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Abstract: Artificial neural networks (ANNs) are widely applied in medical data classification due to their ability to 

model complex and nonlinear patterns. However, their performance is highly contingent upon the effectiveness of their 

training methods. Traditional training methods such as backpropagation often suffer from slow convergence and local 

minima. Meta-heuristic algorithms provide global search capability but may face efficiency limitations. This study 

proposes XCOA-MLP, a multilayer perceptron trained using an improved coyote optimization algorithm (XCOA). 

XCOA extends the standard COA by introducing a leader pack (LP) technique that accelerates convergence and 

enhances exploitation through inter-pack knowledge sharing. The model was evaluated on five UCI medical datasets 

and benchmarked against eight meta-heuristic algorithms. Results show that XCOA-MLP achieves superior accuracy 

and robustness, recording 97.8% on Breast cancer, 78.2% on Diabetes, and 87.7% on Parkinsons datasets. These 

findings demonstrate XCOA-MLP’s effectiveness in improving neural network training for medical data classification. 

Keywords: Coyote optimization algorithm (COA), Metaheuristics, Medical data classification, Multilayer perceptron 

(MLP), Neural network training, Optimization, Weights and biases. 

 

 

1. Introduction 

Medical data classification plays a vital role in 

supporting disease diagnosis and treatment planning, 

where accurate predictive models can improve early 

detection, guide therapies, and enhance patient 

outcomes [1]. Artificial neural networks (ANNs), 

particularly multilayer perceptrons (MLPs), are 

widely adopted for this task due to their ability to 

model nonlinear and complex relationships. However, 

their performance strongly depends on the 

optimization of weights and biases during training [2]. 

Traditional training approaches, such as 

backpropagation (BP), remain popular because of 

their deterministic formulation and ease of 

implementation. Nevertheless, they often suffer from 

slow convergence, sensitivity to initialization, and 

entrapment in local minima [3, 4], which are further 

exacerbated when dealing with noisy or high-

dimensional medical datasets [5]. 

In order to overcome these difficulties, meta-

heuristic algorithms (MHAs) have become more and 

more popular among researchers. These are the 

population-based optimization techniques that are 

informed by natural, social, or physical phenomena 

that provide the ability to search globally and are 

robust without gradient information [6]. Techniques 

such as genetic algorithms (GA) [2], mountain 

gazelle optimizer (MGO) [7], and whale optimization 

algorithm (WOA) [8] have been applied with varying 

success. Yet, many of these methods still encounter 

issues such as premature convergence and 

computational inefficiency in large-scale medical 

applications [4, 9]. 

Coyote optimization algorithm (COA) is a 

population-based meta-heuristic proposed by 

Pierezan and Coelho [10], which mimics the social 
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Nomenclature 

cult Median behavior of coyotes in a pack 

D Dimension of the search space 

f(X) Fitness value of solution X 

lbj, ubj Lower and upper bounds of the jth 

dimension 

N Population size (total coyotes) 

n, m, r #input, hidden, and output neurons 

Nc Number of coyotes per pack 

Np Number of packs 

O The rank-based ordered social conditions 

Pe Coyotes migration probability 

Ps, Pa Scattering and association probabilities 

pup A new coyote's social condition  

rj Random number in [0,1] for dimension j 

Rj Random factor for generating new pup 

rLP Weight (strength of the LP influence) 

rnd A uniform random number 

soc Social condition of a coyote  

T Maximum iterations or stopping criterion 

Tc Cultural tendency of a pack 

TLP Cultural tendency of Leader Pack 

W, θ Weights and biases of the neural network 

Xi Social condition of the ith coyote 

yk Actual target output for sample k 

y'k Predicted output for sample k 

α Alpha coyote (best solution in a pack) 

δ1, δ2 Influence of alpha and pack tendency 

δLP LP influence on the regular packs 

 

organization and interactions of coyotes in packs, 

combining evolutionary and swarm intelligence 

strategies. COA includes birth, death, and migration 

operations to explore the solution space.  

This study introduces XCOA-MLP, a novel 

model that employs a variant of COA for training 

MLPs in medical data classification tasks. The 

proposed algorithm integrates a proposed leader pack 

(LP) technique into the COA algorithm to enhance 

convergence and improve classification accuracy. 

The effectiveness of the model is validated using 

standard benchmark functions [11] and five UCI 

medical datasets [12], and its performance is 

compared with eight meta-heuristic training methods. 

The remainder of this paper is as follows: Section 

2 reviews related work; Section 3 details the 

methodology (COA, XCOA, proposed XCOA-MLP 

model, and experimental configuration); Section 4 

presents and discusses the results; and Section 5 

concludes the paper. 

2. Related work    

Traditional training methods, particularly BP, are 

widely used to train MLP neural networks due to their 

simplicity; however, they suffer from several issues, 

such as slow convergence, sensitivity to initial 

parameters, and a tendency to be trapped in local 

minima [3, 13], especially when applied to noisy or 

complex datasets [5]. Various MHAs have been 

explored to overcome these limitations [9]. These are 

population based optimization algorithms that are 

based on natural, social, or physical phenomenon and 

have the ability to search globally and perform well 

even in the absence of gradient data. 

Evolutionary approaches such as cellular GA [2], 

greedy GA [14], and differential evolution variants 

[15] achieved promising results, though often limited 

by scalability or parameter sensitivity. Swarm-based 

methods, including MGO [7], FOX [16], AMO [17], 

IMP-GWO [18], FMFO [19], and WOA [8], 

improved classification accuracy and search 

efficiency, yet some struggled with premature 

convergence or scalability. Physics-inspired 

algorithms like GSA [20], SCA [21], and MVO [22] 

offered reliable convergence but less adaptability 

compared to swarm-based methods. Table 1 shows a 

list of recent studies that utilized MHAs to train 

ANNs with metrics, key findings, and interpretations. 

MHAs have been effective in the training of 

ANNs but current procedures still face major issues 

such as premature convergence, failure to seek out 

plausible solutions, and computation impracticability 

under complex problem spaces [4].  

COA algorithm has been demonstrated to possess 

the ability to address these constraints by engaging 

evolutionary and swarm intelligence process [10]. 

