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Abstract: This study proposes a spatial modeling approach to estimate annual PM2.5 concentrations in Pekanbaru,
Indonesia, a city with limited monitoring data. The dataset spans January—December 2024, a period characterized by
relatively stable background conditions, free from severe forest and peatland fires in Riau. A Random Forest model
was trained using temporally adjusted low-cost sensor measurements, land-use data, and MODIS-derived AOD.
Hyperparameters were tuned with LOLO-based RandomizedSearchCV; robustness was checked with spatially
buffered LOLO. Spatial performance was stable to 3 km (MAE ~2.0-2.1 pg/m?3;, R? =0.55-0.57) and declined at 45
km, indicating controlled overfitting but weaker generalization at larger separations. SHAP identified AOD as
dominant; peatlands tended to raise, and vegetation to lower, PM2.5. Citywide predictions ranged 24.52—34.86 pg/m?,
placing all areas in the “Moderate” category under Indonesia’s ISPU. A Ridge baseline scored slightly higher, but
overlapping Cls make differences non-definitive; RF is retained for nonlinear capture and interpretability via SHAP.
This framework supports air quality mapping; future work will expand sites, add meteorology, address missing AOD,

and test on independent data.
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1. Introduction

Air pollution caused by fine particulate matter
(PM2.5) has emerged as one of the most critical
environmental issues affecting global public health.
Exposure to PM2.5 over long periods contributes to
increased risks of respiratory and cardiovascular
disease, and has been associated with premature
death [1-3]. To address these health concerns,
accurate spatial estimation of PM2.5 is needed to
guide mitigation strategies and ensure policies are
grounded in data.

However, in many regions, especially in
developing countries such as Indonesia, the limited
number and uneven distribution of fixed monitoring
stations remain a significant obstacle to obtaining
representative spatial data. Pekanbaru City, as an
example of an urban area prone to land fires and
transportation emissions, has only a few permanent
monitoring stations.
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As an alternative solution, low-cost sensors are
increasingly used due to their flexibility and ability to
cover areas not monitored by official systems. The
use of these low-cost sensors can be implemented
continuously or in the form of sampling. When
deployed in short sampling campaigns, these sensors
provide short-term snapshots that may not represent
long-term conditions. Therefore, we apply a temporal
adjustment using long-term data from fixed
monitoring stations to align short-term measurements
with annual-scale conditions for spatial modeling.

With the rapid development of environmental
monitoring technologies, machine learning has
become an important tool for improving air quality
modeling. Random Forest (RF) is especially popular
because it captures complex nonlinear associations,
is relatively unaffected by multicollinearity, and can
integrate heterogeneous predictor data. A literature
review conducted by the authors on various spatial
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PM2.5 modeling studies based on machine learning
indicates that RF is one of the most commonly used
and widely employed approaches [4]. Previous
studies have successfully combined RF with diverse
data sources, including satellite-derived aerosol
information, meteorological variables, and land use
data, to generate fine-scale PM2.5 maps [5-7].
However, most of these studies have been conducted
in data-rich regions and rely on dense ground-based
monitoring networks as well as high-resolution
meteorological datasets.

In response to data-scarcity challenges, this study
proposes a framework for spatial PM2.5 estimation
in data-poor contexts, with a case study focused on
Pekanbaru, Riau, Indonesia. The proposed
framework comprises five components: (i)
temporally adjusts short-term measurements from
portable sensors to produce spatially consistent
annual targets; (ii) uses a predictor set consisting of
land use and Aerosol Optical Depth (AOD), so it
remains applicable when meteorological data are
limited; (iii) enforces strict spatial validation via
Leave-One-Location-Out and spatially buffered
LOLO to limit near-neighbor bias and prevent spatial
target leakage; (iv) quantifies uncertainty with
nonparametric bootstrap 95% confidence intervals on
spatial predictions; and (v) provides local
interpretability with SHAP, revealing the direction
and magnitude of each predictor’s effect at each
location. For context, we also compare Random
Forest with linear baselines (Ridge) under the same
spatial cross-validation protocol. Taken together,
these elements yield a simple, reproducible, and
transferable framework for other data-scarce cities.

