
Received:  May 29, 2025.     Revised: July 20, 2025.                                                                                                        472 

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025           DOI: 10.22266/ijies2025.0930.29 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

 

VERITAS: Vision-based Excitation and Robust Intelligence for Transformer-

Assisted Deepfakes Detection 

 

Alam Rahmatulloh1,2          Herman Dwi Surjono1          Fatchul Arifin1          Irfan Darmawan3* 

Nia Ambarsari3 

 
1Faculty of Engineering, Universitas Negeri Yogyakarta, Yogyakarta, Indonesia 

2Faculty of Engineering, Universitas Siliwangi, Tasikmalaya, Indonesia 
3Faculty of Industrial Engineering, Telkom University, Bandung, Indonesia 
* Corresponding author’s Email: irfandarmawan@telkomuniversity.ac.id 

 

 
Abstract: The increasingly massive proliferation of deepfake content poses a serious threat to the authenticity and 

trustworthiness of digital information. This study proposes VERITAS, a deepfake detection framework that integrates 

CNN-based feature extraction, Vision Transformer (ViT) architecture, and multilevel Squeeze-and-Excitation (SE) 

blocks to adaptively strengthen spatial and token attention. To enhance generalization across datasets, VERITAS also 

adopts a dual-branch self-learning mechanism consisting of Masked Image Modeling (MIM) and Identity Distillation 

(ID) based on the Face Security Foundation Model (FSFM) framework. Experimental results show that VERITAS 

achieves AUC scores of 87.45% and 88.30% on the Celeb-DF v2 and WildDeepfake datasets at frame-level, and 

95.56% and 87.75% at video-level, respectively, outperforming various state-of-the-art methods. Ablation studies 

confirm the significant contributions of each component of the architecture. Despite its strong detection performance, 

inference speed remains a challenge, so further research directions include optimizing the model for real-time 

deployment. This research contributes to building a robust and adaptive deepfake detection system across domains. 

Keywords: CNN, Deepfake detection, FSFM framework, Squeeze-and-excitation, Vision transformer. 

 

 

1. Introduction 

Deepfake technology powered by generative 

adversarial networks (GANs) and deep learning 

models has revolutionized content creation by 

enabling the creation of highly realistic synthetic 

media [1]. However, the misuse of this technology for 

the production of misleading content, political 

propaganda, and identity fraud presents serious 

challenges. To overcome these negative impacts, a 

reliable deepfake detection system is needed [2]. 

Despite efforts to develop various solutions, there are 

still some major open issues related to hidden 

deepfakes. CNN-based models tend to focus too 

much on a particular form of falsification, resulting 

in poor performance when tested on different datasets 

[3]. Furthermore, most current detection models 

remain vulnerable to, for example, video 

compression and noise addition, which, from the 

perspective of model performance in real life, make 

them very poor in operation [4]. Another difficult 

problem is how to represent features. Convolutional 

Neural Networks (CNN) are known to be very good 

at capturing local spatial features, but very poor at 

capturing global spatial relationships needed to detect 

subtle discrepancies that are characteristic of 

deepfake videos [5]. 

Vision Transformer (ViT) has attracted much 

interest due to its ability to capture global 

dependencies of an image, unlike CNNs that are more 

oriented towards local features [5]. Despite these 

advances, one of the critical drawbacks of ViT 

remains its reliance on large datasets to effectively 

train the model and avoid overfitting. Thus, 

optimization strategies are needed to make ViT-based 

models more efficient in feature extraction on limited 

datasets. Several researchers have applied 

transformer-based approaches to deepfake detection, 
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such as Hybrid Transformer Network [6] that utilizes 

CNN as a feature extractor before the data is 

transformed by the transformer. In addition, 

Transformer-Based Feature Compensation and 

Aggregation [7] designs blocks to compensate for the 

local feature scope so that the model can better detect 

subtle fraud patterns. DSViT: An Enhanced 

Transformer Model [8] also proposes SC-

Convolution with ViT to improve detection accuracy. 

Hybrid approaches combining CNN and Transformer 

have been shown to improve the detection accuracy 

of deepfake videos [9].  

In previous studies, we found that CNN-based 

models are quite good at extracting local features, but 

not so good in the context of global information. On 

the other hand, transformer models such as ViT are 

considered superior in capturing further spatial 

dependencies, but are highly dependent on the 

quantity of data and available computational 

capabilities [10]. Several studies have also indicated 

that CNN-based or ViT-based approaches 

individually are not good enough in dealing with 

increasingly complex deepfakes [11]. 

However, these studies have several limitations, 

such as the need for large datasets, sensitivity to noise, 

and lack of adaptive techniques for different types of 

deepfakes. To address some of the major 

shortcomings of previous studies, this study proposes 

a hybrid CNN-Transformer deepfake detection 

model with Squeeze-and-Excitation Attention (SE-

Blocks). With SE-Blocks, the model becomes more 

sensitive to relevant features, unlike previous efforts 

where large datasets are required for ViT to learn 

effectively. As cited in [12], this study also uses self-

supervised contrastive learning and adversarial 

training to improve model generalization and reduce 

vulnerability to adversarial manipulation. It is 

expected that with this approach, the proposed model 

will be able to improve the effectiveness of deepfake 

detection compared to current methods in 

generalizing across datasets and in mitigating 

adversarial attacks. Therefore, this research makes a 

significant contribution towards the development of a 

more reliable deepfake detection system that can 

function under a variety of real-world conditions. 

