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Abstract: Artificial neural networks (ANNs) are widely applied in medical data classification due to their ability to
model complex and nonlinear patterns. However, their performance is highly contingent upon the effectiveness of their
training methods. Traditional training methods such as backpropagation often suffer from slow convergence and local
minima. Meta-heuristic algorithms provide global search capability but may face efficiency limitations. This study
proposes XCOA-MLP, a multilayer perceptron trained using an improved coyote optimization algorithm (XCOA).
XCOA extends the standard COA by introducing a leader pack (LP) technique that accelerates convergence and
enhances exploitation through inter-pack knowledge sharing. The model was evaluated on five UCI medical datasets
and benchmarked against eight meta-heuristic algorithms. Results show that XCOA-MLP achieves superior accuracy
and robustness, recording 97.8% on Breast cancer, 78.2% on Diabetes, and 87.7% on Parkinsons datasets. These
findings demonstrate XCOA-MLP’s effectiveness in improving neural network training for medical data classification.
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1. Introduction

Medical data classification plays a vital role in
supporting disease diagnosis and treatment planning,
where accurate predictive models can improve early
detection, guide therapies, and enhance patient
outcomes [1]. Artificial neural networks (ANNSs),
particularly multilayer perceptrons (MLPs), are
widely adopted for this task due to their ability to
model nonlinear and complex relationships. However,
their performance strongly depends on the
optimization of weights and biases during training [2].

Traditional training approaches, such as
backpropagation (BP), remain popular because of
their deterministic formulation and ease of
implementation. Nevertheless, they often suffer from
slow convergence, sensitivity to initialization, and
entrapment in local minima [3, 4], which are further
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exacerbated when dealing with noisy or high-
dimensional medical datasets [5].

In order to overcome these difficulties, meta-
heuristic algorithms (MHAs) have become more and
more popular among researchers. These are the
population-based optimization techniques that are
informed by natural, social, or physical phenomena
that provide the ability to search globally and are
robust without gradient information [6]. Techniques
such as genetic algorithms (GA) [2], mountain
gazelle optimizer (MGO) [7], and whale optimization
algorithm (WOA) [8] have been applied with varying
success. Yet, many of these methods still encounter
issues such as premature convergence and
computational inefficiency in large-scale medical
applications [4, 9].

Coyote optimization algorithm (COA) is a
population-based  meta-heuristic  proposed by
Pierezan and Coelho [10], which mimics the social
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Nomenclature

cult Median behavior of coyotes in a pack

D Dimension of the search space

X Fitness value of solution X

Ib, ub; Lower and upper bounds of the ;"
dimension

N Population size (total coyotes)

n, m, r #input, hidden, and output neurons

N, Number of coyotes per pack

N, Number of packs

0 The rank-based ordered social conditions

P, Coyotes migration probability

P, P,  Scattering and association probabilities

pup A new coyote's social condition

7 Random number in [0,1] for dimension j

R Random factor for generating new pup

rLp Weight (strength of the LP influence)

rnd A uniform random number

soc Social condition of a coyote

T Maximum iterations or stopping criterion

T. Cultural tendency of a pack

Tip Cultural tendency of Leader Pack

w, 6 Weights and biases of the neural network

Xi Social condition of the i coyote

Vi Actual target output for sample k

V' Predicted output for sample k

o Alpha coyote (best solution in a pack)

01, 02 Influence of alpha and pack tendency

oLp LP influence on the regular packs

organization and interactions of coyotes in packs,
combining evolutionary and swarm intelligence
strategies. COA includes birth, death, and migration
operations to explore the solution space.

This study introduces XCOA-MLP, a novel
model that employs a variant of COA for training
MLPs in medical data classification tasks. The
proposed algorithm integrates a proposed leader pack
(LP) technique into the COA algorithm to enhance
convergence and improve classification accuracy.
The effectiveness of the model is validated using
standard benchmark functions [11] and five UCI
medical datasets [12], and its performance is
compared with eight meta-heuristic training methods.

The remainder of this paper is as follows: Section
2 reviews related work; Section 3 details the
methodology (COA, XCOA, proposed XCOA-MLP
model, and experimental configuration); Section 4
presents and discusses the results; and Section 5
concludes the paper.

2. Related work

Traditional training methods, particularly BP, are
widely used to train MLP neural networks due to their
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simplicity; however, they suffer from several issues,
such as slow convergence, sensitivity to initial
parameters, and a tendency to be trapped in local
minima [3, 13], especially when applied to noisy or
complex datasets [5]. Various MHAs have been
explored to overcome these limitations [9]. These are
population based optimization algorithms that are
based on natural, social, or physical phenomenon and
have the ability to search globally and perform well
even in the absence of gradient data.

Evolutionary approaches such as cellular GA [2],
greedy GA [14], and differential evolution variants
[15] achieved promising results, though often limited
by scalability or parameter sensitivity. Swarm-based
methods, including MGO [7], FOX [16], AMO [17],
IMP-GWO [18], FMFO [19], and WOA [8],
improved classification accuracy and search
efficiency, yet some struggled with premature
convergence or scalability.  Physics-inspired
algorithms like GSA [20], SCA [21], and MVO [22]
offered reliable convergence but less adaptability
compared to swarm-based methods. Table 1 shows a
list of recent studies that utilized MHAs to train
ANNSs with metrics, key findings, and interpretations.

MHAs have been effective in the training of
ANNSs but current procedures still face major issues
such as premature convergence, failure to seek out
plausible solutions, and computation impracticability
under complex problem spaces [4].

COA algorithm has been demonstrated to possess
the ability to address these constraints by engaging
evolutionary and swarm intelligence process [10].
Nevertheless, problems of local optima convergence,
along with delays in search over high-dimensional
spaces, remain [23]. Several enhancements,
including the Sobol series [24], ICOA [25], MvCOA
[26], and chaotic tent maps [27], have been proposed
to improve diversity and convergence speed. These
advances highlight COA’s adaptability and motivate
its further development for robust neural network
optimization.

The proposed XCOA-MLP modified COA by
introducing the LP technique, which facilitates inter-
pack knowledge transfer. This innovation enhances
convergence speed, improves exploitation while
maintaining diversity, and addresses the limitations
of conventional BP and previously applied MHAs.

