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Abstract: This paper addresses the problem of reliable beam training in 6G mobile communication by considering
two critical challenges: isolating early-stage errors in directional search and reducing feedback overhead. Our method
utilizes a 22-ary hierarchical beam training structure, where a fixed set of four candidate beams is evaluated per stage,
enabling faster convergence compared to conventional binary hierarchies. To confine error effects and prevent their
propagation across angular layers, our method applies a specialized encoding scheme with dual error-and-erasure
correction capabilities. This allows early misdetections to be isolated and corrected without affecting deeper search
levels. Theoretical analysis and comparisons demonstrate that our 22-ary hierarchical fixed beam training attains a
total training time of 2log,N; — 1, delivering a low-latency, feedback-efficient framework for high-mobility,
low-SNR 6G deployments. Our scheme effectively reduces error propagation in low-SNR environments and shortens
training time by 25% compared to adaptive coded beam training, and by 10% compared to fixed coded beam training.
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1. Introduction

Sixth-generation (6G) communications promise
ultra-fast connectivity and high efficiency. However,
these technologies have drawbacks, such as poor
signal strength for users who are far away.
Communication systems usually estimate the channel
condition either explicitly by channel estimates
throughout the channel state information (CSI) or
implicitly by beam training. Explicit channel state
information (CSI) estimation, which directly gets
channel information via pilot signals, guarantees high
precision in channel state representation. However,
this approach may significantly affect spectral
efficiency because of the substantial pilot overhead.
It is also less feasible for large MIMO systems as it
becomes more difficult to scale as the number of
antennas rises. Therefore, small to medium antenna
systems are more suited for implicit CSI estimation.
Implicit channel state information (CSI) estimation,
obtaining channel state information (CSI) through
indirect or more complex methods reduces pilot
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overhead, making it a more resource-efficient
approach. While this method is easier to scale for
large antenna systems, such as extra-large MIMO
(XL-MIMO), it requires optimized beam sweeping to
ensure accurate channel estimation. Our work
benefits from the implicit method to anticipate the
channel status. Increasing directional accuracy and
reducing errors improve beamforming efficiency and
ensure reliable communications even in situations
with low interference or signal-to-noise ratio [1]. To
achieve the prior advancement, the system can use
channel coding techniques to optimize the
beamforming process, and this is known as Coded
Beamforming. Applying coded beam can make the
signal transmission more flexible and efficient,
especially in situations where feedback is limited or
channel state information (CSI) is not optimal [2].
Thus, “coded beamforming” has been developed to
improve beamforming accuracy in wide-area MIMO
(XL-MIMO) systems.

Due to the low signal-to-noise ratio of remote
users, it is difficult to accurately estimate the channel
state. Thus, there would be an increased probability
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of selecting suboptimal beams due to interference and
noise, which negatively affects the efficiency of the
system. The major challenge is the phenomenon of
error propagation as the system uses hierarchical
binary beam training, and as follows. This method
relies on dividing the angular space into several
layers (see an illustration in Fig. 1), starting by
defining a wide space and then gradually narrowing
it until the optimal angle is reached. Each stage
depends on the previous results, making it vulnerable
to initial errors in low-signal environments.
Inaccurate decisions may cause significant errors that
occur in the early stages of the experiment to
propagate to further stages, resulting in reduced
guidance accuracy and difficulty in correcting errors
in these later stages.

Another method for conducting beam training is
exhaustive training. It depends on fully examining all
possible packets to obtain the best matching case with
the channel, but it requires longer time and consumes
more resources, which is not desirable in low signal-
to-noise environments where time and resources are
limited. Balancing training time with ensuring beam
selection accuracy is one of the biggest challenges we
face in beam training. Therefore, increasing the
training time means reducing the time available for
data transfer, which leads to a decrease in the overall
efficiency of the system. Inaccurate training also
leads to the signal being oriented at the wrong angle,
which reduces efficiency and increases noise. The
optimal scenario is to find a technique that allows
training time to be reduced while maintaining high
accuracy, so this requires careful mathematical
modeling and simulation experiments to determine
the point at which the ideal balance is achieved
between these two factors.

2. Related work

Various channel coding techniques are used to
improve beamforming reliability by mitigating errors
and improving signal integrity in complex channel
environments, including techniques such as
Polarization Adjusted convolutional (PAC). PAC
codes are a new family of linear block codes that can
perform close to the theoretical limits in the short
block length regime [3]. These codes can fix errors
almost as well as the dispersive approximation,
which is the limit of non-convergent channel coding.
The study in [3] employs PAC codes because of their
superior performance over traditional polar and twist
codes, for short code lengths. They also ensure
reliable transmission of short packets with minimal
latency, which is one of the primary aims of the next
generation of wireless communication systems [4].
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However, the researchers focused on only short code
lengths.

The base station (BS) conducts beam training for
each user sequentially using time-division multiple
access (TDMA). However, training overhead can
increase linearly with the number of users. To
mitigate this, a simultaneous multiuser beam training
scheme is introduced, in which each layer—except
for the bottom layer—utilizes only two multi-
mainlobe codewords, regardless of the number of
users the BS serves [5].

On the other hand, traditional hierarchical beam
training schemes typically require multiple feedbacks
from user equipment (UE) to the base station (BS) to
indicate the best codeword for the base station. This
leads to high overhead, especially in multiuser
scenarios [6]. In [7], the authors propose a beam
training scheme that only reduces the feedback
requirement to only two feedbacks in total, regardless
of the number of layers in the hierarchical codebook.

The method that is described in [8] improves
beam training by integrating a channel attention
module that selectively trains a specific subset of
broad beams depending on signals received from
prior sessions. By efficiently extracting broad beam
features, the model sustains superior narrow beam
prediction accuracy despite diminished observations,
thereby reducing training overhead. Additionally, the
method in [10] adaptively allocates training resources
to various beams, assigning more symbols to those
with greater beamforming gains. By focusing
resources where they are most needed, the method
improves beam training accuracy and reduces the
impact of error propagation in beam alignment.

3. Our contribution

As the work in [3] considers only codes with short
block lengths, our code schemes have no limitation
on the lengths of the codes. Unlike [5], we propose
22 multi-mainlobe codewords such that we relay on
the finite field [F,2 of the elements {0, «, 1, a+1} to
introduce four higher-level angular directions; see
Fig. 1. Our approach relies on the fact that we only
need one bit, namely the most significant bit to define
which symbol from {0, a} or {1, a+l}, and
consequently we never get significant error
propagation, i.e., either BS targets to the upper
direction or to the lower direction.