2. Related works 

In recent years, deepfakes have developed 

significantly, allowing for face and voice 

manipulation that is almost undetectable by humans. 

This development raises serious challenges in digital 

security, privacy, and disinformation [13]. In an 

effort to address this, various detection approaches 

have been proposed, ranging from conventional 

visual feature-based methods to deep learning models 

such as CNN [14]. In addition, Vision-Transformer 

(ViT)-based approaches are gaining more attention 

due to their ability to capture spatial dependencies 

more broadly [15]. This section discusses in detail the 

latest CNN and transformer-based approaches that 

are the foundation for the development of the 

VERITAS (Vision-based Excitation and Robust 

Intelligence for Transformer-Assisted Deepfakes 

Detection) system. 

The remainder of this paper is organized as 

follows. Section 2 reviews related works regarding 

CNN-based and Transformer-based approaches for 

deepfake detection. Section 3 presents the proposed 

VERITAS architecture in detail, including CNN 

blocks, ViT components, and SE blocks. Section 4 

discusses the experimental setup, evaluation metrics, 

comparative results, and ablation study of the model 

architecture. Finally, Section 5 concludes the paper 

and suggests future research directions. 

2.1 CNN based approach 

The architecture in building deepfake detection 

initially relied heavily on CNN because of its ability 

to extract spatial features from facial images. One 

approach that uses CNN is EfficientNetB4 by 

modifying the attention layer and siamese training 

[16]. This strategy has been shown to improve 

performance in detecting facial manipulation by 

deepfake models. Other studies highlight the 

challenges in detecting deepfakes with both low and 

high quality simultaneously. The QAD (Quality-

Agnostic Deepfake detection) model was developed 

with an intra-model collaborative learning approach 

and maximizes the dependency between feature 

representations using the Hilbert-Schmidt 

Independence Criterion (HSIC) [17]. This technique 

combines Fast Fourier Transform (FFT) and Local 

Binary Pattern (LBP) to detect traces of manipulation 

in the texture and frequency domains. Research [18] 

introduced RealForensics which tries to generalize 

detection to manipulation that has never been seen 

before by utilizing original videos of talking faces. 

Through self-supervised cross-modal learning, this 

model learns from the natural alignment between 

visual and audio information to improve 

generalization capabilities. However, CNN-based 

models often struggle to generalize across datasets 

and are prone to overfitting. They focus on superficial 

visual cues and are easily fooled by high-quality 

manipulations or compression artifacts. 
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2.2 Transformer based approach 

The increasing need to understand temporal 

dependencies in deepfake videos has led to 

Transformer-based architectures being widely 

applied due to their performance. Research [19] 

combines Fully Temporal Convolution Network 

(FTCN) and Temporal Transformer to capture 

temporal coherence more deeply. The use of FTCN 

has succeeded in extracting facial motion patterns 

efficiently using small spatial kernels and large 

temporal kernels, thus showing its superiority in 

detecting new types of manipulation. Another study 

by [20] combined CNN with Vision Transformer 

(ViT) which was used to detect facial parts such as 

eyes and nose, and unified predictions from various 

facial parts using majority voting. This model shows 

the potential superiority of deepfake detection models 

built by integrating CNN and Transformer. 

Furthermore, the GenConViT model [21] comes by 

combining ConvNeXt and Swin Transformer for 

visual feature extraction and Autoencoder and 

Variational Autoencoder to learn latent distributions. 

This model shows high performance in detecting 

deepfakes across various datasets, although it still 

faces challenges in generalizing to data outside the 

distribution. In addition, there is CViT2 [22] which 

combines CNN and Vision Transformer in an 

attention-based detection system. This model shows 

rapid developments in forensic applications and 

misinformation tracking. Nevertheless, Transformer-

based approaches require large amounts of data for 

effective training and are computationally intensive. 

Furthermore, ViT-based models may underperform 

without sufficient inductive biases when trained on 

small or imbalanced datasets. 

2.3 Challenges and motivations for VERITAS 

Although many approaches have been developed, 

challenges and limitations in terms of efficiency, 

generalization to new manipulations, and robustness 

to visual disturbances remain major issues. 

VERITAS is designed to address these challenges by 

integrating CNN-Transformer architecture SE-

Blocks in an integrated manner. Thus creating a 

powerful combination of local and global 

representations for the robustness needs of the 

detection system. By leveraging the advantages of 

CNN and Transformer techniques, and applying 

adaptive regularization and attention strategies, 

VERITAS is expected to be able to improve efficient, 

accurate, and robust deepfake detection against 

disturbances and data distribution variations. 