3. Methodology
3.1 Coyote optimization algorithm (COA)

COA is an MHA that utilizes the social behavior
of coyotes and social dynamics of packs to find
optimal solutions [10]. The algorithm divides its
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Table 1. Overview of studies utilizing meta-heuristic algorithms for training neural networks

Ref. Year MHA Metrics Key Findings Interpretation

[2] 2022 CGA  Acc,Sn,Sp CGA-DX exhibited  higher Practical crossover and mutation
accuracy and lower MSE than mechanism.
other MHAs.

[14] 2022 GGA  Acc,Sn,Sp The GGA outperformed the Enhanced population selection
traditional MLP on several ensures better convergence.
medical datasets.

[28] 2025 DE Acc The DDE-OP achieved second- Uses clustering and quasi-
best classification accuracy in all opposition strategy.
datasets.

[7] 2025 MGO  Acc Superior accuracy and Integrates four key behavioral
convergence on ten UCI datasets. strategies.

[16] 2024 FOX Acc, Sn, Sp, Improved training, avoided local Probabilistic jumps mimic red

RMSE optima. fox hunting.

[17] 2022 AMO  Acc, Sn, Sp Enhanced search, avoided local The adaptive movement mimics
optima. ant behavior, ensuring robust

optimization.

[18] 2023 IGWO  Acc, Outperformed the original GWO Improved accuracy; higher

Precision, F1 in performance and convergence. computational cost.
[19] 2023 FMFO MSE, Acc, Enhanced search speed and Combines flame-based search
Speed, Time accuracy. with adaptive behavior.
[8] 2022 WOA  Acc, AUC, Effective in avoiding local Modified WOA  improves
Sp, Sn minima, particularly effective for robustness for medical data.
medical datasets.

[20] 2023 GSA MSE Strong MLP performance via Chaos theory enhances search,
chaos & Lévy flight. improving  performance in

complex spaces.

[29] 2020 SCA Acc, MSE  High performance in complex Sine-cosine mechanics navigate
datasets. non-linear datasets effectively.

[22] 2016 MVO  Acc, MSE  Improved convergence and local Multiverse-inspired exploration

optima handling.

excels at avoiding local optima.

population into packs of coyotes, each one represents
a candidate solution in the D solution space, with a

social condition defined by Eq. (1).

p,t
soc;

The adaptation of coyote to the environment is
measured by the fitness, denoted by fit”' € R.

)—C) = (.xl,xZ,

'xD)

by Eq. (4).

aPt =

(1)

3)  Cultural

& . t
{soc|argc=(1,2,..n + minf (socd*)}

tendency:  Because
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The alpha of the p™ pack at the #" iteration is defined

“4)

coyotes

1) Coyote initialization: Initially, each coyote's
social condition is randomly determined by Eq. (2).

soct = b+ r;.(ub; — Ibj) )

where ub; and /b; are the lower and upper bounds
of the dimension j, respectively, »; is a random
number in [0, 1], and the fitness of each coyote is then
evaluated using Eq. (3).
fie?* = f(socf") 3)
2) Alpha selection: Each pack has a single 'alpha'
coyote representing the best solution within the pack.
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demonstrate group intelligence, they share cultural
knowledge, influencing their collective behavior. The
cultural tendency is determined by Eq. (5).

Dt .
( O(Ncﬂ)j , Nisodd

2

,t p.t
Op

N N .

< G,

)

p,t —
cultj =

z ,otherwise

where 07" denotes the rank-based ordered social
conditions of coyotes.

4) Coyote birth and death: Coyotes' ages, defined
as age”'. influence birth and death events. A new
coyote's (pup) is formulated as Eq. (6).

DOI: 10.22266/1jies2025.1231.46

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/



Received: July 12,2025. Revised: October 22, 2025.

t
pup;” =
K . .
socly;, if rnd; <Pyorj= j
socféfj , ifrndj =P+ P orj=j; (6)
R; otherwise

where j; and j are random dimensions, 7/ and
are parent coyotes, R;is a random number, and rnd; is
a uniform random number. The scattering and
association probabilities, Ps and P,, are given as:

P,=1/D (7
Pp=1-F)/2 3)
5) Updating social conditions: Social conditions

update based on alpha influence J/ and pack
influence 62, computed as:

8, = aPt — socl, )
8, = cult?t — socl?, (10)

Thus, the coyote's new social conditions are
updated based on the influence of the alpha and the
pack.

new_socf’t = socf’t + 1.6+ 1.0, (11)
where r; and r; represent the weights of the alpha
and pack effects, respectively, randomly selected

from [0, 1]. An assessment of the new social
condition is presented in Eq. (12).

new_fitf‘t = f(new_socf't) (12)

If the new social condition yields a better fitness
value, it is adopted as in Eq. (13).

pt+l
soc; =
t . Dt . Dt
new_soct", if new_fitl" < fit? (13)
it ,
socf , otherwise

6) Coyote migration: Coyotes may migrate between
packs, influenced by the probability of pack size:

P. = 0.005.N? (14)

Finally, the algorithm selects the optimal solution
as the best-adapted coyote.
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3.2 Extended COA (XCOA)

The solution updates in the original COA were
limited to packs, with only two random chosen
coyotes having an effect on each other. This limited
communication tended to reduce the convergence
speed and lead to stasis upon getting stuck in local
optima by packs. The extended COA (XCOA)
resolves these limitations by providing a leader pack
(LP) technique, whereby coyotes in different packs
will be brought together to exchange knowledge,
improve exploitation, and speed up convergence. The
mechanism of selection, cultural tendency and
influence of the LP is formally stated in the
subsequent subsections.

3.2.1. Leader pack (LP)

The LP is a special pack in COA, containing the
top-performing coyotes from all packs, selected
based on their fitness values. This elite subset
introduces hierarchical control over all packs,
facilitating the exchange of superior solutions and
helping escape local optima. This ensures that strong
solutions propagate across packs, guiding the
population toward the global optimum. The LP
updates periodically at fixed intervals, such as every
T.p iteration. At each Tip interval, LP is formed by
selecting the top N.p coyotes from all packs based on
the fitness values:

LP = argminy,, {f(socf)|p =12,..,
Ny;c=12,..,N:} (15)

where frepresents the selection of social conditions
associated with the minimum (best) fitness values
across all packs, N;p is the number of coyotes in LP.

