
Received:  July 16, 2025.     Revised: September 26, 2025.                                                                                               751 

International Journal of Intelligent Engineering and Systems, Vol.18, No.10, 2025         DOI: 10.22266/ijies2025.1130.48 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

 
Spatial Estimation of PM2.5 Using Random Forest with Temporally Adjusted 

Portable Sensors, Land Use, and AOD in a Data-Scarce Urban Area 

 

Retno Tri Wahyuni1,2*      Dirman Hanafi1 M. Razali Tomari1      Dadang Syarif Sihabudin Sahid3 

 
1Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Malaysia 

2Industrial Technology Department, Politeknik Caltex Riau, Pekanbaru, Indonesia 
3Information Technology Department, Politeknik Caltex Riau, Pekanbaru, Indonesia 

* Corresponding author’s Email: retnotri@pcr.ac.id 

 

 
Abstract: This study proposes a spatial modeling approach to estimate annual PM2.5 concentrations in Pekanbaru, 

Indonesia, a city with limited monitoring data. The dataset spans January–December 2024, a period characterized by 

relatively stable background conditions, free from severe forest and peatland fires in Riau. A Random Forest model 

was trained using temporally adjusted low-cost sensor measurements, land-use data, and MODIS-derived AOD. 

Hyperparameters were tuned with LOLO-based RandomizedSearchCV; robustness was checked with spatially 

buffered LOLO. Spatial performance was stable to 3 km (MAE ≈2.0–2.1 µg/m³; R² ≈0.55–0.57) and declined at 4–5 

km, indicating controlled overfitting but weaker generalization at larger separations. SHAP identified AOD as 

dominant; peatlands tended to raise, and vegetation to lower, PM2.5. Citywide predictions ranged 24.52–34.86 µg/m³, 

placing all areas in the “Moderate” category under Indonesia’s ISPU. A Ridge baseline scored slightly higher, but 

overlapping CIs make differences non-definitive; RF is retained for nonlinear capture and interpretability via SHAP. 

This framework supports air quality mapping; future work will expand sites, add meteorology, address missing AOD, 

and test on independent data. 
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1. Introduction 

Air pollution caused by fine particulate matter 

(PM2.5) has emerged as one of the most critical 

environmental issues affecting global public health. 

Exposure to PM2.5 over long periods contributes to 

increased risks of respiratory and cardiovascular 

disease, and has been associated with premature 

death [1-3]. To address these health concerns, 

accurate spatial estimation of PM2.5 is needed to 

guide mitigation strategies and ensure policies are 

grounded in data. 

However, in many regions, especially in 

developing countries such as Indonesia, the limited 

number and uneven distribution of fixed monitoring 

stations remain a significant obstacle to obtaining 

representative spatial data. Pekanbaru City, as an 

example of an urban area prone to land fires and 

transportation emissions, has only a few permanent 

monitoring stations.  

As an alternative solution, low-cost sensors are 

increasingly used due to their flexibility and ability to 

cover areas not monitored by official systems. The 

use of these low-cost sensors can be implemented 

continuously or in the form of sampling. When 

deployed in short sampling campaigns, these sensors 

provide short-term snapshots that may not represent 

long-term conditions. Therefore, we apply a temporal 

adjustment using long-term data from fixed 

monitoring stations to align short-term measurements 

with annual-scale conditions for spatial modeling.  

With the rapid development of environmental 

monitoring technologies, machine learning has 

become an important tool for improving air quality 

modeling. Random Forest (RF) is especially popular 

because it captures complex nonlinear associations, 

is relatively unaffected by multicollinearity, and can 

integrate heterogeneous predictor data. A literature 

review conducted by the authors on various spatial 
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PM2.5 modeling studies based on machine learning 

indicates that RF is one of the most commonly used 

and widely employed approaches [4]. Previous 

studies have successfully combined RF with diverse 

data sources, including satellite-derived aerosol 

information, meteorological variables, and land use 

data, to generate fine-scale PM2.5 maps [5-7]. 

However, most of these studies have been conducted 

in data-rich regions and rely on dense ground-based 

monitoring networks as well as high-resolution 

meteorological datasets.  