3. Proposed method 

In accordance with the results of the analysis 

related to the need for solutions to the research 

problems raised in this study, we provide a solution 

to the problem by developing a deepfake detection 

model consisting of a combination of CNN with 

transformers and enhanced with the addition of SE-

Block. Fig. 1 shows the design of the deepfake 

detection architecture that we developed. 

VERITAS is developed through three main 

continuous parts that combine spatial feature 

extraction from Convolutional Neural Network 

(CNN), global context modeling from Vision 

Transformer (ViT), and channel attention module 

through Squeeze-and-Excitation (SE) Block 

introduced by [23]. 

 

 

 

 
Figure. 1 Proposed Method 
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In addition, this architectural model is strengthened 

through two self-learning branches in the transformer 

part with the aim of improving visual representation 

in a generalist manner based on the framework of 

FSFM [24]. 

3.1 CNN block 

The CNN block at the beginning of the VERITAS 

architecture acts as a feature extractor that focuses on 

processing local feature representations from images. 

Where the input image in question contains data in 

the form of batch values (B), number of channels 

(RGB), image height (H), and image width  (W) so 

that the input becomes X∈ R^(B×3×H×W)The 

feature extraction processing circuit in the 

architecture we designed adopts the ConveXt 

operation [25] so that it is lighter and more effective 

in handling tasks with large amounts of data. When 

X enters this block, the first step is to downsample to 

reduce the spatial dimension which aims to 

aggressively reduce computational costs. This 

downsampling operation involves a convolution 

layer with a 4x4 kernel and stride 4. Thus producing 

spatial output sizes H' and W^' based on Eqs. (1) and 

(2). 

 

𝐻′ = [
𝐻−4

4
] + 1  (1) 

 

𝑊′ = [
𝑊−4

4
] + 1  (2) 

 

We use an input image size of 224x224, resulting 

in a spatial output size of 𝐻′  and 𝑊′  of 56 and a 

number of feature channels of 64 defined as 𝑌 ∈
ℝ𝐵×64×56×56 . After obtaining these sizes, we 

continue by normalizing using the batch 

normalization method and activating using the GELU 

function. The output of this process then enters the 

depthwise operation section using Eq. (3). 

 

𝑌(𝑏, 𝑐, 𝑖, 𝑗) =  

∑ ∑ 𝐾𝑐(𝑚, 𝑛)𝑋(𝑏, 𝑐, 𝑖 + 𝑚, 𝑗 + 𝑛)𝑘′

𝑛=−𝑘′
𝑘′

𝑚=−𝑘′  (3) 

 

With 𝑘′ = 𝑘/2 and 𝑘 is the kernel size used for 

the convolution process. 𝑌(𝑏, 𝑐, 𝑖, 𝑗)  is the output of 

the depthwise operation at position (𝑖, 𝑗) and channel 

c for the bth sample. 𝐾𝑐(𝑚, 𝑛) is the depthwise filter 

for channel c that has a size of k×k with (m,n) as the 

filter index that runs from −𝑘′  to +𝑘′ . 𝑋(𝑏, 𝑐, 𝑖 +
𝑚, 𝑗 + 𝑛)  is the input pixel value at position (𝑖 +
𝑚, 𝑗 + 𝑛)  on channel c for the bth sample. Each 

output Y produced from this operation is the result of 

the multiplication and addition of the filter elements 

𝐾𝑐  with the input 𝑋  around (𝑖, 𝑗) . The process on 

each channel is carried out independently so as to 

minimize the increase in the number of parameters 

due to the addition of this CNN block. The operation 

on this CNN block ends with a pointwise operation 

that is tasked with combining information between 

channels at each spatial position using Eq. (4). 

 

𝑌(𝑏, 𝑐′, 𝑖, 𝑗) = ∑ 𝑊𝑐′,𝑐𝑋(𝑏, 𝑐, 𝑖, 𝑗) + 𝑏𝑐′
𝐶
𝑐=1  (4) 

 

Where 𝑌(𝑏, 𝑐′, 𝑖, 𝑗) is the output value generated 

by the pointwise convolution at position (𝑖, 𝑗)   in 

channel 𝑐′ for sample b, 𝑊𝑐′,𝑐  is the weight for the 

pointwise layer with size 1 × 1   that connects the 

input of channel c to channel c', X(b,c,i,j) is the input 

generated from the depthwise operation in the form 

of ℝ𝐵×𝐶×𝐻×𝑊, 𝑏𝑐′  is the bias used for the output of 

channel 𝑐′ and 𝑐′  is the number of output channels 

from pointwise. The fusion of information from each 

channel is done by performing a linear combination 

using the weight 𝑊𝑐′,𝑐, so that an integrated channel 

space transformation occurs between global and local 

features. 

3.2 SE block spatial 

This section consists of three main parts, namely 

squeeze, excitation, and reweighting with the aim of 

adaptively recalibrating the channel attention based 

on the global context of each spatial feature extracted 

by the CNN block [23]. The output of the CNN block 

in the form of a 4D spatial tensor denoted as feature 

F (where 𝐹 ∈ ℝ𝐵×𝐶×𝐻×𝑊) is reduced to one vector 

per channel using the global average pooling (GAP) 

method [26] in Eq. (5). 