Nevertheless, problems of local optima convergence, 

along with delays in search over high-dimensional 

spaces, remain [23]. Several enhancements, 

including the Sobol series [24], ICOA [25], MvCOA 

[26], and chaotic tent maps [27], have been proposed 

to improve diversity and convergence speed. These 

advances highlight COA’s adaptability and motivate 

its further development for robust neural network 

optimization. 

The proposed XCOA-MLP modified COA by 

introducing the LP technique, which facilitates inter-

pack knowledge transfer. This innovation enhances 

convergence speed, improves exploitation while 

maintaining diversity, and addresses the limitations 

of conventional BP and previously applied MHAs. 

3. Methodology    

3.1 Coyote optimization algorithm (COA) 

COA is an MHA that utilizes the social behavior 

of coyotes and social dynamics of packs to find 

optimal solutions [10]. The algorithm divides its  
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Table 1. Overview of studies utilizing meta-heuristic algorithms for training neural networks 

Ref. Year MHA Metrics Key Findings Interpretation 

[2] 2022 CGA Acc, Sn, Sp 

 

CGA-DX exhibited higher 

accuracy and lower MSE than 

other MHAs. 

Practical crossover and mutation 

mechanism. 

[14] 2022 GGA Acc, Sn, Sp 

 

The GGA outperformed the 

traditional MLP on several 

medical datasets. 

Enhanced population selection 

ensures better convergence. 

[28] 2025 DE Acc The DDE-OP achieved second-

best classification accuracy in all 

datasets. 

Uses clustering and quasi-

opposition strategy. 

[7] 2025 MGO Acc Superior accuracy and 

convergence on ten UCI datasets. 

Integrates four key behavioral 

strategies. 

[16] 2024 FOX Acc, Sn, Sp, 

RMSE 

Improved training, avoided local 

optima. 

 

Probabilistic jumps mimic red 

fox hunting. 

[17] 2022 AMO Acc, Sn, Sp 

 

Enhanced search, avoided local 

optima. 

The adaptive movement mimics 

ant behavior, ensuring robust 

optimization. 

[18] 2023 IGWO Acc, 

Precision, F1 

Outperformed the original GWO 

in performance and convergence. 

Improved accuracy; higher 

computational cost. 

[19] 2023 FMFO MSE, Acc, 

Speed, Time 

Enhanced search speed and 

accuracy. 

Combines flame-based search 

with adaptive behavior. 

[8] 2022 WOA Acc, AUC, 

Sp, Sn 

Effective in avoiding local 

minima, particularly effective for 

medical datasets. 

Modified WOA improves 

robustness for medical data. 

[20] 2023 GSA MSE Strong MLP performance via 

chaos & Lévy flight. 

Chaos theory enhances search, 

improving performance in 

complex spaces. 

[29] 2020 SCA Acc, MSE High performance in complex 

datasets. 

Sine-cosine mechanics navigate 

non-linear datasets effectively. 

[22] 2016 MVO Acc, MSE Improved convergence and local 

optima handling. 

Multiverse-inspired exploration 

excels at avoiding local optima. 

 

 

population into packs of coyotes, each one represents 

a candidate solution in the D solution space, with a 

social condition defined by Eq. (1). 
 

𝑠𝑜𝑐𝑐
𝑝,𝑡
= 𝑥⃗   = (𝑥1, 𝑥2, … , 𝑥𝐷)   (1) 

 

The adaptation of coyote to the environment is 

measured by the fitness, denoted by fitc
p,t ∈ R. 

1) Coyote initialization: Initially, each coyote's 

social condition is randomly determined by Eq. (2). 

 

𝑠𝑜𝑐𝑐,𝑗
𝑝,𝑡
= 𝑙𝑏𝑗 + 𝑟𝑗 . (𝑢𝑏𝑗 − 𝑙𝑏𝑗)   (2) 

 

where ubj and lbj are the lower and upper bounds 

of the dimension j, respectively, rj is a random 

number in [0, 1], and the fitness of each coyote is then 

evaluated using Eq. (3). 

𝑓𝑖𝑡𝑐
𝑝,𝑡
= 𝑓(𝑠𝑜𝑐𝑐

𝑝,𝑡
)     (3) 

 

2) Alpha selection: Each pack has a single 'alpha' 

coyote representing the best solution within the pack. 

The alpha of the pth pack at the tth iteration is defined 

by Eq. (4). 

 

𝛼𝑝,𝑡 =  

{𝑠𝑜𝑐𝑐
𝑝,𝑡
|𝑎𝑟𝑔𝑐={1,2,…,𝑁𝑐} +𝑚𝑖𝑛𝑓(𝑠𝑜𝑐𝑐

𝑝,𝑡
)}         (4) 

 

3) Cultural tendency: Because coyotes 

demonstrate group intelligence, they share cultural 

knowledge, influencing their collective behavior. The 

cultural tendency is determined by Eq. (5). 

 

𝑐𝑢𝑙𝑡𝑗
𝑝,𝑡
 =

{
 

  𝑂(𝑁𝑐+1)
2

,𝑗

𝑝,𝑡
 ,   𝑁𝑐  𝑖𝑠 𝑜𝑑𝑑

𝑂𝑁𝑐
2
,𝑗 

𝑝,𝑡
+ 𝑂

(
𝑁𝑐
2
+1),𝑗

𝑝,𝑡

2
  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (5) 

 

where Op,t denotes the rank-based ordered social 

conditions of coyotes. 

4) Coyote birth and death: Coyotes' ages, defined 

as agep,t
c influence birth and death events. A new 

coyote's (pup) is formulated as Eq. (6). 
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𝑝𝑢𝑝𝑗
𝑝,𝑡
 =

{

𝑠𝑜𝑐𝑟1,𝑗
𝑝,𝑡
 ,     𝑖𝑓 𝑟𝑛𝑑𝑗 < 𝑃𝑠 𝑜𝑟 𝑗 =  𝑗1        

𝑠𝑜𝑐𝑟2,𝑗
𝑝,𝑡
 ,    𝑖𝑓 𝑟𝑛𝑑𝑗 ≥ 𝑃𝑠 + 𝑃𝑎  𝑜𝑟 𝑗 =  𝑗2

𝑅𝑗,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                

  (6) 

 

where j1 and j2
 are random dimensions, r1 and r2 

are parent coyotes, Rj is a random number, and rndj is 

a uniform random number. The scattering and 

association probabilities, Ps and Pa, are given as: 

 

𝑃𝑠 =  1/𝐷      (7) 

 

𝑃𝑎 = (1 − 𝑃𝑠)/2     (8) 

 

5) Updating social conditions: Social conditions 

update based on alpha influence δ1 and pack 

influence δ2, computed as: 

 

𝛿1 = 𝛼
𝑝,𝑡 − 𝑠𝑜𝑐𝑐𝑟1

𝑝,𝑡
      (9) 

 

𝛿2 = 𝑐𝑢𝑙𝑡
𝑝,𝑡 − 𝑠𝑜𝑐𝑐𝑟2

𝑝,𝑡
              (10) 

 

Thus, the coyote's new social conditions are 

updated based on the influence of the alpha and the 

pack. 