In response to data‐scarcity challenges, this study 

proposes a framework for spatial PM2.5 estimation 

in data-poor contexts, with a case study focused on 

Pekanbaru, Riau, Indonesia. The proposed 

framework comprises five components: (i) 

temporally adjusts short-term measurements from 

portable sensors to produce spatially consistent 

annual targets; (ii) uses a predictor set consisting of 

land use and Aerosol Optical Depth (AOD), so it 

remains applicable when meteorological data are 

limited; (iii) enforces strict spatial validation via 

Leave-One-Location-Out and spatially buffered 

LOLO to limit near-neighbor bias and prevent spatial 

target leakage; (iv) quantifies uncertainty with 

nonparametric bootstrap 95% confidence intervals on 

spatial predictions; and (v) provides local 

interpretability with SHAP, revealing the direction 

and magnitude of each predictor’s effect at each 

location. For context, we also compare Random 

Forest with linear baselines (Ridge) under the same 

spatial cross-validation protocol. Taken together, 

these elements yield a simple, reproducible, and 

transferable framework for other data-scarce cities. 

The remainder of this paper is organized as 

follows: Section 2 describes the study area. Section 3 

presents the data collection, while Section 4 explains 

the temporal adjustment. Section 5 mentions the 

modeling setup. Section 6 discusses the implications 

of the findings, limitations of the study, and 

comparisons with similar works. Finally, Section 7 

presents the conclusions and recommendations for 

future research. 

2. Study area  

As the largest economic center in the eastern 

region of Sumatra, Pekanbaru City has undergone 

significant urbanization and industrial expansion [8-

9], which has contributed to increasingly complex air 

quality issues. The city is divided into 15 sub-districts, 

each with distinct characteristics in terms of 

economic activities, residential areas, and 

infrastructure. In this study, the area of Pekanbaru 

was divided into small spatial units using a 5 km × 5 

km grid system as part of the methodological design. 

All data used in the modeling process, including 

prediction outputs, represent the conditions within 

each grid cell. Figure 1 illustrates the division of 

Pekanbaru into 42 grids, of which 36 fall within the 

city’s official administrative boundaries and are used 

for spatial analysis. Grid IDs were then used as spatial 

identifiers in the modeling and analysis process. 

Previous studies have employed various grid 

resolutions, ranging from 500 meters [10] to 10 km 

[11], where finer grids enable more detailed spatial 

analysis but require greater computational cost and 

data availability. In this study, a 5 km × 5 km grid 

resolution was selected as a compromise between 

spatial detail and resource efficiency. 

Figure 1 also displays 21 PM2.5 sampling points, 

including 18 portable sensors (P1–P18) and 3 fixed 

monitors (FS1–FS3) managed by the government or 

industry. The placement of portable sensors was 

based on the land use characteristics of each grid. 

Compared to the authors’ previous publication [12], 

the observation point locations differ due to the use 

of a more recent base map. This study adopts the 

updated 15 district division, whereas the earlier study 

used the previous 13 district boundaries. 

3. Data collection 

3.1 Land use data collection 

The composition of land use was obtained from 

the 2024 Land Use Map of Pekanbaru City. The area 

of Pekanbaru City is classified into 11 land use 

categories. The area of each land use type within each 

grid is presented in Figure 2. 

 Residential-dominated grids are generally 

concentrated in the central part of Pekanbaru City, 

while plantation land use is more prevalent in 

peripheral or outlying grids. In addition to these main 

categories, some grids also reflect the presence of 

secondary forests, shrublands, and water bodies, 

although their proportions are relatively small. Land 

use types such as Air and Sea Transport Infrastructure, 

Shrubs/Wetlands, and Ponds appear only in a few 

specific grids, indicating a limited spatial distribution. 

3.2 PM2.5 data collection 

PM2.5 was measured with low-cost sensors 

calibrated to a commercial IQAir unit at 18 sites 

across Pekanbaru representing diverse land uses. 

Sampling spanned three consecutive days between 

August–September 2024, a fire-free period in Riau, 

ensuring stable conditions.  This study also used 

hourly 2024 PM2.5 from three fixed Pekanbaru 



Received:  July 16, 2025.     Revised: September 26, 2025.                                                                                               753 

International Journal of Intelligent Engineering and Systems, Vol.18, No.10, 2025         DOI: 10.22266/ijies2025.1130.48 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

stations (public open data) to temporally adjust the 

portable-sensor measurements.

 

 
Figure 1 Grid Division of Pekanbaru and PM2.5 Sampling Locations

 

 
Figure 2 Land Use Composition per Grid 
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Figure 3. Boxplot of PM2.5 Sensor Data 

 

Figure 3 presents the sensor measurement data for 

all locations, where a boxplot visualization is used to 

depict the variation, median, and the presence of 

extreme values at each observation point. The 

boxplot illustrates clear differences between portable 

sensors (P1–P18) and fixed stations (FS1–FS3). Most 

portable sensors recorded relatively consistent 

concentrations with medians around 20–40 µg/m³, 

several sensors exhibited wider spreads. By 

comparison, the fixed stations, especially FS2 and 

FS3, exhibited greater variability and a higher 

number of outliers, indicating both sensitivity to 

extreme fluctuations and the impact of site-specific 

conditions. These contrasts highlight the importance 

of applying temporal adjustment so that portable 

sensor data align with fixed station records, allowing 

short-term measurements to be reliably used in 

spatial modeling. 

