and the method by Zhou et
al. [10]. The details of each method are described in
the following subsections.

2.8.1. Overview of Dong’s algorithm

Dong et al. [9] proposed a hybrid domain color
image watermarking scheme that combines DWT,
DCT, and Singular Value Decomposition (SVD),
enhanced by watermark encryption using the Lorenz
hyperchaotic map. DWT is a multi-resolution
transform that decomposes an image into sub-bands
LL (Low-Low), LH (Low-High), HL (High-Low),
and HH (High-High), where the LL sub-band
captures the main low-frequency information with
strong stability, making it suitable for watermark
embedding. SVD is a matrix factorization technique
that decomposes an image matrix A into three
matrices U, %, and VT, expressed as A = USVT,
where U and V are orthogonal matrices and X is a
diagonal matrix containing the singular values o;.
These singular values represent the intrinsic energy
and structural features of the image and are relatively
robust to compression, noise, or geometric changes,
making them effective for watermark embedding. In
this method, the embedded watermark has a fixed
size of exactly one-fourth the dimensions of the cover
image (i.e., if the cover isM X N, the watermark is
% X %.)
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The key steps of the data embedding and

extraction can be summarized as follows:

2.8.1.1. Watermark embedding steps:

1.

2.

10.
11.

12.

Read the grayscale watermark and encrypt it
with a Lorenz hyperchaotic map

Perform SVD on the encrypted watermark to get
Uy, S Vi

Read the cover image, convert to YCbCr color
space, and select the Y channel

Compute the embedding factor a adaptively
using Bhattacharyya distance between the
watermark and the cover image

Perform one-level DWT on the Y channel to
obtain four sub-bands: LL, LH, HL, and HH
Apply DCT on the LL sub-band (LLD)

Perform SVD on the transformed LLD to get
UHr SH' VH

Blend singular values: S, =axS§, +(1—
a) X Sy

Reconstruct LLD' by inverse SVD: LLD' =
Uy X Sf; x V¥

Apply inverse DCT on LLD' to reconstruct LL’
Rebuild the Y component with inverse DWT of
LL',LH,HL,HH

Convert YCbCr back to RGB to obtain the final
watermarked image

2.8.1.2. Watermark extraction

1.

w

Read the watermarked image, convert to YCbCr,
select the Y component

Apply one-level DWT to
LLWM' LHWM' HLWM: HHWM

Apply DCT to LLy,

Perform SVD on DCT( LLy, ) to get
Uwm, Swm, Vwm

Recover the singular values ( Sy, ) of the
encrypted watermark using Eq. (11), where Sy,
is the singular value matrix extracted from the
watermarked image, and Sy is the stored
singular value matrix of the original host image.
Reconstruct encrypted watermark using inverse
SVD: W§ = U, X S), x YT

Decrypt using inverse Lorenz hyperchaotic
mapping to get the final extracted watermark.

obtain

Swu — (1 —a) XSy
a

S, = (11)

2.8.2. Overview of Zhou’s algorithm

Zhou et al. [10] proposed a robust image

watermarking algorithm that embeds grayscale
watermark pixel values directly into the DCT domain
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of a color host image. The key steps of the watermark
embedding and extraction can be summarized as
follows:

2.8.2.1. Watermark embedding steps:

1.

2.

10.

Scramble the grayscale watermark image using
the Arnold transform with a secret key

Convert the host RGB image to the YCbCr color
space and select the Cb channel

Apply one-level DWT on the Cb channel to

decompose it into  four  sub-bands
(LL,LH,HL,HH)
Select the LL sub-band for watermark

embedding and divide it into non-overlapping
8 x 8 blocks

Calculate the block texture values using a DCT-
based texture algorithm and sort the blocks by
ascending texture (smoother blocks get priority).
Store the block order as secret key Kb

For each selected block, subdivide it into four
non-overlapping 4 x 4 sub-blocks

Perform 2D DCT on each 4 x 4 sub-block to
obtain its frequency coefficients

Calculate the average direct current (DC)
coefficient across the four sub-blocks and set
this as the new DC coefficient reference

Embed the scrambled watermark pixel values as
a ratio into two low-frequency alternating
current (AC) coefficients of each DCT block,
using the Eq. (12) where w is the water mark
pixel, and k is the embedding strength factor
Apply inverse DCT to reconstruct the modified
4 x 4 sub-blocks, then combine them back to
form the modified 8 x 8 block

. After processing all selected blocks, perform

inverse DWT on the modified LL together with
unchanged LH,HL,HH to reconstruct the
modified Cb component, then convert back from
YCbCr to RGB to obtain the watermarked image

w X k
DC+ 1

AC,, = sign(4C) X (12)

2.8.2.2. Watermark extraction steps:

1.

N

Convert the watermarked RGB image to YCbCr
color space and select the Cb channel

Apply one-level DWT to obtain LL, LH, HL, HH
Select the LL sub-band and divide it into 8x8
non-overlapping blocks

Use the stored block ordering key (Kb) to
identify the watermarked blocks

For each watermarked block, subdivide into four
4x4 sub-blocks
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Figure. 1 General design of the proposed system

6. Perform 2D DCT on each sub-block to extract
the modified frequency coefficients

7. Recover the embedded watermark pixel values
from the two low-frequency AC coefficients,
using Eq. (13)

8. Combine the recovered pixel values in the
correct sequence to reconstruct the scrambled
watermark

9. Apply the inverse Arnold transform with the
secret key to recover the final extracted
watermark image.

AC x (DC + 1)

. (13)

6, =|

3. Proposed method

An overview of the process of the proposed
concept is shown in Fig. 1. The process requires the
private key of the data owner and the public key of
the data requester. The initial stage involves creating
a digital signature. We utilize the ECDSA
cryptographic algorithm based on the
BRAINPOOLP512r1 curve [26], which produces a
1024-bit digital signature. This signature is generated
by signing the concatenation of the image hash and
the requester’s public key. This fingerprint is
embedded into the image as the primary watermark
payload.

The watermark embedding process produces
three outputs: the image delta which is the pixel
difference value between the watermarked image
with the original image, the extraction key to extract
the watermark, and the watermarked image itself. In
the context of medical images, reversibility is an
important aspect because the original image contains
critical information for diagnosis.

To achieve reversibility, image delta is used to
recover the original image. The image delta is
encrypted using the data requester’s public key and
stored in the IPFS as well as the extraction key, so
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that only the data requester can recover the original
image, even though the image delta information is
publicly accessible. Next, the hash value of the
watermarked image is calculated, followed by the
extraction of image features.

We utilize blockchain technology to store
information related to the watermarking process and
data distribution information. Information regarding
the identity of the data owner, identity of the data
requester, fingerprint value, CID of the extraction key
and image delta in IPFS, hash value of the
watermarked image, and image features are recorded
as transactions on the public blockchain. The
watermarked image can then be shared with the data
requester.