The remainder of this paper is organized as
follows: Section 2 describes the study area. Section 3
presents the data collection, while Section 4 explains
the temporal adjustment. Section 5 mentions the
modeling setup. Section 6 discusses the implications
of the findings, limitations of the study, and
comparisons with similar works. Finally, Section 7
presents the conclusions and recommendations for
future research.

2. Study area

As the largest economic center in the eastern
region of Sumatra, Pekanbaru City has undergone
significant urbanization and industrial expansion [8-
9], which has contributed to increasingly complex air
quality issues. The city is divided into 15 sub-districts,
each with distinct characteristics in terms of
economic  activities, residential areas, and
infrastructure. In this study, the area of Pekanbaru
was divided into small spatial units using a 5 km x 5
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km grid system as part of the methodological design.
All data used in the modeling process, including
prediction outputs, represent the conditions within
each grid cell. Figure 1 illustrates the division of
Pekanbaru into 42 grids, of which 36 fall within the
city’s official administrative boundaries and are used
for spatial analysis. Grid IDs were then used as spatial
identifiers in the modeling and analysis process.

Previous studies have employed various grid
resolutions, ranging from 500 meters [10] to 10 km
[11], where finer grids enable more detailed spatial
analysis but require greater computational cost and
data availability. In this study, a 5 km x 5 km grid
resolution was selected as a compromise between
spatial detail and resource efficiency.

Figure 1 also displays 21 PM2.5 sampling points,
including 18 portable sensors (P1-P18) and 3 fixed
monitors (FS1-FS3) managed by the government or
industry. The placement of portable sensors was
based on the land use characteristics of each grid.
Compared to the authors’ previous publication [12],
the observation point locations differ due to the use
of a more recent base map. This study adopts the
updated 15 district division, whereas the earlier study
used the previous 13 district boundaries.

3. Data collection
3.1 Land use data collection

The composition of land use was obtained from
the 2024 Land Use Map of Pekanbaru City. The area
of Pekanbaru City is classified into 11 land use
categories. The area of each land use type within each
grid is presented in Figure 2.

Residential-dominated grids are generally
concentrated in the central part of Pekanbaru City,
while plantation land use is more prevalent in
peripheral or outlying grids. In addition to these main
categories, some grids also reflect the presence of
secondary forests, shrublands, and water bodies,
although their proportions are relatively small. Land
use types such as Air and Sea Transport Infrastructure,
Shrubs/Wetlands, and Ponds appear only in a few
specific grids, indicating a limited spatial distribution.

3.2 PM2.5 data collection

PM2.5 was measured with low-cost sensors
calibrated to a commercial IQAir unit at 18 sites
across Pekanbaru representing diverse land uses.
Sampling spanned three consecutive days between
August—September 2024, a fire-free period in Riau,
ensuring stable conditions. This study also used
hourly 2024 PM2.5 from three fixed Pekanbaru
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stations (public open data) to temporally adjust the
portable-sensor measurements.
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Figure 2 Land Use Composition per Grid
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Figure 3. Boxplot of PM2.5 Sensor Data

Figure 3 presents the sensor measurement data for
all locations, where a boxplot visualization is used to
depict the variation, median, and the presence of
extreme values at each observation point. The
boxplot illustrates clear differences between portable
sensors (P1-P18) and fixed stations (FS1-FS3). Most
portable sensors recorded relatively consistent
concentrations with medians around 2040 pg/m3,
several sensors exhibited wider spreads. By
comparison, the fixed stations, especially FS2 and
FS3, exhibited greater variability and a higher
number of outliers, indicating both sensitivity to
extreme fluctuations and the impact of site-specific
conditions. These contrasts highlight the importance
of applying temporal adjustment so that portable
sensor data align with fixed station records, allowing
short-term measurements to be reliably used in
spatial modeling.