3.3 AOD data collection 

AOD is an optical indicator commonly used to 

estimate the concentration of fine particulate matter 

in the atmosphere, including PM2.5. Although AOD 

and PM2.5 generally exhibit a positive correlation, 

the relationship is complex due to the influence of 

atmospheric factors (such as humidity and aerosol 

layer height) and surface characteristics. AOD 

measurement instruments are available at various 

spatial resolutions depending on the satellite type, 

such as TROPOMI on Sentinel-5P (approximately 

3.5 km), MODIS on Terra and Aqua (1–10 km), 

VIIRS on Suomi NPP (approximately 750 m), and 

geostationary satellites like Himawari-8 and GOES-

16 (4–5 km), which also offer high temporal 

resolutions of 10 to 15 minutes [13]. 

In this study, AOD was obtained from the 

MODIS MCD19A2_GRANULES version 061 

collection via the Google Earth Engine (GEE) 

platform, which provides daily products from 

MODIS sensors onboard the Terra and Aqua 

satellites. The primary band used was 

Optical_Depth_047 (0.47 µm), a wavelength 

commonly applied in PM2.5 estimation studies. The 

data were analyzed for the period from January 1 to 

December 31, 2024, then temporally aggregated into 

representative annual AOD values. Figure 4 

illustrates the spatial distribution of annual mean 

AOD in 2024 as a colored raster clipped to the 

administrative boundary of Pekanbaru City, with a 

gradient ranging from yellow (low AOD) to dark 

purple (high AOD). 

A 5 × 5 km grid was used to extract zonal features 

such as average AOD and land use data. Three grid 

cells (14, 35, and 47) were excluded due to limited 

spatial coverage and unrepresentative AOD values. 

Figure 5 presents the visualization of average AOD 

values per grid, using standardized grid ID.  

Based on Figure 5, the highest AOD 

concentrations are observed in the southern and 

southwestern parts of Pekanbaru City, likely 

correlating with intensive anthropogenic activities 

such as biomass burning, industrial operations, and 

heavy traffic. In contrast, the northern and eastern 

areas show lower AOD values, indicating relatively 

better air quality, which aligns with the dominance of 

vegetated land cover in those regions. This condition 

is also consistent with the land use composition 

described in Figure 2, where the southern and 

southwestern areas are predominantly residential, 

while the northern and eastern areas are primarily 

plantation zones. 
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Figure 4. Annual Mean AOD Image from MODIS Satellite for Pekanbaru City in 2024 

 

 
Figure 5. Distribution of Average AOD in Pekanbaru City Based on 5 km Grid Resolution 
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4. Temporal adjustment  

The short-term portable sensor data were 

temporally adjusted against data from fixed 

monitoring stations to ensure comparable 

distributions. Several previous studies have shown 

that temporal adjustment is a crucial step in 

improving the estimation of long-term concentrations 

from irregular or short-duration data collections, such 

as those from portable sensors. A comprehensive 

study [14] compared five temporal adjustment 

approaches, including mean-scaled, median-scaled, 

log-transformed scaling, and naïve adjustment, and 

demonstrated that the effectiveness of each method 

varies considerably depending on sample size and 

measurement campaign design. These findings 

highlight that no single adjustment method is 

universally applicable, and its effectiveness must be 

evaluated within the specific context. 

In line with this, the present study employed a 

three parameter linear optimization approach for 

temporal adjustment, involving a scaling factor (c) 

and two offset parameters (a and b), which were 

determined by minimizing the absolute error between 

the reference data (from fixed stations) and the target 

data (from portable sensors) during the overlapping 

period. The parameter optimization was conducted 

using the Nelder–Mead simplex algorithm, selected 

for its robustness in handling non-differentiable and 

nonlinear objective functions. For each sensor–

station pair, the optimization started from an initial 

guess of [1.0, 0.0, 0.0], representing the scaling factor 

(c) and two offset parameters (a and b). The objective 

function minimized the mean absolute error (MAE) 

between the temporally adjusted reference data and 

the target portable sensor measurements during the 

overlapping observation period. All optimizations 

converged successfully with no failures or abnormal 

termination status. This approach shares 

methodological similarities with the mean-scaled and 

median-scaled adjustment techniques, which also 

rely on the ratio between short-term observations and 

long-term values from the reference station (mean or 

median). However, the method used in this study is 

more flexible as it does not depend on fixed statistical 

ratios, but instead explicitly searches for the optimal 

correction parameters. Therefore, it can be 

considered a generalized form of the mean/median-

scaled adjustment, capable of capturing both scale 

differences between measurement devices. 