Extending the work proposed by [7] which
already improves upon [6], we incorporate the
channel coding techniques not only to reduce the
feedback overhead and reduce the training time but
also to kill the error propagation at its early stages,
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i.e., the super-resolution angular direction where its

existence has a significant effect.

For comparison, our method differs from the
approach in [8] (which is an uncoded method) that
enhances alignment via channel feature weighting.
Their method deals with the significant
measurements without incorporating error correction
within the feedback bits. This should prevent errors
from changing the correct channel weighting. In
contrast, our dual error—erasure coding scheme
(described in Section 6) directly protects the most
important feedback bit against errors, leading to more
precise beam selection in low-SNR regimes.

While the algorithm of [10] is adaptive in
training resource allocation and has high angular
resolution, it neither employs feedback, nor error
protection, as well as lacking an apparent training
bound, the system unfairly allocates resources. It
assigns more symbols to users who have better
beamforming gains, which complicates the scheme.
Our method, however, achieves low-complexity
coded beam training in only 2 log, N + 1 (fixed) or
2.5log, Nr — 1 (adaptive) steps (cf. Table 1) and is
thus more resilient and suitable for low-SNR and
constrained systems. We summaries our main
achievements as follows:

1. Unlike other papers that are using coded beam
training (only error correction codes) [2, 3, 4, 5],
we incorporate erasure correction with error
correction codes to stop the (significant) error
(in hierarchical schemes) from propagating in its
early stages.

2. Generalizing from [3, 4] that focus on codes of
short lengths, our coding scheme works for any
code family with any code length.

3. Improving upon [7] and (inherently) [6] (cf.
Remark 3), we reduce the feedback overhead (to
one only) and the training time (by at least
0.5 log, Ny — 1 in the adaptive training and by
at least 1 (cf. Table 1), comparing with other
training techniques).

Our framework is specifically optimized for high-
mobility, low-to-moderate SNR 6G deployments
where reducing the training time to a minimum is
paramount to fit within the short channel coherence
time (T). The total training time of 2 log, Ny + 1or
2.5log, Ny — 1 is significantly shorter than the
exhaustive approach, enabling reliable training even
when T, is severely limited by user velocity.

In Section 4 we give our main notations and
definitions. In next section, Section 5, our beam
training model and channel model are defined and
described. Section 6 gives our coding scheme for
reliable feedback in beam training, including an
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Figure. 1 Expected Beams Directions. The figure
illustrates a two-level system: upper and lower layers.
The spatial direction is initially divided into four primary
angular regions: with 60 € {0, «, 1, a + 1} matching the
employed field elements (cf. Section 4-A). For example,
the wide orange beam covering angle 1 =—45¢ can be
subdivided into narrower lower-layer angles, such as 1-
0, ..., 1-N;. The dashed red arrow indicates a narrow
beam targeted at a user (UE) at angle 1-130

example based on extended Hamming codes. In
Section 7, we review current beam training methods
and compare their performance with our method, and
also includes the performance evaluation of the
success rate of our scheme. Section 8 gives the
complexity analysis of our scheme compared with
others. Lastly, Section 9 concludes the paper.

4. Preliminaries
4.1 Notations

Let IF,2 denote a finite (extension) field with four
elements, {0, 1, @, a + 1}, where « is a root of a
primitive irreducible polynomial in [F,. Denote by
Ny the number of transmit antennas in the system.
Let t denote the maximum number of bits that can be
erroneous in a transmitted codeword. As usual, an [n,
k, d]g C denotes a linear code over a field
F {1“" (over the alphabet gq) of the parameters n, k and
d, where n is the code length, k is the number of
information symbols, and d is the minimum
Hamming distance between two different codewords.
This distance defines the code’s capability to detect
and correct errors or erasures.

Use 7 as the number of allowed erasures, i.e., the
number of wiped symbols the erasure correction can
recover, and their known positions are given by the
set €. Let e € IF ;2 be the error vector, representing the
errors or erroneous values that occur in the received
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symbol sequence. C,,_; C [F{;‘1 is a one symbol
smaller code than C c IF ¢, where every word has n
— 1 symbols. Remember our focus is on g =22, and
our coding scheme can be generalized to any q. Let
m € [F’g be the message vector consisting of k
information symbols before the inclusion of the
redundant symbols (in our scheme an n—k sequence
of two bits as stated next), and let p € IF{;"‘be the
parity vector with n — k symbols.

4.2. Definitions
4.2.1. Definition 1V.1 (Beam training)

Beam training is an essential process in
millimeter-wave (mmWave) and terahertz (THz)
communication systems. In this process, the
transmitter and receiver work together to find the best
beam pair offering the highest directional link. The
main issue in conventional training mechanisms is
error propagation, with the errors occurring earlier at
beam selection causing significant errors in the later
layers. Thus, in Definition IV.2 we define Coded
Beam Training.

4.2.2. Definition 1V.2 (Coded beam training)

Coded beam training methods are an implicit
approach for estimating the CSI, where error-
correcting codes are employed during the beam
training process to enhance reliability [2].

The coded beam training in Definition V.2
results in the following types of beam training.

4.2.3. Definition 1V.3 (Hierarchical codebooks)

Hierarchical codebooks typically aid in the
process of beam training. The codebooks arrange
beamforming vectors in a tree structure to make
searching easier and reduce training time [6]. Under
challenging conditions, particularly with a low
signal-to-noise ratio (SNR), accurate beam training is
highly crucial, for which we require robust channel
coding techniques.

4.2.4. Definition
training)

IV.4 (Binary hierarchical beam

Binary hierarchical beam training is a layered
beam search method that iteratively narrows down
the beam direction by dividing the angular space into
M = log, Ny layers, transmitting two candidate
beams per layer. It requires one feedback per layer,
resulting in a total training time of 2 log, Ny slots.
This approach significantly reduces training
overhead compared to exhaustive sweeping (defined
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next in Definition IV.5) but involves higher
implementation complexity due to its hierarchical
structure.

4.2.5. Definition 1V.5 (Exhaustive beam training)

Exhaustive beam training is a beam training
technique that sequentially scans all N; possible
transmit beam directions to identify the optimal
beamforming path. It requires a single feedback
message from the user equipment (UE) after all beam
directions are tested. While it achieves high beam
selection accuracy, it incurs a high training overhead
with a total time cost of N+ 1 slots.