 

𝑛𝑒𝑤_𝑠𝑜𝑐𝑐
𝑝,𝑡
= 𝑠𝑜𝑐𝑐

𝑝,𝑡
+ 𝑟1 . 𝛿1 + 𝑟2 . 𝛿2       (11) 

 

where r1 and r2 represent the weights of the alpha 

and pack effects, respectively, randomly selected 

from [0, 1]. An assessment of the new social 

condition is presented in Eq. (12). 

 

𝑛𝑒𝑤_𝑓𝑖𝑡𝑐
𝑝,𝑡
=  𝑓(𝑛𝑒𝑤_𝑠𝑜𝑐𝑐

𝑝,𝑡
)              (12) 

 

If the new social condition yields a better fitness 

value, it is adopted as in Eq. (13). 

 

𝑠𝑜𝑐𝑐
𝑝,𝑡+1

 =  

{
𝑛𝑒𝑤_𝑠𝑜𝑐𝑐

𝑝,𝑡
,    𝑖𝑓 𝑛𝑒𝑤_𝑓𝑖𝑡𝑐

𝑝,𝑡
< 𝑓𝑖𝑡𝑐

𝑝,𝑡

𝑠𝑜𝑐𝑐
𝑝,𝑡
,                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         (13) 

6) Coyote migration: Coyotes may migrate between 

packs, influenced by the probability of pack size: 

 

Pe =  0.005 . Nc
2               (14) 

 

Finally, the algorithm selects the optimal solution 

as the best-adapted coyote.  

3.2 Extended COA (XCOA) 

The solution updates in the original COA were 

limited to packs, with only two random chosen 

coyotes having an effect on each other. This limited 

communication tended to reduce the convergence 

speed and lead to stasis upon getting stuck in local 

optima by packs. The extended COA (XCOA) 

resolves these limitations by providing a leader pack 

(LP) technique, whereby coyotes in different packs 

will be brought together to exchange knowledge, 

improve exploitation, and speed up convergence. The 

mechanism of selection, cultural tendency and 

influence of the LP is formally stated in the 

subsequent subsections. 

3.2.1. Leader pack (LP) 

The LP is a special pack in COA, containing the 

top-performing coyotes from all packs, selected 

based on their fitness values. This elite subset 

introduces hierarchical control over all packs, 

facilitating the exchange of superior solutions and 

helping escape local optima. This ensures that strong 

solutions propagate across packs, guiding the 

population toward the global optimum. The LP 

updates periodically at fixed intervals, such as every 

TLP iteration. At each TLP interval, LP is formed by 

selecting the top NLP coyotes from all packs based on 

the fitness values: 

 

𝐿𝑃 =  𝑎𝑟𝑔𝑚𝑖𝑛𝑁𝐿𝑃  {𝑓(𝑠𝑜𝑐𝑐
𝑝
)|𝑝 = 1,2,…,  

𝑁𝑝; 𝑐 = 1,2, … ,𝑁𝑐}                (15) 

 
where f represents the selection of social conditions 

associated with the minimum (best) fitness values 

across all packs, NLP is the number of coyotes in LP. 

3.2.2. LP cultural tendency 

Once the LP is formed, it calculates its cultural 

tendency, representing the dominant social behavior 

of the best-performing coyotes. The cultural tendency 

of the LP, cult, is defined as the median of social 

conditions in LP, as in Eq. (16).  

 

𝑐𝑢𝑙𝑡𝑗
𝐿𝑃,𝑡  =

{
 

  𝑂(𝑁𝐿𝑃+1)
2

,𝑗

𝐿𝑃,𝑡  , 𝑖𝑓 𝑁𝐿𝑃 𝑖𝑠 𝑜𝑑𝑑

𝑂𝑁𝐿𝑃
2

,𝑗 

𝐿𝑃,𝑡 + 𝑂
(
𝑁𝐿𝑃
2

+1),𝑗

𝐿𝑃,𝑡

2
  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (16) 

 

here, the [1, D] interval, OLP,t stands for the rank-

based social condition of all coyotes in the LP at TLP 

iteration. The LP's cultural tendency reflects high-

performance solutions that influence the population. 
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Table 2. Benchmark functions used for XCOA validation 

Function Dim Initial 

Range 

Fmin 

F1 (Sphere) 30 [-100, 100] 0 

F2 (Schwefel 2.22) 30 [-10, 10] 0 

F3 (Schwefel 1.2) 30 [-100, 100] 0 

F4 (Schwefel 2.21) 30 [-100, 100] 0 

F5 (Rosenbrock) 30 [-30, 30] 0 

F6 (Step) 30 [-100, 100] 0 

F7 (Quartic + noise) 30 [-1.28, 1.28] 0 

F8 (Schwefel) 30 [-500, 500] -418.98 

F9 (Rastrigin) 30 [-5.12, 5.12] 0 

F10 (Ackley) 30 [-32, 32] 0 

F11 (Griewank) 30 [-600, 600] 0 

F12 (Penalized #1) 30 [-50, 50] 0 

F13 (Six-hump Camel) 2 [-5, 5] -1.0316 

F14 (Shekel’s Foxholes) 2 [0, 14] 0 

 

3.2.3. LP influence mechanism 

At each TLP interval iteration, the LP temporarily 

merges with each pack to inject its cultural trend and 

refine solutions. This ensures that regular packs 

inherit successful strategies, thereby improving 

search efficiency. The updated social conditions were 

computed using Eqs. (17) and (18). 