3.3 AOD data collection

AOD is an optical indicator commonly used to
estimate the concentration of fine particulate matter
in the atmosphere, including PM2.5. Although AOD
and PM2.5 generally exhibit a positive correlation,
the relationship is complex due to the influence of
atmospheric factors (such as humidity and aerosol
layer height) and surface characteristics. AOD
measurement instruments are available at various
spatial resolutions depending on the satellite type,
such as TROPOMI on Sentinel-5P (approximately
3.5 km), MODIS on Terra and Aqua (1-10 km),
VIIRS on Suomi NPP (approximately 750 m), and
geostationary satellites like Himawari-8 and GOES-
16 (4-5 km), which also offer high temporal
resolutions of 10 to 15 minutes [13].
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In this study, AOD was obtained from the
MODIS MCDI19A2 GRANULES version 061
collection via the Google Earth Engine (GEE)
platform, which provides daily products from
MODIS sensors onboard the Terra and Aqua
satellites. The primary band used was
Optical Depth 047 (0.47 um), a wavelength
commonly applied in PM2.5 estimation studies. The
data were analyzed for the period from January 1 to
December 31, 2024, then temporally aggregated into
representative annual AOD values. Figure 4
illustrates the spatial distribution of annual mean
AOD in 2024 as a colored raster clipped to the
administrative boundary of Pekanbaru City, with a
gradient ranging from yellow (low AOD) to dark
purple (high AOD).

A 5 x 5 km grid was used to extract zonal features
such as average AOD and land use data. Three grid
cells (14, 35, and 47) were excluded due to limited
spatial coverage and unrepresentative AOD values.
Figure 5 presents the visualization of average AOD
values per grid, using standardized grid ID.

Based on Figure 5, the highest AOD
concentrations are observed in the southern and
southwestern parts of Pekanbaru City, likely
correlating with intensive anthropogenic activities
such as biomass burning, industrial operations, and
heavy traffic. In contrast, the northern and eastern
areas show lower AOD values, indicating relatively
better air quality, which aligns with the dominance of
vegetated land cover in those regions. This condition
is also consistent with the land use composition
described in Figure 2, where the southern and
southwestern areas are predominantly residential,
while the northern and eastern areas are primarily
plantation zones.
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AOD Raster with 5 km Grid Overlay and Pekanbaru Boundary
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Figure 4. Annual Mean AOD Image from MODIS Satellite for Pekanbaru City in 2024
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Figure 5. Distribution of Average AOD in Pekanbaru City Based on 5 km Grid Resolution
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4. Temporal adjustment

The short-term portable sensor data were
temporally adjusted against data from fixed
monitoring  stations to ensure comparable
distributions. Several previous studies have shown
that temporal adjustment is a crucial step in
improving the estimation of long-term concentrations
from irregular or short-duration data collections, such
as those from portable sensors. A comprehensive
study [14] compared five temporal adjustment
approaches, including mean-scaled, median-scaled,
log-transformed scaling, and naive adjustment, and
demonstrated that the effectiveness of each method
varies considerably depending on sample size and
measurement campaign design. These findings
highlight that no single adjustment method is
universally applicable, and its effectiveness must be
evaluated within the specific context.

In line with this, the present study employed a
three parameter linear optimization approach for
temporal adjustment, involving a scaling factor (c)
and two offset parameters (a and b), which were
determined by minimizing the absolute error between
the reference data (from fixed stations) and the target
data (from portable sensors) during the overlapping
period. The parameter optimization was conducted
using the Nelder—-Mead simplex algorithm, selected
for its robustness in handling non-differentiable and
nonlinear objective functions. For each sensor—
station pair, the optimization started from an initial
guess of [1.0, 0.0, 0.0], representing the scaling factor
(c) and two offset parameters (a and b). The objective
function minimized the mean absolute error (MAE)
between the temporally adjusted reference data and
the target portable sensor measurements during the
overlapping observation period. All optimizations
converged successfully with no failures or abnormal
termination  status. This  approach  shares
methodological similarities with the mean-scaled and
median-scaled adjustment techniques, which also
rely on the ratio between short-term observations and
long-term values from the reference station (mean or
median). However, the method used in this study is
more flexible as it does not depend on fixed statistical
ratios, but instead explicitly searches for the optimal
correction parameters. Therefore, it can be
considered a generalized form of the mean/median-
scaled adjustment, capable of capturing both scale
differences between measurement devices.

The correction was applied in the following Eq.

(D.

PMET = (cPMESS + a) + b )
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Where,

c: scaling factor;

a: initial offset;

b: final offset (corrective bias);

PM§ Ef : reference data from fixed stations.

