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Abstract: This paper addresses the problem of reliable beam training in 6G mobile communication by considering 

two critical challenges: isolating early-stage errors in directional search and reducing feedback overhead. Our method 

utilizes a 22-ary hierarchical beam training structure, where a fixed set of four candidate beams is evaluated per stage, 

enabling faster convergence compared to conventional binary hierarchies. To confine error effects and prevent their 

propagation across angular layers, our method applies a specialized encoding scheme with dual error-and-erasure 

correction capabilities. This allows early misdetections to be isolated and corrected without affecting deeper search 

levels. Theoretical analysis and comparisons demonstrate that our 22-ary hierarchical fixed beam training attains a 

total training time of 2𝑙𝑜𝑔2𝑁𝑇  −  1 , delivering a low‑latency, feedback‑efficient framework for high‑mobility, 

low‑SNR 6G deployments. Our scheme effectively reduces error propagation in low-SNR environments and shortens 

training time by 25% compared to adaptive coded beam training, and by 10% compared to fixed coded beam training. 
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1. Introduction 

Sixth-generation (6G) communications promise 

ultra-fast connectivity and high efficiency. However, 

these technologies have drawbacks, such as poor 

signal strength for users who are far away. 

Communication systems usually estimate the channel 

condition either explicitly by channel estimates 

throughout the channel state information (CSI) or 

implicitly by beam training. Explicit channel state 

information (CSI) estimation, which directly gets 

channel information via pilot signals, guarantees high 

precision in channel state representation. However, 

this approach may significantly affect spectral 

efficiency because of the substantial pilot overhead. 

It is also less feasible for large MIMO systems as it 

becomes more difficult to scale as the number of 

antennas rises. Therefore, small to medium antenna 

systems are more suited for implicit CSI estimation. 

Implicit channel state information (CSI) estimation, 

obtaining channel state information (CSI) through 

indirect or more complex methods reduces pilot 

overhead, making it a more resource-efficient 

approach. While this method is easier to scale for 

large antenna systems, such as extra-large MIMO 

(XL-MIMO), it requires optimized beam sweeping to 

ensure accurate channel estimation. Our work 

benefits from the implicit method to anticipate the 

channel status. Increasing directional accuracy and 

reducing errors improve beamforming efficiency and 

ensure reliable communications even in situations 

with low interference or signal-to-noise ratio [1]. To 

achieve the prior advancement, the system can use 

channel coding techniques to optimize the 

beamforming process, and this is known as Coded 

Beamforming. Applying coded beam can make the 

signal transmission more flexible and efficient, 

especially in situations where feedback is limited or 

channel state information (CSI) is not optimal [2]. 

Thus, “coded beamforming” has been developed to 

improve beamforming accuracy in wide-area MIMO 

(XL-MIMO) systems. 

Due to the low signal-to-noise ratio of remote 

users, it is difficult to accurately estimate the channel 

state. Thus, there would be an increased probability 
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of selecting suboptimal beams due to interference and 

noise, which negatively affects the efficiency of the 

system. The major challenge is the phenomenon of 

error propagation as the system uses hierarchical 

binary beam training, and as follows. This method 

relies on dividing the angular space into several 

layers (see an illustration in Fig. 1), starting by 

defining a wide space and then gradually narrowing 

it until the optimal angle is reached. Each stage 

depends on the previous results, making it vulnerable 

to initial errors in low-signal environments. 

Inaccurate decisions may cause significant errors that 

occur in the early stages of the experiment to 

propagate to further stages, resulting in reduced 

guidance accuracy and difficulty in correcting errors 

in these later stages.  

Another method for conducting beam training is 

exhaustive training. It depends on fully examining all 

possible packets to obtain the best matching case with 

the channel, but it requires longer time and consumes 

more resources, which is not desirable in low signal-

to-noise environments where time and resources are 

limited. Balancing training time with ensuring beam 

selection accuracy is one of the biggest challenges we 

face in beam training. Therefore, increasing the 

training time means reducing the time available for 

data transfer, which leads to a decrease in the overall 

efficiency of the system. Inaccurate training also 

leads to the signal being oriented at the wrong angle, 

which reduces efficiency and increases noise. The 

optimal scenario is to find a technique that allows 

training time to be reduced while maintaining high 

accuracy, so this requires careful mathematical 

modeling and simulation experiments to determine 

the point at which the ideal balance is achieved 

between these two factors.  

2. Related work 

Various channel coding techniques are used to 

improve beamforming reliability by mitigating errors 

and improving signal integrity in complex channel 

environments, including techniques such as 

Polarization Adjusted convolutional (PAC). PAC 

codes are a new family of linear block codes that can 

perform close to the theoretical limits in the short 

block length regime [3]. These codes can fix errors 

almost as well as the dispersive approximation, 

which is the limit of non-convergent channel coding. 

The study in [3] employs PAC codes because of their 

superior performance over traditional polar and twist 

codes, for short code lengths. They also ensure 

reliable transmission of short packets with minimal 

latency, which is one of the primary aims of the next 

generation of wireless communication systems [4]. 

However, the researchers focused on only short code 

lengths. 

The base station (BS) conducts beam training for 

each user sequentially using time-division multiple 

access (TDMA). However, training overhead can 

increase linearly with the number of users. To 

mitigate this, a simultaneous multiuser beam training 

scheme is introduced, in which each layer—except 

for the bottom layer—utilizes only two multi-

mainlobe codewords, regardless of the number of 

users the BS serves [5]. 

On the other hand, traditional hierarchical beam 

training schemes typically require multiple feedbacks 

from user equipment (UE) to the base station (BS) to 

indicate the best codeword for the base station. This 

leads to high overhead, especially in multiuser 

scenarios [6]. In [7], the authors propose a beam 

training scheme that only reduces the feedback 

requirement to only two feedbacks in total, regardless 

of the number of layers in the hierarchical codebook. 

The method that is described in [8] improves 

beam training by integrating a channel attention 

module that selectively trains a specific subset of 

broad beams depending on signals received from 

prior sessions. By efficiently extracting broad beam 

features, the model sustains superior narrow beam 

prediction accuracy despite diminished observations, 

thereby reducing training overhead. Additionally, the 

method in [10] adaptively allocates training resources 

to various beams, assigning more symbols to those 

with greater beamforming gains. By focusing 

resources where they are most needed, the method 

improves beam training accuracy and reduces the 

impact of error propagation in beam alignment. 

3. Our contribution  

As the work in [3] considers only codes with short 

block lengths, our code schemes have no limitation 

on the lengths of the codes. Unlike [5], we propose 

22 multi-mainlobe codewords such that we relay on 

the finite field 𝔽22 of the elements {0, 𝛼, 1, 𝛼+1} to 

introduce four higher-level angular directions; see 

Fig. 1. Our approach relies on the fact that we only 

need one bit, namely the most significant bit to define 

which symbol from {0, 𝛼} or {1, 𝛼+1}, and 

consequently we never get significant error 

propagation, i.e., either BS targets to the upper 

direction or to the lower direction. 

Extending the work proposed by [7] which 

already improves upon [6], we incorporate the 

channel coding techniques not only to reduce the 

feedback overhead and reduce the training time but 

also to kill the error propagation at its early stages, 
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i.e., the super-resolution angular direction where its 

existence has a significant effect. 

For comparison, our method differs from the 

approach in [8] (which is an uncoded method) that 

enhances alignment via channel feature weighting. 

Their method deals with the significant 

measurements without incorporating error correction 

within the feedback bits. This should prevent errors 

from changing the correct channel weighting. In 

contrast, our dual error–erasure coding scheme 

(described in Section 6) directly protects the most 

important feedback bit against errors, leading to more 

precise beam selection in low-SNR regimes. 

While the algorithm of  [10] is adaptive in 

training resource allocation and has high angular 

resolution, it neither employs feedback, nor error 

protection, as well as lacking an apparent training 

bound, the system unfairly allocates resources. It 

assigns more symbols to users who have better 

beamforming gains, which complicates the scheme. 