3.1 Proposed watermarking schemes

3.1.1. Data embedding process

The watermark embedding process, as illustrated
in Fig. 2, begins by dividing the cover image into
blocks of size 8 x 8. Next, a block sequence is
generated using a logistic map controlled by secret
key parameters x,, and r. After generating the block
order, each block is converted to the YCbCr color
space. The secret bits are embedded into the Y, Cr,
Cb components of the image. Each DCT block has
8 x 8 size, containing 64 coefficients ordered
containing 64 coefficients ordered using zigzag
scanning. Each coefficient is denoted by D(q), where
q €1,2,3,...,64.

A scrambled watermark b of B bits is then
produced using the Arnold transform, with the
iteration count acting as the secret key parameter K,,.
Each n —th watermark bit ( b, ) is embedded
iteratively in R different locations of the DCT
coefficients to improve robustness against attacks.
The embedding locations are determined based on the

index q,(lk), where g is the starting point, and R is the
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embedding count per bit. The embedding position is
defined in Eq. (14).
(k) _ _ —
qn =qs+(k—1B+(n-1), (14)
fork=12,..,R

Each watermark bit b,, is represented as a value

wy,, where w, =+1 if b, =1, and w, = -1 if
b, = 0, as defined in Eqg. (15).
_(+1, ifb,=1
Wn = {—1, if by =0 (15)

The DCT coefficient at the defined position is
then modified using Eq. (16), where a (alpha) is the
embedding  strength, y(q,(f‘)) represents the
perceptual weight corresponding to the frequency

component located at position q,(,k).

p'(¢) =D (q{) +a-v(al”) wa (16
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The original coefficient value is stored as a key
reference for future extraction. The variable K, ,
stores the original DCT coefficient value before
modification, where p denotes the index of the 8 x 8
block decomposed into DCT domain, and q denotes
the zigzag index of the coefficient in block p as
defined in Eq. (17).

K

p.a (17)

=D (qr(lk))

In this implementation, watermark bits are
embedded into the intermediate-frequency
coefficients of the 8 x 8 DCT block, following the
zigzag scan order. Specifically, the embedding
process starts from coefficient index q; = 3 and
continues up to index 19, which offer a good balance
between image quality and robustness against image
processing attacks.

3.1.2. Data extraction process

As illustrated in Fig. 3, the watermark extraction
process begins by decomposing the watermarked
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pragma solidity ~0.8.0;

contract PublicLog {

event RecordAdded(
address indexed sender, string data, uint
timestamp
);

function addRecord(string memory data) public {
emit RecordAdded(
msg.sender, data, block.timestamp
)i
}
}

Figure. 4 Solidity smart contract

image into blocks of size 8 x 8, with the block
sequence determined using the extraction keys x,
and r held by the data owner. Each block is then
converted to the YCbCr color space, followed by
applying the 2D-DCT on each channel. Watermark
extraction is done by comparing the watermarked
DCT coefficients with the original DCT coefficients
stored as references (e.g., in the blockchain). The
difference between these values is calculated and
summed to estimate the hidden watermark in the
image. The cumulative value for each bit n is
computed as defined in Eq. (18).

R
< (AN _ py (00
Sn ;(D (qn ) D(qn )) (18)

Once the cumulative value S, is obtained, the
watermark bit is extracted by checking whether the
value is greater than zero. The extracted watermark
bit b,, is determined as defined in Eq. (19):

~ 1 if s
bn:{’ if Sn >0 (19)
0, ifS, <0

Unscrambling the watermark requires the Arnold
transform key Ka. To restore the original image, the
image delta values are added to the watermarked
image to produce an estimate that closely
approximates the original image.

3.2 Blockchain design

In this system, we leverage features that ensure
data integrity and transparency, such as non-
repudiation, traceability, and the distribution of data
control, such as key reference for watermark data
extraction. To store the necessary information, we

utilize a public blockchain as the underlying database.
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Table 1. Structure of the encoded payload format
Field

No. Description Example
1 Owner name Alice
2 CID of owner public key = QmRv...ecrR
3 Requester name Bob
4 CID of requester public key QmQ2...Vjjw
5 Watermark fingerprint 0x31c8fb19...
6 CID of watermark QMR2...reeW
extraction key
7 CID of image delta QmNg...BgSm
8 Image height 512
9 Image width 512
10 PDQ hash of the image a9c3el...
11 Hash of the original image f13bcd...
12 Hash of tki]ren \é\éagermarked cdd492...

This public blockchain allows anyone to access the
stored data while ensuring that the data remains
immutable and cannot be repudiated by any party.
The data stored in the blockchain includes:
Information of the data owner
Information of the data demander
IPFS CID of the watermarking extraction key
IPFS CID of the image delta
Hash values of original and watermarked image
Feature values of the image (e.g., height, width,
PDQ hash, etc.)

e The embedded watermark value (fingerprint)

Each of these elements contributes to traceability
and the authenticity of information. The data
recorded on the blockchain does not contain
confidential content, but rather serves to support
authentication and verification processes. For
example, the extraction key in the watermarking
process does not pose a disclosure risk, as it is solely
used to verify the presence of a watermark rather than
to conceal sensitive information. Furthermore,
critical extraction keys such as those used in the
logistic map are not stored, they remain known only
to the data owner.

To optimize performance and reduce on-chain
storage costs, we deployed a lightweight smart
contract on the Polygon Mainnet. The contract
refered as PublicLog, is shown in Fig. 4, is
implemented in Solidity and uses an event-based
logging mechanism.

To reduce on-chain gas consumption, we used a
compact string format to encode all distribution
metadata into a single payload string. Instead of using
verbose key-value pairs or JSON structures, the
payload is composed of sequential fields separated by
pipe symbols "|". Each field holds a specific piece of
metadata. This format is designed for minimal
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Figure. 6 Image set for experiment

storage overhead. The structure of the encoded
payload is shown in Table 1. To further reduce on-
chain size and optimize cost efficiency, the actual
public keys of both the data owner and the requester
are stored off-chain in the IPFS. Only the content
identifiers of these public key files are recorded on
the blockchain. This approach avoids the high storage
cost associated with recording large key strings on-
chain.

3.3 Data identification process

As illustrated in Fig. 5, the process begins by
computing the perceptual hash (PDQHash) of the
target image to extract its perceptual features. These
features are then compared with hashes stored in
blockchain transactions. Transactions with a
PDQHash similarity score (S') greater than or equal
to a predefined threshold T! are shortlisted as
potential matches. For each matched transaction, the
system performs watermark extraction using the
associated watermark key and also retrieves the
expected fingerprint. This fingerprint is then
compared against the extracted one through a
watermark matching process to calculate a
Normalized Correlation (NC) score. The system then
selects the transaction with the highest NC score. If
the highest score exceeds a second threshold T,, the
watermark is considered valid and the associated

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025

transaction is confirmed as the origin of the image.
Otherwise, the system concludes that no watermark
is detected or the source cannot be reliably identified.