The pairing between portable sensors and fixed
stations for temporal adjustment was based on two
main criteria: similarity in land use characteristics
and, more importantly, temporal correlation during
the overlapping observation period. While spatial
proximity is commonly used in sensor pairing, it was
not adopted as a primary criterion due to the limited
number of available reference stations. In several
cases, the nearest reference station did not share
similar land use or exhibit coherent temporal patterns,
which could lead to mismatched adjustment baselines.
In such cases, stations with stronger temporal
correlations to the target sensor were prioritized, even
if their land use characteristics differed. This high
temporal correlation was also considered a
reasonable surrogate for comparable meteorological
influences during the overlap period, acknowledging
that direct meteorological data were unavailable in
this study. For clarity, we denote the correlation
between target and reference during the overlapping
period as ror, While the correlation after temporal
adjustment is referred to as r.q. The resulting sensor
pairs along with their corresponding row and rag;
values are summarized in Table 1.

Based on Table 1, the initial correlation between
portable sensors and reference stations during the
overlapping period (ro.) ranged from 0.40 to 0.81,
indicating temporal relationships from moderate to
strong. After applying temporal adjustment using a
three-parameter linear optimization approach, all
pairs exhibited a substantial increase in correlation,
with 1, values calculated over the full one-year
period following the adjustment reaching 0.98—1.00.
The main variation among sensors was primarily
determined by the scaling factor (c), which ranged
from 0.72 to 1.92, while the offset parameters (a and
b) were relatively small, contributing less to the
correction. These findings indicate that inter-sensor
differences were mainly related to measurement scale
discrepancies, and the applied correction method
proved effective in aligning the temporal patterns of
portable sensors with reference data over the long
term.

5. Data preparation and modeling setup

We used a Random Forest Regressor (RF), an
ensemble of decision trees trained on random subsets
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Table 1. Point Pairings and Evaluation of Temporal Adjustment Results

Target Tovr Ref c a b Tadj
Pl 0.46 FS3 0.7761 | 0.0004 | 0.0003 1.00
P2 0.59 FS3 0.7327 | 0.0002 | 0.0005 1.00
P3 0.45 FS3 0.7259 | 0.0003 | 0.0004 1.00
P4 0.81 FS3 0.7658 | 0.0003 | 0.0003 1.00
P5 0.57 FS3 0.8139 | 0.0002 | 0.0002 1.00
P6 0.68 FS2 1.2899 | 0.0003 | -0.0006 1.00
P7 0.40 FS3 0.8193 | 0.0002 | 0.0003 1.00
P8 0.56 FS3 0.8982 | 0.0002 | 0.0002 1.00
P9 0.54 FS2 1.9249 | 0.0006 | -0.0022 1.00
P10 0.50 FS3 1.6050 | 0.0003 | -0.0013 0.98
P11 0.63 FS3 0.7609 | 0.0003 | 0.0003 1.00
P12 0.48 FS2 1.0364 | 0.0001 | 0.0001 1.00
P13 0.54 FSI1 1.5558 | 0.0004 | -0.0013 0.99
P14 0.77 FS3 0.8651 | 0.0002 | 0.0001 1.00
P15 0.58 FS3 0.7782 | 0.0004 | 0.0003 1.00
P16 0.42 FS1 1.3467 | 0.0005 | -0.0009 0.99
P17 0.427 FSI1 1.1054 | 0.0000 | -0.0000 1.00
P18 0.66 FS2 1.6624 | 0.0003 | -0.0015 1.00
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of samples and features. RF is well suited to

heterogeneous environmental data because it

captures nonlinearities and mitigates overfitting
through aggregation. Given the modest sample size

(18 locations) relative to the number of predictors

(12), we explicitly controlled model complexity via

hyperparameter tuning and spatial cross-validation.

The prediction target is the PM2.5 concentration,
and spatial predictors were compiled at a 5 x 5 km
grid resolution and consist of:

a) Land use composition (11 classes) from
Pekanbaru’s 2024 official land-use map:
Residential, Plantation, Shrubs, Peatland, Water
Body, Open Land, Pond, Savanna, Transport
Infrastructure, Secondary Dryland Forest, and
Secondary Swamp Forest. For each grid, we
calculated the areal proportion of every class.

b) Satellite-based AOD, taken as the average raster
value per grid.

