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Abstract: The increasingly massive proliferation of deepfake content poses a serious threat to the authenticity and
trustworthiness of digital information. This study proposes VERITAS, a deepfake detection framework that integrates
CNN-based feature extraction, Vision Transformer (ViT) architecture, and multilevel Squeeze-and-Excitation (SE)
blocks to adaptively strengthen spatial and token attention. To enhance generalization across datasets, VERITAS also
adopts a dual-branch self-learning mechanism consisting of Masked Image Modeling (MIM) and Identity Distillation
(ID) based on the Face Security Foundation Model (FSFM) framework. Experimental results show that VERITAS
achieves AUC scores of 87.45% and 88.30% on the Celeb-DF v2 and WildDeepfake datasets at frame-level, and
95.56% and 87.75% at video-level, respectively, outperforming various state-of-the-art methods. Ablation studies
confirm the significant contributions of each component of the architecture. Despite its strong detection performance,
inference speed remains a challenge, so further research directions include optimizing the model for real-time
deployment. This research contributes to building a robust and adaptive deepfake detection system across domains.

Keywords: CNN, Deepfake detection, FSFM framework, Squeeze-and-excitation, Vision transformer.

1. Introduction

Deepfake technology powered by generative
adversarial networks (GANs) and deep learning
models has revolutionized content creation by
enabling the creation of highly realistic synthetic
media [1]. However, the misuse of this technology for
the production of misleading content, political
propaganda, and identity fraud presents serious
challenges. To overcome these negative impacts, a
reliable deepfake detection system is needed [2].
Despite efforts to develop various solutions, there are
still some major open issues related to hidden
deepfakes. CNN-based models tend to focus too
much on a particular form of falsification, resulting
in poor performance when tested on different datasets
[3]. Furthermore, most current detection models
remain vulnerable to, for example, video
compression and noise addition, which, from the
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perspective of model performance in real life, make
them very poor in operation [4]. Another difficult
problem is how to represent features. Convolutional
Neural Networks (CNN) are known to be very good
at capturing local spatial features, but very poor at
capturing global spatial relationships needed to detect
subtle discrepancies that are characteristic of
deepfake videos [5].

Vision Transformer (ViT) has attracted much
interest due to its ability to capture global
dependencies of an image, unlike CNNs that are more
oriented towards local features [5]. Despite these
advances, one of the critical drawbacks of ViT
remains its reliance on large datasets to effectively
train the model and avoid overfitting. Thus,
optimization strategies are needed to make ViT-based
models more efficient in feature extraction on limited
datasets.  Several researchers have applied
transformer-based approaches to deepfake detection,
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such as Hybrid Transformer Network [6] that utilizes
CNN as a feature extractor before the data is
transformed by the transformer. In addition,
Transformer-Based Feature Compensation and
Aggregation [7] designs blocks to compensate for the
local feature scope so that the model can better detect
subtle fraud patterns. DSViT: An Enhanced
Transformer Model [8] also proposes SC-
Convolution with ViT to improve detection accuracy.
Hybrid approaches combining CNN and Transformer
have been shown to improve the detection accuracy
of deepfake videos [9].

In previous studies, we found that CNN-based
models are quite good at extracting local features, but
not so good in the context of global information. On
the other hand, transformer models such as ViT are
considered superior in capturing further spatial
dependencies, but are highly dependent on the
guantity of data and available computational
capabilities [10]. Several studies have also indicated
that CNN-based or ViT-based approaches
individually are not good enough in dealing with
increasingly complex deepfakes [11].

However, these studies have several limitations,
such as the need for large datasets, sensitivity to noise,
and lack of adaptive techniques for different types of
deepfakes. To address some of the major
shortcomings of previous studies, this study proposes
a hybrid CNN-Transformer deepfake detection
model with Squeeze-and-Excitation Attention (SE-
Blocks). With SE-Blocks, the model becomes more
sensitive to relevant features, unlike previous efforts
where large datasets are required for VIiT to learn
effectively. As cited in [12], this study also uses self-
supervised contrastive learning and adversarial
training to improve model generalization and reduce
vulnerability to adversarial manipulation. It is
expected that with this approach, the proposed model
will be able to improve the effectiveness of deepfake
detection compared to current methods in
generalizing across datasets and in mitigating
adversarial attacks. Therefore, this research makes a
significant contribution towards the development of a
more reliable deepfake detection system that can
function under a variety of real-world conditions.