4. Experiment results and discussions
4.1 Experiment setup

The complete set of test images used in this
experiment is presented in Fig. 6. The experiments
were conducted using 10 color images originating
from diverse application domains, including general
images as well as medical images. All images had a
resolution of 512x512 pixels. Four of these images,
Airplane, House, Peppers, and Sailboat were
obtained from the USC-SIPI Image Database [27]. In
addition, this study incorporated medical images,
such as the Retina image from the CHASEDB1
dataset [28]. Two colon polyp images (Polyp-1 and
Polyp-2) were selected from the KSAVIR dataset
[29], which provides endoscopic data for
gastrointestinal lesion detection. The Skin image was
collected from the ISIC dataset [30]. Finally, two eye
images, namely “Left Eye” and “Right Eye”, were
obtained from the FERET dataset [31], which is
frequently used in biometric research involving iris
and facial recognition.

To evaluate the effectiveness of the proposed
method, comparative experiments were conducted by
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embedding the same watermark payload into each
image using three different approaches: (1) the
proposed method, (2) the method by Dong et al. [9],
and (3) the method by Zhou et al. [10], as previously
described in Section 2.

4.1.1. Experimental environment

The experiments were conducted on a MacBook
Air device equipped with an Apple M1 chip, 8 GB of
RAM, and a 256 GB SSD. The operating system used
was macOS, and the experiments were implemented
using Python version 3.11.10.

4.1.2. Imperceptibility evaluation setup

This experiment investigates the effect of varying
alpha values on image quality by measuring the Peak
Signal-to-Noise Ratio (PSNR) across all color
channels. PSNR is computed based on the mean
squared error (MSE) between the original image
1(i, j) and the watermarked image K (i, j), as defined
in Eq.(20). Here, m and n represent the image
dimensions. Higher PSNR values indicate lower
distortion and thus better imperceptibility.

2552 ) 20)

— T TG — KGN

PSNR = 10 - log10<

The next experiment evaluates the impact of
different payload sizes (1 Kb, 2 Kb, 4 Kb, 8 Kb, and
16 Kb) on image quality using both PSNR and the
Structural Similarity Index Measure (SSIM). SSIM
evaluates perceptual similarity based on luminance u,
contrast o, and structural correlation o, , as
described in Eq. (21). Constants C; and C, are used
to stabilize the calculation against division by zero.
SSIM values close to 1 imply near-identical structural
content between the original and watermarked
images.

(2uxpy + C1) (204, + C2)

SSIM(x,y) = 21
x.y) (2412 +G)(oz+02+C,) (21)

4.1.3. Robustness evaluation setup
Robustness is assessed using normalized

corelation (NC) between the original watermark
W (i) and the extracted watermark W (i), as shown in
Eq. (22). The value N represents the total number of
bits in the watermark. An NC value close to 1
indicates strong similarity and effective recovery.
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W @R [ W Gy

(22)

This experiment examines the robustness of the
proposed method under various image distortion and
adversarial attacks. The tested scenarios include: no
attack, JPEG2000 compression (Quality Factor = 30),
salt-and-pepper noise (density = 0.05), Gaussian
noise (variance = 0.01), Gaussian blur (3 x 3 kernel
size, 6 = 1), sharpening (¢ = 1.5), median filtering
(3 x3), contrast adjustment (¢ = 1.5, = 0),
resizing (256 x 256 pixels), black-box insertion
(75 x 75 pixels).

In addition, a copy attack scenario is included,
which is an atempt to remove or weaken the
embedded watermark by averaging multiple
watermarked images. This approach assumes that an
attacker has access to several watermarked versions
of the same image, and generates a composite by
averaging the pixel values across them. The resulting
image is expected to dilute the watermark signal,
potentially making detection more difficult. In this
experiment, the copy attack is configured using 10
reference images in addition to the target.

Furthermore, the robustness evaluation includes
three adversarial attacks: Fast Gradient Sign Method
(e = 0.1), Basic lterative Method (e = 0.5,a =
0.5), and Projected Gradient Descent (e = 0.4, a =
0.7 ). Further details regarding the design and
implementation of the adversarial attack scenarios
are described in the following subsection.

4.1.3.1. Adversarial attack setup

Although the proposed watermarking scheme
does not employ any machine learning models for
embedding or extraction, this experiment includes an
adversarial attack evaluation to test the resilience of
the watermark against structured pixel perturbations.
Adversarial attacks are traditionally designed to
mislead deep learning classifiers by applying
carefully crafted, imperceptible perturbations. To
simulate this worst-case scenario, we employed a pre-
trained MobileNetV2 classifier as a surrogate model.
Adversarial perturbations were then generated
against this model using three standard techniques
Fast Gradient Sign Method, Basic Iterative Method,
and Projected Gradient Descent:

a) Fast Gradient Sign Method

Fast Gradient Sign Method (FGSM) is a white-
box adversarial attack technique that perturbs an
input image by leveraging the gradient of the loss
function with respect to the input. Specifically, it adds
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a small perturbation in the direction of the sign of this
gradient, scaled by a parameter &, with the goal of
maximizing the model’s loss while minimally
altering the image perceptually. Mathematically, the
FGSM perturbation is defined in Eq. (23), where x is
the original input image, J is the loss function, 6 the
model parameters, and e the perturbation magnitude.

Xagw = X+ € X sign(V,J(0,%,y)) (23)

For this experiment, we consider the e = 0.01,
representing moderate level of adversarial
perturbation.

b) Basic Iterative Method

In addition to FGSM, the Basic Iterative Method
(BIM) was also applied to evaluate the robustness of
the proposed watermarking approach under iterative
adversarial perturbations. BIM is an extension of
FGSM, which performs multiple small-step gradient-
based updates instead of a single step. By repeatedly
applying FGSM-like perturbations with a small step
size and projecting the adversarial image back to a
valid e-neighborhood of the original image after each
iteration, BIM can generate stronger adversarial
examples with higher success rates of fooling a target
model. Mathematically, BIM is described as an
iterative process as defined in Eq. (24), where a is the
step size, € is the maximum perturbation budget, and
Clip, ensures that the adversarial sample stays
within the allowed range around the original input.
As in the FGSM setup, a pretrained MobileNetV2
network was used as a surrogate to estimate the
gradient and simulate a deep learning—based
adversarial scenario.

x@D = Clip,,  {x®

24

+ o X sign (Vx](e,x(i),y))} @)

For this experiment, BIM was configured with

€ = 0.5and a = 0.5, over 10 iterations, to provide

a moderate but realistic adversarial perturbation

scenario that can challenge the watermark extraction
process.

c) Projected Gradient Descent

In addition to FGSM and BIM, the Projected
Gradient Descent (PGD) method was also applied to
further evaluate the adversarial robustness of the
proposed watermarking scheme. PGD is similar to
BIM in that it performs multiple small-step gradient-
based updates according to the same iterative rule
described in Eq. (24), but differs by introducing a
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random initialization within the e-ball around the
input image. This random start allows PGD to
explore a broader region of the input space and avoid
relying solely on a single starting point. After each
update, the perturbation is projected back to stay
within the allowed e-neighborhood. As with the other
attacks, a pretrained MobileNetV2 network was used
as a surrogate model to compute the required
gradients and generate the perturbations. In this
experiment, PGD was configured with e = 0.4, a =
0.7, and 10 iterations, to simulate a moderate and
realistic adversarial scenario for testing the
watermark extraction robustness.