3.2.2. LP cultural tendency

Once the LP is formed, it calculates its cultural
tendency, representing the dominant social behavior
of the best-performing coyotes. The cultural tendency
of the LP, cult, is defined as the median of social
conditions in LP, as in Eq. (16).

LP,t . )
( Ow/p+1) ., if Nypisodd
LP,t 2
cultj T = okpt +olbt (16)

2

,otherwise

here, the [1, D] interval, O*"* stands for the rank-
based social condition of all coyotes in the LP at Trp
iteration. The LP's cultural tendency reflects high-
performance solutions that influence the population.
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Table 2. Benchmark functions used for XCOA validation

Function Dim Initial Fmin
Range

F1 (Sphere) 30 [-100,100] O

F2 (Schwefel 2.22) 30 [-10, 10] 0

F3 (Schwefel 1.2) 30 [-100,100] O

F4 (Schwefel 2.21) 30 [-100,100] O

F5 (Rosenbrock) 30  [-30,30] 0

F6 (Step) 30 [-100,100] O

F7 (Quartic + noise) 30 [-1.28,1.28] 0

F8 (Schwefel) 30 [-500,500] -418.98
F9 (Rastrigin) 30 [-5.12,5.12] O

F10 (Ackley) 30 [-32,32] 0

F11 (Griewank) 30 [-600,600] O

F12 (Penalized #1) 30  [-50,50] 0

F13 (Six-hump Camel) 2 [-5, 5] -1.0316
F14 (Shekel’s Foxholes) 2 [0, 14] 0

3.2.3. LP influence mechanism

At each T7p interval iteration, the LP temporarily
merges with each pack to inject its cultural trend and
refine solutions. This ensures that regular packs
inherit successful strategies, thereby improving
search efficiency. The updated social conditions were
computed using Egs. (17) and (18).

8.p = culttPt — socP* (17)
new_soc?t = soc?' + rp .8,p (18)

Alpha selection

l.-""--Coyote initializatioﬁ"-:_

4

Coyote migration

o

b

. PackN

750

where J;p is the LP influence on the regular packs, r.p
is an added random weight factor determines the
strength of the LP influence. The influence occurs at
predefined intervals.

3.2.4. Control parameters

Key control parameters in XCOA include:

e LP size: determines the number of elite
coyotes, influencing the balance between
guidance strength and population diversity.

o Influence frequency: Controls how often the
LP interacts with regular packs.

Fig. 1 represents the workflow of XCOA. The left
side depicts the normal COA process whereby there
is pack initiation, alpha selection, cultural update,
migration, and birth and death cycles. The
enhancement of the XCOA is emphasized in the right
side whereby an LP of the best coyotes of all packs
facilitates the transfer of knowledge and speedy
convergence.

3.2.5. Validation of XCOA

The proposed XCOA was validated using
fourteen benchmark functions. These functions span
an extensive range of optimization problems
multimodal, non-separable, separable, and unimodal
[11].

Table 2 summarizes the configuration of the
benchmark functions used in this study (F1-F14).
Each function is defined by its dimensionality, initial
search domain, and known global optimum value
(Fmin).

Cultural tendency & SOC update

Leader pack (LP)

Best coyotes

Alpha across all packs
Normal
Influence of LP:
Old To all packs é
Pup Cultural tendency of LP:
Birth & death 5 :

Figure. | XCOA workflow with LP technique
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Table 3. Performance comparison of the original COA and proposed XCOA with multiple variations