2. Related works

In recent years, deepfakes have developed
significantly, allowing for face and voice
manipulation that is almost undetectable by humans.
This development raises serious challenges in digital
security, privacy, and disinformation [13]. In an
effort to address this, various detection approaches
have been proposed, ranging from conventional
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visual feature-based methods to deep learning models
such as CNN [14]. In addition, Vision-Transformer
(ViT)-based approaches are gaining more attention
due to their ability to capture spatial dependencies
more broadly [15]. This section discusses in detail the
latest CNN and transformer-based approaches that
are the foundation for the development of the
VERITAS (Vision-based Excitation and Robust
Intelligence for Transformer-Assisted Deepfakes
Detection) system.

The remainder of this paper is organized as
follows. Section 2 reviews related works regarding
CNN-based and Transformer-based approaches for
deepfake detection. Section 3 presents the proposed
VERITAS architecture in detail, including CNN
blocks, VIiT components, and SE blocks. Section 4
discusses the experimental setup, evaluation metrics,
comparative results, and ablation study of the model
architecture. Finally, Section 5 concludes the paper
and suggests future research directions.

2.1 CNN based approach

The architecture in building deepfake detection
initially relied heavily on CNN because of its ability
to extract spatial features from facial images. One
approach that uses CNN is EfficientNetB4 by
modifying the attention layer and siamese training
[16]. This strategy has been shown to improve
performance in detecting facial manipulation by
deepfake models. Other studies highlight the
challenges in detecting deepfakes with both low and
high quality simultaneously. The QAD (Quality-
Agnostic Deepfake detection) model was developed
with an intra-model collaborative learning approach
and maximizes the dependency between feature
representations  using  the  Hilbert-Schmidt
Independence Criterion (HSIC) [17]. This technique
combines Fast Fourier Transform (FFT) and Local
Binary Pattern (LBP) to detect traces of manipulation
in the texture and frequency domains. Research [18]
introduced RealForensics which tries to generalize
detection to manipulation that has never been seen
before by utilizing original videos of talking faces.
Through self-supervised cross-modal learning, this
model learns from the natural alignment between
visual and audio information to improve
generalization capabilities. However, CNN-based
models often struggle to generalize across datasets
and are prone to overfitting. They focus on superficial
visual cues and are easily fooled by high-quality
manipulations or compression artifacts.
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2.2 Transformer based approach

The increasing need to understand temporal
dependencies in deepfake videos has led to
Transformer-based architectures being  widely
applied due to their performance. Research [19]
combines Fully Temporal Convolution Network
(FTCN) and Temporal Transformer to capture
temporal coherence more deeply. The use of FTCN
has succeeded in extracting facial motion patterns
efficiently using small spatial kernels and large
temporal kernels, thus showing its superiority in
detecting new types of manipulation. Another study
by [20] combined CNN with Vision Transformer
(ViT) which was used to detect facial parts such as
eyes and nose, and unified predictions from various
facial parts using majority voting. This model shows
the potential superiority of deepfake detection models
built by integrating CNN and Transformer.
Furthermore, the GenConViT model [21] comes by
combining ConvNeXt and Swin Transformer for
visual feature extraction and Autoencoder and
Variational Autoencoder to learn latent distributions.
This model shows high performance in detecting
deepfakes across various datasets, although it still
faces challenges in generalizing to data outside the
distribution. In addition, there is CViT2 [22] which
combines CNN and Vision Transformer in an
attention-based detection system. This model shows
rapid developments in forensic applications and
misinformation tracking. Nevertheless, Transformer-
based approaches require large amounts of data for
effective training and are computationally intensive.
Furthermore, ViT-based models may underperform
without sufficient inductive biases when trained on
small or imbalanced datasets.

SE Block

CNN Block Spatial
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2.3 Challenges and motivations for VERITAS

Although many approaches have been developed,
challenges and limitations in terms of efficiency,
generalization to new manipulations, and robustness
to wvisual disturbances remain major issues.
VERITAS is designed to address these challenges by
integrating CNN-Transformer architecture SE-
Blocks in an integrated manner. Thus creating a
powerful combination of local and global
representations for the robustness needs of the
detection system. By leveraging the advantages of
CNN and Transformer techniques, and applying
adaptive regularization and attention strategies,
VERITAS is expected to be able to improve efficient,
accurate, and robust deepfake detection against
disturbances and data distribution variations.