5. System model

This section describes the system architecture,
including beam training protocols, coding schemes,
and antenna configurations.

5.1 Semi-hierarchical beam training structure

To leverage the spatial sparsity of the channel
while maintaining robust performance under
uncertainty, we propose a semi-hierarchical coded
beam training approach for 6G wireless systems. This
architecture integrates hierarchical search with error-
resilient channel coding over field extensions,
thereby enhancing both training efficiency and
resilience in low-SNR or highly stable channel
conditions.

5.1.1. Definition V.1 (Semi-hierarchical beam training)

Semi-hierarchical beam training is a layered
method that partitions the angular domain into
multiple hierarchical levels. Initially, the space is
segmented into L, coarse sectors (primary beams),
each of which is further subdivided into L2 finer
beams (sub-beams), resulting in a total of NT =L, -
L, angular directions — matching the number of
antennas (cf. Section 4.1). At each level, directional
pilot signals are transmitted using error correction
codes to improve sector identification accuracy,
balancing rapid exploration with high angular
resolution.

5.1.2. Definition V.2 (22—ary hierarchical beam

training)

22-ary hierarchical beam training is a special type
of semi-hierarchical beam training in which the
angular domain is divided into four candidate beams
per layer. Assuming Nris a power of 2, the total
number of layers is M =2 log, N;. At each layer, four
beams are probed sequentially, and a single feedback
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message (cf. Remark 1) is used to select the correct
subregion for refinement in the next stage. This
process continues recursively until the final beam is
identified.

Remark 1. The UE observes all 4 candidate
beams per layer. It returns 1 feedback, typically 2 bits
of information (e.g., 00, 01, 10, or 11) to indicate
which of the 4 beams is best.

Compared to binary hierarchical beam training
(see Definition 1V.4), 22 -ary hierarchical beam
training halves the number of layers and overall
training latency.

5.2 6G communications channel model

While the main contribution of this work lies in
coding design for 6G systems, we briefly summarise
the underlying channel model for completeness. A
detailed formulation is provided in [2, Section 2],
where the model follows the well-known Saleh
Valenzuela representation widely adopted in
mmWave and THz communications [9]. This model
captures the sparse and directional characteristics of
high-frequency propagation, offering a physically
grounded basis for robust coding and beam training
design.

We consider a downlink XL-MIMO system
operating at mmWave/THz frequencies. The base
station (BS) is equipped with a uniform linear array
(ULA) of NT antennas spaced at half the carrier
wavelength (4/2), each connected to a dedicated RF
chain, enabling fully-digital precoding. Although
full-digital architecture is assumed for analytical
clarity, the proposed scheme generalizes to hybrid
precoding as discussed in [2].

Let so € C denote the power-normalized transmit
symbol. The received signal y at the user equipment
(UE) is:

y =P hwsy +n €Y

where P > 0 is the transmit power, & € C1*NT is
the downlink channel vector, w € CNT*1 s the unit-
norm beamforming vector, and n ~ CN (0, 02)
denotes complex Gaussian noise.

Due to the dominance of the line-of-sight (LoS)
component (denoted by a subscript 0 in the terms of
(1)) at high frequencies, we consider a simplified
single-path channel model, which also determines the
angular direction from the BS to the UE [11]:

h = \/N_Tﬂo a ((pO) (1)
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where @0 = sin(60) € [—1, 1] is the spatial
direction from the BS to the UE with 60 € [-1t/2, /2]
representing the physical angle of departure (refer to
Fig. 1), and a(¢0) is the array steering vector defined
as:

1 . .
a(@g) = N_T[l’e—ﬂfﬁ%’..”’e—](NT)mPo] (2)

The path gain B0 follows the free-space path loss
model:

Ao
ﬁo—m

(3)

where Ao is the carrier wavelength and r is the
distance between the UE and the center of the antenna
array. When the received signal y (stated in (1)) is
corrupted by noise, an uncoded training scheme may
misclassify the beam direction, leading to degraded
communication. In contrast, our proposed 22 -ary
coded beam training architecture mitigates such
errors by encoding k received pilot symbols into a
codeword of length n, adding redundancy in the form
of additional protection symbols, e.g., an n— k
consecutive two-bit symbols (refer to Definition V.2)
to protect against errors or erasures.

5.3 Problem description
5.3.1. Channel model

Our channel model in (1) is seen as an ideal
channel; however, it does not compromise the
training  process. The inherent estimation
inaccuracies are implicitly embedded in the channel
vector h, and their impact can be reasonably
mitigated as discussed next. The primary goal of
beam training is to steer the beamformer w toward
the angle of departure (AoD) of the dominant,
typically line-of-sight (LoS), propagation path. Given
the array steering vector structure in (2), we define
the discrete Fourier transform (DFT)-based
codebook, W, also referred to as the exhaustive
codebook (see Definition 1V.5), as

2n—1

W =!al(@)lp = -1+ ,ne€f{12,-,Ng}

T

The codebook-based beam training then aims to
select the optimal codeword from W that maximizes
the received signal power, i.e.,

max|hw| s.t. weW 4
w
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A straightforward solution to problem (4) is
exhaustive beam sweeping [12]. In this approach, the
base station (BS) sequentially transmits using all
codewords from W , while the user equipment (UE)
identifies the codeword yielding the highest received
power and feeds back its index to the BS. Although
this method achieves near-optimal beam alignment
performance, it requires Ny training time slots—
equal to the number of BS antennas—which results
in prohibitive training overhead, particularly in
extremely large-scale MIMO (XL-MIMO) systems.

To mitigate this excessive overhead, hierarchical
beam training (see Definition 1V.4) has been widely
adopted. This method employs a binary-search-based
hierarchical codebook that enables coarse-to-fine
beam alignment. A typical hierarchical codebook,

denoted as C,,, consists of 2" codewords at the L;-
th layer, where i € {1,2, ..., log, N}. The authors in
[2] denote the b-th codeword in the L;-th layer
as c[l;’gr. Each codeword at layer L; covers two

narrower, higher-resolution beams at the subsequent
layer L;, ¢, enabling a progressively refined search
for the dominant path. In this way, hierarchical beam
training significantly reduces the required number of
training slots while maintaining satisfactory beam
alignment performance.