The correction was applied in the following Eq. 

(1).  

 

𝑃𝑀2.5
𝐹𝑖𝑛𝑎𝑙 = (𝑐𝑃𝑀2.5

𝑅𝑒𝑓
+ 𝑎) + 𝑏              (1) 

Where,  

c: scaling factor;  

a: initial offset;  

b: final offset (corrective bias);  

𝑃𝑀2.5
𝑅𝑒𝑓

: reference data from fixed stations.  

The pairing between portable sensors and fixed 

stations for temporal adjustment was based on two 

main criteria: similarity in land use characteristics 

and, more importantly, temporal correlation during 

the overlapping observation period. While spatial 

proximity is commonly used in sensor pairing, it was 

not adopted as a primary criterion due to the limited 

number of available reference stations. In several 

cases, the nearest reference station did not share 

similar land use or exhibit coherent temporal patterns, 

which could lead to mismatched adjustment baselines. 

In such cases, stations with stronger temporal 

correlations to the target sensor were prioritized, even 

if their land use characteristics differed. This high 

temporal correlation was also considered a 

reasonable surrogate for comparable meteorological 

influences during the overlap period, acknowledging 

that direct meteorological data were unavailable in 

this study. For clarity, we denote the correlation 

between target and reference during the overlapping 

period as rₒᵥᵣ, while the correlation after temporal 

adjustment is referred to as radj. The resulting sensor 

pairs along with their corresponding rₒᵥᵣ and radj 

values are summarized in Table 1. 

Based on Table 1, the initial correlation between 

portable sensors and reference stations during the 

overlapping period (rₒᵥᵣ) ranged from 0.40 to 0.81, 

indicating temporal relationships from moderate to 

strong. After applying temporal adjustment using a 

three-parameter linear optimization approach, all 

pairs exhibited a substantial increase in correlation, 

with radj values calculated over the full one-year 

period following the adjustment reaching 0.98–1.00. 

The main variation among sensors was primarily 

determined by the scaling factor (c), which ranged 

from 0.72 to 1.92, while the offset parameters (a and 

b) were relatively small, contributing less to the 

correction. These findings indicate that inter-sensor 

differences were mainly related to measurement scale 

discrepancies, and the applied correction method 

proved effective in aligning the temporal patterns of 

portable sensors with reference data over the long 

term. 

5. Data preparation and modeling setup  

We used a Random Forest Regressor (RF), an 

ensemble of decision trees trained on random subsets  
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Table 1. Point Pairings and Evaluation of Temporal Adjustment Results 

Target rovr Ref c a b radj 

P1 0.46 FS3 0.7761 0.0004 0.0003 1.00 

P2 0.59 FS3 0.7327 0.0002 0.0005 1.00 

P3 0.45 FS3 0.7259 0.0003 0.0004 1.00 

P4 0.81 FS3 0.7658 0.0003 0.0003 1.00 

P5 0.57 FS3 0.8139 0.0002 0.0002 1.00 

P6 0.68 FS2 1.2899 0.0003 -0.0006 1.00 

P7 0.40 FS3 0.8193 0.0002 0.0003 1.00 

P8 0.56 FS3 0.8982 0.0002 0.0002 1.00 

P9 0.54 FS2 1.9249 0.0006 -0.0022 1.00 

P10 0.50 FS3 1.6050 0.0003 -0.0013 0.98 

P11 0.63 FS3 0.7609 0.0003 0.0003 1.00 

P12 0.48 FS2 1.0364 0.0001 0.0001 1.00 

P13 0.54 FS1 1.5558 0.0004 -0.0013 0.99 

P14 0.77 FS3 0.8651 0.0002 0.0001 1.00 

P15 0.58 FS3 0.7782 0.0004 0.0003 1.00 

P16 0.42 FS1 1.3467 0.0005 -0.0009 0.99 

P17 0.427 FS1 1.1054 0.0000 -0.0000 1.00 

P18 0.66 FS2 1.6624 0.0003 -0.0015 1.00 

of samples and features. RF is well suited to 

heterogeneous environmental data because it 

captures nonlinearities and mitigates overfitting 

through aggregation. Given the modest sample size 

(18 locations) relative to the number of predictors 

(12), we explicitly controlled model complexity via 

hyperparameter tuning and spatial cross-validation. 