3. Proposed method

In accordance with the results of the analysis
related to the need for solutions to the research
problems raised in this study, we provide a solution
to the problem by developing a deepfake detection
model consisting of a combination of CNN with
transformers and enhanced with the addition of SE-
Block. Fig. 1 shows the design of the deepfake
detection architecture that we developed.

VERITAS is developed through three main
continuous parts that combine spatial feature
extraction from Convolutional Neural Network
(CNN), global context modeling from Vision
Transformer (ViT), and channel attention module

through  Squeeze-and-Excitation  (SE)  Block

introduced by [23].
SE Block
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In addition, this architectural model is strengthened
through two self-learning branches in the transformer
part with the aim of improving visual representation
in a generalist manner based on the framework of
FSFM [24].

3.1 CNN block

The CNN block at the beginning of the VERITAS
architecture acts as a feature extractor that focuses on
processing local feature representations from images.
Where the input image in question contains data in
the form of batch values (B), number of channels
(RGB), image height (H), and image width (W) so
that the input becomes Xe RABx3xHxW)The
feature extraction processing circuit in the
architecture we designed adopts the ConveXt
operation [25] so that it is lighter and more effective
in handling tasks with large amounts of data. When
X enters this block, the first step is to downsample to
reduce the spatial dimension which aims to
aggressively reduce computational costs. This
downsampling operation involves a convolution
layer with a 4x4 kernel and stride 4. Thus producing
spatial output sizes H' and W"' based on Egs. (1) and

).

H =22 +1 L)
w' == +1 @)

We use an input image size of 224x224, resulting
in a spatial output size of H' and W' of 56 and a
number of feature channels of 64 defined as Y €
REX64x56X56 After obtaining these sizes, we
continue by normalizing using the batch
normalization method and activating using the GELU
function. The output of this process then enters the
depthwise operation section using Eq. (3).

Y(b,c,i,j) =
fnz—k’ ﬁz—k’ K.(m,n)X(b,c,i+m,j+n) (3)

With k' = k/2 and k is the kernel size used for
the convolution process. Y (b, c,i,j) is the output of
the depthwise operation at position (i, j) and channel
c for the bth sample. K.(m, n) is the depthwise filter
for channel c that has a size of kxk with (m,n) as the
filter index that runs from —k’ to +k’. X(b,c,i +
m,j +n) is the input pixel value at position (i +
m,j +n) on channel ¢ for the bth sample. Each
output Y produced from this operation is the result of
the multiplication and addition of the filter elements
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K. with the input X around (i,j). The process on
each channel is carried out independently so as to
minimize the increase in the number of parameters
due to the addition of this CNN block. The operation
on this CNN block ends with a pointwise operation
that is tasked with combining information between
channels at each spatial position using Eq. (4).

Y(bc'i,j) =Leca Wer e X(b,c,ij) + b (4)

Where Y (b, c',i,j) is the output value generated
by the pointwise convolution at position (i,j) in
channel ¢’ for sample b, W . is the weight for the
pointwise layer with size 1 x 1 that connects the
input of channel ¢ to channel ¢', X(b,c,i,j) is the input
generated from the depthwise operation in the form
of REXCXHXW ' p ;s the bias used for the output of
channel ¢" and ¢’ is the number of output channels
from pointwise. The fusion of information from each
channel is done by performing a linear combination
using the weight W ., so that an integrated channel
space transformation occurs between global and local
features.

3.2 SE block spatial

This section consists of three main parts, namely
squeeze, excitation, and reweighting with the aim of
adaptively recalibrating the channel attention based
on the global context of each spatial feature extracted
by the CNN block [23]. The output of the CNN block
in the form of a 4D spatial tensor denoted as feature
F (where F € RBXC*HXW) js reduced to one vector
per channel using the global average pooling (GAP)
method [26] in Eq. (5).