Fn Metrics COA XCOA1 XCOA2 XCOA3 XCOA4 XCOA5 XCOA6
F1 Mean 1.53¢-07 6.35¢-20 4.37e-17 3.61e-20 1.00e-13 2.00e-15 1.22¢-14
Best 2.00e-08 2.00e-22 4.25e-19 2.35e-23 4.90e-15 2.46e-17 1.27e-16
Worst 5.24e-07 4.52e-19 2.56e-16 6.74e-19 3.64e-13 2.31e-14 1.46e-13
STD 1.05e-07 8.40e-20 5.54e-17 1.34e-19 9.40e-14 4.45e-15 2.69¢-14
F2 Mean 1.28e-06 0.00027 1.61e-12 7.97e-07 9.71e-12 1.10e-12 2.89¢-12
Best 4.79¢-07 1.51e-12 2.77e-14 1.53e-12 1.71e-12 1.73e-13 3.84e-13
Worst 3.63e-06 0.00815 2.23e-11 2.29¢-05 2.53e-11 5.94e-12 9.06e-12
STD 7.51e-07 0.00146 3.97e-12 4.10e-06 5.85¢e-12 1.13e-12 1.88e-12
F3 Mean 36.19 0.0287 0.0112 0.0144 0.331 0.0230 0.0759
Best 8.17 0.00089 0.00058 0.00015 0.0210 0.00148 0.00748
Worst 98.70 0.275 0.0428 0.101 1.90 0.107 0.302
STD 19.24 0.0570 0.0103 0.0269 0.463 0.0242 0.0665
F4 Mean 5.58 7.50 7.51 7.20 8.15 7.56 11.32
Best 3.85 4.56 493 3.53 5.20 5.13 5.96
Worst 8.36 10.62 10.34 11.59 10.20 10.65 15.81
STD 0.949 1.47 1.11 1.87 1.27 1.36 2.20
F5 Mean 20.62 33.34 18.10 7.00 17.85 20.08 9.01
Best 1.27 0.00246 0.00334 0.00086 0.0194 0.0948 0.00754
Worst 105.34 237.31 91.73 159.78 223.60 68.79 77.26
STD 26.67 51.28 31.04 36.50 44 .47 12.97 16.12
F6 Mean 0.0333 1.87 1.07 2.07 1.17 343 8.87
Best 0.0 0.0 0.0 0.0 0.0 0.0 1.0
Worst 1.0 8.0 4.0 7.0 8.0 10.0 16.0
STD 0.180 1.63 1.03 1.86 1.53 3.12 3.64
F7 Mean 0.0138 0.334 0.142 0.122 0.0704 0.169 0.248
Best 0.00566 0.145 0.0515 0.149 0.0167 0.0850 0.112
Worst 0.0252 0.495 0.314 0.593 0.152 0.297 0.560
STD 0.00428 0.0917 0.0486 0.0984 0.0272 0.0557 0.0926
F8 Mean -12454 -12569 -12569 -12479 -12569 -12559 -12064
Best -12569 -12569 -12569 -12569 -12569 -12569 -12569
Worst -12569 -9982 -12569 -10137 -12569 -12265 -9462
STD 2.31e-07 481.94 7.01e-12 437.74 9.48e-11 54.64 927.92
F9 Mean 3.54e-06 2.52e-06 3.62e-03 3.44e-08 3.76e-05 3.58e-03 3.43e-02
Best 1.04e-07 5.51e-10 1.77e-11 0.00744 3.73e-10 0.995 9.55
Worst 3.13e-05 36.98 6.21 42.19 0.995 53.98 65.86
STD 6.26¢e-06 7.47 1.25 8.49 0.179 13.21 14.08
F10 Mean 0.000219 1.33 0.00038 2.02 7.67¢e-05 0.0478 2.09
Best 7.20e-05 1.15e-09 2.98¢e-08 1.79¢-09 6.69¢-08 1.03e-07 0.00452
Worst 0.000571 19.94 0.0111 19.96 0.00142 0.652 2.82
STD 0.000124 4.96 0.00200 5.97 0.000264 0.161 0.542
F11 Mean 0.00115 0.00241 0.00165 0.00104 0.00111 0.00780 0.00934
Best 3.77e-08 9.99¢-16 5.55¢e-16 4.44e-16 8.33e-15 2.22e-16 9.99¢-16
Worst 0.0148 0.0807 0.0489 0.0855 0.0637 0.0246 0.0514
STD 0.00358 0.0239 0.0131 0.0279 0.0145 0.00819 0.0128
F12 Mean 1.08¢-08 0.0138 0.00079 0.0426 1.90e-12 0.702 1.11
Best 1.69¢-09 3.76e-21 9.00e-18 1.60e-19 7.40e-15 9.81e-16 3.23e-13
Worst 6.00e-08 0.104 0.0234 1.28 2.21e-11 13.52 9.24
STD 1.16e-08 0.0352 0.00419 0.229 4.46e-12 2.74 2.52
F13 Mean -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316
Best -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316
Worst -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316
STD 4.48e-16 2.22e-16 2.22e-16 2.22e-16 2.22e-16 4.94e-08 2.22e-16
F14 Mean 1.99 2.0 1.95 1.93 2.0 2.0 1.98
Best 1.71 2.0 0.391 2.0 2.0 0.000873 1.49
Worst 2.0 2.0 2.0 2.0 2.0 2.0 2.0
STD 0.0523 0.0 0.289 0.0 0.0 0.359 0.0916
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Figure. 2 Mapping weights and biases to a coyote vector
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The XCOA and the original COA were tested using a
population of 20 packs, with 5 coyotes. Several
XCOA variants were evaluated, differing in influence
intervals (10, 20, 30, and 40 iterations with LP size =
5) and LP sizes (10 and 15 coyotes with an influence
interval of 30), denoted as XCOA1-XCOA®6. These
sensitivity variants were designed to investigate the
effect of LP control parameters on performance.
Table 3 shows the results of COA, XCOA, and their
variants on standard benchmark functions.

Shorter influence intervals (XCOA1l, XCOA3)
positively affected stability on multimodal functions,
and longer intervals (XCOAS) positively affected
adaptability in complex landscapes but not in velocity
of convergence. Increasing the size of the LP
(XCOA5, XCOA6) enhanced the performance on
high-variance functions but had a little worse-case
errors, which points to the possibility of over-
centralization. Overall, LP size and influence interval
were critical parameters, though some functions
(F13-F14) showed minimal sensitivity. This ablation
study confirms XCOA'’s parameter sensitivity and
the significant role of the LP technique.

3.3 The proposed model: XCOA-MLP

This study integrated XCOA with an MLP neural
network to develop an efficient classification model
termed XCOA-MLP. The aim is to leverage XCOA's
optimization capabilities to determine the optimal
weight and bias parameters for MLP in medical data
classification. The selection of MLP was prompted
by its ability to learn the non-linear nature of certain
processes and complex decision boundaries required
during the classification of medical informatics [2].
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3.3.1. Solution representation

In XCOA-MLP, the vector encoding is used to
represent each coyote, and each vector is mapped to
a solution in an MLP. The MLP was designed so that
the weights and the biases were arranged in a manner
that every coyote could map directly to a potential
solution within the network, and that according to the
format prescribed by the XCOA algorithm. The
vector is split into input-hidden weights, hidden
output weights and biases. The size of the vector is
the sum of the weights and biases in the network.

Fig. 2 depicts an example of mapping the weights
and biases of the MLP with two inputs, a single
hidden layer with three nodes, and one output neuron
to a coyote vector. If there are »n input nodes, m hidden
nodes, and r output nodes, then the length of each
coyote vector (D) is calculated using Eq. (19).

D=nxm)+(mxr)+m+r (19)

This unified representation allows the XCOA to
manipulate the entire parameter set as a single search
agent, facilitating systematic exploration of the high-
dimensional space of network configurations.
Throughout the evolutionary process, XCOA
iteratively adapts D to minimize the training error,
thereby improving the predictive performance of the
MLP.

3.3.2. Fitness function

Each solution vector (coyote) in the population,
represented as MLP; where 1 <j < N and N denotes
the population size, is evaluated using a fitness
function to assess the solution quality. Specifically,
the MSE, as defined in Eq. (20), serves as the fitness
function for evaluating the performance of each
candidate solution.

fitness(MLP) =
1 P
MSE = — ¥Ro1k — ¥i)? (20)

where 7 is the number of training samples, y; is
the predicted output for the k" training sample, and y;
is the actual binary target. MSE in classification tasks
indicates the difference between the calculated real
output and the required binary classification output.