The prediction target is the PM2.5 concentration, 

and spatial predictors were compiled at a 5 × 5 km 

grid resolution and consist of: 

a) Land use composition (11 classes) from 

Pekanbaru’s 2024 official land-use map: 

Residential, Plantation, Shrubs, Peatland, Water 

Body, Open Land, Pond, Savanna, Transport 

Infrastructure, Secondary Dryland Forest, and 

Secondary Swamp Forest. For each grid, we 

calculated the areal proportion of every class. 

b) Satellite-based AOD, taken as the average raster 

value per grid. 

All features were checked for consistency, and 

we avoided redundancy where possible. To prevent 

target leakage in spatial validation, raw 

latitude/longitude were not used as features; 

coordinates were only used to define location groups 

and spatial buffers. 

We tuned RF hyperparameters (e.g., number of 

trees, maximum depth, minimum samples per 

split/leaf, and max_features) using 

RandomizedSearchCV with LOLO-CV and MAE as 

the optimization metric. The best configuration was 

then refit on the full training set. To assess spatial 

generalizability, we used LOLO-CV, holding out one 

location at a time, and a spatially buffered LOLO-CV 

that excludes training samples within a specified 

radius (0–5 km) around the test location to reduce 

near-neighbor dependence. Performance was 

summarized using Mean Absolute Error (MAE) and 

R², with 95% bootstrap confidence intervals. We 

report 95% CIs using a non-parametric pairs 

bootstrap on pooled LOLO held out predictions 

(B=2,000 resamples; seeds fixed 42–47); fold-level 

CIs for MAE were obtained by bootstrapping folds 

(B=2,000). These choices quantify both accuracy and 

explained variance while reflecting uncertainty due 

to the small number of locations. As a benchmark, we 

also trained and evaluated linear baselines (Ridge) 

under the same LOLO-CV protocol, with inner 

LOLO tuning of the regularization parameter, so their 

results are directly comparable and are reported in the 

Results section. Finally, we used SHAP on the final 

RF to quantify each predictor’s contribution and 

direction of effect and to screen for spurious drivers. 

6. Results and discussion 

6.1 Model parameter optimization 

Using RandomizedSearchCV with a Leave-One-

Location-Out (LOLO) CV scheme and MAE as the 

objective, the best configuration was bootstrap = 
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True, max_depth = None, max_features = 0.5, 

min_samples_leaf = 2, min_samples_split = 3, 

n_estimators = 351, achieving an inner - CV MAE of 

2.067 µg/m³. We then refit the model with these fixed 

hyperparameters on the full training data and used the 

same configuration for all subsequent evaluations 

(standard LOLO and spatially buffered LOLO) to 

avoid double-dipping and obtain conservative 

generalization estimates. Regularization is provided 

by bagging and feature subsampling, reinforced by 

the min_samples_* constraints; additionally, raw 

coordinates were excluded from the feature set during 

validation to prevent spatial target leakage.   

6.2 Feature importance interpretation 

To interpret the contribution of each predictor to 

PM2.5 concentration, SHAP values were computed 

from the final Random Forest model. SHAP provides 

both the magnitude of feature importance and the 

direction of each predictor’s effect on individual 

predictions, offering a comprehensive and 

interpretable approach. This method has also been 

widely applied in spatial PM2.5 modeling to uncover 

localized influences of various environmental factors. 

For example, Li et al. used SHAP in combination 

with Random Forest to identify the relative 

importance of topography, land cover, and 

meteorological parameters in predicting PM2.5 

concentrations across Zhejiang Province, China [15]. 

These examples support the suitability of SHAP for 

interpreting complex relationships in spatial air 

quality models such as ours. 

Figure 6 presents the SHAP summary plot, which 

highlights the average impact of each predictor across 

all predictions. The results indicate that AOD is the 

most influential variable, consistently contributing 

positive values to PM2.5 predictions. This is 

consistent with the well-established relationship 

between atmospheric aerosol loading and surface-

level particulate matter concentrations. 

Beyond AOD, land cover features, such as 

peatlands and plantation areas, also show a 

substantial influence. Peatlands generally contributed 

positively to PM2.5 levels, likely due to fire-related 

emissions, while plantations exhibited negative 

SHAP values, suggesting that vegetated areas are 

associated with lower pollution concentrations. Other 

spatial features including residential areas, transport 

infrastructure, and water bodies had more modest 

SHAP values but contributed complementary 

information to improve spatial predictions. 