Our method, however, achieves low-complexity 

coded beam training in only 2 𝑙𝑜𝑔2 𝑁𝑇 + 1 (fixed) or 

2.5 𝑙𝑜𝑔2 𝑁𝑇 − 1 (adaptive) steps (cf. Table 1) and is 

thus more resilient and suitable for low-SNR and 

constrained systems. We summaries our main 

achievements as follows: 

1. Unlike other papers that are using coded beam 

training (only error correction codes) [2, 3, 4, 5], 

we incorporate erasure correction with error 

correction codes to stop the (significant) error 

(in hierarchical schemes) from propagating in its 

early stages. 

2. Generalizing from [3, 4] that focus on codes of 

short lengths, our coding scheme works for any 

code family with any code length. 

3. Improving upon [7] and (inherently) [6] (cf. 

Remark 3), we reduce the feedback overhead (to 

one only) and the training time (by at least 

0.5 𝑙𝑜𝑔2 𝑁𝑇 − 1 in the adaptive training and by 

at least 1 (cf. Table 1), comparing with other 

training techniques). 

Our framework is specifically optimized for high-

mobility, low-to-moderate SNR 6G deployments 

where reducing the training time to a minimum is 

paramount to fit within the short channel coherence 

time (𝑇𝑐). The total training time of 2 𝑙𝑜𝑔2 𝑁𝑇 + 1or 

2.5 𝑙𝑜𝑔2 𝑁𝑇 − 1 is significantly shorter than the 

exhaustive approach, enabling reliable training even 

when 𝑇𝑐 is severely limited by user velocity. 

In Section 4 we give our main notations and 

definitions. In next section, Section 5, our beam 

training model and channel model are defined and 

described. Section 6 gives our coding scheme for 

reliable feedback in beam training, including an  

 

 
Figure. 1 Expected Beams Directions. The figure 

illustrates a two-level system: upper and lower layers. 

The spatial direction is initially divided into four primary 

angular regions: with 𝜃0 ∈ {0, 𝛼, 1, 𝛼 + 1} matching the 

employed field elements (cf. Section 4-A). For example, 

the wide orange beam covering angle 1 = −45◦ can be 

subdivided into narrower lower-layer angles, such as 1-

0, ..., 1-𝑁𝑇. The dashed red arrow indicates a narrow 

beam targeted at a user (UE) at angle 1-130 

 

example based on extended Hamming codes. In 

Section 7, we review current beam training methods 

and compare their performance with our method, and 

also includes the performance evaluation of the 

success rate of our scheme. Section 8 gives the 

complexity analysis of our scheme compared with 

others. Lastly, Section 9 concludes the paper. 

4. Preliminaries  

4.1 Notations  

Let 𝔽22 denote a finite (extension) field with four 

elements, {0, 1, 𝛼, 𝛼 + 1}, where 𝛼 is a root of a 

primitive irreducible polynomial in 𝔽2 . Denote by 

𝑁𝑇  the number of transmit antennas in the system. 

Let 𝑡 denote the maximum number of bits that can be 

erroneous in a transmitted codeword. As usual, an [𝑛, 

𝑘, 𝑑]q C denotes a linear code over a field  
𝔽 𝑞

𝑛−𝑘 (over the alphabet 𝑞) of the parameters 𝑛, 𝑘 and 

𝑑, where 𝑛 is the code length, 𝑘 is the number of 

information symbols, and 𝑑 is the minimum 

Hamming distance between two different codewords. 

This distance defines the code’s capability to detect 

and correct errors or erasures.  

Use 𝜏 as the number of allowed erasures, i.e., the 

number of wiped symbols the erasure correction can 

recover, and their known positions are given by the 

set Ɛ. Let e ∈ 𝔽 22
𝑛 be the error vector, representing the 

errors or erroneous values that occur in the received 
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symbol sequence. 𝐶𝑛−1  ⊂ 𝔽 𝑞
𝑛−1 is a one symbol 

smaller code than C ⊂ 𝔽 𝑞
𝑛, where every word has 𝑛 

− 1 symbols. Remember our focus is on 𝑞 =22, and 

our coding scheme can be generalized to any 𝑞. Let 

m ∈ 𝔽 𝑞
𝑘  be the message vector consisting of 𝑘 

information symbols before the inclusion of the 

redundant symbols (in our scheme an 𝑛−𝑘 sequence 

of two bits as stated next), and let p ∈ 𝔽𝑞
𝑛−𝑘be the 

parity vector with 𝑛 − 𝑘 symbols. 

4.2. Definitions   

4.2.1. Definition IV.1 (Beam training) 

Beam training is an essential process in 

millimeter-wave (mmWave) and terahertz (THz) 

communication systems. In this process, the 

transmitter and receiver work together to find the best 

beam pair offering the highest directional link. The 

main issue in conventional training mechanisms is 

error propagation, with the errors occurring earlier at 

beam selection causing significant errors in the later 

layers. Thus, in Definition IV.2 we define Coded 

Beam Training. 

4.2.2. Definition IV.2 (Coded beam training) 

Coded beam training methods are an implicit 

approach for estimating the CSI, where error-

correcting codes are employed during the beam 

training process to enhance reliability [2].  

The coded beam training in Definition IV.2 

results in the following types of beam training. 

4.2.3. Definition IV.3 (Hierarchical codebooks) 

Hierarchical codebooks typically aid in the 

process of beam training. The codebooks arrange 

beamforming vectors in a tree structure to make 

searching easier and reduce training time [6]. Under 

challenging conditions, particularly with a low 

signal-to-noise ratio (SNR), accurate beam training is 

highly crucial, for which we require robust channel 

coding techniques. 

4.2.4. Definition IV.4 (Binary hierarchical beam 

training) 

Binary hierarchical beam training is a layered 

beam search method that iteratively narrows down 

the beam direction by dividing the angular space into 

𝑀 = log2 𝑁𝑇  layers, transmitting two candidate 

beams per layer. It requires one feedback per layer, 

resulting in a total training time of 2  log2 𝑁𝑇 slots. 

This approach significantly reduces training 

overhead compared to exhaustive sweeping (defined 

next in Definition IV.5) but involves higher 

implementation complexity due to its hierarchical 

structure. 

4.2.5. Definition IV.5 (Exhaustive beam training) 

Exhaustive beam training is a beam training 

technique that sequentially scans all 𝑁𝑇 possible 

transmit beam directions to identify the optimal 

beamforming path. It requires a single feedback 

message from the user equipment (UE) after all beam 

directions are tested. While it achieves high beam 

selection accuracy, it incurs a high training overhead 

with a total time cost of 𝑁𝑇+ 1 slots. 

5. System model  

This section describes the system architecture, 

including beam training protocols, coding schemes, 

and antenna configurations. 

5.1 Semi-hierarchical beam training structure 

To leverage the spatial sparsity of the channel 

while maintaining robust performance under 

uncertainty, we propose a semi-hierarchical coded 

beam training approach for 6G wireless systems. This 

architecture integrates hierarchical search with error-

resilient channel coding over field extensions, 

thereby enhancing both training efficiency and 

resilience in low-SNR or highly stable channel 

conditions. 

5.1.1. Definition V.1 (Semi-hierarchical beam training) 

Semi-hierarchical beam training is a layered 

method that partitions the angular domain into 

multiple hierarchical levels. Initially, the space is 

segmented into 𝐿1  coarse sectors (primary beams), 

each of which is further subdivided into 𝐿2 finer 

beams (sub-beams), resulting in a total of 𝑁T = 𝐿1 ・ 

𝐿2 angular directions — matching the number of 

antennas (cf. Section 4.1). At each level, directional 

pilot signals are transmitted using error correction 

codes to improve sector identification accuracy, 

balancing rapid exploration with high angular 

resolution. 