1
Sc = Hw ?:12}4/:1 Fc,i,j, vce{l,..,c} (5

Where s, represents the average intensity of the
c-th channel, H and W are the spatial dimensions of
the image, and F; ; is the output value of the CNN
block. The result of this calculation produces a tensor
s (where s € REXC*1x1) " Fyrthermore, the global
squeezed vector (s) enters the excitation section
which has two fully-connected layers with each
having ReLU and Sigmoid activation functions as
shown by Egs. (6) and (7).

z = ReLU(Convl X 1eqyce(s)), z €
RBXCTXIXI (6)
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e=o0 (Convl X 1expand(z)),
e€E RBXCxlxl (7)

With z is the activation result value by the ReLU
function, C,. = C/r where r is the reduction ratio, e
is the attention vector per channel, and o is the
sigmoid activation function in limiting the output in
the range [0,1]. This section serves to calculate the
channel attention score nonlinearly in capturing the
dependency between channels. After getting the
value of e, the next step is to recalibrate the initial
feature F by performing channel-wise multiplication
on Eq. (8).

Fse — FG)e, Eee € ]RBXCXHXW (8)

Where © is the element-wise broadcast
multiplication along H X W which is done by
multiplying each channel ¢ of F by the
corresponding scalar value e.. Thus, SE Block
Spatial effectively improves the quality of the local
representation of CNN results which will later be
projected into tokens through patch embedding
operations for the needs of transformer input in the
next block.

3.3 Vision transformer block

The ViT block section of the architecture we
designed has a function not only to act as a feature
encoder, but is also equipped with two self-learning
paths that function to maximize the token
representation capability of ViT, both locally and
globally. The SE Block Spatial (F,,) feature results
will be converted into token input through the patch
embedding process to produce tensor input X €
RBXNXD \where B is the number of batches, N is the
number of patches, and D is the dimension of the
token embedding. After that, the patch embedding
input results will enter the transformer encoder,
where the tensor input X will go through several
layers. The layer starts with Multi-Head Self-
Attention (MSA) which allows the model to focus on
different parts in one token sequence. Furthermore,
the output results from this MSA are forwarded to the
feed-forward network (FFN) which is equipped with
the GELU activation function. A normalization (LN)
layer is added to the MSA and FFN layers so that this
process can be formulated as Egs. (9) and (10).

X' =X + MSA(LN(X)) 9)

X" =X"+FFN(LN(X)) (10)
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Where X is the input of the patch embedding
result, X' is the output generated by the MSA layer,
and X'"'is the output generated by the FFN layer.
This encoder process ends by averaging all tokens
using mean pooling. The output token from the
encoder process is directly used for the self-learning
path. The self-learning path in the architecture we
developed adopts the FSFM framework [24] so that
it consists of two branches of the path, namely the
Masked Image Modeling (MIM) Branch and the
Identity Distillation (ID) Branch. The MIM Branch
focuses on understanding local visual structures
through patch reconstruction while the 1D Branch
learns the global representation of facial identity
through contrastive distillation between
representations [24]. These two branches maximize
the token representation capability of ViT, both
locally and globally, to detect deepfakes more
accurately and robustly. The results of the self-
learning process produce an output token T where
T e ]RBXNXD.

3.4 SE block token-wise

Before entering the predictor section, the output
token T from the two self-learning branches (MIM
and ID) is first recalibrated so that the model can pay
attention to tokens that are more important in the
context of deepfake detection. In addition, with T
entering the SE Block Token-Wise, it is expected to
improve classification performance by strengthening
features that truly represent "real" or "fake". Similar
to the previous SE Block, this block begins by
squeezing using token-level pooling in Eq. (11). The
goal is to extract global representations between
tokens (not spatial as in CNN).

1
s=13NT,, (1)

Where s is the average embedding of all tokens in
an image representing the global semantic summary
(s € REX1XD) N is the number of tokens in an image,
and T is the input token. Next, s is processed in the
excitation section through two fully connected (FC)
layers to generate token attention scores per
dimension using Eq. (12).