 

𝑠𝑐 =
1

𝐻.𝑊
∑ ∑ 𝐹𝑐,𝑖,𝑗

𝑊
𝑗=1

𝐻
𝑖=1 ,      ∀𝑐 ∈ {1, … , 𝐶}  (5) 

 

Where 𝑠𝑐 represents the average intensity of the 

c-th channel, 𝐻 and 𝑊 are the spatial dimensions of 

the image, and 𝐹𝑐,𝑖,𝑗 is the output value of the CNN 

block. The result of this calculation produces a tensor 

s (where 𝑠 ∈ ℝ𝐵×𝐶×1×1 ). Furthermore, the global 

squeezed vector (𝑠)  enters the excitation section 

which has two fully-connected layers with each 

having ReLU and Sigmoid activation functions as 

shown by Eqs. (6) and (7). 

 

𝑧 = 𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣1 × 1𝑟𝑒𝑑𝑢𝑐𝑒(𝑠)), 𝑧 ∈

ℝ𝐵×𝐶𝑟×1×1  (6) 
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𝑒 = 𝜎 (𝐶𝑜𝑛𝑣1 × 1𝑒𝑥𝑝𝑎𝑛𝑑(𝑧)),  

𝑒 ∈ ℝ𝐵×𝐶×1×1  (7) 

 

With 𝑧 is the activation result value by the ReLU 

function, 𝐶𝑟 = 𝐶/𝑟 where 𝑟 is the reduction ratio, 𝑒 

is the attention vector per channel, and σ is the 

sigmoid activation function in limiting the output in 

the range [0,1]. This section serves to calculate the 

channel attention score nonlinearly in capturing the 

dependency between channels. After getting the 

value of e, the next step is to recalibrate the initial 

feature F by performing channel-wise multiplication 

on Eq. (8). 

 

𝐹𝑠𝑒 = 𝐹⨀𝑒,              𝐹𝑠𝑒 ∈ ℝ𝐵×𝐶×𝐻×𝑊  (8) 

 

Where ⨀  is the element-wise broadcast 

multiplication along 𝐻 × 𝑊  which is done by 

multiplying each channel 𝑐  of 𝐹  by the 

corresponding scalar value 𝑒𝑐 . Thus, SE Block 

Spatial effectively improves the quality of the local 

representation of CNN results which will later be 

projected into tokens through patch embedding 

operations for the needs of transformer input in the 

next block. 

3.3 Vision transformer block 

The ViT block section of the architecture we 

designed has a function not only to act as a feature 

encoder, but is also equipped with two self-learning 

paths that function to maximize the token 

representation capability of ViT, both locally and 

globally. The SE Block Spatial (𝐹𝑠𝑒)  feature results 

will be converted into token input through the patch 

embedding process to produce tensor input 𝑋 ∈
ℝ𝐵×𝑁×𝐷 where 𝐵 is the number of batches, 𝑁 is the 

number of patches, and 𝐷  is the dimension of the 

token embedding. After that, the patch embedding 

input results will enter the transformer encoder, 

where the tensor input 𝑋  will go through several 

layers. The layer starts with Multi-Head Self-

Attention (MSA) which allows the model to focus on 

different parts in one token sequence. Furthermore, 

the output results from this MSA are forwarded to the 

feed-forward network (FFN) which is equipped with 

the GELU activation function. A normalization (LN) 

layer is added to the MSA and FFN layers so that this 

process can be formulated as Eqs. (9) and (10). 

 

𝑋′ = 𝑋 + 𝑀𝑆𝐴(𝐿𝑁(𝑋))  (9) 

 

𝑋′′ = 𝑋′ + 𝐹𝐹𝑁(𝐿𝑁(𝑋))  (10) 

 

Where 𝑋  is the input of the patch embedding 

result, 𝑋′ is the output generated by the MSA layer, 

and  𝑋′′  is the output generated by the FFN layer. 

This encoder process ends by averaging all tokens 

using mean pooling. The output token from the 

encoder process is directly used for the self-learning 

path. The self-learning path in the architecture we 

developed adopts the FSFM framework [24] so that 

it consists of two branches of the path, namely the 

Masked Image Modeling (MIM) Branch and the 

Identity Distillation (ID) Branch. The MIM Branch 

focuses on understanding local visual structures 

through patch reconstruction while the ID Branch 

learns the global representation of facial identity 

through contrastive distillation between 

representations [24]. These two branches maximize 

the token representation capability of ViT, both 

locally and globally, to detect deepfakes more 

accurately and robustly. The results of the self-

learning process produce an output token 𝑇  where 

𝑇 ∈ ℝ𝐵×𝑁×𝐷. 

3.4 SE block token-wise 

Before entering the predictor section, the output 

token 𝑇 from the two self-learning branches (MIM 

and ID) is first recalibrated so that the model can pay 

attention to tokens that are more important in the 

context of deepfake detection. In addition, with 𝑇 

entering the SE Block Token-Wise, it is expected to 

improve classification performance by strengthening 

features that truly represent "real" or "fake". Similar 

to the previous SE Block, this block begins by 

squeezing using token-level pooling in Eq. (11). The 

goal is to extract global representations between 

tokens (not spatial as in CNN). 