5.1.2. Definition V.2 (22−ary hierarchical beam 

training) 

22-ary hierarchical beam training is a special type 

of semi-hierarchical beam training in which the 

angular domain is divided into four candidate beams 

per layer. Assuming 𝑁𝑇 is a power of 2, the total 

number of layers is 𝑀 = 2 log2 𝑁𝑇. At each layer, four 

beams are probed sequentially, and a single feedback 
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message (cf. Remark 1) is used to select the correct 

subregion for refinement in the next stage. This 

process continues recursively until the final beam is 

identified. 

Remark 1. The UE observes all 4 candidate 

beams per layer. It returns 1 feedback, typically 2 bits 

of information (e.g., 00, 01, 10, or 11) to indicate 

which of the 4 beams is best. 

Compared to binary hierarchical beam training 

(see Definition IV.4), 22 -ary hierarchical beam 

training halves the number of layers and overall 

training latency. 

5.2 6G communications channel model 

While the main contribution of this work lies in 

coding design for 6G systems, we briefly summarise 

the underlying channel model for completeness. A 

detailed formulation is provided in [2, Section 2], 

where the model follows the well-known Saleh 

Valenzuela representation widely adopted in 

mmWave and THz communications [9]. This model 

captures the sparse and directional characteristics of 

high-frequency propagation, offering a physically 

grounded basis for robust coding and beam training 

design. 

We consider a downlink XL-MIMO system 

operating at mmWave/THz frequencies. The base 

station (BS) is equipped with a uniform linear array 

(ULA) of 𝑁𝑇 antennas spaced at half the carrier 

wavelength (𝜆/2), each connected to a dedicated RF 

chain, enabling fully-digital precoding. Although 

full-digital architecture is assumed for analytical 

clarity, the proposed scheme generalizes to hybrid 

precoding as discussed in [2].  

Let 𝑠0 ∈ C denote the power-normalized transmit 

symbol. The received signal 𝑦 at the user equipment 

(UE) is: 

 

𝑦 = √𝑃 ℎ𝑤𝑠0 + 𝑛 (1) 

 

where 𝑃 > 0 is the transmit power, ℎ ∈ ℂ1×𝑁𝑇  is 

the downlink channel vector, 𝑤 ∈ ℂ𝑁𝑇×1  is the unit-

norm beamforming vector, and 𝑛 ∼ CN (0, 𝜎2) 

denotes complex Gaussian noise. 

Due to the dominance of the line-of-sight (LoS) 

component (denoted by a subscript 0 in the terms of 

(1)) at high frequencies, we consider a simplified 

single-path channel model, which also determines the 

angular direction from the BS to the UE [11]: 

 

ℎ =  √𝑁𝑇  ꞵ0 α (𝜑0) (1) 

 

where 𝜑0 = sin(𝜃0) ∈ [ − 1, 1] is the spatial 

direction from the BS to the UE with 𝜃0 ∈ [−𝜋/2, 𝜋/2] 

representing the physical angle of departure (refer to 

Fig. 1), and 𝛼(𝜑0) is the array steering vector defined 

as: 

 

α(φ0) =  
1

𝑁𝑇
[1, 𝑒−𝑗𝜋𝜑0 , . . . . , 𝑒−𝑗(𝑁𝑇)𝜋𝜑0] (2) 

 

The path gain 𝛽0 follows the free-space path loss 

model: 

 

𝛽0 =
𝜆0

4𝜋𝑟
(3) 

 

where 𝜆0 is the carrier wavelength and 𝑟 is the 

distance between the UE and the center of the antenna 

array. When the received signal 𝑦 (stated in (1)) is 

corrupted by noise, an uncoded training scheme may 

misclassify the beam direction, leading to degraded 

communication. In contrast, our proposed 22 − ary 

coded beam training architecture mitigates such 

errors by encoding 𝑘 received pilot symbols into a 

codeword of length 𝑛, adding redundancy in the form 

of additional protection symbols, e.g., an 𝑛 −  𝑘 

consecutive two-bit symbols (refer to Definition V.2) 

to protect against errors or erasures. 

5.3 Problem description 

5.3.1. Channel model 

Our channel model in (1) is seen as an ideal 

channel; however, it does not compromise the 

training process. The inherent estimation 

inaccuracies are implicitly embedded in the channel 

vector 𝒉 , and their impact can be reasonably 

mitigated as discussed next. The primary goal of 

beam training is to steer the beamformer 𝒘 toward 

the angle of departure (AoD) of the dominant, 

typically line-of-sight (LoS), propagation path. Given 

the array steering vector structure in (2), we define 

the discrete Fourier transform (DFT)-based 

codebook,  𝑊 , also referred to as the exhaustive 

codebook (see Definition IV.5), as 

 

𝑊 = {𝛼𝐻(𝜑)|𝜑 = −1 +
2𝑛 − 1

𝑁𝑇
, 𝑛 ∈ {1,2,⋯ ,𝑁𝑇}} 

 

The codebook-based beam training then aims to 

select the optimal codeword from 𝑊 that maximizes 

the received signal power, i.e., 

 
max

𝑤
|𝒉𝒘|       𝑠. 𝑡.      𝑤 ∈ 𝑊 (4) 
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A straightforward solution to problem (4) is 

exhaustive beam sweeping [12]. In this approach, the 

base station (BS) sequentially transmits using all 

codewords from 𝑊 , while the user equipment (UE) 

identifies the codeword yielding the highest received 

power and feeds back its index to the BS. Although 

this method achieves near-optimal beam alignment 

performance, it requires 𝑁𝑇  training time slots—

equal to the number of BS antennas—which results 

in prohibitive training overhead, particularly in 

extremely large-scale MIMO (XL-MIMO) systems. 

To mitigate this excessive overhead, hierarchical 

beam training (see Definition IV.4) has been widely 

adopted. This method employs a binary-search-based 

hierarchical codebook that enables coarse-to-fine 

beam alignment. A typical hierarchical codebook, 

denoted as 𝐶ℎ𝑖𝑒𝑟
𝐿𝑖 , consists of 2𝐿𝑖 codewords at the 𝐿𝑖-

th layer, where 𝑖 ∈ {1,2,… , 𝑙𝑜𝑔2𝑁𝑇}. The authors in 

[2] denote the 𝑏 -th codeword in the 𝐿𝑖 -th layer 

as 𝐶𝐿𝑖,𝑏
ℎ𝑖𝑒𝑟 . Each codeword at layer 𝐿𝑖 covers two 

narrower, higher-resolution beams at the subsequent 

layer 𝐿𝑖+1 , enabling a progressively refined search 

for the dominant path. In this way, hierarchical beam 

training significantly reduces the required number of 

training slots while maintaining satisfactory beam 

alignment performance. 

Unlike the conventional binary hierarchical 

codebook described above and in [2], our proposed 

22 -ary hierarchical codebook (see Definition V.2) 

further improves training efficiency. Specifically, the 

proposed codebook 𝐶ℎ𝑖𝑒𝑟
𝐿𝑖  reduces the total number of 

layer 𝐿𝑖 by half, such that each 𝐿𝑖-th layer contains 

22𝐿𝑖 ccodewords, for 𝑖 ∈ {1,2,… , 𝑙𝑜𝑔22𝑁𝑇}. In other 

words, each layer 𝐿𝑖  includes four codewords, 

denoted as 𝐶𝐿𝑖,𝑏
ℎ𝑖𝑒𝑟, where 𝑏 ∈ {1,2,3,4}.  

To illustrate, consider four candidate signals, 

each represented by two bits. The first two signals 

correspond to the group with the most significant bit 

(MSB) equal to 0, while the remaining two belong to 

the group with MSB equal to 1. During the training 

procedure, the received powers of these two groups 

are first compared, effectively testing the MSB. The 

group yielding the higher received power is retained. 

Subsequently, within the selected group, the signals 

are compared according to their least significant bit 

(LSB) to determine the best candidate beam.  

This 22 -ary hierarchical selection strategy 

enables efficient identification of the optimal beam 

while significantly reducing the search depth from 

𝑙𝑜𝑔2𝑁𝑇  (in binary search) to 𝑙𝑜𝑔22𝑁𝑇  , thereby 

achieving faster convergence and lower training 

overhead without sacrificing accuracy. 