 

δ𝐿𝑃 = 𝑐𝑢𝑙𝑡
𝐿𝑃,𝑡 − 𝑠𝑜𝑐𝑐

𝑝,𝑡
               (17) 

 

𝑛𝑒𝑤_𝑠𝑜𝑐𝑐
𝑝,𝑡
= 𝑠𝑜𝑐𝑐

𝑝,𝑡
+ 𝑟𝐿𝑃 . δ𝐿𝑃             (18) 

 

where δLP is the LP influence on the regular packs, rLP 

is an added random weight factor determines the 

strength of the LP influence. The influence occurs at 

predefined intervals. 

3.2.4. Control parameters 

Key control parameters in XCOA include:  

• LP size: determines the number of elite 

coyotes, influencing the balance between 

guidance strength and population diversity. 

• Influence frequency: Controls how often the 

LP interacts with regular packs. 

Fig. 1 represents the workflow of XCOA. The left 

side depicts the normal COA process whereby there 

is pack initiation, alpha selection, cultural update, 

migration, and birth and death cycles. The 

enhancement of the XCOA is emphasized in the right 

side whereby an LP of the best coyotes of all packs 

facilitates the transfer of knowledge and speedy 

convergence. 

3.2.5. Validation of XCOA 

The proposed XCOA was validated using 

fourteen benchmark functions. These functions span 

an extensive range of optimization problems 

multimodal, non-separable, separable, and unimodal 

[11].  

Table 2 summarizes the configuration of the 

benchmark functions used in this study (F1–F14). 

Each function is defined by its dimensionality, initial 

search domain, and known global optimum value 

(Fmin).  

 

 

 
Figure. 1 XCOA workflow with LP technique 
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Table 3. Performance comparison of the original COA and proposed XCOA with multiple variations 