Unlike the conventional binary hierarchical
codebook described above and in [2], our proposed
22-ary hierarchical codebook (see Definition V.2)
further improves training efficiency. Specifically, the

proposed codebook Cj%,. - reduces the total number of
layer L; by half, such that each L;-th layer contains
22Li ccodewords, for i € {1,2, ...,log,2Nz}. In other
words, each layer L; includes four codewords,
denoted as C/''¢", where b € {1,2,3,4}.

To illustrate, consider four candidate signals,
each represented by two bits. The first two signals
correspond to the group with the most significant bit
(MSB) equal to 0, while the remaining two belong to
the group with MSB equal to 1. During the training
procedure, the received powers of these two groups
are first compared, effectively testing the MSB. The
group yielding the higher received power is retained.
Subsequently, within the selected group, the signals
are compared according to their least significant bit
(LSB) to determine the best candidate beam.

This 22 -ary hierarchical selection strategy
enables efficient identification of the optimal beam
while significantly reducing the search depth from
log,Ny (in binary search) to log,2Ny , thereby
achieving faster convergence and lower training
overhead without sacrificing accuracy.
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Fig. 1 illustrates the 22-ary hierarchical beam
training approach in which the BS divides the spatial
region into multiple portions to enhance precision
and reduce training overhead. The first spatial area of
the beam training process is divided into four sub-
regions and they are identified by four symbols:
0,a,1,and @ + 1. These symbols represent distinct
initial training directions (mapping to angles) based
on an algebraic coding approach. The training
algorithm selects the appropriate two-bits (symbol
per layer) corresponding to the feedback from the
user, guiding the subsequent layers in refining the
search space. Once the initial section is determined,
the beam training process proceeds by dividing the
selected layer into smaller segments of the next four
symbols: 0,a,1, and a + 1. This hierarchical
refinement continues until the most accurate beam
direction is identified and until a full codeword is
defined in which an n symbols are selected. The
angular division, as shown in Fig.1, progressively
narrows down the search space, improving the
alignment accuracy while minimizing the training
time.

5.3.2. Error propagation

Hierarchical beam training is limited by the well-
known issue of error propagation, which prevents
reliable training in low-SNR scenarios, particularly
for remote users, thereby restricting the coverage area.
This drawback arises because codewords at the upper
layers have wider beamwidths and lower
beamforming gains, rendering them more susceptible
to noise. Moreover, since the hierarchical search
proceeds sequentially along a binary (or 22-ary in our
scheme) tree, an incorrect decision at any
intermediate layer inevitably results in unrecoverable
training failure. To overcome this limitation, we
propose a novel 22 beam training approach that
leverages the erasure-error-correcting capability of
channel coding. The proposed method not only
mitigates error propagation but also reduces the
training overhead while preserving high success rates
in low-SNR environments.

While our primary channel model (Section 5.2)
assumes a noiseless channel for analytical clarity, the
robust correction capability of our code, t =

d-1 .
lTJ errors and t=d —1 erasures, inherently

provides resilience against practical system non-

idealities. Random errors (t) are not exclusively

caused by thermal noise; they also model the effects

of:

e  Quantization errors: Imperfect analog-to-digital
conversion at the UE.
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e Hardware impairments: Non-linearities in the
RF chain.

e Imperfect synchronization: Small timing or
frequency offsets.

By tolerating up to ¢t random errors in addition to
the deliberately induced erasure, our scheme
maintains high beam selection accuracy under these
practical, non-ideal conditions, confirming the
superiority over uncoded methods.

6. Error-erasure correcting code

We propose a generalized construction of error-
erasure correction codes by extending a base linear
code Ch1 S ]F{;‘1 to a longer code C, € F g (cf.
Section 4-A). The extended code can correct both
random errors and erasures using a combination of
syndrome decoding and linear systems of equations.
Our scheme provides an uncomplicated but effective
method to extend classical error-correcting codes to
handle mixed errors and erasures with minimal
modification to the encoder.

6.1 Construction 1

LetCri S F12 ' bealinear code with parameters
[n — 1, k, d] capable of correcting up to t= [%J

random errors. Let Gn1 € szzx(n_l) be its generator

matrix. We construct an extended code Cn S F 32

with a one symbol larger generator matrix:
G,=[p|Grq] EF Izc;n’

Gn =[P | It | Pixn-k-1)] € F5",
where p € [F’Z‘{1 is a parity column vector,
P n-k-1) is the parity sub-matrix of the matrix Gp.
1, and Ik is the identity matrix of size k. Encoder and
decoder are shown in Algorithm 1 and Algorithm 2.

6.2 Theorem 1

The coding scheme in Construction 1 can obtain
a hybrid (¢, t) error-erasure correction scheme,
where:
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e uptot =I%J random errors in the first n — 1

symbols can be corrected using an [n—
1,k, d],2 code Cn1,

e anduptot=d —1known erasures anywhere in
an n length codeword are recovered using
[n,k, d],2 code C,. Proof.

We prove the hybrid correction capability by
separating the encoding and decoding procedures.

6.2.1. Encoding

Given a message m € F 25* (cf. Algorithm 1),
the encoder first generates a codeword cr.1=m + Gp.
1 using the base generator matrix Gp.i. It then
computes a parity symbol ¢, = m + p using a parity
vector p € F 55", chosen to extend the code while
preserving or increasing (by one) its minimum
distance, typically constructed such that the resulting
parity-check matrix enforces even-weight rows and
linear independence. The final codeword is ¢, = (cn,
cn1) € o2, as described in Algorithm 1.

6.2.2. Decoding

We prove the decoding capability in two phases.

Step 1: Error Correction in Cp

The base code Cn.i has minimum distance d,
which allows correction of any t= errors. Thus, any
errors that occur within n — 1 symbols (ignoring the
first symbol) can be decoded by the decoder of Cp-1
via, e.g., syndrome decoding.

Step 2: Erasure Correction in Cy

After correcting up to t errors, suppose | € | =t
erasures exist in known positions given by the set €
(including an intentionally erased first symbol where
error propagation begins). Since the code C, has
minimum distance > d, it can recover at most 7 < d
erasures by solving a linear system derived from the
parity-check equations. These known-position
erasures can be uniquely recovered® as long as the
number of erasures does not exceed d, due to the rank
and distance properties of the code.