Since MSE is a quadratic function, it enforces
high values for significant discrepancies between
predicted and target values. Hence, meta-heuristic
methods can be used as a fitness function to
determine the MLP weights and biases [14]. The goal
of the XCOA-MLP model is to minimize the fitness
function f. The quality of each solution was
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Figure. 3 Flowchart of the XCOA-MLP training process for optimizing MLP in medical data classification

quantified using a previously described method (21).
The optimal MLP configuration is identified by
selecting the solution with the lowest fitness, as
described in Eq. (22).

f(MLP;) = fitness(MLP;) 1)
MLPyege =
MLP)|f(MLP) < f(MLP;)Vj # | (22)

3.3.3. Training process in XCOA-MLP

The training process of MLPs in the XCOA-MLP
model starts with the random initialization of coyote
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agents. Input data are propagated to the network, and
outputs are evaluated using the MSE fitness function.
The XCOA iteratively refines solutions through:

1. Coyote initialization: A population of
coyotes, N., is generated by assigning random
weights and biases to MLP. The population is
divided into N, packs.

2. Forward propagation: Training samples of
data are used for forward propagation in the
MLP.

3. Fitness evaluation: The fitness of each
coyote is evaluated using MSE, which
measures the quality of the weights and biases
assigned to the MLP.
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4. Cultural tendency update: Each pack
computes a cultural tendency vector that
reflects the central behavior of its members.

. Pack evolution:

e Alpha identification: The coyote with the
lowest MSE in each pack is selected as alpha.

¢ Social update: Coyotes update their positions
in the solution space by learning from the
alpha and the cultural tendency of the pack.

o Birth and death: Offspring are generated by
combining characteristics of selected parents.
If a new coyote has better fitness than the
worst member of the pack, it replaces that
individual.
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6. LP formation: If the current iteration aligns
with the influence interval, an LP is formed
by selecting top-performing coyotes across all
packs.

7. LP cultural tendency: The cultural tendency
of the LP was computed, and this information

was used to influence other coyotes
periodically.
8. Migration and Aging: Apply pack

transitions and increment coyote ages.
Algorithm 1 represents the pseudo-code of the
XCOA-MLP model, and Fig. 3 shows a flowchart of
the XCOA-MLP training process for MLP
optimization in medical data classification.

Algorithm 1 Pseudo code for XCOA-MLP model

1: define coyote vector (D) (Eq. (19)), influence interval, LP_size

2: set up Np packs, Nc coyotes representing weights and biases (Eq. (2))
3: perform forward propagation in the MLP based on the coyote vector
4: evaluate the fitness of each coyote based on MSE (Eq. (2)0)

5: while stopping criterion is not achieved do

6:  for each pack p do

7: identify alpha coyote (best MLP in each pack) (Eq. (4))

8: calculate social tendency of pack based on the alpha (Eq. (5))
9: for each coyote ¢ of the pack p do

10: revise the social condition (weights and biases) (Eq. (11))
11: evaluate updated social condition by retraining MLP

12: update coyote's adaptation based on (Eq. (13))

13: end for

14: run the birth and death process (Eq. (6))
15:  end for
16: if iteration % influence interval == () then

17: form the LP with top-performing coyotes in all packs (Eq. (15))
18: calculate the cultural tendency of the LP (Eq. (16))

19: for each pack p do

20: for each coyote ¢ of the pack p do

21: compute the influence of the LP (Eq. (17))

22: update social condition with the LP influence (Eq. (18))
23: end for

24: end for

25:  endif

26: transitions of coyotes among packs (Eq. (19))
27: increment the age of each coyote
28: end while

3.4 Experiment configuration

The MLP architecture used throughout the
experiments was a feed-forward network with a

single hidden layer and a Sigmoid activation function.

The weights and biases of MLPs were constrained to
the range [-1, 1], as adopted from [2, 30, 31]. The
number of input neurons (n) corresponds to the
dataset features, and hidden neurons (m) are
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calculated using a heuristic from [32], balancing
complexity and generalization:

m=2xn+1 (23)

Each experimental run was initialized with new,
random parameters, and the experiment was executed
30 times independently. The size of the MHAs
consisted of 50 populations. The experiments were
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Table 4. Parameter settings of XCOA and other MHAs

Algorithm Parameter Value
XCOA-MLP  Packs 20
Coyotes per pack 5
LP size 5
Influence interval 30
BAT Loudness 0.5
Pulse rate 0.5
Min-Max frequency 0-1
CS Step size 0.3
Lévy distribution 1.5
Nest replacement prob. 0.2
DE Crossover prob. 0.9
Weight 0.5
GA Crossover prob. 0.9
Mutation prob. 0.01
Selection prob. 0.5
Selection type Roulette
GWO a 2 to 0 linear
MFO Spiral constant 1
MVO Min wormbhole prob 0.2
Max wormbhole prob 1.0
PSO Inertia weight 0.7
Cognitive component 1.1
Social component 1.7

Table 5. Characteristics of the datasets used in this study

Network Vector
Cols Rows Label 1 Label 2 Structure Length
Eq.(23) Eq.(19)

Dataset
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brief description of all the datasets, along with the
network configuration and vector length, is provided
in Table 5, based on Egs. (19) and (23).

The datasets were separated into two sets:
training (66%) and testing (34%). The stratified
sampling technique was used [33]. The max-min

normalization procedure was used to scale all
attribute values, as shown in Eq. (24).

Xi—-miny

Xi= (24)

maxy— minyg

where X; is the initial value of feature 'X' for
instance 7, and X is its normalized value. The minx
and maxx represent the lower and upper limits of the
feature X;.

For comparison, the XCOA-MLP model was
benchmarked with some popular MHASs such as bat
algorithm (BAT), cuckoo search (CS), differential
evolution (DE), genetic algorithm (GA), grey wolf
optimizer (GWO), moth-flame optimization (MFO),
multi-verse optimizer (MVO), and particle swarm
optimization (PSO). The original COA was also
considered as a baseline to identify the improvements.
In addition, conventional ML classifiers like Naive
bayes (NB), decision tree (DT), random forest (RF),
support vector machine (SVM) and extreme gradient
boosting (XGBoost) were considered to get a broader
performance perspective.