Fn Metrics COA XCOA1 XCOA2 XCOA3 XCOA4 XCOA5 XCOA6 

F1 Mean 1.53e-07 6.35e-20 4.37e-17 3.61e-20 1.00e-13 2.00e-15 1.22e-14 

 Best 2.00e-08 2.00e-22 4.25e-19 2.35e-23 4.90e-15 2.46e-17 1.27e-16 

 Worst 5.24e-07 4.52e-19 2.56e-16 6.74e-19 3.64e-13 2.31e-14 1.46e-13 

 STD 1.05e-07 8.40e-20 5.54e-17 1.34e-19 9.40e-14 4.45e-15 2.69e-14 

F2 Mean 1.28e-06 0.00027 1.61e-12 7.97e-07 9.71e-12 1.10e-12 2.89e-12 

 Best 4.79e-07 1.51e-12 2.77e-14 1.53e-12 1.71e-12 1.73e-13 3.84e-13 

 Worst 3.63e-06 0.00815 2.23e-11 2.29e-05 2.53e-11 5.94e-12 9.06e-12 

 STD 7.51e-07 0.00146 3.97e-12 4.10e-06 5.85e-12 1.13e-12 1.88e-12 

F3 Mean 36.19 0.0287 0.0112 0.0144 0.331 0.0230 0.0759 

 Best 8.17 0.00089 0.00058 0.00015 0.0210 0.00148 0.00748 

 Worst 98.70 0.275 0.0428 0.101 1.90 0.107 0.302 

 STD 19.24 0.0570 0.0103 0.0269 0.463 0.0242 0.0665 

F4 Mean 5.58 7.50 7.51 7.20 8.15 7.56 11.32 

 Best 3.85 4.56 4.93 3.53 5.20 5.13 5.96 

 Worst 8.36 10.62 10.34 11.59 10.20 10.65 15.81 

 STD 0.949 1.47 1.11 1.87 1.27 1.36 2.20 

F5 Mean 20.62 33.34 18.10 7.00 17.85 20.08 9.01 

 Best 1.27 0.00246 0.00334 0.00086 0.0194 0.0948 0.00754 

 Worst 105.34 237.31 91.73 159.78 223.60 68.79 77.26 

 STD 26.67 51.28 31.04 36.50 44.47 12.97 16.12 

F6 Mean 0.0333 1.87 1.07 2.07 1.17 3.43 8.87 

 Best 0.0 0.0 0.0 0.0 0.0 0.0 1.0 

 Worst 1.0 8.0 4.0 7.0 8.0 10.0 16.0 

 STD 0.180 1.63 1.03 1.86 1.53 3.12 3.64 

F7 Mean 0.0138 0.334 0.142 0.122 0.0704 0.169 0.248 

 Best 0.00566 0.145 0.0515 0.149 0.0167 0.0850 0.112 

 Worst 0.0252 0.495 0.314 0.593 0.152 0.297 0.560 

 STD 0.00428 0.0917 0.0486 0.0984 0.0272 0.0557 0.0926 

F8 Mean -12454 -12569 -12569 -12479 -12569 -12559 -12064 

 Best -12569 -12569 -12569 -12569 -12569 -12569 -12569 

 Worst -12569 -9982 -12569 -10137 -12569 -12265 -9462 

 STD 2.31e-07 481.94 7.01e-12 437.74 9.48e-11 54.64 927.92 

F9 Mean 3.54e-06 2.52e-06 3.62e-03 3.44e-08 3.76e-05 3.58e-03 3.43e-02 

 Best 1.04e-07 5.51e-10 1.77e-11 0.00744 3.73e-10 0.995 9.55 

 Worst 3.13e-05 36.98 6.21 42.19 0.995 53.98 65.86 

 STD 6.26e-06 7.47 1.25 8.49 0.179 13.21 14.08 

F10 Mean 0.000219 1.33 0.00038 2.02 7.67e-05 0.0478 2.09 

 Best 7.20e-05 1.15e-09 2.98e-08 1.79e-09 6.69e-08 1.03e-07 0.00452 

 Worst 0.000571 19.94 0.0111 19.96 0.00142 0.652 2.82 

 STD 0.000124 4.96 0.00200 5.97 0.000264 0.161 0.542 

F11 Mean 0.00115 0.00241 0.00165 0.00104 0.00111 0.00780 0.00934 

 Best 3.77e-08 9.99e-16 5.55e-16 4.44e-16 8.33e-15 2.22e-16 9.99e-16 

 Worst 0.0148 0.0807 0.0489 0.0855 0.0637 0.0246 0.0514 

 STD 0.00358 0.0239 0.0131 0.0279 0.0145 0.00819 0.0128 

F12 Mean 1.08e-08 0.0138 0.00079 0.0426 1.90e-12 0.702 1.11 

 Best 1.69e-09 3.76e-21 9.00e-18 1.60e-19 7.40e-15 9.81e-16 3.23e-13 

 Worst 6.00e-08 0.104 0.0234 1.28 2.21e-11 13.52 9.24 

 STD 1.16e-08 0.0352 0.00419 0.229 4.46e-12 2.74 2.52 

F13 Mean -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

 Best -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

 Worst -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

 STD 4.48e-16 2.22e-16 2.22e-16 2.22e-16 2.22e-16 4.94e-08 2.22e-16 

F14 Mean 1.99 2.0 1.95 1.93 2.0 2.0 1.98 

 Best 1.71 2.0 0.391 2.0 2.0 0.000873 1.49 

 Worst 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

 STD 0.0523 0.0 0.289 0.0 0.0 0.359 0.0916 
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Figure. 2 Mapping weights and biases to a coyote vector  

 

 

The XCOA and the original COA were tested using a 

population of 20 packs, with 5 coyotes. Several 

XCOA variants were evaluated, differing in influence 

intervals (10, 20, 30, and 40 iterations with LP size = 

5) and LP sizes (10 and 15 coyotes with an influence 

interval of 30), denoted as XCOA1–XCOA6. These 

sensitivity variants were designed to investigate the 

effect of LP control parameters on performance. 

Table 3 shows the results of COA, XCOA, and their 

variants on standard benchmark functions. 

Shorter influence intervals (XCOA1, XCOA3) 

positively affected stability on multimodal functions, 

and longer intervals (XCOA5) positively affected 

adaptability in complex landscapes but not in velocity 

of convergence. Increasing the size of the LP 

(XCOA5, XCOA6) enhanced the performance on 

high-variance functions but had a little worse-case 

errors, which points to the possibility of over-

centralization. Overall, LP size and influence interval 

were critical parameters, though some functions 

(F13–F14) showed minimal sensitivity. This ablation 

study confirms XCOA’s parameter sensitivity and 

the significant role of the LP technique. 

3.3 The proposed model: XCOA-MLP 

This study integrated XCOA with an MLP neural 

network to develop an efficient classification model 

termed XCOA-MLP. The aim is to leverage XCOA's 

optimization capabilities to determine the optimal 

weight and bias parameters for MLP in medical data 

classification. The selection of MLP was prompted 

by its ability to learn the non-linear nature of certain 

processes and complex decision boundaries required 

during the classification of medical informatics [2].  

3.3.1. Solution representation 

In XCOA-MLP, the vector encoding is used to 

represent each coyote, and each vector is mapped to 

a solution in an MLP. The MLP was designed so that 

the weights and the biases were arranged in a manner 

that every coyote could map directly to a potential 

solution within the network, and that according to the 

format prescribed by the XCOA algorithm. The 

vector is split into input-hidden weights, hidden 

output weights and biases. The size of the vector is 

the sum of the weights and biases in the network.  

Fig. 2 depicts an example of mapping the weights 

and biases of the MLP with two inputs, a single 

hidden layer with three nodes, and one output neuron 

to a coyote vector. If there are n input nodes, m hidden 

nodes, and r output nodes, then the length of each 

coyote vector (D) is calculated using Eq. (19). 

 

𝐷 = (𝑛 ×𝑚) + (𝑚 × 𝑟) + 𝑚 + 𝑟              (19) 

 

This unified representation allows the XCOA to 

manipulate the entire parameter set as a single search 

agent, facilitating systematic exploration of the high-

dimensional space of network configurations. 

Throughout the evolutionary process, XCOA 

iteratively adapts D to minimize the training error, 

thereby improving the predictive performance of the 

MLP. 

3.3.2. Fitness function 

Each solution vector (coyote) in the population, 

represented as MLPj, where 1 ≤ j ≤ N and N denotes 

the population size, is evaluated using a fitness 

function to assess the solution quality. Specifically, 

the MSE, as defined in Eq. (20), serves as the fitness 

function for evaluating the performance of each 

candidate solution. 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑀𝐿𝑃) =  

𝑀𝑆𝐸 =  
1

𝑛
 ∑ (𝑦𝑘 −  𝑦𝑘́)

2𝑛
𝑘=1               (20) 

 

where n is the number of training samples, y’
k is 

the predicted output for the kth training sample, and yk 

is the actual binary target. MSE in classification tasks 

indicates the difference between the calculated real 

output and the required binary classification output. 

Since MSE is a quadratic function, it enforces 

high values for significant discrepancies between 

predicted and target values. Hence, meta-heuristic 

methods can be used as a fitness function to 

determine the MLP weights and biases [14]. The goal 

of the XCOA-MLP model is to minimize the fitness 

function f. The quality of each solution was  
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Figure. 3 Flowchart of the XCOA-MLP training process for optimizing MLP in medical data classification 

 

 

quantified using a previously described method (21). 

The optimal MLP configuration is identified by 

selecting the solution with the lowest fitness, as 

described in Eq. (22). 

 

𝑓(𝑀𝐿𝑃𝑗) = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑀𝐿𝑃𝑗)              (21) 

 

𝑀𝐿𝑃𝑏𝑒𝑠𝑡 =  

𝑀𝐿𝑃𝑙|𝑓(𝑀𝐿𝑃𝑙) < 𝑓(𝑀𝐿𝑃𝑗)∀𝑗 ≠ 𝑙                (22) 

 

3.3.3. Training process in XCOA-MLP 

The training process of MLPs in the XCOA-MLP 

model starts with the random initialization of coyote 

agents. Input data are propagated to the network, and 

outputs are evaluated using the MSE fitness function. 

The XCOA iteratively refines solutions through:   

1. Coyote initialization: A population of 

coyotes, Nc, is generated by assigning random 

weights and biases to MLP. The population is 

divided into Np packs. 

2. Forward propagation: Training samples of 

data are used for forward propagation in the 

MLP. 

3. Fitness evaluation: The fitness of each 

coyote is evaluated using MSE, which 

measures the quality of the weights and biases 

assigned to the MLP. 
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4. Cultural tendency update: Each pack 

computes a cultural tendency vector that 

reflects the central behavior of its members. 

5. Pack evolution:  

• Alpha identification: The coyote with the 

lowest MSE in each pack is selected as alpha. 