Given AOD’s dominant role in the model, it is 

important to acknowledge known limitations in 

satellite-based AOD retrievals. These products are 

only available under clear-sky and low-humidity 

conditions and are often missing or unreliable in the 

presence of clouds, shadows, or high moisture levels 

[16]. In such cases, PM2.5 may be underrepresented 

in the model due to unavailable aerosol input. 

Moreover, spatial heterogeneity in topography and 

meteorology weaken the AOD PM2.5 relationship in 

some areas [17], and low temporal sampling during 

pollution peaks can result in bias [18]. 

 

 
Figure 6. SHAP Summary of Feature Importance 
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6.3 Model evaluation 

Spatial model validation requires specific 

approaches to minimize bias from spatial 

autocorrelation, i.e., the similarity of values among 

geographically adjacent locations. In this context, 

spatial-based cross-validation has become a widely 

adopted strategy in air quality modeling. A common 

method is Leave-One-Location-Out Cross-

Validation (LOLO-CV), which evaluates model 

generalization across spatial locations and has been 

effectively applied in PM2.5 studies at various scales 

[19]. Other researchers have explored alternative 

schemes; for instance, [5] used sample, time, and 

spatial based ten-fold cross-validation to calibrate 

high-resolution (1 km) PM2.5 concentrations across 

China using Random Forest. A refinement is the 

iterated Spatial Leave-One-Out Cross-Validation 

(iSLOOCV) [20], which applies multiple minimum 

distances between training and test data to generate 

more stable error estimates.  

Based on the above approach, we applied LOLO-

CV and spatially buffered LOLO-CV to assess the 

robustness of a Random Forest model for estimating 

PM2.5 in Pekanbaru. From an overfitting perspective, 

the gap between training metrics (MAE 1.14 µg/m³; 

R² 0.86) and spatial LOLO-CV (MAE 2.07 µg/m³; R² 

0.57) indicates a generalization gap that is reasonable 

for this data size rather than evidence of short-

distance target leakage. Performance at 0–2 km 

buffers is essentially unchanged (MAE ≈ 2.07 µg/m³; 

R² ≈ 0.57) and remains very similar at 3 km (MAE = 

2.06 µg/m³; R² = 0.55), indicating that excluding 

neighbors up to 3 km does not materially affect 

accuracy. Degradation appears at larger buffers (4–5 

km: MAE = 2.20 µg/m³ / R² = 0.51; MAE = 2.43 

µg/m³ / R² = 0.44; see Table 2), consistent with 

reduced nearby information for spatial generalization. 

Overlapping 95% confidence intervals up to 3 km 

(e.g., 0 km: MAE 1.38–2.84; R² 0.23–0.76; 3 km: 

MAE 1.33–2.86; R² 0.22–0.75) support the 

conclusion that performance differences at these 

distances are not statistically significant, whereas the 

shifts at 4–5 km indicate genuine degradation.  

Our spatial-validation performance (R² ≈ 0.55–

0.57 for buffers ≤3 km) is comparable to results in 

other data-scarce regions. For example, Adong et al. 

reported R² = 0.62 for a Random Forest combining 

MODIS MAIAC AOD and low-cost sensors in 

Kampala, Uganda [21], while Arowosegbe et al. 

obtained a spatial-CV R² = 0.48 for PM10 in South 

Africa using an RF/GBM/SVR ensemble [22]. These 

studies, like ours, highlight common challenges in 

data-poor contexts, including sparse ground 

monitoring and missing AOD retrievals. Unlike 

ensemble setups, our single Random Forest 

framework integrates temporally adjusted low-cost 

sensor data, satellite AOD, and land-use predictors, 

providing a simpler yet effective solution with 

competitive accuracy.  

As a benchmark to contextualize the RF results, 

we also trained simple linear baselines (Ridge) using 

the same features and the same LOLO-CV protocol, 

with the regularization parameter α tuned by inner 

LOLO-CV. Although the Ridge baseline shows 

slightly higher LOLO performance (MAE 1.743 

µg/m³ [95% CI: 1.090–2.403]; R² 0.670 [0.383–

0.818]) than RF (MAE 2.067 µg/m³ [1.383–2.840]; 

R² 0.568 [0.23–0.76]), the overlapping confidence 

intervals indicate that the difference is not 

statistically definitive. We retain RF as the primary 

model because (i) it captures nonlinear relationships 

and interactions between AOD and land-use 

composition that are difficult to model linearly; (ii) it 

is more robust to multicollinearity; and (iii) it offers 

local interpretability via SHAP (direction and 

magnitude of each predictor’s effect at each location). 