In order to measure performance, accuracy,
sensitivity, specificity, and MSE were observed as
tools. These measures were calculated on the basis of

Breast 9 699 (458) (241) 9-19-1 210 the true positive (TP), true negative (TN), false
cancer positive (FP) and false negative (FN) with the use of
Diabetes 8 768 (268) (500) 8-17-1 171 the following Egs. (25) to (27).
Liver 6 345 (200) (145 6-13-1 105 .
Parkinsons 22 195 (147) (48) 22-45-1 1081 Sensitivity = TP+FN) (25)
Vertebral 6 310 (210) (100) 6-13-1 105
i TN
Specificity = TNTFD) (26)
conducted on an Intel 17 2.11 GHz processor (8 cores, (TN+TP)
16 GB RAM). The parameter configurations for Accuracy = NITPIFNIFP) 27)

COA, XCOA, and all competing MHAs are
summarized in Table 4.

It is important to note that BP-MLP may be
implemented with either a fixed or a varying random
seed. The former provides deterministic results,
while the latter employs a stochastic initialization that
aligns with MHA training. A variable random seed
was used in this study to guarantee the fair estimation
of variance in 30 independent runs.

The efficacy of the XCOA-MLP is assessed by
using five medical datasets from the UCI [12]: Breast
cancer, Diabetes, Liver, Parkinsons, and Vertebral. A

International Journal of Intelligent Engineering and Systems, Vol.18, No.11, 2025

4. Results and discussion
4.1 Classification accuracy

Table 6 presents the mean and STD of accuracy
values. XCOA-MLP achieved the highest mean test
accuracy in three datasets: Breast cancer (0.978),
Diabetes (0.782), and Parkinsons (0.877). On the
Vertebral dataset, DE slightly outperformed XCOA-
MLP, while PSO achieved the best accuracy for the
Liver dataset. Nonetheless, XCOA-MLP remained
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Table 6. Mean classification accuracy with standard deviation across all algorithms
MHA Breast cancer Diabetes Liver Parkinsons Vertebral
BAT-MLP 0.954 0.007 0.704 0.014 0.657 0.013 0.808 0.013 0.797 o.013
CS'MLP 0.965 0.002 0.731 0.013 0.689 0.014 0.835 0.012 0.840 0.012
DE-MLP 0.965 ¢.003 0.728 0.010 0.704 o012 0.845 (006 0.852 0.006
GA-MLP 0.963 ¢.002 0.728 o.010 0.705 o013 0.833 0,005 0.838 0.007
GWO-MLP 0.959 ¢.006 0.680 0,015 0.652 0,015 0.800 ¢.014 0.783 012
MFO-MLP 0.966 ¢.002 0.731 0.008 0.668 013 0.846 0,009 0.847 ¢.010
MVO'MLP 0.966 0.002 0.731 0.008 0.693 0.012 0.852 0.008 0.837 0.007
PSO-MLP 0.958 0.003 0.710 ¢.014 0.721 o.011 0.823 9012 0.825 0.004
BP'MLP 0.960 0.009 0.731 0.032 0.579 0.008 0.830 0.029 0.682 0.012
COA-MLP 0.968 0,009 0.771 0014 0.704 ¢.032 0.862 9019 0.841 ¢.027
XCOA-MLP 0.978 0.006 0.782 ¢.015 0.710 9032 0.877 0.023 0.851 0.024
Table 7. Mean specificity and sensitivity across all algorithms
MHA Breast cancer Diabetes Liver Parkinsons Vertebral
Sp Sn Sp Sn Sp Sn Sp Sn Sp Sn
BAT-MLP 0.987 0.892 0.842 0.267 0.425 0.830 0.593 0.878 0.925 0.555
CS-MLP 0.987 0.934 0.863 0.483 0.538 0.804 0.546 0.868 0.905 0.702
DE-MLP 0.986 0.923 0.871 0.463 0.553 0.818 0.739 0.878 0.920 0.705
GA-MLP 0.987 0.920 0.722 0.702 0.528 0.841 0.718 0.868 0.927 0.649
GWO-MLP 0.988 0.907 0.980 0.122 0412 0.831 0.426 0.921 0.925 0.487
MFO-MLP 0.987 0.928 0.879 0.453 0.470 0.818 0.743 0.881 0.928 0.673
MVO-MLP 0.987 0.927 0.869 0.472 0.546 0.805 0.749 0.885 0918 0.664
PSO-MLP 0.987 0.905 0.919 0.323 0.589 0.821 0.655 0.878 0918 0.625
BP-MLP 0.965 0.892 0.887 0.437 0.027 0.852 0.438 0.923 0.927 0.016
COA-MLP 0.972 0.963 0.866 0.582 0.561 0.809 0.606 0.947 0.852 0.782
XCOA-MLP 0.972 0.960 0.870 0.612 0.600 0.861 0.640 0.949 0.855 0.824
Table 8. Mean and standard deviation of MSE values across all algorithms
MHA Breast cancer Diabetes Liver Parkinsons Vertebral
BAT-MLP 0.044 0.009 0.186 0.010 0.234 0.009 0.112 0.009 0.155 0.009
CS'MLP 0025 0.001 0158 0.003 0.196 0.007 0 084 0.007 0135 0.003
DE-MLP 0.024 9,003 0.161 0004 0.205 0.007 0.089 0,004 0.137 0.004
GA-MLP 0.025 ¢.001 0.167 0,002 0.214 ¢.007 0.093 ¢.002 0.139 0.000
GWO-MLP 0.070 ¢.005 0.196 0,006 0.194 4,009 0.140 ¢.000 0.177 0.007
MFO-MLP 0.024 o001 0.166 ¢.003 0.208 ¢.007 0.087 ¢.005 0.139 0,005
MVO-MLP 0.024 ¢.002 0.160 0,004 0.201 ¢.007 0.085 0.004 0.136 0,003
PSO-MLP 0.032 0.002 0.182 ¢.006 0.199 ¢.007 0.097 0.008 0.144 ¢.003
BP-MLP 0.040 ¢.009 0.269 0012 0.421 ¢.008 0.170 ¢.019 0.318 9012
COA-MLP 0.025 0.005 0.154 0.007 0.184 0.012 0.099 0012 0.111 013
XCOA-MLP 0.023 ¢.004 0.152 o.012 0.183 o.013 0.096 ¢.025 0.106 0.024
highly competitive across all benchmarks, These results indicate that the proposed XCOA-MLP

consistently ranking among the top performers.
These findings highlight the effectiveness of the
leader pack technique in improving convergence and
generalization in medical classification tasks.