• Social update: Coyotes update their positions 

in the solution space by learning from the 

alpha and the cultural tendency of the pack. 

• Birth and death: Offspring are generated by 

combining characteristics of selected parents. 

If a new coyote has better fitness than the 

worst member of the pack, it replaces that 

individual. 

6. LP formation: If the current iteration aligns 

with the influence interval, an LP is formed 

by selecting top-performing coyotes across all 

packs. 

7. LP cultural tendency: The cultural tendency 

of the LP was computed, and this information 

was used to influence other coyotes 

periodically. 

8. Migration and Aging: Apply pack 

transitions and increment coyote ages. 

Algorithm 1 represents the pseudo-code of the 

XCOA-MLP model, and Fig. 3 shows a flowchart of 

the XCOA-MLP training process for MLP 

optimization in medical data classification. 

 

Algorithm 1 Pseudo code for XCOA-MLP model 

1: define coyote vector (D) (Eq. (19)), influence_interval, LP_size 

2: set up Np packs, Nc coyotes representing weights and biases (Eq. (2)) 

3: perform forward propagation in the MLP based on the coyote vector 

4: evaluate the fitness of each coyote based on MSE (Eq. (2)0) 

5: while stopping criterion is not achieved do 

6:      for each pack p do 

7:          identify alpha coyote (best MLP in each pack) (Eq. (4)) 

8:          calculate social tendency of pack based on the alpha (Eq. (5)) 

9:          for each coyote c of the pack p do 

10:              revise the social condition (weights and biases) (Eq. (11)) 

11:              evaluate updated social condition by retraining MLP 

12:              update coyote's adaptation based on (Eq. (13)) 

13:         end for 

14:         run the birth and death process (Eq. (6)) 

15:     end for 

16:     if iteration % influence_interval == 0 then 

17:       form the LP with top-performing coyotes in all packs (Eq. (15)) 

18:       calculate the cultural tendency of the LP (Eq. (16)) 

19:       for each pack p do 

20:            for each coyote c of the pack p do 

21:                  compute the influence of the LP (Eq. (17))  

22:                  update social condition with the LP influence (Eq. (18)) 

23:            end for  

24:        end for  

25:     end if 

26:     transitions of coyotes among packs (Eq. (19)) 

27:     increment the age of each coyote 

28: end while 

 

3.4 Experiment configuration 

The MLP architecture used throughout the 

experiments was a feed-forward network with a 

single hidden layer and a Sigmoid activation function. 

The weights and biases of MLPs were constrained to 

the range [-1, 1], as adopted from [2, 30, 31]. The 

number of input neurons (n) corresponds to the 

dataset features, and hidden neurons (m) are 

calculated using a heuristic from [32], balancing 

complexity and generalization:  

 

𝑚 = 2 × 𝑛 + 1               (23) 

 

Each experimental run was initialized with new, 

random parameters, and the experiment was executed 

30 times independently. The size of the MHAs 

consisted of 50 populations. The experiments were  
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Table 4. Parameter settings of XCOA and other MHAs 

Algorithm Parameter Value 

XCOA-MLP Packs 20 

Coyotes per pack 5 

LP size 5 

Influence interval 30 

BAT Loudness 0.5 

Pulse rate 0.5 

Min-Max frequency 0-1 

CS Step size 0.3 

Lévy distribution 

parameter 
1.5 

Nest replacement prob. 0.2 

DE Crossover prob. 0.9 

Weight 0.5 

GA Crossover prob. 0.9 

Mutation prob. 0.01 

Selection prob. 0.5 

Selection type Roulette 

GWO a 2 to 0 linear 

MFO Spiral constant 1 

MVO Min wormhole prob 0.2 

Max wormhole prob 1.0 

PSO Inertia weight 0.7 

Cognitive component 1.1 

Social component 1.7 

 
Table 5. Characteristics of the datasets used in this study 

Dataset Cols Rows Label 1 Label 2 

Network 

Structure 

Eq. (23) 

Vector 

Length 

Eq. (19) 

Breast 

cancer 

9 699 (458) (241) 9-19-1 210 

Diabetes 8 768 (268) (500) 8-17-1 171 

Liver 6 345 (200) (145) 6-13-1 105 

Parkinsons 22 195 (147) (48) 22-45-1 1081 

Vertebral 6 310 (210) (100) 6-13-1 105 

 

 

conducted on an Intel i7 2.11 GHz processor (8 cores, 

16 GB RAM). The parameter configurations for 

COA, XCOA, and all competing MHAs are 

summarized in Table 4. 

It is important to note that BP-MLP may be 

implemented with either a fixed or a varying random 

seed. The former provides deterministic results, 

while the latter employs a stochastic initialization that 

aligns with MHA training. A variable random seed 

was used in this study to guarantee the fair estimation 

of variance in 30 independent runs. 

The efficacy of the XCOA-MLP is assessed by 

using five medical datasets from the UCI [12]: Breast 

cancer, Diabetes, Liver, Parkinsons, and Vertebral. A 

brief description of all the datasets, along with the 

network configuration and vector length, is provided 

in Table 5, based on Eqs. (19) and (23). 

The datasets were separated into two sets: 

training (66%) and testing (34%). The stratified 

sampling technique was used [33]. The max-min  

normalization procedure was used to scale all 

attribute values, as shown in Eq. (24). 

 

𝑋 𝑖
′ =    

𝑋𝑖−𝑚𝑖𝑛𝑋

𝑚𝑎𝑥𝑋− 𝑚𝑖𝑛𝑋
               (24) 

 

where Xi is the initial value of feature 'X' for 

instance i, and X '
i is its normalized value. The 𝑚𝑖𝑛X 

and 𝑚𝑎𝑥X represent the lower and upper limits of the 

feature Xi. 

 For comparison, the XCOA-MLP model was 

benchmarked with some popular MHAs such as bat 

algorithm (BAT), cuckoo search (CS), differential 

evolution (DE), genetic algorithm (GA), grey wolf 

optimizer (GWO), moth-flame optimization (MFO), 

multi-verse optimizer (MVO), and particle swarm 

optimization (PSO). The original COA was also 

considered as a baseline to identify the improvements. 

In addition, conventional ML classifiers like Naïve 

bayes (NB), decision tree (DT), random forest (RF), 

support vector machine (SVM) and extreme gradient 

boosting (XGBoost) were considered to get a broader 

performance perspective. 