Fig. 1 illustrates the 22 -ary hierarchical beam 

training approach in which the BS divides the spatial 

region into multiple portions to enhance precision 

and reduce training overhead. The first spatial area of 

the beam training process is divided into four sub-

regions and they are identified by four symbols: 

0, 𝛼, 1, and 𝛼 +  1. These symbols represent distinct 

initial training directions (mapping to angles) based 

on an algebraic coding approach. The training 

algorithm selects the appropriate two-bits (symbol 

per layer) corresponding to the feedback from the 

user, guiding the subsequent layers in refining the 

search space. Once the initial section is determined, 

the beam training process proceeds by dividing the 

selected layer into smaller segments of the next four 

symbols: 0, 𝛼, 1,  and 𝛼 +  1.  This hierarchical 

refinement continues until the most accurate beam 

direction is identified and until a full codeword is 

defined in which an 𝑛  symbols are selected. The 

angular division, as shown in Fig.1, progressively 

narrows down the search space, improving the 

alignment accuracy while minimizing the training 

time. 

5.3.2. Error propagation 

Hierarchical beam training is limited by the well-

known issue of error propagation, which prevents 

reliable training in low-SNR scenarios, particularly 

for remote users, thereby restricting the coverage area. 

This drawback arises because codewords at the upper 

layers have wider beamwidths and lower 

beamforming gains, rendering them more susceptible 

to noise. Moreover, since the hierarchical search 

proceeds sequentially along a binary (or 22-ary in our 

scheme) tree, an incorrect decision at any 

intermediate layer inevitably results in unrecoverable 

training failure. To overcome this limitation, we 

propose a novel 22  beam training approach that 

leverages the erasure-error-correcting capability of 

channel coding. The proposed method not only 

mitigates error propagation but also reduces the 

training overhead while preserving high success rates 

in low-SNR environments. 

While our primary channel model (Section 5.2) 

assumes a noiseless channel for analytical clarity, the 

robust correction capability of our code, 𝑡 =

⌊
𝑑−1

2
⌋ errors and 𝜏 = 𝑑 − 1 erasures, inherently 

provides resilience against practical system non-

idealities. Random errors ( 𝑡 ) are not exclusively 

caused by thermal noise; they also model the effects 

of: 

• Quantization errors: Imperfect analog-to-digital 

conversion at the UE. 
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• Hardware impairments: Non-linearities in the 

RF chain. 

• Imperfect synchronization: Small timing or 

frequency offsets. 

By tolerating up to 𝑡 random errors in addition to 

the deliberately induced erasure, our scheme 

maintains high beam selection accuracy under these 

practical, non-ideal conditions, confirming the 

superiority over uncoded methods. 

6. Error-erasure correcting code  

We propose a generalized construction of error-

erasure correction codes by extending a base linear 

code Cn-1 ⊆  𝔽 𝑞
𝑛−1 to a longer code Cn ⊆  𝔽 𝑞

𝑛  (cf. 

Section 4-A). The extended code can correct both 

random errors and erasures using a combination of 

syndrome decoding and linear systems of equations. 

Our scheme provides an uncomplicated but effective 

method to extend classical error-correcting codes to 

handle mixed errors and erasures with minimal 

modification to the encoder. 

6.1 Construction 1 

Let Cn-1 ⊆  𝔽 22
𝑛−1 be a linear code with parameters 

[𝑛 − 1, 𝑘, 𝑑] capable of correcting up to t=⌊
𝑑−1

2
⌋ 

random errors. Let Gn-1 ∈  𝐹
22
𝑘×(𝑛−1)

  be its generator 

matrix. We construct an extended code Cn ⊆  𝔽 22
𝑛   

with a one symbol larger generator matrix:  

 

𝑮𝒏 = [𝒑 | 𝑮𝒏−𝟏]  ∈  𝔽 22
𝑘×𝑛, 

𝑮𝒏 = [𝒑 | 𝑰𝒌 | 𝑷𝒌×(𝒏−𝒌−𝟏)]  ∈  𝔽 22
𝑘×𝑛, 

 

where p ∈  𝔽 22
𝑘−1   is a parity column vector, 

𝑷𝒌×(𝒏−𝒌−𝟏)  is the parity sub-matrix of the matrix Gn-

1, and Ik is the identity matrix of size 𝑘. Encoder and 

decoder are shown in Algorithm 1 and Algorithm 2. 

6.2 Theorem 1 

The coding scheme in Construction 1 can obtain 

a hybrid (𝑡, 𝜏) error-erasure correction scheme, 

where: 

• up to 𝑡 =⌊
d−1

2
⌋  random errors in the first 𝑛 – 1 

symbols can be corrected using an [n −
1, k, d]22 code Cn-1, 

• and up to 𝜏 = 𝑑 −1 known erasures anywhere in 

an 𝑛 length codeword are recovered using 

[n, k, d]22 code C𝑛. Proof. 

We prove the hybrid correction capability by 

separating the encoding and decoding procedures. 

6.2.1. Encoding 

Given a message m ∈  𝔽 22
1×𝑘  (cf. Algorithm 1), 

the encoder first generates a codeword cn-1 = m ・ Gn-

1 using the base generator matrix Gn-1. It then 

computes a parity symbol 𝑐n = m・ p using a parity 

vector p ∈  𝔽 22
𝑘×1 , chosen to extend the code while 

preserving or increasing (by one) its minimum 

distance, typically constructed such that the resulting 

parity-check matrix enforces even-weight rows and 

linear independence. The final codeword is cn = (𝑐n, 

cn-1) ∈  𝔽22
𝑛  , as described in Algorithm 1. 

6.2.2. Decoding 

We prove the decoding capability in two phases. 

Step 1: Error Correction in Cn-1 

The base code Cn-1 has minimum distance 𝑑, 

which allows correction of any t= errors. Thus, any 

errors that occur within 𝑛 – 1 symbols (ignoring the 

first symbol) can be decoded by the decoder of Cn-1 

via, e.g., syndrome decoding. 

Step 2: Erasure Correction in Cn 

After correcting up to 𝑡 errors, suppose | Ꜫ | = 𝜏 

erasures exist in known positions given by the set Ꜫ 

(including an intentionally erased first symbol where 

error propagation begins). Since the code Cn has 

minimum distance ≥ 𝑑, it can recover at most 𝜏 ≤ 𝑑 

erasures by solving a linear system derived from the 

parity-check equations. These known-position 

erasures can be uniquely recovered1 as long as the 

number of erasures does not exceed 𝑑, due to the rank 

and distance properties of the code.  

 

 

 
1. Known-position erasures can be uniquely recovered because a linear [𝑛, 𝑘, 𝑑] code can correct up to 𝑑−1 erasures in 

known positions, i.e., the submatrix of the parity-check matrix formed by columns corresponding to the erased positions 

has full rank, and the remaining coordinates provide sufficient constraints to solve for the missing values. This follows 

directly from the minimum distance 𝑑, which ensures that any 𝑑 – 1 columns of the parity-check matrix are linearly 

independent. 
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Figure. 2 An illustration of the whole coding and decoding procedure. The diagram shows an input message m which is 

first encoded to a codeword cn-1, and then extended by 𝑐1 to a codeword cn. The codeword that is transmitted is modified 

by the channel to produce the received signal rn = cn + e, where e is the non-zero channel- added error vector of 

Hamming weight at most 𝑑. The word received is then processed by the error and erasure correction blocks, where it 

locates and repairs both corrupted and erased symbols to reconstruct the estimated codeword ĉ from which the message 

𝒎̂ and the first erased symbol ĉ1 can be recovered. 

 

 

The decoder solves the linear system given by the 

parity-check equations of Cn, treating the positions of 

the erasures as unknowns, while using the known 

positions and values of the correct (or the “corrected” 

as stated in Step 1) symbols as constraints. The 

system is a full-rank due to the minimum distance 

property, ensuring a unique solution and preventing 

error propagation by finding the deliberately erased 

1st symbol. 