4.2 Specificity and sensitivity

The balance between true positive, sensitivity
(Sn) and true negative, specificity (Sp) predictions is
reported in Table 7. XCOA-MLP provided a stable
trade-off between Sp and Sn across all datasets.

International Journal of Intelligent Engineering and Systems, Vol.18, No.11, 2025

model reduces the class bias and maintains diagnostic
reliability across medical datasets.

4.3 Mean squared error (MSE)

Table 8 presents the mean and STD of the MSE
values. XCOA-MLP model consistently achieved the
lowest or near-lowest MSE values across all datasets.
It ranked first in Breast cancer (0.023), Diabetes
(0.152), Liver (0.183), and Vertebral (0.106)
conditions. These results confirm the learning
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efficiency of XCOA, which effectively balances
exploration and exploitation, reducing prediction
error while preserving robustness.

4.4 Discussion

The proposed XCOA-MLP model consistently
demonstrated superior or highly competitive
performance across all datasets. Its strength lies in

International Journal of Intelligent Engineering and Systems, Vol.18, No.11, 2025

achieving low MSE, high accuracy, and balanced
sensitivity and specificity, which are critical factors
in medical data classification. Low STDs further
highlight the model’s stability and reliability. The
incorporation of the LP significantly improved
convergence, and generalization compared to other
methods.

Fig. 4 illustrates the convergence behavior,
showing that XCOA-MLP rapidly approaches
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Table 9. Wilcoxon Signed Rank test results on the accuracy of XCOAMLP and the other algorithm

XCOA vs. Metric Breast Diabetes Liver Parkinsons Vertebral
cancer
BAT p-value 1.86e-09 1.86e-09 3.54e-08 3.73e-09 5.59¢-09
Effect size (r) 1.000 1.000 1.000 1.000 1.000
95% CI [0.020380, [0.069161, [0.043044, [0.060035, [0.043979,
0.027419] 0.081206] 0.067395] 0.079975] 0.065399]
CS p-value 5.59¢-09 1.86¢-09 0.001864 1.02e-07 0.052263
Effect size (r) 1.000 1.000 0.568 0.972 0.354
95% CI [0.010201, [0.038599, [0.010909, [0.033187, [-0.002788,
0.015722] 0.051847] 0.035272] 0.052823] 0.019118]
DE p-value 5.59¢-09 1.86¢-09 0.328470 1.68e-06 0.700033
Effect size (r) 1.000 1.000 0.178 0.874 -0.070
95% CI [0.010038, [0.047073, [-0.004108, [0.025389, [-0.010348,
0.015885] 0.057526] 0.020288] 0.043375] 0.009011]
GA p-value 1.86e-09 1.86¢-09 0.416130 1.86e-08 0.005013
Effect size (r) 1.000 1.000 0.148 1.000 0.512
95% CI [0.012207, [0.047073, [-0.005102, [0.038538, [0.002518,
0.017716] 0.057526] 0.019282] 0.056226] 0.022145]
GWO p-value 1.86e-09 1.86e-09 1.30e-08 1.86e-09 1.86e-09
Effect size (r) 1.000 1.000 1.000 1.000 1.000
95% CI [0.014593, [0.093771, [0.049073, [0.067921, [0.058029,
0.021742] 0.105403] 0.073846] 0.088090] 0.079034]
MFO p-value 8.01e-08 1.86¢-09 8.33e-07 1.99¢-06 0.308521
Effect size (r) 0.980 1.000 0.900 0.868 0.186
95% CI [0.009207, [0.044992, [0.031890, [0.023022, [-0.007819,
0.014716] 0.055138] 0.056290] 0.041742] 0.012483]
MVO p-value 9.31e-09 1.86e-09 0.018529 2.08e-05 0.001864
Effect size (r) 1.000 1.000 0.430 0.777 0.568
95% CI [0.010062, [0.044740, [0.006885, [0.018194, [0.003598,
0.015638] 0.054946] 0.031295] 0.036570] 0.023066]
PSO p-value 1.86e-09 1.86e-09 0.100397 9.31e-09 7.99¢-06
Effect size (1) 1.000 1.000 -0.300 1.000 0.815
95% CI [0.017134, [0.064080, [-0.020931, [0.045284, [0.015468,
0.022978] 0.075662] 0.003111] 0.064726] 0.034154]
BP p-value 1.86e-08 3.86e-07 1.86e-09 2.05e-07 1.86e-09
Effect size (1) 1.000 0.927 1.000 0.948 1.000
95% CI [0.015599, [0.032943, [0.131558, [0.034931, [0.159292,
0.022804] 0.060492] 0.156578] 0.059845] 0.180331]
COA p-value 0.001039 0.009932 0.279315 0.003497 0.008143
Effect size (1) 0.599 0.471 0.198 0.533 0.483
95% CI [0.005074, [0.006891, [-0.001883, [0.008528, [0.007243,
0.013926] 0.022193] 0.018832] 0.026248] 0.018625]

minimal fitness values in four of the five datasets. In Table 10. Friedman ranks of algorithms for all datasets

contrast, CS achieved the best result for Parkinsons Algorithm Avg. Rank Friedman Rank
but stagnated in Diabetes and Vertebral. Similarly, XCOA-MLP 2.6 1
GWO was frequently trapped in local minima across COA-MLP 3.1 2
four datasets. MFO-MLP 4.1 3
Fig. 5 provides further evidence through box DE-MLP 4.4 4
. MVO-MLP 4.6 5
plots, where XCOA-MLP achieved the most CS-MLP 5 6
favorable distributions in four datasets, with narrow GA-MLP 6 7
interquartile ranges, lower median losses, and fewer PSO-MLP 6.8 8
outliers. In comparison, GWO, BAT, and GA BAT-MLP 94 9
exhibited wider variability and inferior central GWO-MLP 9.8 10
tendencies, reflecting weaker optimization stability. BP-MLP 10.2 11

To validate the superiority of XCOA-MLP, the
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Table 11. Comparison of XCOA-MLP and ML models