In order to measure performance, accuracy, 

sensitivity, specificity, and MSE were observed as 

tools. These measures were calculated on the basis of 

the true positive (TP), true negative (TN), false 

positive (FP) and false negative (FN) with the use of 

the following Eqs. (25) to (27). 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
              (25) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
              (26) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑁+𝑇𝑃)

(𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃)
              (27) 

 

4. Results and discussion    

4.1 Classification accuracy 

Table 6 presents the mean and STD of accuracy 

values. XCOA-MLP achieved the highest mean test 

accuracy in three datasets: Breast cancer (0.978), 

Diabetes (0.782), and Parkinsons (0.877). On the 

Vertebral dataset, DE slightly outperformed XCOA-

MLP, while PSO achieved the best accuracy for the 

Liver dataset. Nonetheless, XCOA-MLP remained  
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Table 6. Mean classification accuracy with standard deviation across all algorithms 

MHA Breast cancer Diabetes Liver Parkinsons Vertebral 

BAT-MLP 0.954 0.007 0.704 0.014 0.657 0.013 0.808 0.013 0.797 0.013 

CS-MLP 0.965 0.002 0.731 0.013 0.689 0.014 0.835 0.012 0.840 0.012 

DE-MLP 0.965 0.003 0.728 0.010 0.704 0.012 0.845 0.006 0.852 0.006 

GA-MLP 0.963 0.002 0.728 0.010 0.705 0.013 0.833 0.005 0.838 0.007 

GWO-MLP 0.959 0.006 0.680 0.015 0.652 0.015 0.800 0.014 0.783 0.012 

MFO-MLP 0.966 0.002 0.731 0.008 0.668 0.013 0.846 0.009 0.847 0.010 

MVO-MLP 0.966 0.002 0.731 0.008 0.693 0.012 0.852 0.008 0.837 0.007 

PSO-MLP 0.958 0.003 0.710 0.014 0.721 0.011 0.823 0.012 0.825 0.004 

BP-MLP 0.960 0.009 0.731 0.032 0.579 0.008 0.830 0.029 0.682 0.012 

COA-MLP 0.968 0.009 0.771 0.014 0.704 0.032 0.862 0.019 0.841 0.027 

XCOA-MLP 0.978 0.006 0.782 0.015 0.710 0.032 0.877 0.023 0.851 0.024 

 
Table 7. Mean specificity and sensitivity across all algorithms 

MHA 
Breast cancer Diabetes Liver Parkinsons Vertebral 

Sp Sn Sp Sn Sp Sn Sp Sn Sp Sn 

BAT-MLP 0.987 0.892 0.842 0.267 0.425 0.830 0.593 0.878 0.925 0.555 

CS-MLP 0.987 0.934 0.863 0.483 0.538 0.804 0.546 0.868 0.905 0.702 

DE-MLP 0.986 0.923 0.871 0.463 0.553 0.818 0.739 0.878 0.920 0.705 

GA-MLP 0.987 0.920 0.722 0.702 0.528 0.841 0.718 0.868 0.927 0.649 

GWO-MLP 0.988 0.907 0.980 0.122 0.412 0.831 0.426 0.921 0.925 0.487 

MFO-MLP 0.987 0.928 0.879 0.453 0.470 0.818 0.743 0.881 0.928 0.673 

MVO-MLP 0.987 0.927 0.869 0.472 0.546 0.805 0.749 0.885 0.918 0.664 

PSO-MLP 0.987 0.905 0.919 0.323 0.589 0.821 0.655 0.878 0.918 0.625 

BP-MLP 0.965 0.892 0.887 0.437 0.027 0.852 0.438 0.923 0.927 0.016 

COA-MLP 0.972 0.963 0.866 0.582 0.561 0.809 0.606 0.947 0.852 0.782 

XCOA-MLP 0.972 0.960 0.870 0.612 0.600 0.861 0.640 0.949 0.855 0.824 

 
Table 8. Mean and standard deviation of MSE values across all algorithms 

MHA Breast cancer Diabetes Liver Parkinsons Vertebral 

BAT-MLP 0.044 0.009 0.186 0.010 0.234 0.009 0.112 0.009 0.155 0.009 

CS-MLP 0.025 0.001 0.158 0.003 0.196 0.007 0.084 0.007 0.135 0.003 

DE-MLP 0.024 0.003 0.161 0.004 0.205 0.007 0.089 0.004 0.137 0.004 

GA-MLP 0.025 0.001 0.167 0.002 0.214 0.007 0.093 0.002 0.139 0.009 

GWO-MLP 0.070 0.005 0.196 0.006 0.194 0.009 0.140 0.009 0.177 0.007 

MFO-MLP 0.024 0.001 0.166 0.003 0.208 0.007 0.087 0.005 0.139 0.005 

MVO-MLP 0.024 0.002 0.160 0.004 0.201 0.007 0.085 0.004 0.136 0.003 

PSO-MLP 0.032 0.002 0.182 0.006 0.199 0.007 0.097 0.008 0.144 0.003 

BP-MLP 0.040 0.009 0.269 0.012 0.421 0.008 0.170 0.019 0.318 0.012 

COA-MLP 0.025 0.005 0.154 0.007 0.184 0.012 0.099 0.012 0.111 0.013 

XCOA-MLP 0.023 0.004 0.152 0.012 0.183 0.013 0.096 0.025 0.106 0.024 

 

highly competitive across all benchmarks, 

consistently ranking among the top performers. 

These findings highlight the effectiveness of the 

leader pack technique in improving convergence and 

generalization in medical classification tasks. 

4.2 Specificity and sensitivity 

The balance between true positive, sensitivity 

(Sn) and true negative, specificity (Sp) predictions is 

reported in Table 7. XCOA-MLP provided a stable 

trade-off between Sp and Sn across all datasets. 

These results indicate that the proposed XCOA-MLP 

model reduces the class bias and maintains diagnostic 

reliability across medical datasets. 

4.3 Mean squared error (MSE) 

Table 8 presents the mean and STD of the MSE 

values. XCOA-MLP model consistently achieved the 

lowest or near-lowest MSE values across all datasets. 