1. Known-position erasures can be uniquely recovered because a linear [n, k, d] code can correct up to d—1 erasures in
known positions, i.e., the submatrix of the parity-check matrix formed by columns corresponding to the erased positions
has full rank, and the remaining coordinates provide sufficient constraints to solve for the missing values. This follows
directly from the minimum distance d, which ensures that any d — 1 columns of the parity-check matrix are linearly

independent.
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Figure. 2 An illustration of the whole coding and decoding procedure. The diagram shows an input message m which is
first encoded to a codeword cn.1, and then extended by c; to a codeword c,. The codeword that is transmitted is modified
by the channel to produce the received signal r, = ¢, + €, where e is the non-zero channel- added error vector of
Hamming weight at most d. The word received is then processed by the error and erasure correction blocks, where it
locates and repairs both corrupted and erased symbols to reconstruct the estimated codeword ¢ from which the message
m and the first erased symbol ¢; can be recovered.

The decoder solves the linear system given by the
parity-check equations of Cn, treating the positions of
the erasures as unknowns, while using the known
positions and values of the correct (or the “corrected”
as stated in Step 1) symbols as constraints. The
system is a full-rank due to the minimum distance
property, ensuring a unigue solution and preventing
error propagation by finding the deliberately erased
1st symbol.

Remark 2. The decoder first corrects up to t
random errors in the first n — 1 symbols using Cn.,
and then reconstructs up to 7 < d remaining known
positions erasures in an n length codeword by solving
a linear system using the parity-check matrix of C,.
These operations are sequentially conducted, as
illustrated in Fig. 2, and composable since error and
erasure positions are assumed disjoint (or error
positions are first corrected).

We can further elaborate on the two steps (error
and erasure correction) of encoding and decoding in
Algorithm 1 and Algorithm 2 throughout Section 6-
A and Appendix C.

The end-to-end signalling operation of our two
proposed 22-ary coded beam training schemes are
illustrated in Fig. 3 (hierarchal plus adaptive) and Fig.
4 (hierarchal plus fixed), and the precise decoding
procedure is captured in Algorithm 2. The core
integration step is the Base Station's (BS) application
of the decoder (Algorithm 2, steps 6-9) upon
receiving the single coded feedback symbol. The
decoder's ability to first correct random channel
errors in the remaining n-1 symbols and then solve
for the intentionally erased first symbol (the
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MSB/coarse direction) is the key to decoupling the
sequential dependence of the hierarchical search and
preventing error propagation.

Algorithm 1: Encoding Algorithm (User Side)
Require: Message m € lFé?k , generator matrix
Gn-1, parity vector p

Ensure: Codeword ¢, € F7,

1: 1 «— MG

2:Che—mM - p

3: Cn < (Cn, Cn1)

4. return cy

Algorithm 2: Decoding Algorithm (BS Side)
Require: Received corrupted vector r = (cn + €) €
F}., code Cp1, parity-check matrix Hn, erasure
positions €

Ensure: Decoded message i € F
1: Extract rnq «— (11, . . ., Tn1)

2: Use syndrome decoding on ry.1 to correct up to
terrors and obtain m” from the first k positions due
to systematic encoding

3: én—l —im - P

4:¢, — (€1, M G,_q)

5:if|€|=7<d -1 then

6: Erase 1st position

7: Solve &, HL = 0 for unknowns &;and other
erasures

8: Return Reconstructed codeword ¢ n and ¢; tells
the BS the first angle (direction)

1xk
22
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Figure. 3 Flow diagram of the Hierarchical Plus Adaptive Coded Beam Training pipeline for beam probing and selection

Figure. 4 Flow diagram of the Hierarchical Plus Fixed Coded Beam Training pipeline for beam probing and selection
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6.2 Example of coded beam training using
extended hamming codes

The example in Appendix C directly illustrates
how Construction 1 and Theorem 1 enable error—
erasure protection in practical beam training
scenarios. To enhance feedback reliability for 6G
beam training under low-SNR, we employ an
extended Hamming code with parameters [8, 4, 4] ,-.
Theorem 1 implies correcting any combination of t =

d_
[le errors and T = d — 1 erasures. Thus, for the

Hamming [7, 4, 3] ,2code (see Appendix C), t = 1.
Furthermore, since the final codeword is of length n
belongs the extended code [8,4,4],2. , T = 3
erasures (one intentionally considered at the first
received symbol) can be treated. This allows for a
robust recovery of the most significant bit (MSB) in
hierarchical feedback (e.g, the 1st bit in the 1st
received symbol). Therefore, our coding scheme over
[F,2 effectively limits error propagation throughout
the beam refinement stages at the expense of using
only one feedback as explained in Remark 3.

Remark 3. We cut the search space in half thanks
to the quaternary field. Unlike the method in [7],
which requires two feedback symbols—where the
first carries the most significant bit to split the
codebook into an “upper” region [1, 0] and a “lower”
region [0, —1], we avoid that requirement. Instead, we
deliberately erase the first symbol, relying on erasure
correction to recover it, thus removing the need for
that initial feedback. As a result, only one actual
feedback symbol, I,.1, is needed to refine the direction
within the selected beam space region. The error-
correcting capability of the extended code guarantees
that the remaining n — 1 symbols are decoded
correctly, even under low SNR conditions.

The decision to intentionally erase the first
symbol and recover it via erasure correction is a
strategic trade-off. This single erasure symbol (or =
symbols) captures the crucial, coarse-grained angular
information. For scenarios with high mobility and
short channel coherence, reducing the feedback
overhead from log, N (for binary hierarchical) to a
single symbol (I,,_,) dramatically reduces the overall
time the UE must remain silent awaiting a feedback
opportunity. The robust T -erasure recovery
mechanism ensures that the critical, broad beam
direction is successfully recovered, making the
scheme resilient even when the remaining n—1
symbols are highly corrupted due to channel variation
over the training period.
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7. Review of beam training techniques and
comparison with the proposed semi-
hierarchical coded approach

This section provides a concise review of the
most prominent existing beam training techniques,
highlighting their advantages and limitations, and
their comparison with our proposed semi-hierarchical
(22-ary hierarchical) coded strategy.

7.1 Techniques Overview
7.1.1. Uncoded hierarchical beam training

Training is divided into M layers, with two
signals transmitted per layer. The training overhead
is log, Ny, requiring M feedbacks. The total training
time is 2 log, Ny. This approach has a lower
training cost compared to exhaustive search, but with
increased complexity.

7.1.2. Exhaustive beam sweeping

This approach explores all possible beam
directions (N+), ensuring optimal beam selection. It
requires a training overhead of Nt and only one
feedback. The total training time is Nt + 1. While it
offers high accuracy, it comes at a high cost, i.e., the
highest total training time of Nt + 1.