a=oc(W,-ReLUW, -s)) (12)
Where a is the attention score value between 0
and 1 (a € REX™D) ¢ is the sigmoid activation

function, W; is the down-dimension projection value
where W, € RP*Pr,
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Table 1. Notation list Symbol Description
Symbol Description W, € RPr*P | Weight matrix of second FC layer
B Batch size (number of input samples) (expansion back to D)
C Number of channels in the input a € REX1D | Token-wise attention vector after
image (e.g., 3 for RGB) excitation (Eq. 12)
HW Height and width of the input image Z,, € REXNXD | Recalibrated tokens using token-wise
H W Downsampled height and width after attention (Eq. 13)
convolution (see Eq. 1 and 2) % Final output score (real or fake) from
k Kernel size for convolution operation prediction layer
k' Half kernel size used in depthwise ) Element-wise or broadcast
convolution multiplication operator
X Input tensor/image
e RBXCXHXW
Y Output feature map after convolution W, is the back projection to the original dimension
€ REXC/xH W’ (excitation) where W, € RP*P D. is the reduced
Y(b,c,i,j) Value at position (i, j) and token embedding dimension where D,. = % and r is
channel ¢ for batch b in convolution the reduction ratio. Through these two FC layers, the
= %”tptt:]t T T e DEYYIR token-wise Block SE is able to learn the important
c(m.n) epthwise Tifter Tor channet ¢, wi part of each dimension of the token embedding and
sizek Xk . - .
- —— - provide focused reinforcement. After obtaining the
W, Weight for pointwise convolution . I
¢ mapping channel ¢ to ¢ attention value from the excitation result, all T tokens
b Bias term for output channel ¢’ in are recalibrated through Eq. (13).
pointwise convolution _
F Output tensor from CNN block Zse =TOa (13)

€ RBXCXHXW

(before SE Block)

Se

Squeezed scalar for channel ¢ via
Global Average Pooling (Eq. 5)

S E RBXCXIXl

Squeezed vector over all channels

7 € RBXCrx1x1

Excitation intermediate vector after
ReLU (Eq. 6)

Cr

Reduced channel size after first FC
layer in SE Block

e €E RBXCXle

Channel-wise attention weights (Eq.
7)

o Sigmoid activation function
) ReLU (or GELU) activation function
Fy, Output of spatial SE Block after
€ REXCXHXW | reweighting (Eq. 8)
N Number of image patches (tokens) in
ViT
D Dimension of each token embedding
X € RB*NXD | Input to VIiT encoder after patch
embedding
X' Output after MSA layer in ViT (Eq.
9)
X" Output after FFN layer in ViT (Eq.
10)
T € REXNXD | Output token representation after
self-learning branches
s € RB*XD | Token-level average embedding (Eq.
11)
DT Reduced token embedding
dimension in SE Token-Wise block
W, € RP*Pr | Weight matrix of first FC layer in SE

Token-Wise block
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Where Z, is the token recalibrated by a and © is
the broadcast multiplication between tokens and
attention vectors. The output of Z,is then sent to the
predictor section which acts as the final classification
component that changes the representation of the
token processed by Vision Transformer into a
probability score whether the input is a real face or a
digitally manipulated face (deepfake).

The use of SE blocks in both the spatial (CNN)
and token (ViT) domains is intended to perform
hierarchical attention calibration. Spatial SE in the
CNN block enhances local features relevant to
forgery artifacts (e.g., texture or edge
inconsistencies), while token-wise SE in VIiT
emphasizes global semantic cues (e.g., identity
mismatch). This dual strategy acts as a progressive
filter first refining low-level noise, then reinforcing
high-level semantics thus reducing overfitting and
enhancing generalization. By applying channel-wise
weighting (in Eq. (8)) and token-wise recalibration
(in Eqg. (13)), the model avoids feature redundancy
and learns complementary information from both
domains. This nested attention mechanism ensures
more robust and discriminative representations for
deepfake detection.

All notations are consistent throughout the
equations to ensure clarity in representing the
intermediate  calculations of the VERITAS
architecture as shown in Table 1.
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4. Experiments

Given that VERITAS combines CNN, vision
transformer, and SE block components into one unit,
this causes uncertainty in selecting the right optimizer
method. Therefore, we conducted a small-scale test
by training the VERITAS model using several
optimizer methods. This optimizer selection test uses
the FaceForensics++ dataset [27] with an image size
of 224x224, a batch size of 64, an epoch number of
10, a learning rate of 25e-5, and without using a
scheduler. The test results are shown in Table 2.