 

𝑠 =
1

𝑁
∑ 𝑇:,𝑖,:

𝑁
𝑖=1  (11) 

 

Where s is the average embedding of all tokens in 

an image representing the global semantic summary 

(𝑠 ∈ ℝ𝐵×1×𝐷), 𝑁 is the number of tokens in an image, 

and 𝑇 is the input token. Next, 𝑠 is processed in the 

excitation section through two fully connected (FC) 

layers to generate token attention scores per 

dimension using Eq. (12). 

 

𝑎 = 𝜎(𝑊2 ∙ 𝑅𝑒𝐿𝑈(𝑊1 ∙ 𝑠))  (12) 

 

Where 𝑎 is the attention score value between 0 

and 1 ( 𝑎 ∈ ℝ𝐵×1×𝐷 ), 𝜎  is the sigmoid activation 

function, 𝑊1 is the down-dimension projection value 

where 𝑊1 ∈ ℝ𝐷×𝐷𝑟, 
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Table 1. Notation list 

Symbol Description 

𝐵 Batch size (number of input samples) 

𝐶 Number of channels in the input 

image (e.g., 3 for RGB) 

𝐻, 𝑊 Height and width of the input image 

𝐻′, 𝑊′ Downsampled height and width after 

convolution (see Eq. 1 and 2) 

𝑘 Kernel size for convolution operation 

𝑘′ Half kernel size used in depthwise 

convolution 

𝑋
∈  ℝ𝐵×𝐶×𝐻×𝑊 

Input tensor/image 

𝑌

∈ ℝ𝐵×𝐶′×𝐻′×𝑊′
 

Output feature map after convolution 

𝑌(𝑏, 𝑐, 𝑖, 𝑗) Value at position (i, j) and 

channel 𝑐 for batch 𝑏 in convolution 

output 

𝐾𝑐(𝑚, 𝑛) Depthwise filter for channel 𝑐, with 

size 𝑘 × 𝑘 

𝑊𝑐′ ,𝑐 Weight for pointwise convolution 

mapping channel 𝑐 to 𝑐′ 

𝑏𝑐′  Bias term for output channel 𝑐′  in 

pointwise convolution 

𝐹
∈ ℝ𝐵×𝐶×𝐻×𝑊 

Output tensor from CNN block 

(before SE Block) 

𝑠𝑐  Squeezed scalar for channel 𝑐  via 

Global Average Pooling (Eq. 5) 

𝑠 ∈ ℝ𝐵×𝐶×1×1 Squeezed vector over all channels 

 𝑧 ∈ ℝ𝐵×𝐶𝑟×1×1 Excitation intermediate vector after 

ReLU (Eq. 6) 

𝐶𝑟 Reduced channel size after first FC 

layer in SE Block 

𝑒 ∈ ℝ𝐵×𝐶×1×1 Channel-wise attention weights (Eq. 

7) 

𝜎 Sigmoid activation function 

𝛿 ReLU (or GELU) activation function 

  𝐹𝑠𝑒

∈ ℝ𝐵×𝐶×𝐻×𝑊 

Output of spatial SE Block after 

reweighting (Eq. 8) 

𝑁 Number of image patches (tokens) in 

ViT 

𝐷 Dimension of each token embedding 

𝑋 ∈  ℝ𝐵×𝑁×𝐷 Input to ViT encoder after patch 

embedding 

𝑋′ Output after MSA layer in ViT (Eq. 

9) 

𝑋′′ Output after FFN layer in ViT (Eq. 

10) 

𝑇 ∈ ℝ𝐵×𝑁×𝐷 Output token representation after 

self-learning branches 

𝑠 ∈ ℝ𝐵×𝐶×𝐷  Token-level average embedding (Eq. 

11) 

𝐷𝑟  Reduced token embedding 

dimension in SE Token-Wise block 

𝑊1 ∈ ℝ𝐷×𝐷𝑟  Weight matrix of first FC layer in SE 

Token-Wise block 

Symbol Description 

𝑊2 ∈ ℝ𝐷𝑟×𝐷 Weight matrix of second FC layer 

(expansion back to D) 

𝑎 ∈ ℝ𝐵×1×𝐷 Token-wise attention vector after 

excitation (Eq. 12) 

𝑍𝑠𝑒 ∈ ℝ𝐵×𝑁×𝐷 Recalibrated tokens using token-wise 

attention (Eq. 13) 

𝑦̂ Final output score (real or fake) from 

prediction layer 

⨀ Element-wise or broadcast 

multiplication operator 

 

 

𝑊2 is the back projection to the original dimension 

(excitation) where 𝑊2 ∈ ℝ𝐷𝑟×𝐷 , 𝐷𝑟  is the reduced 

token embedding dimension where 𝐷𝑟 =
𝐷

𝑟
, and r is 

the reduction ratio. Through these two FC layers, the 

token-wise Block SE is able to learn the important 

part of each dimension of the token embedding and 

provide focused reinforcement. After obtaining the 

attention value from the excitation result, all 𝑇 tokens 

are recalibrated through Eq. (13). 