Remark 2. The decoder first corrects up to 𝑡 
random errors in the first 𝑛 − 1 symbols using Cn-1, 

and then reconstructs up to 𝜏 ≤ 𝑑 remaining known 

positions erasures in an 𝑛 length codeword by solving 

a linear system using the parity-check matrix of Cn. 

These operations are sequentially conducted, as 

illustrated in Fig. 2, and composable since error and 

erasure positions are assumed disjoint (or error 

positions are first corrected). 

We can further elaborate on the two steps (error 

and erasure correction) of encoding and decoding in 

Algorithm 1 and Algorithm 2 throughout Section 6-

A and Appendix C. 

The end-to-end signalling operation of our two 

proposed 22 -ary coded beam training schemes are 

illustrated in Fig. 3 (hierarchal plus adaptive) and Fig. 

4 (hierarchal plus fixed), and the precise decoding 

procedure is captured in Algorithm 2. The core 

integration step is the Base Station's (BS) application 

of the decoder (Algorithm 2, steps 6-9) upon 

receiving the single coded feedback symbol. The 

decoder's ability to first correct random channel 

errors in the remaining n-1 symbols and then solve 

for the intentionally erased first symbol (the 

MSB/coarse direction) is the key to decoupling the 

sequential dependence of the hierarchical search and 

preventing error propagation. 

 

Algorithm 1: Encoding Algorithm (User Side) 

Require: Message m ∈  𝔽22
1×𝑘  , generator matrix 

Gn-1, parity vector p 

Ensure: Codeword cn ∈  𝔽22
𝑛  

1: cn-1 ← mGn-1 

2: cn ← m ・ p 

3: cn ← (cn, cn-1) 

4. return cn 

 

Algorithm 2: Decoding Algorithm (BS Side) 

Require: Received corrupted vector r = (cn + e) ∈ 

 𝔽22
𝑛 , code Cn-1, parity-check matrix Hn, erasure 

positions Ԑ  

Ensure: Decoded message 𝒎̂ ∈  𝔽22
1×𝑘 

1: Extract rn-1 ← (𝑟1, . . . , 𝑟n-1) 

2: Use syndrome decoding on rn-1 to correct up to 

𝑡errors and obtain mˆ from the first 𝑘 positions due 

to systematic encoding 

3: ĉ𝒏−𝟏  ← 𝒎̂ ・ 𝒑 

4: ĉ𝒏 ← (ĉ 𝟏, 𝒎̂ 𝑮𝒏−𝟏) 

5: if |Ɛ| = 𝜏 ≤ 𝑑 − 1 then 

6: Erase 1𝑠𝑡 position 

7: Solve ĉ𝒏  𝑯𝑛
𝑇  = 0 for unknowns ĉ𝟏 and other 

erasures 

8: Return Reconstructed codeword ĉ n and ĉ1 tells 

the BS the first angle (direction) 
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Figure. 3 Flow diagram of the Hierarchical Plus Adaptive Coded Beam Training pipeline for beam probing and selection 

 

 
Figure. 4 Flow diagram of the Hierarchical Plus Fixed Coded Beam Training pipeline for beam probing and selection 
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6.2 Example of coded beam training using 

extended hamming codes 

The example in Appendix C directly illustrates 

how Construction 1 and Theorem 1 enable error–

erasure protection in practical beam training 

scenarios. To enhance feedback reliability for 6G 

beam training under low-SNR, we employ an 

extended Hamming code with parameters [8, 4, 4] 22. 

Theorem 1 implies correcting any combination of 𝑡 = 

⌊ 
𝑑−1

2
 ⌋ errors and 𝜏 = 𝑑 − 1 erasures. Thus, for the 

Hamming [7, 4, 3] 22code (see Appendix C), 𝑡 = 1. 

Furthermore, since the final codeword is of length 𝑛 

belongs the extended code [8, 4, 4] 22 .  , 𝜏 = 3 

erasures (one intentionally considered at the first 

received symbol) can be treated. This allows for a 

robust recovery of the most significant bit (MSB) in 

hierarchical feedback (e.g, the 1𝑠𝑡 bit in the 1st 

received symbol). Therefore, our coding scheme over 

𝔽22  effectively limits error propagation throughout 

the beam refinement stages at the expense of using 

only one feedback as explained in Remark 3. 

Remark 3. We cut the search space in half thanks 

to the quaternary field. Unlike the method in [7], 

which requires two feedback symbols—where the 

first carries the most significant bit to split the 

codebook into an “upper” region [1, 0] and a “lower” 

region [0, −1], we avoid that requirement. Instead, we 

deliberately erase the first symbol, relying on erasure 

correction to recover it, thus removing the need for 

that initial feedback. As a result, only one actual 

feedback symbol, 𝐼n-1, is needed to refine the direction 

within the selected beam space region. The error-

correcting capability of the extended code guarantees 

that the remaining 𝑛 − 1 symbols are decoded 

correctly, even under low SNR conditions. 

The decision to intentionally erase the first 

symbol and recover it via erasure correction is a 

strategic trade-off. This single erasure symbol (or 𝜏 

symbols) captures the crucial, coarse-grained angular 

information. For scenarios with high mobility and 

short channel coherence, reducing the feedback 

overhead from 𝑙𝑜𝑔2𝑁𝑇 (for binary hierarchical) to a 

single symbol (𝐼𝑛−1) dramatically reduces the overall 

time the UE must remain silent awaiting a feedback 

opportunity. The robust 𝜏 -erasure recovery 

mechanism ensures that the critical, broad beam 

direction is successfully recovered, making the 

scheme resilient even when the remaining 𝑛 − 1 

symbols are highly corrupted due to channel variation 

over the training period. 

7. Review of beam training techniques and 

comparison with the proposed semi-

hierarchical coded approach  

This section provides a concise review of the 

most prominent existing beam training techniques, 

highlighting their advantages and limitations, and 

their comparison with our proposed semi-hierarchical 

(22-ary hierarchical) coded strategy. 

7.1 Techniques Overview 

7.1.1. Uncoded hierarchical beam training 

Training is divided into 𝑀 layers, with two 

signals transmitted per layer. The training overhead 

is log2 𝑁𝑇, requiring 𝑀 feedbacks. The total training 

time is 2 ・  log2 𝑁𝑇 . This approach has a lower 

training cost compared to exhaustive search, but with 

increased complexity.    

7.1.2. Exhaustive beam sweeping 

This approach explores all possible beam 

directions (𝑁T), ensuring optimal beam selection. It 

requires a training overhead of 𝑁T and only one 

feedback. The total training time is 𝑁T + 1. While it 

offers high accuracy, it comes at a high cost, i.e., the 

highest total training time of 𝑁T + 1. 

7.1.3. Fixed coded beam training 

This method is similar to hierarchical training, 

with a training overhead of 2 ・ log2 𝑁𝑇. It requires 

two feedback messages, resulting in a total training 

time of 2 ・  log2 𝑁𝑇  + 2. However, it does not 

support dynamic adjustment during training. 

7.1.4. Adaptive coded beam training 

This technique adjusts the beam direction at each 

layer based on feedback. The training overhead is 

2 ・ log2 𝑁𝑇, and the feedback overhead is log2 𝑁𝑇, 

resulting in a total training time of 3 ・ log2 𝑁𝑇. It 

introduces higher complexity in codebook design [2]. 

7.2 Our proposed techniques 

7.2.1. 22−ary hierarchical with fixed coded beam 

training 

It is a hybrid strategy that combines the 

hierarchical and fixed training methods. It uses one 

fixed feedback from the user for the 𝑛 − 1 symbols, 

the total training will be mixed between hierarchical 

and fixed training methods. Thus, in total it needs 
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2 ・ log2 𝑁𝑇 + 1 training time. Note that for 𝑁T = 16 

as stated in Corollary 2,  

 

2 ∙ log2 𝑁𝑇 + 1 = 2.5 ∙ log2 𝑁𝑇 − 1 

 

where log2 𝑁𝑇 − 1 is our 22−ary hierarchical and 

adaptive training time as stated next (see Item 2), and 

for 𝑁T> 1 

 

2 ∙ log2 𝑁𝑇 + 1 < 2.5 ∙ log2 𝑁𝑇 − 1, 
 

implying that the mixed hierarchical-fixed 

scheme achieves lower training time as compared in 

Table 1. 