4.1.4. Traceability evaluation setup

The next experiment aims to evaluate the
traceability capability of the proposed watermarking
scheme, while also comparing it with the methods of
Dong et al. [9] and Zhou et al. [10] Each image was
distributed to 100 recipients, with an identifying
watermark embedded for each recipient, and the
distribution records were stored on a public
blockchain. After distribution, a total of 50 images
were selected for source identification testing,
consisting of 30 watermarked images recorded on the
blockchain, 15 watermarked images not recorded on
the blockchain, and 5 original images without
watermarking.

All 50 test images were then subjected to the
attack scenarios described in the previous
experimental setup. Since each test image was tested
under 10 different attack scenarios, this resulted in a
total of 5,000 attacked image, which were then
analyzed to identify their sources. Detection
performance was evaluated using accuracy, precision,
recall, and F1-score metrics, as defined in Eq. (25),
(26), (27), and (28) respectively. The detection results
were categorized as follows:

e True Positive (TP): a watermarked image
recorded on the blockchain is correctly
identified with its true source.

e True Negative (TN): an image not recorded on
the blockchain (or an original image without
watermarking) does not produce a detection
result in the system.

e False Positive (FP): an image not recorded on
the blockchain is incorrectly identified as if it
were recorded.

e False Negative (FN): an image recorded on the
blockchain is not correctly identified, or its
detected source does not match the blockchain
record.

The detection process is illustrated in Fig. 5, as
described in the previous section. For this experiment,
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we set the image similarity threshold to T; = 80%
and the normalized correlation threshold to T, = 0.7.

A ~ TP + TN 5)
Y = TP TN + FP + FN
TP
isi = — 26
Precision TP T FP (26)
TP
Recall = —— 27
A = TP FN 27)

F1.S _ o Precision X Recall (28)
meore = Precision + Recall

4.1.5. Blockchain benchmark setup

To benchmark the smart contract implementation
in a real-world setting, we conducted a performance
evaluation on the Polygon Mainnet. This simulation
models a real-world image sharing scenario, in which
each of the 10 test images was distributed to 100
recipients, resulting in 1,000 unique data-sharing
transactions. Each transaction involves calling the
addRecord function of the smart contract to record
metadata such as data owner information (name and
IPFS CID of the public key), data requester
information (name and IPFS CID of the public key),
embedded watermark fingerprint, watermark key
IPFS CID, image features including perceptual hash,
and the watermarked and original image hash, as
detailed in the blockchain design. The test was
designed to measure: (1) average gas cost per
transaction, (2) estimated monetary cost based on
Polygon Mainnet gas prices and token valuation, and
(3) transaction throughput (transactions per second).

4.1.6. IPFS implementation and evaluation setup

IPFS was implemented on a virtual private server
(VPS) with system specifications summarized in
Table 2. To deploy IPFS, we installed go-ipfs version
0.21.0 on this server as the reference implementation
of the IPFS protocol. A reverse proxy was configured
using Nginx, which also handled HTTP Basic
Authentication to restrict access during the upload
process. The evaluation consisted of two main
phases: uploading and retrieving watermark-related
payloads (image delta files). In the upload phase,
1,000 files were added to IPFS, and their latency and
upload availability were recorded. In the retrieval
phase, each uploaded file was retrieved 10 times,
resulting in a total of 10,000 retrieval operations. For
each operation, latency and retrieval availability were
measured to evaluate the performance of the IPFS
node in a constrained server environment.
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Table 2. Server specifications

Component Specification

Vultr VPS (Microsoft Hyper-V
virtualization)

CPU 1 vCPU Intel Core (Broadwell), 2.39 GHz

Provider

RAM 1 GB (951 MiB physical, 2.3 GB swap)
Storage 25 GB SSD
Operating  Ubuntu 22.04.5 LTS, Linux kernel 5.15,
System x86_64
Location Tokyo, Japan
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Figure. 7 Average PSNR by alpha value

4.2 Results and discussion

4.2.1. Effect of alpha values on PSNR across color
channels

Fig. 7 shows the results of an experiment
measuring the average PSNR values when a 10 Kb
payload is embedded using different values of the
embedding strength parameter «, ranging from 0.1 to
25. The embedding was performed using the
proposed method with duplication factor R = 1. It
can be observed that increasing the value of a leads
to a gradual decline in PSNR, indicating reduced
visual quality due to stronger watermark embedding.
The highest PSNR is obtained when « is 0.1,
reaching over 56 dB, while the lowest value is around
43.3 dB when «a reaches 25. This trend highlights the
trade-off between embedding strength and
imperceptibility, where a stronger embedding (higher
a values) improves watermark robustness at the cost
of image quality.

4.2.2. Impact of payload size on PSNR and SSIM

Table 3 presents the results of the imperceptibility
evaluation measured using PSNR on all test images.
The embedded payloads range from 1 Kb to 16 Kb.
For this experiment, the proposed method (Prop.)
uses an embedding strength parameter of @ = 0.1.
As presented in Table 3, the proposed method
consistently produces higher PSNR values across all
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Table 3. PSNR comparison by payload size

Image 1 Kb 2 Kb 4 Kb 8 Kb 16 Kb
[91 [10] Prop. [9] [10] Prop. [9] [10] Prop. [9] [10] Prop. [9] [10] Prop.
Airplane  38.14 47.33 61.90 38.11 45.17 58.97 38.00 42.99 56.00 37.98 40.43 52.98 38.03 37.45 49.97
House  38.68 50.88 62.02 38.64 47.16 59.08 38.53 44.85 56.11 38.50 41.68 53.10 38.56 38.81 50.10
Peppers  41.35 47.71 62.08 41.29 44.59 59.18 41.15 42.39 56.21 41.11 39.70 53.21 41.19 37.30 50.19
Sailboat  40.63 45.30 62.11 40.58 43.51 59.17 40.44 41.64 56.15 40.41 39.64 53.12 40.48 37.67 50.11
Skin 39.36 52.31 62.45 39.32 48.94 59.56 39.22 45.96 56.59 39.20 42.82 53.62 39.25 39.68 50.61
Polyp-1  38.70 52.79 62.47 38.66 50.22 59.53 38.56 47.26 56.54 38.56 43.92 53.53 38.61 40.65 50.52
Polyp-2  37.92 51.46 62.49 37.88 48.38 59.56 37.79 45.34 56.57 37.78 42.18 53.53 37.82 38.95 50.53
Retina  42.82 52.79 62.45 42.78 50.62 59.56 42.65 48.37 56.58 42.60 45.70 53.57 42.68 42.58 50.56
Left Eye 38.74 54.85 62.14 38.71 51.37 59.13 38.59 48.59 56.13 38.57 45.37 53.11 38.62 42.02 50.12
Right Eye 37.71 52.42 62.18 37.69 50.04 59.21 37.58 47.55 56.24 37.55 44.70 53.19 37.60 41.69 50.18
Average  39.41 50.78 62.23 39.37 48.00 59.30 39.25 45.49 56.31 39.23 42.61 53.30 39.28 39.68 50.29