 

𝑍𝑠𝑒 = 𝑇⨀ 𝑎  (13) 

 

Where 𝑍𝑠𝑒 is the token recalibrated by 𝑎 and ⨀ is 

the broadcast multiplication between tokens and 

attention vectors. The output of  𝑍𝑠𝑒is then sent to the 

predictor section which acts as the final classification 

component that changes the representation of the 

token processed by Vision Transformer into a 

probability score whether the input is a real face or a 

digitally manipulated face (deepfake). 

The use of SE blocks in both the spatial (CNN) 

and token (ViT) domains is intended to perform 

hierarchical attention calibration. Spatial SE in the 

CNN block enhances local features relevant to 

forgery artifacts (e.g., texture or edge 

inconsistencies), while token-wise SE in ViT 

emphasizes global semantic cues (e.g., identity 

mismatch). This dual strategy acts as a progressive 

filter first refining low-level noise, then reinforcing 

high-level semantics thus reducing overfitting and 

enhancing generalization. By applying channel-wise 

weighting (in Eq. (8)) and token-wise recalibration 

(in Eq. (13)), the model avoids feature redundancy 

and learns complementary information from both 

domains. This nested attention mechanism ensures 

more robust and discriminative representations for 

deepfake detection. 

All notations are consistent throughout the 

equations to ensure clarity in representing the 

intermediate calculations of the VERITAS 

architecture as shown in Table 1. 
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4. Experiments 

Given that VERITAS combines CNN, vision 

transformer, and SE block components into one unit, 

this causes uncertainty in selecting the right optimizer 

method. Therefore, we conducted a small-scale test 

by training the VERITAS model using several 

optimizer methods. This optimizer selection test uses 

the FaceForensics++ dataset [27] with an image size 

of 224×224, a batch size of 64, an epoch number of 

10, a learning rate of 25e-5, and without using a 

scheduler. The test results are shown in Table 2. 

The experimental results in Table 2 show that the 

implementation of AdamW optimizer on the 

VERITAS architecture provides the best 

performance compared to other methods. This is in 

line with various previous studies that prove the 

suitability of AdamW for Transformer-based models 

due to the use of weight decay that is separate from 

parameter updates [28], so that it can improve model 

regularization and generalization [29]–[31]. To 

clarify the results of the effectiveness of each 

optimizer, Fig. 2 shows a decrease in the loss value 

and an increase in the AUC validation value. 

However, the convergence speed of AdamW is 

still below RAdam. This is evidenced by RAdam 

reaching convergence in the 2nd epoch. In addition, 

in Fig. 2(a), RAdam has a more stable loss reduction 

compared to the reduction in AdamW. Although 

RAdam has quite good speed and stability, to train 

the VERITAS model we use the AdamW optimizer 

because the final results are more optimal. 

The model is trained using the ViT-B/16 

backbone, using the VF2 ViT-B model pretrain [24], 

and input images of size 224×224. During training, 

75% of patches are masked in the Masked Image 

Modeling (MIM) branch to force the model to 

reconstruct missing tokens, while the Identity 

Distillation (ID) branch uses contrastive learning 

with augmented views of the same image, leveraging 

a temperature of 0.1. To enhance reproducibility, we 

provide the following simplified pseudo-code based 

on FSFM framework [24] in Table 3. 

Training is performed with a batch size of 64, 

learning rate of 2.5e-5, and 100 epochs with 5 warm-

up epochs, using FaceForensics++ (FF++, c23/HQ 

version) [27] as training data. This dataset comes 

from video data that is converted into images per 

frame with a total of 127848. We use a ratio 

distribution composition of 70% for training data, 

15% for test data, and 15% for validation data with 

random shuffling. The model is evaluated on the 

unseen datasets CelebDF-v2 (CDFV2) [32] and Wild 

Deep-fake (WDF) [33]. using the Area Under Curve 

(AUC) metric at both the frame-level and video-level. 

Table 2. Effectiveness of each optimizer on the 

VERITAS architecture 

Optimizer AUC 
Final 

Loss 

Convergence Speed 

SGD 47.3% 0.857 Slow (takes more 

than 10+ epochs) 

RMSProp 41.8% 0.910 Up and Down 

Adam 53.1% 0.846 Stable at the 4th 

epoch 

RAdam 53.6% 0.782 Stable at the 2nd 

epoch 

AdamW 55.2% 0.725 Stable at the 3rd 

epoch 

 

 

 
(a) 

 

 
(b) 

Figure. 2: (a) Reduction in loss value of each optimizer 

method and (b) Increase in AUC value (%) of each 

optimizer method 

 

 

The evaluation results are shown in Tables 4 and 

Table 5. 