Moreover, our goal is to produce spatial maps that are 

locally interpretable and easy to replicate; RF 

satisfies these needs within a single, simple 

framework, while linear baselines serve as 

comparators to validate the robustness of our findings.  

Overall, Random Forest captures local spatial 

variability of PM2.5 at 5×5 km resolution, but its 

generalization weakens as spatial separation 

increases. The combination of LOLO-CV, spatial 

buffering, and hyperparameter tuning indicates that 

overfitting risk is reasonably controlled, although the 

limited number of sites still constrains performance 

at highly isolated locations. 

 

6.4 Model implementation 

The developed model was subsequently used to 

predict PM2.5 concentrations in other grid areas 

without measurement data across the entire 

Pekanbaru City. The prediction results for all grids 

are presented in Table 3.  

To assess air quality levels based on these values, 

the classification system of Indonesia’s Air Pollution 

Standard Index (ISPU), as regulated by the 

Indonesian Ministry of Environment and Forestry 

Regulation No. 14 of 2020, was used as the main 

reference, alongside the U.S. Environmental 

Protection Agency (EPA) Air Quality Index (AQI) as 

an international benchmark. 
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Table 2. Validation Model Using LOLO-CV and Spatially Buffered LOLO-CV 

Buffer Radius (km) MAE (µg/m³) CI MAE R² CI R² 

0 (LOLO-CV) 2.06 1.38 – 2.84  0.57 0.23 – 0.76 

1 2.06 1.38 – 2.84  0.57 0.23 – 0.76 

2 2.06 1.38 – 2.84  0.57 0.23 – 0.76 

3 2.06 1.33 – 2.86 0.55 0.22 – 0.75 

4 2.20 1.47 – 2.99 0.51 0.19 – 0.70 

5 2.43 1.68 – 3.25 0.44 0.03 – 0.63 

Table 3. Predicted PM2.5 Concentration for All Grids  

Grid_ID 
Predicted 

(µg/m3) 
Grid_ID 

Predicted 

(µg/m3) 
Grid_ID 

Predicted 

(µg/m3) 
Grid_ID 

Predicted 

(µg/m3) 

1 33.72 11 25.70 20 30.49 29 26.00 

2 33.81 12 26.78 21 29.89 30 25.52 

3 33.29 13 34.86 22 24.52 31 28.61 

4 26.22 14 34.44 23 26.19 32 25.60 

5 26.04 15 32.35 24 26.12 33 26.02 

7 33.00 16 29.93 25 28.99 34 25.29 

8 33.84 17 25.66 26 28.15 35 25.85 

9 30.75 18 26.34 27 28.32 38 27.08 

10 28.71 19 30.15 28 25.37 39 25.98 

 

The estimated PM2.5 concentrations across 36 

grid areas in Pekanbaru City ranged from 24.52 to 

34.86 µg/m³. According to the ISPU, PM2.5 

concentrations between 15.6 and 55.4 µg/m³ fall into 

the “Moderate” category. Thus, all grids in this study 

are classified as “Moderate”. The lowest predicted 

concentration was recorded in Grid 22 (24.52 µg/m³), 

which, while close to the lower threshold of the 

“Moderate”, does not yet qualify for the “Good” 

category (0–15.5 µg/m³). On the other hand, the 

highest predicted values were found in Grid 13 (34.86 

µg/m³) and Grid 14 (34.44 µg/m³), both nearing the 

upper boundary of the “Moderate”. These areas 

warrant close attention, as a slight increase in PM2.5 

levels could push them into the “Unhealthy” category 

(>55.4 µg/m³). 

In general, the “Moderate” category indicates that 

air quality is still acceptable for most of the 

population, but it may pose health risks to sensitive 

groups such as children, the elderly, and individuals 

with respiratory illnesses. Therefore, although the 

predictions suggest relatively moderate air quality, 

vigilance is still required in areas where PM2.5 levels 

approach the upper threshold of this category. 

When evaluated using the EPA’s AQI standard, 

PM2.5 concentrations between 12.1 and 35.4 µg/m³ 

are also classified as “Moderate.” Accordingly, all 

grid areas fall within the same category under the 

EPA classification, reinforcing the consistency of 

results between the two systems. 