Table 4. SSIM comparison by payload size

Image 1 Kb 2Kb 4 Kb 8 Kb 16 Kb
[91 [10] Prop. [9] [10] Prop. [9] [10] Prop. [9] [10] Prop. [9] [10] Prop.
Airplane  0.997 0.998 1.000 0.997 0.997 0.999 0.997 0.996 0.999 0.997 0.992 0.998 0.997 0.983 0.996
House  0.997 0.999 1.000 0.997 0.999 1.000 0.997 0.998 0.999 0.997 0.996 0.998 0.997 0.991 0.997
Peppers  0.996 0.998 1.000 0.996 0.996 1.000 0.996 0.993 0.999 0.996 0.988 0.999 0.996 0.976 0.997
Sailboat  0.998 0.998 1.000 0.998 0.998 1.000 0.998 0.996 0.999 0.998 0.993 0.999 0.998 0.988 0.997
Skin 0.988 0.998 1.000 0.988 0.995 0.999 0.988 0.990 0.999 0.988 0.978 0.998 0.988 0.955 0.995
Polyp-1  0.996 0.999 1.000 0.996 0.998 1.000 0.996 0.996 0.999 0.996 0.991 0.999 0.996 0.979 0.998
Polyp-2  0.988 0.998 1.000 0.988 0.995 0.999 0.988 0.990 0.999 0.988 0.977 0.998 0.988 0.951 0.996
Retina  0.989 0.999 1.000 0.989 0.997 0.999 0.989 0.996 0.999 0.989 0.992 0.998 0.989 0.981 0.996
Left Eye 0.989 0.999 1.000 0.989 0.997 0.999 0.989 0.995 0.999 0.989 0.990 0.997 0.989 0.980 0.995
Right Eye 0.992 0.999 1.000 0.992 0.997 0.999 0.992 0.996 0.999 0.992 0.992 0.998 0.992 0.983 0.996
Average  0.993 0.999 1.000 0.993 0.997 0.999 0.993 0.995 0.999 0.993 0.989 0.998 0.993 0.977 0.996

payload sizes and images. The PSNR values for the
proposed method generally range from average 62.23
dB at 1 Kb to average 50.29 dB at 16 Kb, indicating
a gradual decline in image fidelity as the payload size
increases, which is expected in watermarking
systems. The method by Zhou et al. [10] shows a
more noticeable decrease in PSNR as the payload
increases, with values in several cases falling below
40 dB at the highest payload size. This indicates that
the visual impact of watermarking becomes more
significant under heavier embedding in their
approach. In contrast, the method by Dong et al. [9]
yields relatively stable PSNR values across all
payload sizes. This is attributed to the properties of
Dong’s method, which requires the watermark length
to be fixed at one-fourth of the image dimensions. To
match this requirement in our test, payloads smaller
than the fixed size were padded with zero bits. As a
result, the effective amount of embedded data
remained constant regardless of actual payload size,
producing consistent PSNR outcomes.

Table 4 supports the PSNR results by showing the
SSIM value for the same experimental settings. The
proposed method consistently achieves SSIM values
that are either equal to or very close to 1.000, across
all payload sizes and test images. This indicates that
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the visual distortion introduced by the watermark
embedding remains minimal and largely
imperceptible to the human visual system. At the
largest payload size of 16 Kb, the proposed method
still maintains SSIM values above 0.995 for most
images, such as 0.996 for Airplane, 0.997 for Sailboat,
and 0.996 for Right Eye. In contrast, the method by
Zhou et al. [10] shows more noticeable degradation
at higher payloads, with SSIM values declining to
0.983 for Airplane, 0.955 for Skin, and 0.951 for
Polyp-2. Meanwhile, the method by Dong et al. [9]
remains relatively stable but generally lower than the
proposed method. These SSIM results reinforce the
earlier PSNR findings, confirming that the proposed
scheme is effective at preserving image quality even
under increased payload.

4.2.3. Robustness evaluation

To assess robustness under extreme conditions,
the proposed method was configured with a
duplication factor of R =5 and an embedding
strength a = 25 to improve resistance against both
conventional distortions and adversarial attacks.
Table 5 presents a comprehensive comparison of
visual watermark detection results on the "Right Eye"
image under various image processing and
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Table 5. Visual watermark detection results on the Right Eye image under various attacks
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adversarial attacks. Each row corresponds to a
specific attack scenario, and for each method, the
extracted watermark is shown alongside its NC value
with respect to the original embedded watermark.
The binary visualizations highlight incorrect bits in
red, where red pixels denote bit errors in the extracted
watermark. In contrast, both black and white pixels
represent correctly extracted bits regardless of their
binary value (0 or 1).

In the absence of any attack, all methods yield
high NC values, with the proposed method and the
Dong’s method maintaining perfect recovery. Under
mild distortions such as Sharpening, Contrast
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Adjustment, and Salt & Pepper noise, the proposed
method still achieves perfect or near-perfect
extraction (NC>0.971), with minimal or no red
pixels, indicating excellent robustness. Under
stronger degradations such as Gaussian Noise, Resize,
and Insertion, the method by Zhou et al. [10] shows
significant degradation (e.g., NC=0.606 for Resize
and NC=0.753 for Insertion), while the proposed
method still maintains high accuracy, with
substantially fewer bit errors compared to others.
Importantly, the proposed method demonstrates
superior resilience against adversarial attacks, such as
FGSM (NC=0.999), BIM (NC=0.902), and PGD
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Table 6. Extended robustness evaluation (1)
Airplane House Peppers Sailboat Skin
Attack Type 11" o1 prop. [9] [10] Prop. [9] [10] Prop. [9] [10] Prop. [9] [10] Prop.
PSNR (dB) 38.21 38.30 42.1 38.75 39.18 42.1 41.43 38.81 42.19 40.72 38.01 42.1 39.43 40.51 42.09
No Attack 1.000 0.998 1.000 1.000 0.997 1.000 1.000 0.987 1.000 1.000 1.000 1.000 1.000 0.981 1.000
JPEG2000 0.663 0.704 0.888 0.542 0.782 0.832 0.716 0.737 0.921 0.472 0.718 0.819 0.888 0.765 0.999
Salt & Pepper 0.706 0.794 0.985 0.774 0.82 0.984 0.79 0.756 0.971 0.792 0.801 0.976 0.949 0.793 0.981
Gaussian Noise 0.918 0.831 0.995 0.935 0.869 0.992 0.835 0.811 0.993 0.915 0.813 0.991 0.981 0.776 0.993
Gaussian Blur 0.020 0.676 0.999 0.028 0.687 0.990 0.124 0.755 0.998 0.036 0.721 0.994 0.692 0.657 1.000
Sharpen 0.993 0.888 0.995 0.993 0.889 0.995 0.930 0.764 1.000 0.964 0.821 0.998 0.993 0.930 0.997
Median Filter 0.479 0.746 0.963 0.284 0.729 0.964 0.606 0.799 0.969 0.281 0.782 0.970 0.880 0.722 0.948
Contrast Adj. 0.720 0.890 0.835 0.720 0.906 0.985 0.722 0.845 1.000 0.720 0.937 0.998 0.720 0.636 0.998
Resize 0.010 0.720 0.892 0.012 0.719 0.879 0.091 0.805 0.885 0.020 0.767 0.886 0.834 0.688 0.895
Insertion  0.898 0.989 1.000 0.815 0.997 1.000 0.810 0.977 1.000 0.878 0.993 1.000 0.767 0.981 1.000
Copy Attack 1.000 0.452 0.977 1.000 0.436 0.981 1.000 0.441 0.984 1.000 0.453 0.975 1.000 0.425 0.988
FGSM 0.993 0.862 1.000 1.000 0.851 1.000 0.967 0.858 1.000 0.998 0.843 1.000 0.993 0.842 1.000
BIM 0.904 0.634 0.912 0.952 0.661 0.924 0.885 0.611 0.943 0.934 0.641 0.932 0.997 0.606 0.932
PDG 0.973 0.667 0.941 0.98 0.657 0.955 0.934 0.656 0.949 0.968 0.627 0.956 0.998 0.638 0.955
Average 0.734 0.775 0.956 0.717 0.786 0.963 0.744 0.772 0.972 0.713 0.780 0.964 0.907 0.746 0.978
Table 7. Extended robustness evaluation (2)
Polyp-1 Polyp-2 Retina Left Eye Right Eye