7.1.3. Fixed coded beam training

This method is similar to hierarchical training,
with a training overhead of 2 + log, Ny. It requires
two feedback messages, resulting in a total training
time of 2 log, Ny + 2. However, it does not
support dynamic adjustment during training.

7.1.4. Adaptive coded beam training

This technique adjusts the beam direction at each
layer based on feedback. The training overhead is
2 + log, N, and the feedback overhead is log, N,
resulting in a total training time of 3 + log, Ny. It
introduces higher complexity in codebook design [2].

7.2 Our proposed techniques

7.2.1. 22—ary hierarchical with fixed coded beam
training

It is a hybrid strategy that combines the
hierarchical and fixed training methods. It uses one
fixed feedback from the user for the n — 1 symbols,
the total training will be mixed between hierarchical
and fixed training methods. Thus, in total it needs
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2 * log, Ny + 1 training time. Note that for Nt = 16
as stated in Corollary 2,

Z'IngNT+1:2.5'10g2NT_1

where log, N — 1 is our 22—ary hierarchical and
adaptive training time as stated next (see Item 2), and
for NT>1

2'10g2NT+1<2.5'10g2NT_1,

implying that the mixed hierarchical-fixed
scheme achieves lower training time as compared in
Table 1.

7.2.2. 22—ary hierarchical and adaptive coded beam
training

In another consideration, we use adaptive and
hierarchical. It sends four signals per layer. Thus, it
needs in total (2.5 * log, Ny) training time as follows.
Training overhead: 2 log, Ny and feedback
overhead: 0.5 + log, Ny.

Moreover, as we do not need one feedback to
adjust the first layer decision, as we will ultimately
recover it as an erasure (see Remark 3), we subtracts
1 fromtheterm 2.5 + log, Nr. Forall Nt < 16,

2.5'10g2NT_1SZ'10g2NT+1,

holds (check Corollary 1). Thus, the inequality is
satisfied for Nt < 16, and is lower overall training
time. However, for Nv> 16,2 * log, Ny +1islower
meaning fixed and hierarchical training method is the
best case.

In our work, we first set the semi-hierarchical
coded beam training scheme as a baseline method.
However, upon closer examination and investigation,
we found that the hierarchical coded beam training
method provides superior performance in both
adaptive and fixed training scenarios. To better show
the performance, we divided hierarchical scheme into
two cases adaptive and fixed and added the original
semi-hierarchical scheme for comparison. This helps
to understand how beam training methods have
advanced and improved in this research. Therefore,
the table below compares the three techniques to
indicate their difference in training costs and
reliability.

The issue of scalability for large Ny is critical. As
detailed in Appendix D, our scheme provides an
advantage in computational complexity over Viterbi-
based approaches. While our general scheme works
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Beam Training Methods Comparison
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Figure. 5 Comparison of Beam Training Methods

for any linear block code family (e.g., Extended
Hamming, BCH, etc.) and length, its practical
implementation focuses on codes with short block
lengths( n << Ny)to keep the decoding complexity
low.The decoding complexity of our block ECC
scheme scales polynomially,

0(n?)

where n is the codeword length (e.g.,n = 8in
the Hamming code example). This is a significant
advantage over the exponential complexity of Viterbi
decoding in the baseline method,

o(sz(N - 1))

Furthermore, the total complexity is reduced by
the  layers that are recovered via erasure correction,
decreasing the number of active training layers from
(M-1Dto(M—1-r1).

For a large system with (N;y= 1024) and (7 =
1),this elimination of ( 7 =1) layer of feedback and
processing reduces latency in both training time and
decoding time, ensuring the scheme remains feasible
for massive MIMO deployments.

7.3. Comparison Table

We provide Table 1 which compares our different
proposed schemes with beam training schemes. Note
that the term log, Ny refers to the base-2 logarithm
of N, which relates to the complexity of the training
time.
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Table 1. Comparison of Overheads for Different Schemes
Training Feedback Total
Schemes Type Overheads (BS- Overheads Training Complexity
UE) (UE-BS) Time
Adaptl\t/reaicrﬂﬂzd beam Coded 2 logz Nt Logz Nt 3 logz N1y High
Fixed coded beam training Coded 2 logy Nt 2 2 logy Nt+2 Low
Exhaustive beam sweeping Uncoded Nt 1 Nt +1 Very low
Binary search-based .
hierarchical beam training Both 2 logz N Logz Nt 3 log N High
Our proposed Hierarchical +
Fixed (hybrid) Coded 2 logz Nt 1 2 logz Nt+1 Low
Our proposed Hierarchical + : .
Adaptive (hybrid) Coded 2 logz Nt 0.5 logz Nt 2.5 logz Nt-1 Medium

7.3.1. Compared to adaptive coded beam training and
Binary search-based hierarchical beam training

It is obvious from Table 1 that our scheme has a
lower total training time, exactly 0.5 log, Ny less
than the adaptive coded beam training and the binary
search-based hierarchical beam training.

7.3.2. Compared to fixed coded beam training

Our method is at most the total training time of
the fixed coded beam training as shown in Table 1,
given Nt <16 as follows.

Corollary 1 (Total training time in mixed
hierarchical- fixed beam training). Let Nt be a
positive real number such that Nt < 16, then the
following inequality holds:

5
Elogz(NT) < 2-log,(Nr) +2 4)

The proof of Corollary 1 has been moved to the
Appendix A.

Thus, for Nt < 16, we achieve lower total training
time than fixed coded beam training, and
consequently better performance.

7.3.3. Compared to exhaustive beam sweeping

The exhaustive beam sweeping requires Nt +1
total training time, which is the highest among all
schemes including ours.

7.3.4. Compared to hierarchical fixed coded beam
training

The hybrid hierarchical-fixed training method,
which has a total training time of 2 - log, Ny + 1,
outperforms hierarchical-adaptive training when the
number of antennas exceeds 16, as shown in
Corollary 2. This means that this method achieves

International Journal of Intelligent Engineering and Systems, Vol.19, No.1, 2026

shorter training time in systems with a large number
of antennas, making it best suited for reducing
training time in large communications environments.
Corollary 2 (Comparison between fixed and
adaptive hierarchical coded beam training in total
training time). Let Nt be a positive real number such
that Nt > 16, then the following inequality holds:

5
2-log;(Np) +1< Elogz(NT) -1 (5)

The proof of Corollary 2 has been moved to the
Appendix B.