6.5 Visualization and spatial analysis 

The estimated PM2.5 concentrations for each grid 

were subsequently visualized in a map, as shown in 

Figure 7. Based on the analysis of the relationship 

between PM2.5 concentrations and land cover types, 

it was observed that grids dominated by plantation 

areas such as Grids 4, 5, 18, 22, 23, 24, and 27–35, as 

well as Grid 39 generally exhibited lower predicted 

PM2.5 values, ranging between 24.52–28.99 µg/m³. 

This finding aligns with the assumption that large 

vegetated areas, such as plantations, have the 

potential to absorb pollutants or are typically located 

farther from dense emission sources, thereby 

reducing PM2.5 concentrations. 

Conversely, grids predominantly covered by 

residential land use, such as Grids 1–3, 7–10, 13–21, 

and others, tended to show higher predicted PM2.5 

concentrations. Some of these grids, including Grid 

13 (34.86 µg/m³), Grid 14 (34.44 µg/m³), and Grid 2 

(33.81 µg/m³), were even close to the upper threshold 

of the “moderate” category, indicating higher 

particulate accumulation in densely populated 

residential areas.  
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Figure 7. Visualization of Predicted PM2.5 Concentration in Pekanbaru Map 

 

This is attributed to increased anthropogenic activity, 

vehicular emissions, and sparse vegetation. 

Interestingly, Grid 12, which is dominated by 

Secondary Dryland Forest, also recorded a relatively 

low PM2.5 value (26.78 µg/m³), suggesting that areas 

with secondary forest cover may also contribute 

positively to air quality.  

 Overall, the combination of land cover types 

significantly influenced the predicted PM2.5 

concentrations. Vegetative land types such as 

plantations and secondary forests were strongly 

associated with lower PM2.5 levels, while residential 

areas correlated with higher predicted concentrations. 

These findings offer practical insights for air quality 

management and urban planning in Pekanbaru. For 

example, grid areas identified with consistently high 

predicted PM2.5 concentrations, particularly those 

dominated by residential and peatland land use, can 

be prioritized for targeted emission control measures. 

These may include strengthening peatland fire 

prevention programs, promoting green buffers in 

dense residential zones, or integrating air quality 

criteria into spatial zoning policies. 

7. Conclusion  

This study successfully developed a spatial 

predictive model to map PM2.5 concentrations in 

Pekanbaru (2024) using a Random Forest (RF) 

trained on temporally adjusted low-cost sensor data, 

land-use composition (11 classes), and satellite-

derived AOD. Hyperparameters were tuned with 

RandomizedSearchCV under a Leave-One-Location-

Out (LOLO) scheme, and spatial generalization was 

assessed with LOLO and spatially buffered LOLO to 

avoid near-neighbor bias and target leakage. Model 

performance under spatial validation was stable up to 

3 km buffers (MAE ≈ 2.0–2.1 µg/m³; R² ≈ 0.55–0.57) 

and declined at larger buffers (4–5 km), indicating 

that overfitting risk was reasonably controlled while 

generalization weakens as nearby information 

diminishes, an expected outcome in a data-scarce 

setting with only 18 sites. Although a Ridge baseline 

scored slightly higher in point estimates, the 

overlapping confidence intervals make the difference 

non-definitive; RF is retained because it captures 

nonlinearities and interactions and provides local 

interpretability via SHAP. 

SHAP analysis shows AOD as the most 

influential predictor (generally increasing PM2.5), 

followed by positive contributions from peatlands 

and mitigating effects from vegetated land (e.g., 

plantations). Residential and transport infrastructure 

provide additional, smaller signals consistent with 

anthropogenic emissions. These patterns align with 

domain expectations and support the substantive 

interpretability of the RF outputs. 
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City-wide predictions for 36 grids ranged from 

24.52 to 34.86 µg/m³, placing all areas in the 

“Moderate” category under both Indonesia’s ISPU 

and the U.S. EPA AQI. Grids dominated by 

plantations and secondary forest tended to have lower 

predicted PM2.5 levels, whereas densely residential 

areas had higher levels, making them more useful for 

prioritizing mitigation measures such as 

strengthening peat-fire prevention, adding green 

buffers in residential zones, or integrating air-quality 

criteria into zoning. 

Overall, the RF framework delivers a simple yet 

effective and interpretable tool for spatial PM2.5 

estimation in data-limited urban contexts. Future 

work should expand the number of sites and 

monitoring duration, incorporate meteorological 

variables, and develop strategies for handling missing 

AOD retrievals. It should also test these models on 

independent datasets and map predictive uncertainty 

steps to further improve robustness and 

generalizability to more isolated locations. 
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