In evaluating the performance of VERITAS, we 

conducted cross-dataset testing on Celeb-DF v2 and 

WildDeepfake at the frame and video levels. The 

results show that VERITAS consistently achieves the 

highest AUC compared to previous methods with 

87.45% and 88.30% at the frame level and 95.56% 

and 87.75% at the video level. 
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Table 3. Pseudo-Code for Self-Supervised Learning 

Branches 

Algorithm 1: Self-Supervised Branches in VERITAS 

 

Input: Image batch X 

1. Patch Embed: Z ← PatchEmbed(X) # Z ∈ 
R^{B×N×D} 

2. MIM Branch: 

 a. Mask 75% of tokens:  

      Z_masked ← mask(Z, ratio=0.75) 

 b. Reconstruct tokens:  

      Z_recon ← Decoder(Z_masked) 

 c. Compute loss:  

      L_MIM ← MSE(Z_recon, Z_original) 

 

3. ID Branch: 

  a. Generate two augmentations:  

      Z1, Z2 ← augment(Z) 

  b. Normalize tokens:  

      Z1_norm, Z2_norm ← normalize(Z1), 

normalize(Z2) 

  c. Compute contrastive loss:  

      L_ID ← NT_Xent(Z1_norm, Z2_norm, τ=0.1) 

 

4. Classifier:  

   y_hat ← Predictor(Z) 

5. Supervised loss:  

   L_cls ← Cross_Etropy(y_hat, y_true) 

 

Output: Total loss L_total ← L_cls + L_MIM + L_ID 

 

 

This improvement is due to the VERITAS 

architectural design that combines local feature 

extraction through CNN blocks and global relation 

modeling through ViT which is strengthened by the 

attention calibration mechanism using SE Block in 

the spatial and token domains. The dual-branch 

strategy with Masked Image Modeling and Identity 

Distillation in the transformer block section that 

adopts the FSFM framework [24] further enhances 

the semantic representation of the model. Thus, 

VERITAS is able to detect deepfakes more 

effectively in data distributions that are different from 

the training data. 

We provide an ablation study by comparing 

several variants of the VERITAS model component 

fractions based on the Area Under Curve (AUC) 

performance and confusion metric on the 

FaceForensics++ (FF++) validation data [27]. The 

compared models include the baseline FSFM [24], 

Transformer combined with SE Block in the token 

domain (TF+SE), CNN followed by Transformer 

without SE Block (CNN+TF), CNN with SE Block 

in the spatial domain before Transformer 

(CNN+SE+TF), CNN with Transformer combined  

 

Table 4. Cross-dataset evaluation on deepfake detection 

for frame-level comparison 

Model Train set 
AUC 

CDFV2 WDF 

OST [34] FF++ 74.80% - 

FInfer [35] FF++ 70.60% 69.46% 

PEL [36] FF++ 69.18% 67.39% 

SLADD [37] SD 79.70% - 

RECCE [38] FF++ 68.71% 64.31% 

UIA-ViT [39] FF++ 82.41% - 

UAL [40] FF++ 82.84% 70.13% 

NoiseDF [41] FF++ 75.89% - 

GS [42] FF++ 84.97% - 

UCF [43] FF++ 82.40% - 

SFDG [44] FF++ 75.83% 69.27% 

IID [45] FF++ 83.80% - 

LSDA [46] FF++ 83.00% - 

FSFM [24] FF++ 85.05% 85.26% 

VERITAS FF++ 87.45% 88.30% 

 

Table 5. Cross-dataset evaluation on deepfake detection 

for video-level comparison 

Model 
Train 

Set 

AUC 

CDFV2 WDF 

SBIs [47] SD 93.18% - 

RealForensics [18] FF++ 86.90% - 

HCIL [48] FF++ 79.00% - 

SeeAble [49] SD 87.30%  

Exploring Temporal 

Coherence [19] 
FF++ 86.9% - 

TALL [50] SD 90.79% - 

AUNet [51] SD 92.77% - 

SLF [52] FF++ 89.00% - 

MLR [53] FF++ 91.56% 73.41% 

LAA-Net/BI [54] SD 86.28% 57.13% 

LAA-Net/SBI [54] SD 95.40% 80.03% 

LSDA [46] FF++ 91.10% - 

FPG [55] SD 94.49% - 

NACO [56] FF++ 89.50% - 

FSFM [24] FF++ 91.44% 86.96% 

VERITAS FF++ 95.56% 87.75% 

 
Table 6. The results of the ablation study on the FF++ 

validation data were measured using AUC (%) at the 

frame-level and video-level and confusion metric. 

Model Variant 

AUC 

Frame

-Level 

(%) 

AUC 

Video-

Level 

(%) 

Preci

sion 

(%) 

Recal

l (%) 

F1-

Scor

e 

(%) 

FSFM 

(Baseline) [24] 

76.39 82.31 80.15 78.63 79.38 

TF+SE 72.43 79.17 68.51 74.39 71.33 

CNN+TF 74.31 80.58 70.40 77.83 73.93 

CNN+SE+TF 76.83 83.29 72.17 80.48 76.10 

CNN+TF+SE 77.92 85.24 74.92 82.33 78.45 

CNN+SE+TF 

+SE 

83.79 87.15 80.02 88.61 84.10 
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with SE Block in the token domain (CNN+TF+SE), 

and the complete configuration of CNN+SE+TF+SE 

(full VERITAS architecture). The results of the study 

are shown in Table 6. 