Attack TyPe 191 ' 110] Prop. [9] [10] Prop. [9] [10] Prop. [9] [10] Prop. [8] [10] Prop.
PSNR (dB) 38.77 41.24 42.1 37.98 39.77 42.12 41.91 41.27 42.32 38.81 42.27 42.47 37.77 42.22 42.67
No Attack 1.000 0.994 1.000 1.000 0.994 1.000 1.000 0.874 1.000 1.000 0.980 1.000 1.000 0.978 1.000
JPEG2000 0.397 0.67 0.93 0.859 0.773 0.999 0.773 0.655 0.997 0.962 0.619 0.998 0.959 0.681 1.000
Salt & Pepper 0.873 0.765 0.968 0.901 0.803 0.975 0.926 0.687 0.953 0.864 0.668 0.971 0.818 0.685 0.942
Gaussian Noise 0.947 0.816 0.993 0.953 0.839 0.992 0.961 0.690 0.977 0.827 0.642 0.984 0.680 0.667 0.992
Gaussian Blur 0.103 0.674 0.995 0.725 0.657 1.000 0.455 0.658 1.000 0.758 0.603 1.000 0.539 0.603 0.997
Sharpen 0.991 0.929 0.991 0.991 0.914 0.993 0.990 0.901 1.000 0.979 0.935 0.999 0.988 0.923 0.997
Median Filter 0.160 0.72 0.967 0.905 0.729 0.954 0.799 0.702 0.965 0.929 0.612 0.946 0.922 0.655 0.952
Contrast Adj. 0.720 0.643 0.998 0.720 0.836 0.997 0.720 0.524 1.000 0.720 0.350 1.000 0.720 0.398 0.992
Resize 0.102 0.713 0.891 0.871 0.738 0.891 0.555 0.691 0.882 0.885 0.606 0.903 0.637 0.635 0.899
Insertion  0.657 0.994 1.000 0.695 0.994 1.000 0.712 0.865 1.000 0.742 0.753 1.000 0.963 0.793 1.000
Copy Attack 1.000 0.429 0.971 1.000 0.434 0.979 1.000 0.423 0.987 1.000 0.420 0.961 1.000 0.435 0.979
FGSM 1.000 0.797 1.000 0.991 0.875 1.000 0.991 0.748 1.000 0.968 0.667 1.000 0.921 0.676 0.999
BIM 0.989 0.596 0.913 0.967 0.625 0.923 0.997 0.608 0.898 0.891 0.538 0.91 0.787 0.559 0.902
PGD 0.997 0.634 0.945 0.99 0.637 0.94 0.996 0.568 0.938 0.934 0.546 0.932 0.834 0.56 0.924
Average 0.710 0.741 0.969 0.898 0.775 0.975 0.848 0.685 0.971 0.890 0.639 0.972 0.841 0.661 0.970

(NC=0.924), whereas the method in [9] and [10]
experience considerable drops in NC (eg.,
Zhou=0.559 for BIM, 0.560 for PGD), and more
pronounced bit errors. In the Copy Attack scenario,
the proposed method still achieves reliable detection
(NC=0.961), whereas the method by Zhou et al. [10]
fails to recover the watermark content (NC = 0.420).

More detailed results for the other images can be
found in Table 6-7. Despite its overall effectiveness,
the proposed method does not consistently
outperform the baselines across all attack types. In
copy attacks, the method by Dong et al. [9] frequently
achieves perfect watermark recovery (e.g.,
NC=1.000 on several images), while the proposed
method records lower NC values. A similar pattern
emerges under adversarial attacks like BIM and PGD,
where the method by Dong et al. [9] occasionally
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surpasses the proposed method, for example, in Skin
(PGD: 0.998 vs. 0.955) and Polyp-1 (PGD: 0.997 vs.
0.945). Nevertheless, the average NC scores for each
image indicate that the proposed method consistently
outperforms both the method in [9] and [10]. Across
all ten images, the proposed method achieves higher
average NC values, demonstrating greater overall
robustness despite occasional weaknesses under
specific attack scenarios.

The watermarking algorithm by Dong et al. [9]
exhibits significant vulnerability to various types of
attacks due to its strong dependence on the accuracy
of singular values as the basis for watermark
extraction. The method performs embedding in the
low-frequency domain, specifically in the LL sub-
band of the DWT transformed with DCT by
modifying the singular values using a small
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Table 8. Traceability detection metrics under various attack scenarios
Attack Accuracy Precision Recall F1