All features were checked for consistency, and
we avoided redundancy where possible. To prevent
target leakage in spatial validation, raw
latitude/longitude were not used as features;
coordinates were only used to define location groups
and spatial buffers.

We tuned RF hyperparameters (e.g., number of
trees, maximum depth, minimum samples per
split/leaf, and max_features) using
RandomizedSearchCV with LOLO-CV and MAE as
the optimization metric. The best configuration was

International Journal of Intelligent Engineering and Systems, Vol.18, No.10, 2025

then refit on the full training set. To assess spatial
generalizability, we used LOLO-CV, holding out one
location at a time, and a spatially buffered LOLO-CV
that excludes training samples within a specified
radius (0-5 km) around the test location to reduce
near-neighbor  dependence. Performance was
summarized using Mean Absolute Error (MAE) and
R?, with 95% bootstrap confidence intervals. We
report 95% Cls using a non-parametric pairs
bootstrap on pooled LOLO held out predictions
(B=2,000 resamples; seeds fixed 42—47); fold-level
Cls for MAE were obtained by bootstrapping folds
(B=2,000). These choices quantify both accuracy and
explained variance while reflecting uncertainty due
to the small number of locations. As a benchmark, we
also trained and evaluated linear baselines (Ridge)
under the same LOLO-CV protocol, with inner
LOLO tuning of the regularization parameter, so their
results are directly comparable and are reported in the
Results section. Finally, we used SHAP on the final
RF to quantify each predictor’s contribution and
direction of effect and to screen for spurious drivers.

6. Results and discussion
6.1 Model parameter optimization

Using RandomizedSearchCV with a Leave-One-
Location-Out (LOLO) CV scheme and MAE as the
objective, the best configuration was bootstrap =
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True, max depth = None, max features = 0.5,
min_samples leaf = 2, min_samples split = 3,
n_estimators = 351, achieving an inner - CV MAE of
2.067 pg/m?. We then refit the model with these fixed
hyperparameters on the full training data and used the
same configuration for all subsequent evaluations
(standard LOLO and spatially buffered LOLO) to
avoid double-dipping and obtain conservative
generalization estimates. Regularization is provided
by bagging and feature subsampling, reinforced by
the min_samples * constraints; additionally, raw
coordinates were excluded from the feature set during
validation to prevent spatial target leakage.

6.2 Feature importance interpretation

To interpret the contribution of each predictor to
PM2.5 concentration, SHAP values were computed
from the final Random Forest model. SHAP provides
both the magnitude of feature importance and the
direction of each predictor’s effect on individual
predictions, offering a comprehensive and
interpretable approach. This method has also been
widely applied in spatial PM2.5 modeling to uncover
localized influences of various environmental factors.
For example, Li et al. used SHAP in combination
with Random Forest to identify the relative
importance of topography, land cover, and
meteorological parameters in predicting PM2.5
concentrations across Zhejiang Province, China [15].
These examples support the suitability of SHAP for
interpreting complex relationships in spatial air
quality models such as ours.

AOD

Plantation

Peatland

Water Body

Residential

Air and Sea Transport Infrastructure
Secondary Swamp Forest
Open Land

Shrubs

Pond

Secondary Dryland Forest

Savana
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Figure 6 presents the SHAP summary plot, which
highlights the average impact of each predictor across
all predictions. The results indicate that AOD is the
most influential variable, consistently contributing
positive values to PM2.5 predictions. This is
consistent with the well-established relationship
between atmospheric aerosol loading and surface-
level particulate matter concentrations.

Beyond AOD, land cover features, such as
peatlands and plantation areas, also show a
substantial influence. Peatlands generally contributed
positively to PM2.5 levels, likely due to fire-related
emissions, while plantations exhibited negative
SHAP values, suggesting that vegetated areas are
associated with lower pollution concentrations. Other
spatial features including residential areas, transport
infrastructure, and water bodies had more modest
SHAP values but contributed complementary
information to improve spatial predictions.