7.2.2. 22−ary hierarchical and adaptive coded beam 

training  

In another consideration, we use adaptive and 

hierarchical. It sends four signals per layer. Thus, it 

needs in total (2.5・log2 𝑁𝑇) training time as follows. 

Training overhead: 2 ・ log2 𝑁𝑇  and feedback 

overhead: 0.5 ・ log2 𝑁𝑇. 

Moreover, as we do not need one feedback to 

adjust the first layer decision, as we will ultimately 

recover it as an erasure (see Remark 3), we subtracts 

1 from the term 2.5 ・ log2 𝑁𝑇. For all 𝑁T ≤ 16, 

 

2.5 ∙ log2 𝑁𝑇 − 1 ≤ 2 ∙ log2 𝑁𝑇 + 1, 
 

holds (check Corollary 1). Thus, the inequality is 

satisfied for 𝑁T ≤ 16, and is lower overall training 

time. However, for 𝑁T > 16, 2 ・ log2 𝑁𝑇 + 1 is lower 

meaning fixed and hierarchical training method is the 

best case. 

In our work, we first set the semi-hierarchical 

coded beam training scheme as a baseline method. 

However, upon closer examination and investigation, 

we found that the hierarchical coded beam training 

method provides superior performance in both 

adaptive and fixed training scenarios. To better show 

the performance, we divided hierarchical scheme into 

two cases adaptive and fixed and added the original 

semi-hierarchical scheme for comparison. This helps 

to understand how beam training methods have 

advanced and improved in this research. Therefore, 

the table below compares the three techniques to 

indicate their difference in training costs and 

reliability. 

The issue of scalability for large 𝑁𝑇 is critical. As 

detailed in Appendix D, our scheme provides an 

advantage in computational complexity over Viterbi- 

based approaches. While our general scheme works 

 

 

 
Figure. 5 Comparison of Beam Training Methods 

 

 

for any linear block code family (e.g., Extended 

Hamming, BCH, etc.) and length, its practical 

implementation focuses on codes with short block 

lengths( 𝑛 ≪ 𝑁𝑇)to keep the decoding complexity 

low.The decoding complexity of our block ECC 

scheme scales polynomially, 

 

𝑂(𝑛2) 

 

where 𝑛 is the codeword length (e.g., 𝑛 =  8 in 

the Hamming code example). This is a significant  

advantage over the exponential complexity of Viterbi 

decoding in the baseline method, 

 

𝑂 (𝐿2𝑘(𝑁 −  1)) 

 

Furthermore, the total complexity is reduced by 

the 𝜏 layers that are recovered via erasure correction, 

decreasing the number of active training layers from 

(𝑀 − 1) to (𝑀 − 1 − 𝜏). 
For a large system with (𝑁𝑇 = 1024) and ( 𝜏 = 

1),this elimination of ( 𝜏 =1) layer of feedback and 

processing reduces latency in both training time and 

decoding time, ensuring the scheme remains feasible 

for massive MIMO deployments. 

7.3. Comparison Table 

We provide Table 1 which compares our different 

proposed schemes with beam training schemes. Note 

that the term log2 𝑁𝑇 refers to the base-2 logarithm 

of 𝑁T, which relates to the complexity of the training 

time.  
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Table 1. Comparison of Overheads for Different Schemes 

Schemes Type 

Training 

Overheads (BS-

UE) 

Feedback 

Overheads 

(UE-BS) 

Total 

Training 

Time 

Complexity 

Adaptive coded beam 

training 
Coded 2 log2 𝑁T Log2 𝑁T 3 log2 𝑁TY High 

Fixed coded beam training Coded 2 log2 𝑁T 2 2 log2 𝑁T+2 Low 

Exhaustive beam sweeping Uncoded NT 1 NT +1 Very low 

Binary search-based 

hierarchical beam training 
Both 2 log2 𝑁T Log2 𝑁T 3 log2 𝑁T High 

Our proposed Hierarchical + 

Fixed (hybrid) 
Coded 2 log2 𝑁T 1 2 log2 𝑁T+1 Low 

Our proposed Hierarchical + 

Adaptive (hybrid) 
Coded 2 log2 𝑁T 0.5 log2 𝑁T 2.5 log2 𝑁T-1 Medium 

 

 
7.3.1. Compared to adaptive coded beam training and 

Binary search-based hierarchical beam training 

It is obvious from Table 1 that our scheme has a 

lower total training time, exactly 0.5 log2 𝑁𝑇  less 

than the adaptive coded beam training and the binary 

search-based hierarchical beam training. 

7.3.2. Compared to fixed coded beam training 

Our method is at most the total training time of 

the fixed coded beam training as shown in Table 1, 

given 𝑁T ≤ 16 as follows.  

Corollary 1 (Total training time in mixed 

hierarchical– fixed beam training). Let 𝑁T be a 

positive real number such that 𝑁T ≤ 16, then the 

following inequality holds: 

 
5

2
log2(𝑁𝑇) ≤ 2 ∙ log2(𝑁𝑇) + 2 (4) 

 

The proof of Corollary 1 has been moved to the 

Appendix A. 

Thus, for 𝑁T < 16, we achieve lower total training 

time than fixed coded beam training, and 

consequently better performance. 

7.3.3. Compared to exhaustive beam sweeping 

The exhaustive beam sweeping requires 𝑁T +1 

total training time, which is the highest among all 

schemes including ours. 

7.3.4. Compared to hierarchical fixed coded beam 

training 

The hybrid hierarchical-fixed training method, 

which has a total training time of 2 ・ log2 𝑁𝑇 + 1, 

outperforms hierarchical-adaptive training when the 

number of antennas exceeds 16, as shown in 

Corollary 2. This means that this method achieves 

shorter training time in systems with a large number 

of antennas, making it best suited for reducing 

training time in large communications environments. 

Corollary 2 (Comparison between fixed and 

adaptive hierarchical coded beam training in total 

training time). Let 𝑁T be a positive real number such 

that 𝑁T > 16, then the following inequality holds: 

 

2 ∙ log1(𝑁𝑇) + 1 <  
5

2
log2(𝑁𝑇) − 1 (5) 

 

The proof of Corollary 2 has been moved to the 

Appendix B.  

Thus, for 𝑁T > 16, we achieve lower total training 

time using the mixed hierarchical-fixed beam 

training compared to the adaptive-hierarchical 

approach. 

Our 22 -ary hierarchical coded beam training 

scheme offers two optimized modes, making it 

suitable for distinct 6G deployment scenarios: 

Large-Scale, Stationary/Low-Mobility 

Deployments (𝑵𝑻 > 𝟏𝟔): The Hierarchical + Fixed 

mode (Total Training Time2 log2 𝑁𝑇+1) is superior 

(Corollary 2). This mode, with its lower complexity 

and shorter training time for large antenna arrays, is 

ideal for fixed wireless access or indoor massive 

MIMO where channel conditions are relatively stable, 

and large 𝑁𝑇 is used for high capacity. 

Small/Medium-Scale, High-Mobility 

Deployments ( 𝑵𝑻 ≤ 𝟏𝟔 ): The Hierarchical + 

Adaptive mode (Total Training Time: 2.5 log2 𝑁𝑇-1) 

is preferred (Corollary 1). This mode's slightly faster 

convergence for smaller 𝑁𝑇 makes it perfectly suited 

for high-mobility urban or vehicular environments 

where low-latency beam tracking and re-acquisition 

is mandatory, and the channel coherence time is short. 
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7.4 Performance analysis 

To validate the efficacy of the proposed scheme 

beyond the training time analysis, we conducted 

Monte Carlo simulations of the beam training process. 