[9] [10] Prop. [9] [10] Prop. [9] [10] Prop. [9] [10] Prop.
No Attack 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000
JPEG2000 0.200 0.752 1.000 0.142 0.800 1.000 0.117 0.587 1.000 0.127 0.615 1.000
Salt & Pepper  0.108 0.862 1.000 0.204 1.000 1.000 0.180 0.770 1.000 0.191 0.797 1.000
Gaussian Noise  0.120 0.542 1.000 0.177 0.600 1.000 0.150 0.237 1.000 0.162 0.289 1.000
Gaussian Blur  0.350 0.528 1.000 0.133 0.400 1.000 0.610 0.213 1.000 0.077 0.236 1.000
Sharpen 0.840 1.000 1.000 0.169 1.000 1.000 0.136 1.000 1.000 0.150 1.000 1.000
Median Filter ~ 0.256 0.832 1.000 0.129 0.800 1.000 0.106 0.720 1.000 0.116 0.746 1.000
Contrast 0.000 0.700 1.000 0.000 0.500 1.000 0.000 0.500 1.000 0.000 0.500 1.000
Resize 0.298 0.736 1.000 0.510 0.800 1.000 0.047 0.560 1.000 0.049 0.598 1.000
Insertion 0.378 1.000 1.000 0.026 1.000 1.000 0.020 1.000 1.000 0.023 1.000 1.000
Copy Attack  0.000 0.400 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000
FGSM 0.090 0.906 1.000 0.190 1.000 1.000 0.147 0.843 1.000 0.159 0.866 1.000
BIM 0.100 0.400 1.000 0.228 0.000 1.000 0.159 0.000 1.000 0.180 0.000 1.000
PGD 0.124 0.400 1.000 0.249 0.000 1.000 0.200 0.000 1.000 0.218 0.000 1.000
Average 0.205 0.718 1.000 0.154 0.636 1.000 0.134 0.531 1.000 0.104 0.546 1.000

embedding factor o (~0.02).
modification to the image, such as contrast
adjustment, gaussian noise, gaussian blur, or
insertion attacks, directly affects the singular values
of the image from which the watermark is to be
extracted. This vulnerability arises because the
extraction formula defined in Eqg. (11) is highly
sensitive to the accuracy of Sy, which is derived
from the DCT coefficients of the attacked image. Any
distortion in these coefficients leads to deviations in
the singular values from their expected values, thus
impairing the watermark retrieval process.

The watermarking method proposed by Zhou et
al. [10] exhibits significant vulnerabilities to various
digital attacks due to several fundamental design
weaknesses. In the case of copy attacks, the method
is particularly susceptible as it adopts a deterministic
approach that consistently selects image blocks with
the highest texture values in a fixed order, without
incorporating any randomization. This results in
predictable embedding locations, making the
watermark more susceptible to manipulation or
removal through copy attack techniques.
Additionally, the method is sensitive to embedding
strength due to its reliance on the DC coefficient,
where contrast adjustments or high-intensity
disturbances can disproportionately affect the
watermark embedded in the AC coefficients.
Furthermore, the method lacks a watermark recovery
mechanism, such as re-embedding the watermark
across multiple locations, which could enhance
robustness and increase the likelihood of successful
extraction under adverse conditions.

Overall, the experimental results summarized in
Table 6-7 demonstrates that the proposed method
offers stronger robustness and reliability across a
wide range of distortions. This resilience stems from

As a result, any
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three key design elements: (1) the use of logistic map-
based randomization to determine embedding
locations, which mitigates predictability and reduces
susceptibility to spatial attacks such as copy attacks;
(2) a repeated embedding strategy that increases
redundancy and enhances the chances of successful
watermark recovery under partial degradation; and
(3) the application of a stronger embedding strength,
which improves robustness against both conventional
distortions and adversarial perturbations while
preserving acceptable perceptual quality.

4.2.4. Traceability evaluation

Table 8 presents a detailed breakdown of
accuracy, precision, recall, and F1-score, grouped by
each type of attack scenario. Based on the
experimental results shown in the table, the proposed
watermarking method consistently outperforms the
approaches by Dong et al. [9] and Zhou et al. [10]
across all evaluation metrics accuracy, precision,
recall, and F1-score under various attack scenarios.
The proposed method achieves perfect scores (1.000)
for all metrics under every type of attack. This
indicates that the embedded identity fingerprints
remain reliably detectable even after severe image
distortions. In contrast, although the method by Zhou
et al. [10] performs reasonably well under certain
conditions (e.g., F1-score of 0.866 for FGSM), it
suffers significant performance degradation under
others, such as Gaussian Blur (F1 = 0.236) and BIM
(F1 = 0.000). The method by Dong et al. [9], on the
other hand, generally fails to identify the image
source reliably, as reflected in its low average
accuracy (0.205) and F1-score (0.104).

Despite its strengths in watermark extraction as
seen in previous section, the Dong et al. [9] method
suffers from a critical vulnerability: it cannot reliably
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Table 9. Transaction performance evaluation Table 10. Performance evaluation of IPFS
Metric Measured Value Parameter Upload Retrieve
Total transactions 1000 Success 1000 10000
Average time / transaction 8.866 seconds Failed 0 0
Transaction throughput  43.91 transaction per second Avg. Latency 1.0087 s 0.8155s
Average gas / transaction 48380 gas units Availability 100% 100%

Average gas price 26.69 Gwei
Total fee 1.291150 POL
Total fee (USD) $0.2593

distinguish between different watermarks embedded
in the same host image. This phenomenon, known as
cross-extraction, undermines the security of the
SVD-based embedding scheme. Cross-extraction
occurs when a watermark can be extracted using an
incorrect key particularly when different watermarks
are embedded into the same host image. This issue
arises from the method’s reliance on the singular
values of the LL component produced by DWT-DCT.
The extraction formula in Eq. (11), is highly sensitive
to variations in the host image parameters. When the
same host image is used, the extracted Sy, values
become highly similar across different watermarks,
leaving Sy and the scaling factor a both stored in the
key as the main distinguishing elements, which
remain nearly identical. Moreover, watermark
reconstruction via inverse SVD is dominated by the
spatial structures encoded in matrices U and V, rather
than the embedded singular values. Consequently,
even an incorrect key may produce a visually
plausible watermark pattern. This weakness violates
two fundamental principles of secure watermarking:
uniqueness and non-repudiation resulting in the
method in [9] is unreliable for applications requiring
ownership  verification or digital content
authentication.

Overall, the average metric scores for the
proposed method reach 1.000, significantly
surpassing those of the method by Zhou et al. [10]
(e.g., average Fl-score = 0.546) and the method by
Dong et al. [9] (average Fl-score = 0.104). This
demonstrates the high reliability of the proposed
system in tracing image distribution sources with
precision, even under extreme distortion conditions.

4.2.5. Evaluation of smart contract performance

A total of 1,000 transactions were submitted,
simulating the distribution of 10 host images to 100
different recipients each. Each transaction recorded
metadata including the identities of the data owner
and requester, perceptual hash, fingerprint, and IPFS
references. The benchmark results are summarized as
follows.
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The average processing time per transaction was
recorded at 8.866 seconds, with a throughput of 43.91
transactions per second in the Polygon Mainnet
environment. In terms of gas consumption, each
transaction required an average of 48,380 gas units,
with an average gas price of 26.69 Gwei. When
executed on the Polygon network, the total gas fee for
all transactions amounted to approximately 1.291150
POL (Polygon). Given the price of POL on July 9,
2025, which was $0.2008, the estimated total
monetary cost for these 1,000 transactions was only
$0.2593. This demonstrates the scalability and cost-
efficiency of deploying the proposed traceability
mechanism on Polygon Mainnet, making it highly
suitable for real-world high-frequency image sharing
applications.