Given AOD’s dominant role in the model, it is
important to acknowledge known limitations in
satellite-based AOD retrievals. These products are
only available under clear-sky and low-humidity
conditions and are often missing or unreliable in the
presence of clouds, shadows, or high moisture levels
[16]. In such cases, PM2.5 may be underrepresented
in the model due to unavailable aerosol input.
Moreover, spatial heterogeneity in topography and
meteorology weaken the AOD PM2.5 relationship in
some areas [17], and low temporal sampling during
pollution peaks can result in bias [18].

High

-
-
Feature value

- - T Low
-2 0 2

SHAP value (impact on model output)

Figure 6. SHAP Summary of Feature Importance
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6.3 Model evaluation

Spatial model validation requires specific
approaches to minimize bias from spatial
autocorrelation, i.e., the similarity of values among
geographically adjacent locations. In this context,
spatial-based cross-validation has become a widely
adopted strategy in air quality modeling. A common
method is  Leave-One-Location-Out  Cross-
Validation (LOLO-CV), which evaluates model
generalization across spatial locations and has been
effectively applied in PM2.5 studies at various scales
[19]. Other researchers have explored alternative
schemes; for instance, [5] used sample, time, and
spatial based ten-fold cross-validation to calibrate
high-resolution (1 km) PM2.5 concentrations across
China using Random Forest. A refinement is the
iterated Spatial Leave-One-Out Cross-Validation
(ISLOOCYV) [20], which applies multiple minimum
distances between training and test data to generate
more stable error estimates.

Based on the above approach, we applied LOLO-
CV and spatially buffered LOLO-CV to assess the
robustness of a Random Forest model for estimating
PM2.5 in Pekanbaru. From an overfitting perspective,
the gap between training metrics (MAE 1.14 pg/m?;
R?0.86) and spatial LOLO-CV (MAE 2.07 pg/m?; R?
0.57) indicates a generalization gap that is reasonable
for this data size rather than evidence of short-
distance target leakage. Performance at 0-2 km
buffers is essentially unchanged (MAE ~2.07 pg/m?;
R?=0.57) and remains very similar at 3 km (MAE =
2.06 ug/m?, R? = 0.55), indicating that excluding
neighbors up to 3 km does not materially affect
accuracy. Degradation appears at larger buffers (4-5
km: MAE = 2.20 pg/m* / R? = 0.51; MAE = 2.43
ug/m* / R? = 0.44; see Table 2), consistent with
reduced nearby information for spatial generalization.
Overlapping 95% confidence intervals up to 3 km
(e.g., 0 km: MAE 1.38-2.84; R? 0.23-0.76; 3 km:
MAE 1.33-2.86; R? 0.22-0.75) support the
conclusion that performance differences at these
distances are not statistically significant, whereas the
shifts at 4-5 km indicate genuine degradation.

Our spatial-validation performance (R* = 0.55—
0.57 for buffers <3 km) is comparable to results in
other data-scarce regions. For example, Adong et al.
reported R? = 0.62 for a Random Forest combining
MODIS MAIAC AOD and low-cost sensors in
Kampala, Uganda [21], while Arowosegbe et al.
obtained a spatial-CV R? = 0.48 for PM10 in South
Africa using an RF/GBM/SVR ensemble [22]. These
studies, like ours, highlight common challenges in
data-poor contexts, including sparse ground
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monitoring and missing AOD retrievals. Unlike
ensemble setups, our single Random Forest
framework integrates temporally adjusted low-cost
sensor data, satellite AOD, and land-use predictors,
providing a simpler yet effective solution with
competitive accuracy.

As a benchmark to contextualize the RF results,
we also trained simple linear baselines (Ridge) using
the same features and the same LOLO-CV protocol,
with the regularization parameter a tuned by inner
LOLO-CV. Although the Ridge baseline shows
slightly higher LOLO performance (MAE 1.743
pg/m?* [95% CI: 1.090-2.403]; R? 0.670 [0.383—
0.818]) than RF (MAE 2.067 pg/m? [1.383-2.840];
R? 0.568 [0.23-0.76]), the overlapping confidence
intervals indicate that the difference is not
statistically definitive. We retain RF as the primary
model because (i) it captures nonlinear relationships
and interactions between AOD and land-use
composition that are difficult to model linearly; (ii) it
is more robust to multicollinearity; and (iii) it offers
local interpretability via SHAP (direction and
magnitude of each predictor’s effect at each location).
Moreover, our goal is to produce spatial maps that are
locally interpretable and easy to replicate; RF
satisfies these needs within a single, simple
framework, while linear baselines serve as
comparators to validate the robustness of our findings.