Dataset Model Ace. MSE Sp Sn
Breast DT 0.916 0.084 0.942 0.866
cancer RF 0.950 0.050 0.968 00915
SVM 0.945 0.055 0.955 0.927
KNN 0.958 0.042 0.973 0.927
XGBoost 0.954 0.046 0.962 0.939
XCOA-MLP 0.978 0.023 0.972 0.960
Diabetes DT 0.698 0.302 0.778 0.549
RF 0.714 0.286 0.807 0.538
SVM 0.744 0.256 0.865 0.516
KNN 0.721 0.279 0.825 0.527
XGBoost 0.714 0.286 0.801 0.549
XCOA-MLP 0.782 0.152 0.870 0.612
Liver DT 0.678 0.322 0.588 0.746
RF 0.737 0.263 0.667 0.791
SVM 0.703 0.297 0.451 0.896
KNN 0.602 0.398 0.588 0.612
XGBoost 0.703 0.297 0.686 0.716
XCOA-MLP 0.710 0.183 0.600 0.861
Parkinsons DT 0.791 0.209 0.812 0.784
RF 0.776 0.224 0.750 0.784
SVM 0.851 0.149 0.500 0.961
KNN 0.866 0.134 0.625 0.941
XGBoost 0.910 0.090 0.750 0.961
XCOA-MLP 0.877 0.096 0.640 0.949
Vertebral DT 0.783 0.217 0.805 0.724
RF 0.811 0.189 0.870 0.655
SVM 0.823 0.186 0.850 0.645
KNN 0.745 0.255 0.831 0.517
XGBoost 0.802 0.198 0.831 0.724

XCOA-MLP 0.851 0.106 0.855 0.824

Wilcoxon Signed-Rank Test was conducted on the
accuracy results over 30 runs against all competitor
models, as shown in Table 9. The analysis reports
two-sided p-values, signed effect sizes (r), and 95%
confidence intervals (CIs) for the median paired
accuracy differences. A positive » indicates that
XCOA-MLP outperforms the comparator, while a
negative r indicates that the competing model
performs better. Confidence intervals were estimated

759

using the normal approximation around the median
paired difference.

The results show that in most cases, the obtained
p-values are below the 0.05 significance threshold,
indicating that the superiority of XCOA-MLP over
the compared algorithms is statistically significant.
The corresponding effect sizes generally exhibit large
magnitudes, reflecting a strong and practically
relevant improvement. Moreover, the 95% Cls are
distinct and non-degenerate, capturing the variability
of the median paired differences across datasets.

are strictly positive, which further confirms that
XCOA-MLP achieves consistently higher accuracy.

The Friedman test, based on accuracy results,
produced a statistic of y¥* = 33.63, confirming
significant performance differences among the
algorithms. As shown in Table 10, XCOA-MLP
obtained the best rank (2.6), confirming the strength
of XCOA-MLP over the compared MHA-based
algorithms.

To provide a comprehensive evaluation of the
proposed XCOA-MLP model, its -classification
performance was compared against six widely used
traditional ML classifiers: DT, RF, SVM, KNN, and
XGBoost. The results are summarized in Table 11.

Table 11 shows that XCOA-MLP outperformed
traditional ML classifiers in most datasets, attaining
the highest or near-highest accuracy and lowest MSE.
It also provided superior sensitivity, essential for
medical diagnosis, while maintaining strong
specificity. Although XGBoost and KNN were
competitive, XCOA-MLP achieved a better trade-off
between accuracy and generalization, confirming the
effectiveness of the proposed training approach.

To further validate the effectiveness of XCOA-
MLP, its performance was compared with several
recent MHA-based models, including MGO-MLP [7],
FOX-MLP [16], PYYPO [34], GGA-MLP [14], DA-
MLP [35], HOS-MLP [36], and MPA-MLP [37].
Table 12 presents the results across the five medical
datasets.

Table 12. Comparison of XCOA-MLP with existing MHA-based models in the literature (results are taken from
respective papers and may reflect different experimental settings such as preprocessing, data splits, or network sizes)

Reference / Method Breast cancer Diabetes Liver Parkinson Vertebral
MGO-MLP 0.976 0.754 0.765 0.870 0.882
MLP-FOX 0.967 0.780 - 0.871 0.833
PYYPO 0.977 0.756 0.762 0.876 0.879
GGA-MLP - 0.769 - 0.866 0.885
DA-MLP 0.958 - - - —
HOS-MLP 0.968 0.778 - - 0.924
MPA-MLP - 0.765 0.710 0.871 0.848
XCOA-MLP 0.978 0.782 0.710 0.877 0.851
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The comparison with recent state-of-the-art
methods in Table 12 is based on their published
results as reported in the respective studies. Therefore,
minor variations in preprocessing, data partitioning,
or network configuration may exist. The results
highlight the competitiveness of XCOA-MLP, which
achieved the highest accuracy on Breast cancer,
Diabetes, and Parkinsons, outperforming recent state-
of-the-art methods. While it was slightly behind on
Liver and Vertebral datasets, it remained competitive
and consistently superior to the baseline COA-MLP,
confirming its robustness as a state-of-the-art
solution for medical data classification.

5. Conclusion

This study introduced XCOA-MLP, a hybrid
model combining the extended Coyote Optimization
Algorithm with a Multilayer Perceptron for medical
data classification. Employing the leader pack
technique enhanced convergence speed, exploitation,
and population diversity. Experimental results
confirmed that the XCOA-MLP model consistently
outperformed conventional training and
metaheuristic-based MLPs, achieving accuracies of
97.8% (Breast cancer), 78.2% (Diabetes), and 87.7%
(Parkinsons), with lower MSE and balanced
specificity—sensitivity values. Statistical validation
using non-parametric tests (p < 0.01) verified the
significance of these improvements. These results
highlight the scientific contribution of this work:
XCOA-MLP establishes an effective and reliable
training framework for neural networks in medical
applications, while also providing a general strategy
for enhancing swarm intelligence algorithms in high-
dimensional optimization problems.

Future work will explore automated architecture
selection, dynamic  hyperparameter  tuning,
alternative fitness functions (e.g., cross-entropy), and
integration with deep learning models for larger
medical datasets.
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