Thus, for Nt > 16, we achieve lower total training
time using the mixed hierarchical-fixed beam
training compared to the adaptive-hierarchical
approach.

Our 22 -ary hierarchical coded beam training
scheme offers two optimized modes, making it
suitable for distinct 6G deployment scenarios:

Large-Scale, Stationary/Low-Mobility
Deployments (Ny > 16): The Hierarchical + Fixed
mode (Total Training Time2 log, Nr+1) is superior
(Corollary 2). This mode, with its lower complexity
and shorter training time for large antenna arrays, is
ideal for fixed wireless access or indoor massive
MIMO where channel conditions are relatively stable,
and large Ny is used for high capacity.

Small/Medium-Scale, High-Mobility
Deployments ( Ny <16 ): The Hierarchical +
Adaptive mode (Total Training Time: 2.5 log, Np-1)
is preferred (Corollary 1). This mode's slightly faster
convergence for smaller N makes it perfectly suited
for high-mobility urban or vehicular environments
where low-latency beam tracking and re-acquisition
is mandatory, and the channel coherence time is short.
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7.4 Performance analysis

To validate the efficacy of the proposed scheme
beyond the training time analysis, we conducted
Monte Carlo simulations of the beam training process.
We compare the Beam Training Success Probability
(the probability of selecting the optimal beam) versus
the Signal-to-Noise Ratio (SNR) for N; = 64
antennas. The simulations incorporate realistic noise
and interference, aligning with the channel model in
Section 5.2. As shown in Fig. 6, our proposed 22-ary
Hierarchical + Fixed/Adaptive schemes significantly
outperform the Uncoded Hierarchical method,
especially in the low-SNR regime (SNR < 0dB). This
gain is a direct consequence of the dual error-erase
correction capability (Theorem 1), which isolates
and corrects errors that would otherwise lead to
catastrophic failure due to error propagation in the
conventional uncoded hierarchy.

The performance gain confirms that the latency
reduction is not achieved at the expense of selection
accuracy in challenging channel conditions.

8. Complexity analysis

This section analysis complexity in terms of
training and feedback overheads, implementation
effort, and computational cost. We present a clear
comparison among exhaustive beam training, binary
search-based hierarchical training, adaptive/fixed
coded training [2], and our hybrid hierarchical plus
(fixed or adaptive) schemes, summarised in Table 1.

8.1 Training overhead

In our scheme, across the upper M — 2 layers of
the hierarchical beam codebook, the BS transmits one
codeword per layer (one time slot each). At the
bottom layer, the BS sends two codewords to finalize
the selection, consuming two time slots. Hence, the
total downlink training overhead is M = 2log, Nr.
We assume R = 0.5 by default, but any R = k/n is
admissible as long as the code that used give us
enough the minimum distance redandancy. It's
possible to generalize to many/most coding scheme
and families that satisfied the condition which is give
us enough redundancy to have enough minimum
distance to correct t errors and tau erasure. Note that,
partially use our algorithm if we assume for
simplicity there's no errors t = 0. Thus, at less one
erasure it's possible to aviod the error propagation.
The training overheads at Ny = 1024 are
20,1024,20, and 20 time slots for our proposed
scheme, exhaustive sweeping, traditional binary
hierarchical training, and adaptive/fixed coded
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Figure. 6 Comparison of success rate for different beam
training methods (N = 64)

beam training, respectively. Thus, our method
matches the binary hierarchical and adaptive/fixed
coded beam training overhead while reducing the

cost relative to exhaustive search by —1012:2;20
100% =~ 98.05%.

8.2 Feedback overheads

The feedback overhead from the UEs to the BS is
also compared. In our hybrid strategy that combines
the hierarchical and fixed training methods, the BS
requires one fixed feedback from the user for the n —
T symbols. The t-layers is intentionally erased and
later recovered by the channel code, so no feedback
is required for these erasure symbol. Thus, the
feedback payload remains fixed and independent of
the number of layers. Also, for our hierarchal and
adaptive coded beam training scheme, as in
hierarchal fixed, our method skips the first feedback
by treating the first-layer MSB t-layers as a known
erasure location and recovering it via the channel
code the erasure correction code. Consequently,
feedback is gathered only every two layers. The
single layer is divided into four sections, unlike
binary search-based hierarchical beam training, this
reduces feedback by half 0.5log,N;y —t . This
outperforms all other types of beam training. In this
work, we focused on 7 = 1, which is the least value
we can consider so that we show the comparison in
Table 1.

8.3 Implementation complexity

The codebook generation is considered first. In
our hierarchical adaptive coded beam training, the
beam patterns in the lower layers are determined both
by the encoded algorithm and feedback of the upper
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Table 2. Comparison of Computational Complexity

Aspect Viterbi-Based Proposed
Code Type Convolutional Block ECC
Decoder Viterbi Syndrome/Direct
Decoding Complexity O(L2*(N — 1)) 0(n?
Codebook Generation 0 (L0 Ny log Np) Same
Layers M-=1) M-1-1)
Total O((M — 1) (Iyg, Ny log Ny + 25 (N — 1)) | O((M — 1 — 1) (Ipgx Ny log Ny + 1))

layers, except for tlayers that can be determined
mathematically through the erasure correction
capability of the code. Therefore, the codebook is
supposed to be generated adaptively only for M —
1 — 7 with less complexity since the t layers do not
introduce extra burden on defining the codebook. In
contrast, the codebooks of adaptive coded beam
training stated in [2] that generated adaptively for all
M —1 layers. In contrast, for the other methods:
hierarchical fixed, non-adaptive coded beam training
and exhaustive sweeping beam training use
predetermined search paths and thus can be executed
with fully pre-generated codebooks, avoiding real-
time UE-to-BS feedback and eliminating complex
signalling control. On the other hand, our hierarchical
fixed scheme enables fully pre-generated codebook
generation and uses single fixed feedback; hence, its
implementation complexity is very low, comparable
to non-adaptive coded beam training in [2] and close
to exhaustive sweeping training. Our hierarchical
adaptive coded beam training scheme maintains
lower implementation complexity than traditional
hierarchical adaptive coded beam training and binary
search—based hierarchical training. We can observe
that throughout Table 1.

8.4 Computational complexity analysis

We compare the computational complexity of the
proposed coded beam training with the conventional
Viterbi-based approach [2]. In both schemes, the
main complexity contributors are codebook
generation and beam decoding.