We compare the Beam Training Success Probability 

(the probability of selecting the optimal beam) versus 

the Signal-to-Noise Ratio (SNR) for 𝑁𝑇  =  64 

antennas. The simulations incorporate realistic noise 

and interference, aligning with the channel model in 

Section 5.2. As shown in Fig. 6, our proposed 22-ary 

Hierarchical + Fixed/Adaptive schemes significantly 

outperform the Uncoded Hierarchical method, 

especially in the low-SNR regime (SNR < 0 dB). This 

gain is a direct consequence of the dual error-erase 

correction capability (Theorem 1),  which isolates 

and corrects errors that would otherwise lead to 

catastrophic failure due to error propagation in the 

conventional uncoded hierarchy. 

The performance gain confirms that the latency 

reduction is not achieved at the expense of selection 

accuracy in challenging channel conditions. 

8. Complexity analysis 

This section analysis complexity in terms of 

training and feedback overheads, implementation 

effort, and computational cost. We present a clear 

comparison among exhaustive beam training, binary 

search-based hierarchical training, adaptive/fixed 

coded training [2], and our hybrid hierarchical plus 

(fixed or adaptive) schemes, summarised in Table 1. 

8.1 Training overhead 

In our scheme, across the upper 𝑀 − 2 layers of 

the hierarchical beam codebook, the BS transmits one 

codeword per layer (one time slot each). At the 

bottom layer, the BS sends two codewords to finalize 

the selection, consuming two time slots. Hence, the 

total downlink training overhead is 𝑀 = 2𝑙𝑜𝑔2 𝑁𝑇 . 
We assume 𝑅 = 0.5 by default, but any 𝑅 = 𝑘/𝑛 is 

admissible as long as the code that used give us 

enough the minimum distance redandancy.  It's 

possible to generalize to many/most coding scheme 

and families that satisfied the condition which is give 

us enough redundancy to have enough minimum 

distance to correct t errors and tau erasure.  Note that, 

partially use our algorithm if we assume for 

simplicity there's no errors 𝑡 = 0. Thus, at less one 

erasure it's possible to aviod the error propagation. 

The training overheads at 𝑁𝑇 = 1024 are 

20, 1024, 20 , and 20 time slots for our proposed 

scheme, exhaustive sweeping, traditional binary 

hierarchical training, and adaptive/fixed coded  

 

 
Figure. 6 Comparison of success rate for different beam 

training methods (𝑁𝑇 = 64) 

 

beam training, respectively. Thus, our method 

matches the binary hierarchical and adaptive/fixed 

coded beam training overhead while reducing the 

cost relative to exhaustive search by 
1024−20

1024
×

100% ≈ 98.05%.  

8.2 Feedback overheads 

The feedback overhead from the UEs to the BS is 

also compared. In our hybrid strategy that combines 

the hierarchical and fixed training methods, the BS 

requires one fixed feedback from the user for the 𝑛 −
𝜏 symbols. The 𝜏-layers is intentionally erased and 

later recovered by the channel code, so no feedback 

is required for these erasure symbol. Thus, the 

feedback payload remains fixed and independent of 

the number of layers. Also, for our hierarchal and 

adaptive coded beam training scheme, as in 

hierarchal fixed, our method skips the first feedback 

by treating the first-layer MSB 𝜏-layers as a known 

erasure location and recovering it via the channel 

code the erasure correction code. Consequently, 

feedback is gathered only every two layers. The 

single layer is divided into four sections, unlike 

binary search-based hierarchical beam training, this 

reduces feedback by half 0.5 𝑙𝑜𝑔2𝑁𝑇 − 𝜏 . This 

outperforms all other types of beam training. In this 

work, we focused on 𝜏 = 1, which is the least value 

we can consider so that we show the comparison in 

Table 1. 

8.3 Implementation complexity 

The codebook generation is considered first. In 

our hierarchical adaptive coded beam training, the 

beam patterns in the lower layers are determined both 

by the encoded algorithm and feedback of the upper  
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Table 2. Comparison of Computational Complexity 

Aspect Viterbi-Based Proposed 

Code Type Convolutional Block ECC 

Decoder Viterbi Syndrome/Direct 

Decoding Complexity 𝑂(𝐿2𝑘(𝑁 −  1)) 𝑂(𝑛2) 

Codebook Generation 𝑂(𝐼𝑚𝑎𝑥𝑁𝑇 𝑙𝑜𝑔 𝑁𝑇) Same 

Layers (𝑀 −  1) (𝑀 −  1 − 𝜏) 

Total 𝑂((𝑀 − 1) (𝐼𝑚𝑎𝑥𝑁𝑇 log𝑁𝑇 + 2𝑘 (𝑁 − 1))) 𝑂((𝑀 − 1 − 𝜏) (𝐼𝑚𝑎𝑥𝑁𝑇 log𝑁𝑇 + 𝑛2)) 

 

 

layers, except for 𝜏 layers that can be determined 

mathematically through the erasure correction 

capability of the code. Therefore, the codebook is 

supposed to be generated adaptively only for 𝑀 −
1 −  𝜏 with less complexity since the 𝜏 layers do not 

introduce extra burden on defining the codebook.  In 

contrast, the codebooks of adaptive coded beam 

training stated in [2] that generated adaptively for all 

𝑀 − 1  layers. In contrast, for the other methods: 

hierarchical fixed, non-adaptive coded beam training 

and exhaustive sweeping beam training use 

predetermined search paths and thus can be executed 

with fully pre-generated codebooks, avoiding real-

time UE-to-BS feedback and eliminating complex 

signalling control. On the other hand, our hierarchical 

fixed scheme enables fully pre-generated codebook 

generation and uses single fixed feedback; hence, its 

implementation complexity is very low, comparable 

to non-adaptive coded beam training in [2] and close 

to exhaustive sweeping training. Our hierarchical 

adaptive coded beam training scheme maintains 

lower implementation complexity than traditional 

hierarchical adaptive coded beam training and binary 

search–based hierarchical training. We can observe 

that throughout Table 1. 

8.4 Computational complexity analysis 

We compare the computational complexity of the 

proposed coded beam training with the conventional 

Viterbi-based approach [2]. In both schemes, the 

main complexity contributors are codebook 

generation and beam decoding. 

In the baseline [2], convolutional codes are 

employed and the optimal beam index is recovered 

using a Viterbi decoder. For a code of parameters 

(𝑛, 𝑘, 𝑁) and an information sequence of length 𝐿 , 

the decoding complexity scales as 

 

𝑂 (𝐿2𝑘(𝑁 − 1)) (6) 

 

which grows linearly with 𝐿  but exponentially 

with 𝑘. Each layer also requires generating candidate 

beams via a GS-based design method with 

complexity 𝑂(𝐼𝑚𝑎𝑥 𝑁𝑇 log𝑁𝑇). 

In contrast, the proposed scheme employs a block 

error-correction code (ECC) instead of a 

convolutional one. The decoding is performed on 

short coded feedback symbols, eliminating the need 

for Viterbi decoding. For a block code [𝑛, 𝑘, 𝑑], the 

decoding complexity is polynomial, typically at most 

𝑂(𝑛2)  for syndrome-based algorithms. Since n is 

small, this term dominates. Moreover, the number of 

active training layers decreases from (𝑀 − 1)  to 

(𝑀 − 1 − 𝜏) due to the unnecessary 𝜏 feedback, and 

thus directly reduces both training and computational 

load. The total complexity can be expressed as  

 

𝑂((𝑀 − 1 − 𝜏)(𝐼𝑚𝑎𝑥𝑁𝑇 log𝑁𝑇 + 𝑛2)) (7) 

 

where the first term represents online codebook 

generation and the second accounts for block 

decoding. 

Usually, 𝑛 ≪  𝐿2𝑘 in practical feedback systems 

(e.g., short block codes of 8–16 symbols). Viterbi 

decoding is exponential in k, while block code 

decoding is polynomial (𝑂(𝑛2)),  and for practical 

parameters, 

 

𝑂(𝑛2) ≪  𝑂 (𝐿2𝑘(𝑁 −  1)).               (8) 

 

Hence, our proposed method reduces complexity 

both by using polynomial block decoding and by 

decreasing the number of active layers by τ, enabling 

faster beam training. 