The experimental results in Table 2 show that the
implementation of AdamW optimizer on the
VERITAS architecture  provides the  best
performance compared to other methods. This is in
line with various previous studies that prove the
suitability of AdamW for Transformer-based models
due to the use of weight decay that is separate from
parameter updates [28], so that it can improve model
regularization and generalization [29]-[31]. To
clarify the results of the effectiveness of each
optimizer, Fig. 2 shows a decrease in the loss value
and an increase in the AUC validation value.

However, the convergence speed of AdamW is
still below RAdam. This is evidenced by RAdam
reaching convergence in the 2nd epoch. In addition,
in Fig. 2(a), RAdam has a more stable loss reduction
compared to the reduction in AdamW. Although
RAdam has quite good speed and stability, to train
the VERITAS model we use the AdamW optimizer
because the final results are more optimal.

The model is trained using the ViT-B/16
backbone, using the VF2 ViT-B model pretrain [24],
and input images of size 224x224. During training,
75% of patches are masked in the Masked Image
Modeling (MIM) branch to force the model to
reconstruct missing tokens, while the Identity
Distillation (ID) branch uses contrastive learning
with augmented views of the same image, leveraging
a temperature of 0.1. To enhance reproducibility, we
provide the following simplified pseudo-code based
on FSFM framework [24] in Table 3.

Training is performed with a batch size of 64,
learning rate of 2.5e-5, and 100 epochs with 5 warm-
up epochs, using FaceForensics++ (FF++, c23/HQ
version) [27] as training data. This dataset comes
from video data that is converted into images per
frame with a total of 127848. We use a ratio
distribution composition of 70% for training data,
15% for test data, and 15% for validation data with
random shuffling. The model is evaluated on the
unseen datasets CelebDF-v2 (CDFV2) [32] and Wild
Deep-fake (WDF) [33]. using the Area Under Curve
(AUC) metric at both the frame-level and video-level.
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Table 2. Effectiveness of each optimizer on the
VERITAS architecture

Optimizer | AUC Iilg;l Convergence Speed
SGD 47.3% | 0.857 Slow (takes more
than 10+ epochs)
RMSProp | 41.8% | 0.910 Up and Down
Adam 53.1% | 0.846 Stable at the 4th
epoch
RAdam | 53.6% | 0.782 Stable at the 2nd
epoch
AdamW | 55.2% | 0.725 Stable at the 3rd
epoch
2 4 Epcch 6 8 10
(a)
. 4 Epoch ; =
(b)

Figure. 2: (a) Reduction in loss value of each optimizer
method and (b) Increase in AUC value (%) of each
optimizer method

The evaluation results are shown in Tables 4 and
Table 5.

In evaluating the performance of VERITAS, we
conducted cross-dataset testing on Celeb-DF v2 and
WildDeepfake at the frame and video levels. The
results show that VERITAS consistently achieves the
highest AUC compared to previous methods with
87.45% and 88.30% at the frame level and 95.56%
and 87.75% at the video level.
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Table 3. Pseudo-Code for Self-Supervised Learning
Branches
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Table 4. Cross-dataset evaluation on deepfake detection
for frame-level comparison

Algorithm 1: Self-Supervised Branches in VERITAS

Input: Image batch X
1. Patch Embed: Z <« PatchEmbed(X) # Z €
RMBxNxD}
2. MIM Branch:
a. Mask 75% of tokens:
Z masked «— mask(Z, ratio=0.75)
b. Reconstruct tokens:
Z recon «— Decoder(Z_masked)
c¢. Compute loss:
L MIM « MSE(Z recon, Z original)

3. ID Branch:

a. Generate two augmentations:
71,72 < augment(Z)

b. Normalize tokens:
Z1 norm, Z2 norm —
normalize(Z2)

¢. Compute contrastive loss:
L ID « NT Xent(Z1 norm, Z2 norm, t=0.1)

normalize(Z1),

4. Classifier:
y_hat < Predictor(Z)
5. Supervised loss:
L cls « Cross_Etropy(y_hat, y_true)

Output: Total loss L total «— L cls+ L MIM+L ID

This improvement is due to the VERITAS
architectural design that combines local feature
extraction through CNN blocks and global relation
modeling through ViT which is strengthened by the
attention calibration mechanism using SE Block in
the spatial and token domains. The dual-branch
strategy with Masked Image Modeling and Identity
Distillation in the transformer block section that
adopts the FSFM framework [24] further enhances
the semantic representation of the model. Thus,
VERITAS is able to detect deepfakes more
effectively in data distributions that are different from
the training data.