Overall, Random Forest captures local spatial
variability of PM2.5 at 5x5 km resolution, but its
generalization weakens as spatial separation
increases. The combination of LOLO-CV, spatial
buffering, and hyperparameter tuning indicates that
overfitting risk is reasonably controlled, although the
limited number of sites still constrains performance
at highly isolated locations.

6.4 Model implementation

The developed model was subsequently used to
predict PM2.5 concentrations in other grid areas
without measurement data across the entire
Pekanbaru City. The prediction results for all grids
are presented in Table 3.

To assess air quality levels based on these values,
the classification system of Indonesia’s Air Pollution
Standard Index (ISPU), as regulated by the
Indonesian Ministry of Environment and Forestry
Regulation No. 14 of 2020, was used as the main
reference, alongside the U.S. Environmental
Protection Agency (EPA) Air Quality Index (AQI) as
an international benchmark.
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Table 2. Validation Model Using LOLO-CV and Spatially Buffered LOLO-CV

Buffer Radius (km) MAE (ng/m?) CI MAE R? CI R?

0 (LOLO-CV) 2.06 1.38-2.84 0.57 0.23-0.76

1 2.06 1.38 -2.84 0.57 0.23-0.76

2 2.06 1.38-2.84 0.57 0.23-0.76

3 2.06 1.33-2.86 0.55 0.22-0.75

4 2.20 1.47-2.99 0.51 0.19-0.70

5 2.43 1.68 —3.25 0.44 0.03-0.63

Table 3. Predicted PM2.5 Concentration for All Grids
. Predicted . Predicted . Predicted . Predicted
Grid_ID (ng/m3) Grid_ID (ng/m3) Grid_ID (ug/m3) Grid_ID (ng/m3)

1 33.72 11 25.70 20 30.49 29 26.00
2 33.81 12 26.78 21 29.89 30 25.52
3 33.29 13 34.86 22 24.52 31 28.61
4 26.22 14 34.44 23 26.19 32 25.60
5 26.04 15 32.35 24 26.12 33 26.02
7 33.00 16 29.93 25 28.99 34 25.29
8 33.84 17 25.66 26 28.15 35 25.85
9 30.75 18 26.34 27 28.32 38 27.08
10 28.71 19 30.15 28 25.37 39 25.98

The estimated PM2.5 concentrations across 36
grid areas in Pekanbaru City ranged from 24.52 to
3486 pg/m?. According to the ISPU, PM2.5
concentrations between 15.6 and 55.4 pg/m? fall into
the “Moderate” category. Thus, all grids in this study
are classified as “Moderate”. The lowest predicted
concentration was recorded in Grid 22 (24.52 pg/m?),
which, while close to the lower threshold of the
“Moderate”, does not yet qualify for the “Good”
category (0-15.5 pg/m3). On the other hand, the
highest predicted values were found in Grid 13 (34.86
pg/m?) and Grid 14 (34.44 pg/m?®), both nearing the
upper boundary of the “Moderate”. These areas
warrant close attention, as a slight increase in PM2.5
levels could push them into the “Unhealthy” category
(>55.4 pg/m?).

In general, the “Moderate” category indicates that
air quality is still acceptable for most of the
population, but it may pose health risks to sensitive
groups such as children, the elderly, and individuals
with respiratory illnesses. Therefore, although the
predictions suggest relatively moderate air quality,
vigilance is still required in areas where PM2.5 levels
approach the upper threshold of this category.

When evaluated using the EPA’s AQI standard,
PM2.5 concentrations between 12.1 and 35.4 pg/m?
are also classified as “Moderate.” Accordingly, all
grid areas fall within the same category under the
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EPA classification, reinforcing the consistency of
results between the two systems.