9. Conclusion 

This paper proposed Semi-Hierarchical Beam 

Training, specifically the 22 -ary hierarchical beam 

training. In this 22 -ary scheme, the UE sends one 

symbol consisting of 2-bits feedback (cf. Remark 1) 

in the hierarchical mixed fixed scheme 

or  0.5 𝑙𝑜𝑔2𝑁𝑇  in hierarchical mixed adaptive 

training method, reducing overall training time to 

2.5 𝑙𝑜𝑔2𝑁𝑇  −  1  (hierarchical mixed adaptive 

training) or to 2 𝑙𝑜𝑔2𝑁𝑇 + 1  (hierarchical mixed 

fixed), respectfully. We included a dual-layer error-

erasure correction mechanism. This system corrects 
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up to 𝑡 errors in any erroneous 𝑛−1 symbols and up 

to 𝜏 erasures (one intentionally introduced to stop 

premature error propagation), sequentially as stated 

in (cf. Remark 2) to combat error propagation. 

Compared to other systems, such as in [2], our coding 

scheme gives significant error propagation reduction 

in low-SNR and high reliability of the beam selection 

procedure without adding much feedback overhead, 

e.g., with a cost of one symbol, we achieve 1.1x faster 

in (hierarchical plus fixed ) method and 1.33x in 

(hierarchical plus adaptive) scheme. 
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Appendix 

A. Proof of Corollary 1 

Proof. We start with the given inequality: 

 
5

2
log2(𝑁𝑇) ≤ 2 ∙ log2(𝑁𝑇) + 2.          

 

Simplifying: 

 
1

2
log2(𝑁𝑇) ≤ 2          ⇒   log2(𝑁𝑇) ≤ 4. 

 

Therefore: 

 

𝑁𝑇 ≤ 24 = 16. 
 

B. Proof of Corollary 2 

Proof. We start with the given inequality: 

 

2 ∙ log2(𝑁𝑇) + 1 <   
5

2
log2(𝑁𝑇) − 1. 

 

Rearrange: 

 

−
1

2
log2(𝑁𝑇)  < −2. 

 

Multiply both sides by -2: 

 

log2(𝑁𝑇) > 4.      ⇒  𝑁𝑇 > 24. 
 𝑁𝑇 > 16. 

 

C. Hybrid Code: Encoding and Decoding Scheme 

Let 𝔽22  = {0, 1, 𝛼, 𝛼 + 1} where 𝛼2 = 𝛼 + 1. We 

analyze error and erasure decoding in two related 

codes: 

• C7: a [7,4,3]22Hamming code. 

• C8: its extended version, a [8,4,4]22code.  

The generator matrix G7 ∈ 𝔽22
4×7 is: 

 

𝐺7 = [

1 0 0 0 1 𝛼 𝛼
0 1 0 0 𝛼 1 𝛼
0 0 1 0 𝛼 𝛼 1
0 0 0 1 1 𝛼 𝛼 + 1

] 

 

Let m = (1, 𝛼, 0, 𝛼 + 1) ∈  𝔽22
4   be the message. Then 

the encoded codeword is: 

 

c7 = m ・ G7 = (1, 𝛼, 0, 𝛼 + 1, 𝛼 + 1, 𝛼, 𝛼 + 1) 

 

We extend C7 by appending one parity bit. The 

generator matrix G8 ∈  𝔽22
4×8   becomes: 

 

𝑮𝒏 = [ 𝑰𝒌 |𝑷𝒌×(𝒏−𝒌−𝟏)| 𝒑]  ∈  𝔽22
𝑘×𝑛, 

𝑮𝟖 = [ 𝑰𝟒 |𝑷𝟒×𝟑| 𝒑]  ∈  𝔽22
4×8, 

 

𝐺8 = [

1 0 0 0 1 𝛼 𝛼           0
0 1 0 0 𝛼 1 𝛼           0
0 0 1 0 𝛼 𝛼 1           0
0 0 0 1 1 𝛼 𝛼 + 1    1

] 

 

Thus: 

 

c8 = m ・ G8 = [1, 𝛼, 0, 𝛼 + 1, 𝛼 + 1, 𝛼, 𝛼 + 1, 𝛼] 

 

Suppose the received message contains: 

• An error at position 3. 

• Intentionally the decoder erases 

position 0. 

Let the error vector be: 

 

e = [0, 0, 0, 1, 0, 0, 0, 0] 

r = c8 + e = [1, 𝛼, 0, 𝛼, 𝛼 + 1, 𝛼, 𝛼 + 1, 𝛼] 

 

The syndrome vector is computed as 

 

s = r ・ 𝑯⸆ 

s = (c + e) ・ 𝑯⸆ 

s = c ・ 𝑯⸆ + e ・ 𝑯⸆ 

 

Since c ・ 𝑯⸆= 0 for any valid codeword, then: 

 

s = e ・ 𝑯⸆ 

 

Let 𝑯𝟖
⸆ be the transpose of the parity-check matrix: 

 

𝑯𝟖
⸆ = 

[
 
 
 
 
 
 
 
1 𝛼 𝛼 1
𝛼 1 𝛼 𝛼
𝛼 𝛼 1 𝑎 + 1
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1 ]

 
 
 
 
 
 
 

∈ 𝔽22
8×4 

And 

e = [0, 0, 0, 1, 0, 0, 0, 0] 

The syndrome is: 
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𝒔 = [

0
0
0
1

] 

 

This indicates an error in position 3. 

After correcting the error, we have: 

 

r′ = (𝑥, 𝛼, 0, 𝛼 + 1, 𝛼 + 1, 𝛼, 𝛼 + 1, 𝛼) 

 

To solve for the intentionally erased at position 0, 

define 𝑥 and use: 

 

𝑥 ∙  𝒉1 + ∑𝒓𝒊
′  ∙  𝒉𝒊 = 0

8

𝑖=2

 

 

Given: 

 

𝒉𝟏 = [

1
𝛼
𝛼
1

],                 ∑𝒓𝒊
′  ∙ 

𝟖

𝒊=𝟐

𝒉𝒊 = [

0
0
0

𝛼 + 1

] 

 

To solve exactly, we take only one none-zero 

equation (i.e., one component) and solve it. We 

choose the fourth component: 

 

𝑥 ・ 1 = 𝛼 + 1 ⇒ 𝑥 = 𝛼 + 1 

 

After identifying and correcting the error, the original 

codeword: 

 

ĉ8 = (1, 𝛼, 0, 𝛼 + 1, 𝛼 + 1, 𝛼, 𝛼 + 1, 𝛼) 

 

Remark 4. Assume the first three symbols are erased, 

i.e., the received word is: 

 

r = (𝑥0, 𝑥1, 𝑥2, 𝛼 + 1, 𝛼 + 1, 𝛼, 𝛼 + 1, 𝛼) 

 

Where E = {0, 1, 2} is the set of erasures positions of 

size 𝜏 = 3. Since 𝑑 = 4, we have 𝜏 ≤ 𝑑 − 1, so recovery 

is guaranteed2. By the same argument as above (for 𝜏 

= 3). 

∑hjxj = −∑hjrj ,

j∉Ɛj∈Ɛ

 

where hj refers to the j-th coordinate (or component) 

of h, 𝑥j is the unknown at position 𝑗 if that symbol 

was erased, and 𝑟j is the known received symbol at 

position 𝑗. 
 

Remark 5. The first three symbols are the most 

significant, as the base station uses 𝑥0, 𝑥1, and 𝑥2 to 

sequentially determine the primary, secondary, and 

tertiary directions toward the user. Even if later 

symbols are incorrect, this coarse localization allows 

the beam to be directed toward the approximate 

transmission zone where the user is located or 

moving. The finer direction can then be inferred 

probabilistically without requiring additional 

feedback. 

 