We provide an ablation study by comparing
several variants of the VERITAS model component
fractions based on the Area Under Curve (AUC)
performance and confusion metric on the
FaceForensics++ (FF++) validation data [27]. The
compared models include the baseline FSFM [24],
Transformer combined with SE Block in the token
domain (TF+SE), CNN followed by Transformer
without SE Block (CNN+TF), CNN with SE Block
in the spatial domain before Transformer
(CNN+SE+TF), CNN with Transformer combined

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025

. AUC
Model Train set CDEV2 WDE
OST [34] FF++ 74.80% -
Finfer [35] FF++ 70.60% 69.46%
PEL [36] FF++ 69.18% 67.39%
SLADD [37] SD 79.70% -
RECCE [38] FF++ 68.71% 64.31%
UIA-VIT [39] FF++ 82.41% -
UAL [40] FF++ 82.84% 70.13%
NoiseDF [41] FF++ 75.89% -
GS [42] FF++ 84.97% -
UCF [43] FF++ 82.40% -
SFDG [44] FF++ 75.83% 69.27%
11D [45] FF++ 83.80% -
LSDA [46] FF++ 83.00% -
FSFM [24] FF++ 85.05% 85.26%
VERITAS FF++ 87.45% 88.30%

Table 5. Cross-dataset evaluation on deepfake detection
for video-level comparison

Model Train AUC
Set CDFV2 | WDF

SBls [47] SD 93.18% -
RealForensics [18] FF++ | 86.90% -
HCIL [48] FF++ | 79.00% -
SeeAble [49] SD 87.30%
Explorin Temporal
Coﬁerenge [19] P FFPe+ | 86.9% i
TALL [50] SD 90.79% -
AUNet [51] SD 92.77% -
SLF [52] FF++ | 89.00% -
MLR [53] FF++ | 91.56% | 73.41%
LAA-Net/BI [54] SD 86.28% | 57.13%
LAA-Net/SBI [54] SD 95.40% | 80.03%
LSDA [46] FF++ | 91.10% -
FPG [55] SD 94.49% -
NACO [56] FF++ | 89.50% -
FSFM [24] FF++ | 91.44% | 86.96%
VERITAS FF++ | 95.56% | 87.75%

Table 6. The results of the ablation study on the FF++
validation data were measured using AUC (%) at the
frame-level and video-level and confusion metric.

AUC | AUC Preci F1-
. Frame | Video- | " . Recal | Scor

Model Variant sion

-Level | Level (%) 1 (%) | e

(%) | (%) (%)
FSFM 76.39 | 82.31 | 80.15| 78.63 | 79.38
(Baseline) [24]
TF+SE 72.43 | 79.17 | 68.51 | 74.39 | 71.33
CNN+TF 74.31 | 80.58 | 70.40 | 77.83 | 73.93
CNN+SE+TF 76.83 | 83.29 | 72.17 | 80.48 | 76.10
CNN+TF+SE 77.92 | 85.24 | 74.92 | 82.33 | 78.45
CNN+SE+TF | 83.79 | 87.15 | 80.02 | 88.61 [84.10
+SE
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with SE Block in the token domain (CNN+TF+SE),
and the complete configuration of CNN+SE+TF+SE
(full VERITAS architecture). The results of the study
are shown in Table 6.

The results in Table 6 show that the baseline
FSFM [24] obtained AUC values of 76.39% for
frame-level and 82.31% for video-level. The
precision of this baseline model is 80.15%, and recall
is 78.63%, resulting in an F1-score of 79.38%. This
model performs decently but still leaves room for
improvement, especially in the recall, reflecting its
ability to identify manipulated instances correctly.
When using only Transformer with SE Block
(TF+SE), the performance of the model decreased to
an AUC of 72.43% at the frame-level and 79.17% at
the video-level. The precision dropped to 68.51%,
and recall slightly increased to 74.39%, resulting in
an Fl-score of 71.33%. This indicates that the
absence of local features from CNN weakens the
model’s ability to capture manipulation artifacts
effectively, leading to a reduction in both precision
and recall. Adding CNN features to the Transformer
(CNN+TF) improves the model’s performance to
AUC values of 74.31% and 80.58% at the frame- and
video-levels, respectively. The precision increases to
70.40%, and recall improves to 77.83%, leading to a
higher F1-score of 73.93%. The inclusion of CNN