6.5 Visualization and spatial analysis

The estimated PM2.5 concentrations for each grid
were subsequently visualized in a map, as shown in
Figure 7. Based on the analysis of the relationship
between PM2.5 concentrations and land cover types,
it was observed that grids dominated by plantation
areas such as Grids 4, 5, 18, 22, 23, 24, and 27-35, as
well as Grid 39 generally exhibited lower predicted
PM2.5 values, ranging between 24.52-28.99 ng/m?.
This finding aligns with the assumption that large
vegetated areas, such as plantations, have the
potential to absorb pollutants or are typically located
farther from dense emission sources, thereby
reducing PM2.5 concentrations.

Conversely, grids predominantly covered by
residential land use, such as Grids 1-3, 7-10, 13-21,
and others, tended to show higher predicted PM2.5
concentrations. Some of these grids, including Grid
13 (34.86 pg/m?), Grid 14 (34.44 pg/m?), and Grid 2
(33.81 ug/m?), were even close to the upper threshold
of the “moderate” category, indicating higher
particulate accumulation in densely populated
residential areas.
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Figure 7. Visualization of Predicted PM2.5 Concentration in Pekanbaru Map

This is attributed to increased anthropogenic activity,
vehicular emissions, and sparse vegetation.
Interestingly, Grid 12, which is dominated by
Secondary Dryland Forest, also recorded a relatively
low PM2.5 value (26.78 pg/m?), suggesting that areas
with secondary forest cover may also contribute
positively to air quality.

Overall, the combination of land cover types
significantly influenced the predicted PM2.5
concentrations. Vegetative land types such as
plantations and secondary forests were strongly
associated with lower PM2.5 levels, while residential
areas correlated with higher predicted concentrations.
These findings offer practical insights for air quality
management and urban planning in Pekanbaru. For
example, grid areas identified with consistently high
predicted PM2.5 concentrations, particularly those
dominated by residential and peatland land use, can
be prioritized for targeted emission control measures.
These may include strengthening peatland fire
prevention programs, promoting green buffers in
dense residential zones, or integrating air quality
criteria into spatial zoning policies.

7. Conclusion

This study successfully developed a spatial
predictive model to map PM2.5 concentrations in
Pekanbaru (2024) using a Random Forest (RF)
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trained on temporally adjusted low-cost sensor data,
land-use composition (11 classes), and satellite-
derived AOD. Hyperparameters were tuned with
RandomizedSearchCV under a Leave-One-Location-
Out (LOLO) scheme, and spatial generalization was
assessed with LOLO and spatially buffered LOLO to
avoid near-neighbor bias and target leakage. Model
performance under spatial validation was stable up to
3 km buffers (MAE = 2.0-2.1 pg/m?; R?~= 0.55-0.57)
and declined at larger buffers (4-5 km), indicating
that overfitting risk was reasonably controlled while
generalization weakens as nearby information
diminishes, an expected outcome in a data-scarce
setting with only 18 sites. Although a Ridge baseline
scored slightly higher in point estimates, the
overlapping confidence intervals make the difference
non-definitive; RF is retained because it captures
nonlinearities and interactions and provides local
interpretability via SHAP.

SHAP analysis shows AOD as the most
influential predictor (generally increasing PM2.5),
followed by positive contributions from peatlands
and mitigating effects from vegetated land (e.g.,
plantations). Residential and transport infrastructure
provide additional, smaller signals consistent with
anthropogenic emissions. These patterns align with
domain expectations and support the substantive
interpretability of the RF outputs.
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City-wide predictions for 36 grids ranged from
24.52 to 34.86 ug/m? placing all areas in the
“Moderate” category under both Indonesia’s ISPU
and the U.S. EPA AQI Grids dominated by
plantations and secondary forest tended to have lower
predicted PM2.5 levels, whereas densely residential
areas had higher levels, making them more useful for
prioritizing  mitigation measures such as
strengthening peat-fire prevention, adding green
buffers in residential zones, or integrating air-quality
criteria into zoning.

Overall, the RF framework delivers a simple yet
effective and interpretable tool for spatial PM2.5
estimation in data-limited urban contexts. Future
work should expand the number of sites and
monitoring duration, incorporate meteorological
variables, and develop strategies for handling missing
AOD retrievals. It should also test these models on
independent datasets and map predictive uncertainty
steps to further improve robustness and
generalizability to more isolated locations.
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