The results in Table 6 show that the baseline 

FSFM [24] obtained AUC values of 76.39% for 

frame-level and 82.31% for video-level. The 

precision of this baseline model is 80.15%, and recall 

is 78.63%, resulting in an F1-score of 79.38%. This 

model performs decently but still leaves room for 

improvement, especially in the recall, reflecting its 

ability to identify manipulated instances correctly. 

When using only Transformer with SE Block 

(TF+SE), the performance of the model decreased to 

an AUC of 72.43% at the frame-level and 79.17% at 

the video-level. The precision dropped to 68.51%, 

and recall slightly increased to 74.39%, resulting in 

an F1-score of 71.33%. This indicates that the 

absence of local features from CNN weakens the 

model’s ability to capture manipulation artifacts 

effectively, leading to a reduction in both precision 

and recall. Adding CNN features to the Transformer 

(CNN+TF) improves the model’s performance to 

AUC values of 74.31% and 80.58% at the frame- and 

video-levels, respectively. The precision increases to 

70.40%, and recall improves to 77.83%, leading to a 

higher F1-score of 73.93%. The inclusion of CNN 

features helps the model better detect local 

manipulation artifacts, although there’s still a gap in 

the model's recall performance compared to other 

configurations. By inserting the SE Block before the 

Transformer (CNN+SE+TF), the model achieves 

AUC values of 76.83% (frame-level) and 83.29% 

(video-level). The precision increases to 72.17%, and 

recall improves significantly to 80.48%, with an F1-

score of 76.10%. 

 

 

 
Figure. 3 Visualization of deepfake prediction results 

using various VERITAS variants on the CDFV2 dataset 

 

 

 
Figure. 4 Comparison of inference time of each VERITAS model variant 



Received:  May 29, 2025.     Revised: July 20, 2025.                                                                                                        481 

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025           DOI: 10.22266/ijies2025.0930.29 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

This demonstrates that spatial feature calibration with 

SE Block enhances both the model's ability to focus 

on important local features and its overall 

performance. Placing the SE Block after the 

Transformer (CNN+TF+SE) further improves 

performance with an AUC of 77.92% for frame-level 

and 85.24% for video-level. Precision increases to 

74.92%, and recall increases to 82.33%, resulting in 

an F1-score of 78.45%. This configuration benefits 

from token-wise attention that enriches semantic 

information, improving both precision and recall. The 

full configuration (CNN+SE+TF+SE) produces the 

best performance, with AUC values of 83.79% and 

87.15%. The precision reaches 80.02%, and recall 

improves significantly to 88.61%, leading to the 

highest F1-score of 84.10%. This final configuration 

demonstrates the importance of applying multilevel 

attention to both spatial and token domains. 

The model achieves the most robust 

representation for deepfake detection, reflecting its 

ability to generalize across different types of 

manipulations and conditions. In addition, in terms of 

qualitative quality, the detection produced by the full 

configuration shows better accuracy than other 

variants. This reinforces the importance of combining 

both spatial and token attention mechanisms for 

improved deepfake detection. This is evidenced in 

Fig. 3 which shows a comparison of deepfake 

detection results visualized using the GradCam 

method [57].  However, due to the addition of new 

blocks, this causes the VERITAS inference time to be 

slightly slower as shown in Fig. 4. 

5. Conclusion 

This study proposes and evaluates VERITAS, a 

deepfake detection architecture that combines CNN, 

Vision Transformer (ViT), and adaptive attention 

mechanisms through Squeeze-and-Excitation (SE) 

Blocks in both spatial and token domains. 

Experimental results demonstrate that VERITAS 

significantly outperforms various state-of-the-art 

methods, achieving AUC values of 83.79% (frame-

level) and 87.15% (video-level), compared to the 

FSFM baseline’s AUC of 76.39% and 82.31%, 

respectively. In addition, precision (80.02%), recall 

(88.61%), and F1-score (84.10%) results further 

validate the superior detection performance of 

VERITAS, especially in identifying manipulated 

faces while maintaining a low false-positive rate. The 

ablation study confirms that the adaptive application 

of SE Block at both spatial and token levels 

significantly enhances the model’s ability to detect 

facial manipulations by improving semantic 

representation and feature refinement.  

The integration of two self-supervised learning 

branches Masked Image Modelling (MIM) and 

Identity Distillation (ID) has shown to improve the 

model's generalization and resilience across different 

data distributions, leading to more accurate and 

robust detection of deepfake content. Despite these 

advancements, VERITAS still faces challenges in 

inference time efficiency due to the complexity of its 

architecture. Future work should focus on optimizing 

the model for real-time deployment, perhaps through 

lightweight transformer techniques, knowledge 

distillation, or more efficient attention mechanisms 

such as sparse attention. Furthermore, expanding the 

testing to include multimodal audio-visual 

manipulation and developing a continuous learning-

based detection system would strengthen the 

adaptability of VERITAS and make it more suitable 

for deployment in dynamic real-world environments. 

In addition, model testing through perturbation 

testing such as compression artifacts, frame drops, or 

lighting variations is needed to test the model's 

robustness to various real-world conditions. 
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