480

features helps the model better detect local
manipulation artifacts, although there’s still a gap in
the model's recall performance compared to other
configurations. By inserting the SE Block before the
Transformer (CNN+SE+TF), the model achieves
AUC values of 76.83% (frame-level) and 83.29%
(video-level). The precision increases to 72.17%, and
recall improves significantly to 80.48%, with an F1-
score of 76.10%.

Fake Face

TF+SE

CNN+SE+TF

CNN+TF+SE

CNN+SE+TF+SE (VERITAS)

Figure. 3 Visualization of deepfake prediction results
using various VERITAS variants on the CDFV2 dataset

Inference Time per Batch Across Different Model Variants (Batch Size = 320 images)
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Figure. 4 Comparison of inference time of each VERITAS model variant

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025

DOI: 10.22266/ijies2025.0930.29

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/



Received: May 29, 2025. Revised: July 20, 2025.

This demonstrates that spatial feature calibration with
SE Block enhances both the model's ability to focus
on important local features and its overall
performance. Placing the SE Block after the
Transformer (CNN+TF+SE) further improves
performance with an AUC of 77.92% for frame-level
and 85.24% for video-level. Precision increases to
74.92%, and recall increases to 82.33%, resulting in
an F1-score of 78.45%. This configuration benefits
from token-wise attention that enriches semantic
information, improving both precision and recall. The
full configuration (CNN+SE+TF+SE) produces the
best performance, with AUC values of 83.79% and
87.15%. The precision reaches 80.02%, and recall
improves significantly to 88.61%, leading to the
highest F1-score of 84.10%. This final configuration
demonstrates the importance of applying multilevel
attention to both spatial and token domains.

The model achieves the most robust
representation for deepfake detection, reflecting its
ability to generalize across different types of
manipulations and conditions. In addition, in terms of
qualitative quality, the detection produced by the full
configuration shows better accuracy than other
variants. This reinforces the importance of combining
both spatial and token attention mechanisms for
improved deepfake detection. This is evidenced in
Fig. 3 which shows a comparison of deepfake
detection results visualized using the GradCam
method [57]. However, due to the addition of new
blocks, this causes the VERITAS inference time to be
slightly slower as shown in Fig. 4.

5. Conclusion

This study proposes and evaluates VERITAS, a
deepfake detection architecture that combines CNN,
Vision Transformer (ViT), and adaptive attention
mechanisms through Squeeze-and-Excitation (SE)
Blocks in both spatial and token domains.
Experimental results demonstrate that VERITAS
significantly outperforms various state-of-the-art
methods, achieving AUC values of 83.79% (frame-
level) and 87.15% (video-level), compared to the
FSFM baseline’s AUC of 76.39% and 82.31%,
respectively. In addition, precision (80.02%), recall
(88.61%), and F1-score (84.10%) results further
validate the superior detection performance of
VERITAS, especially in identifying manipulated
faces while maintaining a low false-positive rate. The
ablation study confirms that the adaptive application
of SE Block at both spatial and token levels
significantly enhances the model’s ability to detect
facial manipulations by improving semantic
representation and feature refinement.
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The integration of two self-supervised learning
branches Masked Image Modelling (MIM) and
Identity Distillation (ID) has shown to improve the
model's generalization and resilience across different
data distributions, leading to more accurate and
robust detection of deepfake content. Despite these
advancements, VERITAS still faces challenges in
inference time efficiency due to the complexity of its
architecture. Future work should focus on optimizing
the model for real-time deployment, perhaps through
lightweight transformer techniques, knowledge
distillation, or more efficient attention mechanisms
such as sparse attention. Furthermore, expanding the
testing to include multimodal audio-visual
manipulation and developing a continuous learning-
based detection system would strengthen the
adaptability of VERITAS and make it more suitable
for deployment in dynamic real-world environments.
In addition, model testing through perturbation
testing such as compression artifacts, frame drops, or
lighting variations is needed to test the model's
robustness to various real-world conditions.
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