4.2.6. IPFS performance evaluation

The performance evaluation of IPFS was
conducted by measuring both upload and retrieval
processes on the configured server described in
Section 5.1.6. As summarized in Table 10, a total of
1,000 image delta files were uploaded to the IPFS
node, each with a success rate of 100%. The average
latency for uploading was measured at 1.0087
seconds, and no upload failures occurred. The
average file size of the image delta files was 106.30
KB.

For the retrieval phase, each uploaded file was
accessed 10 times, resulting in 10,000 retrieval
operations. Similar to the upload phase, all retrievals
were completed successfully with zero failure and
100% availability. The average retrieval latency was
slightly lower at 0.8155 seconds, indicating efficient
content addressing and data propagation within the
IPFS network under repeated access conditions.

These results demonstrate that even in a resource-
constrained VPS environment, IPFS provides high
availability, stable response times, and consistent
performance when used as a decentralized storage
layer for traceable image watermarking systems.

4.2.7. Threat model and security analysis
4.2.7.1. Threat model

In the proposed system, we assume a threat model
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Table 11. Attack scenarios and mitigations

Mitigation Strategy

Attack Type Description
Key Attacker obtains a requester’s private
Compromise key and accesses encrypted IPFS data

(e.g., extraction key).

Unauthorized

Watermark of logistic map parameters.

Extraction

Metadata Attacker attempts to inject false
Poisoning ownership claims on the blockchain.

Smart Contract

Exploitation records to the contract.
Watermark Attacker averages multiple
Copy Attack watermarked images to suppress the

embedded watermark signal.

Extraction attempt without knowledge

Malicious users submit arbitrary or fake

Even with access to the reference DCT coefficients
(stored via IPFS), extraction remains infeasible without
knowing the logistic map key that determines the block
embedding order.

The block order is randomized using a logistic map with
secret parameters, which are not stored on-chain.
Extraction fails without these keys.

The watermark embedded in each image is a verifiable
ECDSA signature to the data owner, and the ECDSA is
tied to specific content and requester identity. Verification
ensures authenticity and binds the fingerprint to its
rightful owner.

The smart contract accepts open inserts, but fake records
are ineffective: traceability is based on image-embedded
ECDSA signatures, which can be cryptographically
verified against the claimed owner.

Watermark bits are redundantly embedded across multiple
locations using logistic-map-based block selection. This
redundancy and randomness reduce the effectiveness of
averaging-based removal.

involving three types of entities: (a) Honest
Participants: legitimate data owners and requesters
who comply with the protocol, (b) Malicious
Requesters: legitimate recipients who attempt to
redistribute or reverse-engineer the watermark., and
(c) External Adversaries: attackers who intercept
images, probe smart contracts, or attempt to
manipulate blockchain records.

The system assumes secure key storage by
legitimate users and relies on cryptographic
mechanisms, particularly ECDSA and logistic-based
randomization to protect against forgery and
unauthorized trace reconstruction.

4.2.7.2. Attack scenarios and mitigation strategies

Table 11 presents a summary of the key attack
scenarios that may compromise the integrity,
authenticity, or traceability of the proposed system.
Each row outlines a distinct threat, its corresponding
adversarial objective, and the defense mechanism
employed within the system design. As shown in the
table, the use of randomized logistic map parameters
ensures that unauthorized watermark extraction is
computationally infeasible, even if IPFS-stored
references are accessible. Furthermore, embedded
ECDSA signatures act as tamper-proof verifiable
claims, which effectively defend against metadata
poisoning and ownership forgery.

4.2.7.3. Security properties

The proposed system provides several security
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guarantees essential for secure and traceable image
sharing. Confidentiality is maintained by encrypting
both the image delta and the watermark extraction
key using the requester’s public key before storing
them on IPFS. Without the corresponding private key,
unauthorized parties cannot recover the original
image or the embedded fingerprint. Integrity and
authenticity are enforced through ECDSA signatures
embedded in the image, which are generated using
the data owner’s private key. These signatures are
verifiable against the public key stored on the
blockchain, ensuring that the fingerprint cannot be
forged or tampered with. Availability is ensured by
utilizing decentralized infrastructures: IPFS for
storing watermark-related files and the Polygon
mainnet for recording transaction metadata. Our
deployment and testing show 100% availability in
both upload and retrieval processes on IPFS, and
Polygon provides high transaction uptime and
accessibility, demonstrating strong operational
reliability. Lastly, transparency is ensured through
the use of a public blockchain and IPFS, allowing all
metadata and distribution records to be independently
audited without relying on a centralized authority.

5. Conclusions

This paper presented a novel image data sharing
framework that integrates reversible robust
watermarking with blockchain technology to enable
traceable and secure image distribution. By
embedding a unique 1024-bit ECDSA-based digital
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fingerprint that identifies both the image and the
requester, the proposed method  ensures
accountability in every distribution event. The use of
logistic  map-based randomized embedding,
perceptual weighting through CSF, and redundant bit
insertion significantly enhances both robustness and
imperceptibility, achieving average PSNR above
50.29dB for 16 Kb payload and SSIM values
consistently close to 1.000.

Extensive experiments under various distortion
and adversarial scenarios confirmed that the
proposed scheme outperforms the method by Dong et
al. [9] and the method by Zhou et al. [10] in terms of
watermark recovery accuracy (average NC = 0.97)
and traceability (F1-score = 1.000).

Beyond empirical performance, the method is
supported by several theoretical design elements that
differentiate it from existing schemes. The use of
logistic map-based block randomization secures the
watermark location, making the scheme resistant to
spatial and averaging attacks. The redundant
embedding of watermark bits increases resilience
against both noise and adversarial perturbations. In
addition, the contrast sensitivity-based perceptual
weighting balances robustness and imperceptibility
by adapting the embedding strength to human visual
tolerance.

Compared to existing methods by Dong et al. [9]
and Zhou et al. [10], the proposed method offers
clearer advantages. The method by Dong et al. [9]
lacks traceability granularity and is vulnerable to
cross-extraction due to its dependence on singular
values. The method by Zhou et al. [10], although
robust to some attacks, uses deterministic block
selection and does not support reversibility, limiting
its applicability in sensitive domains. In contrast, our
approach combines traceability, reversibility, and
verifiability, a combination not simultaneously
addressed in prior work.

Furthermore, deployment on the Polygon
Mainnet and IPFS demonstrated the practicality of
the proposed system in real-world environments,
with low-cost, high-throughput smart contract
interactions and reliable decentralized storage
performance. The system demonstrates effective
mitigation strategies against key compromise,
unauthorized watermark extraction, metadata
poisoning, and watermark copy attacks, as outlined in
Table 11. Overall, the proposed approach offers a
practical and verifiable mechanism for image
provenance tracking and copyright management,
especially in use cases that require both traceability
and reversibility, such as medical image distribution
and digital forensics.
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