In the baseline [2], convolutional codes are
employed and the optimal beam index is recovered
using a Viterbi decoder. For a code of parameters
(n, k,N) and an information sequence of length L,
the decoding complexity scales as

0 (sz(N - 1)) (6)

which grows linearly with L but exponentially
with k. Each layer also requires generating candidate
beams via a GS-based design method with
complexity O (I, qx Ny log Ny).

In contrast, the proposed scheme employs a block
error-correction code (ECC) instead of a
convolutional one. The decoding is performed on
short coded feedback symbols, eliminating the need
for Viterbi decoding. For a block code [n, k, d], the
decoding complexity is polynomial, typically at most
0(n?) for syndrome-based algorithms. Since n is
small, this term dominates. Moreover, the number of
active training layers decreases from (M —1) to
(M — 1 — 1) due to the unnecessary t feedback, and
thus directly reduces both training and computational
load. The total complexity can be expressed as

O((M — 1 = 7)(IyaxNr log Nr + n?)) (7N

where the first term represents online codebook
generation and the second accounts for block
decoding.

Usually, n <« L2% in practical feedback systems
(e.g., short block codes of 8-16 symbols). Viterbi
decoding is exponential in k, while block code
decoding is polynomial (0(n?)), and for practical
parameters,

0(n?) « 0(L2k(N _ 1)). (8)

Hence, our proposed method reduces complexity
both by using polynomial block decoding and by
decreasing the number of active layers by 7, enabling
faster beam training.

9. Conclusion

This paper proposed Semi-Hierarchical Beam
Training, specifically the 22-ary hierarchical beam
training. In this 22-ary scheme, the UE sends one
symbol consisting of 2-bits feedback (cf. Remark 1)
in the hierarchical mixed fixed scheme
or 0.5log,N; in hierarchical mixed adaptive
training method, reducing overall training time to
2.5log,Nr — 1 (hierarchical mixed adaptive
training) or to 2log,Ny + 1 (hierarchical mixed
fixed), respectfully. We included a dual-layer error-
erasure correction mechanism. This system corrects
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up to t errors in any erroneous n—1 symbols and up
to T erasures (one intentionally introduced to stop
premature error propagation), sequentially as stated
in (cf. Remark 2) to combat error propagation.
Compared to other systems, such as in [2], our coding
scheme gives significant error propagation reduction
in low-SNR and high reliability of the beam selection
procedure without adding much feedback overhead,
e.g., with a cost of one symbol, we achieve 1.1x faster
in (hierarchical plus fixed ) method and 1.33x in
(hierarchical plus adaptive) scheme.
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Appendix

A. Proof of Corollary 1
Proof. We start with the given inequality:

5
Elogz(NT) < 2-log,(N7) + 2.
Simplifying:

1
Elogz(NT) <2 = log,(Ny) < 4.

Therefore:
Ny < 2% =16.

B. Proof of Corollary 2
Proof. We start with the given inequality:

5
2 " 10g2(NT) + 1 < Elogz(NT) - 1.
Rearrange:
1

Multiply both sides by -2:

log,(Ny) > 4. = Ny >2*
Ny > 16.

C. Hybrid Code: Encoding and Decoding Scheme
Let F,2 = {0, 1, @, a + 1} where a? = a + 1. We
analyze error and erasure decoding in two related
codes:

« C7: a[7,4,3],2Hamming code.

* Cg: its extended version, a [8,4,4],zcode.

The generator matrix G € F3z” is:

1 0 0 0 1 a «a
G=0100a1a
7710 001 0 a a 1

000 11 a a+1

Letm=(1,a,0,a+1) € lF‘Z*z be the message. Then
the encoded codeword is:
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cz=m * Gr=(L,a,0,a+l,a+l a a+tl)

We extend C; by appending one parity bit. The

generator matrix Gs € F5>® becomes:
G, = [Ik |Pk><(n—k—1)| p] € Flzc;n,
Gg = [14 |P4x3| p] € Fyr®,

1 0 0 0 1 a « 0
|01 00a 1 a 0
8710 01 0 a a 1 0

0 0 01 1 a a+1 1

Thus:
ce=m * Gg=[l,a,0,a+1,a+1l,a a+l, a]

Suppose the received message contains:
» Anerror at position 3.
» Intentionally the decoder erases
position 0.
Let the error vector be:

e=[0,0,0,1,0,0,0,0]
r=cste=[1,a0,aa+l a a+l a

The syndrome vector is computed as

s=r +- H
s=(c+e) - H
s=c+ H +e - H

T

Sincec - H =0 for any valid codeword, then:
s=e * H

Let Hg be the transpose of the parity-check matrix:

1 a « 1
a 1 « a
a a 1 a+1
H] = ‘1’ g 8 é €
0 1 0 0
0 0 1 0
0 0 O 1
And
e=[0,0,0,1,0,0,0,0]

The syndrome is:
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=l =)

This indicates an error in position 3.
After correcting the error, we have:

r=ua0,atl,at+tlaa+l a)

To solve for the intentionally erased at position 0,
define x and use:

8
X+ hy+ Zr;-h,-zo
i=2

Given:

h1:

— Q Q K

&
¢ a+1

8 0

0

, Zr; . hi = 0

+

To solve exactly, we take only one none-zero

equation (i.e., one component) and solve it. We
choose the fourth component:

x * l=a+l=>x=a+1

After identifying and correcting the error, the original
codeword:

&=(l a0 a+la+l,aa+l, a)

Remark 4. Assume the first three symbols are erased,
i.e., the received word is:

r=x0,x1,x2,a+1l,a+l,a,a+1l, a)

Where E = {0, 1, 2} is the set of erasures positions of
size t=3. Since d =4, we have T <d — 1, so recovery
is guaranteed?. By the same argument as above (for 7

=3).

Zh]X] = —Zh]r] ,

jee jee
where hj refers to the j-th coordinate (or component)
of h, x; is the unknown at position j if that symbol
was erased, and rj is the known received symbol at
position j.

Remark 5. The first three symbols are the most
significant, as the base station uses x0, x1, and x2 to
sequentially determine the primary, secondary, and
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tertiary directions toward the user. Even if later
symbols are incorrect, this coarse localization allows
the beam to be directed toward the approximate
transmission zone where the user is located or
moving. The finer direction can then be inferred
probabilistically ~ without  requiring  additional
feedback.
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