It ranked first in Breast cancer (0.023), Diabetes 

(0.152), Liver (0.183), and Vertebral (0.106) 

conditions. These results confirm the learning  
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Figure. 4 Convergence curves of fitness across the five datasets: Breast cancer, Diabetes, Liver, Parkinsons, and 

Vertebral 

 

 
Figure. 5 Box plots of fitness distributions across the five datasets: Breast cancer, Diabetes, Liver, Parkinsons, and 

Vertebral 

 

efficiency of XCOA, which effectively balances 

exploration and exploitation, reducing prediction 

error while preserving robustness. 

4.4 Discussion 

The proposed XCOA-MLP model consistently 

demonstrated superior or highly competitive 

performance across all datasets. Its strength lies in 

achieving low MSE, high accuracy, and balanced 

sensitivity and specificity, which are critical factors 

in medical data classification. Low STDs further 

highlight the model’s stability and reliability. The 

incorporation of the LP significantly improved 

convergence, and generalization compared to other 

methods. 

Fig. 4 illustrates the convergence behavior, 

showing that XCOA-MLP rapidly approaches  
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Table 9. Wilcoxon Signed Rank test results on the accuracy of XCOAMLP and the other algorithm 

XCOA vs. Metric Breast 

cancer 

Diabetes Liver Parkinsons Vertebral 

BAT p-value 1.86e-09 1.86e-09 3.54e-08 3.73e-09 5.59e-09 

Effect size (r) 1.000 1.000 1.000 1.000 1.000 

95% CI [0.020380, 

0.027419] 

[0.069161, 

0.081206] 

[0.043044, 

0.067395] 

[0.060035, 

0.079975] 

[0.043979, 

0.065399] 

CS p-value 5.59e-09 1.86e-09 0.001864 1.02e-07 0.052263 

Effect size (r) 1.000 1.000 0.568 0.972 0.354 

95% CI [0.010201, 

0.015722] 

[0.038599, 

0.051847] 

[0.010909, 

0.035272] 

[0.033187, 

0.052823] 

[-0.002788, 

0.019118] 

DE p-value 5.59e-09 1.86e-09 0.328470 1.68e-06 0.700033 

Effect size (r) 1.000 1.000 0.178 0.874 -0.070 

95% CI [0.010038, 

0.015885] 

[0.047073, 

0.057526] 

[-0.004108, 

0.020288] 

[0.025389, 

0.043375] 

[-0.010348, 

0.009011] 

GA p-value 1.86e-09 1.86e-09 0.416130 1.86e-08 0.005013 

Effect size (r) 1.000 1.000 0.148 1.000 0.512 

95% CI [0.012207, 

0.017716] 

[0.047073, 

0.057526] 

[-0.005102, 

0.019282] 

[0.038538, 

0.056226] 

[0.002518, 

0.022145] 

GWO p-value 1.86e-09 1.86e-09 1.30e-08 1.86e-09 1.86e-09 

Effect size (r) 1.000 1.000 1.000 1.000 1.000 

95% CI [0.014593, 

0.021742] 

[0.093771, 

0.105403] 

[0.049073, 

0.073846] 

[0.067921, 

0.088090] 

[0.058029, 

0.079034] 

MFO p-value 8.01e-08 1.86e-09 8.33e-07 1.99e-06 0.308521 

Effect size (r) 0.980 1.000 0.900 0.868 0.186 

95% CI [0.009207, 

0.014716] 

[0.044992, 

0.055138] 

[0.031890, 

0.056290] 

[0.023022, 

0.041742] 

[-0.007819, 

0.012483] 

MVO p-value 9.31e-09 1.86e-09 0.018529 2.08e-05 0.001864 

Effect size (r) 1.000 1.000 0.430 0.777 0.568 

95% CI [0.010062, 

0.015638] 

[0.044740, 

0.054946] 

[0.006885, 

0.031295] 

[0.018194, 

0.036570] 

[0.003598, 

0.023066] 

PSO p-value 1.86e-09 1.86e-09 0.100397 9.31e-09 7.99e-06 

Effect size (r) 1.000 1.000 -0.300 1.000 0.815 

95% CI [0.017134, 

0.022978] 

[0.064080, 

0.075662] 

[-0.020931, 

0.003111] 

[0.045284, 

0.064726] 

[0.015468, 

0.034154] 

BP p-value 1.86e-08 3.86e-07 1.86e-09 2.05e-07 1.86e-09 

Effect size (r) 1.000 0.927 1.000 0.948 1.000 

95% CI [0.015599, 

0.022804] 

[0.032943, 

0.060492] 

[0.131558, 

0.156578] 

[0.034931, 

0.059845] 

[0.159292, 

0.180331] 

COA p-value 0.001039 0.009932 0.279315 0.003497 0.008143 

Effect size (r) 0.599 0.471 0.198 0.533 0.483 

95% CI [0.005074, 

0.013926] 

[0.006891, 

0.022193] 

[-0.001883, 

0.018832] 

[0.008528, 

0.026248] 

[0.007243, 

0.018625] 

 

 

minimal fitness values in four of the five datasets. In 

contrast, CS achieved the best result for Parkinsons 

but stagnated in Diabetes and Vertebral. Similarly, 

GWO was frequently trapped in local minima across 

four datasets. 

Fig. 5 provides further evidence through box 

plots, where XCOA-MLP achieved the most 

favorable distributions in four datasets, with narrow 

interquartile ranges, lower median losses, and fewer 

outliers. In comparison, GWO, BAT, and GA 

exhibited wider variability and inferior central 

tendencies, reflecting weaker optimization stability. 

To validate the superiority of XCOA-MLP, the  

Table 10. Friedman ranks of algorithms for all datasets 

Algorithm Avg. Rank Friedman Rank 

XCOA-MLP 2.6 1 

COA-MLP 3.1 2 

MFO-MLP 4.1 3 

DE-MLP 4.4 4 

MVO-MLP 4.6 5 

CS-MLP 5 6 

GA-MLP 6 7 

PSO-MLP 6.8 8 

BAT-MLP 9.4 9 

GWO-MLP 9.8 10 

BP-MLP 10.2 11 
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Table 11. Comparison of XCOA-MLP and ML models  

Dataset Model Acc. MSE Sp Sn 

Breast 

cancer 

DT 0.916 0.084 0.942 0.866 

RF 0.950 0.050 0.968 0.915 

SVM 0.945 0.055 0.955 0.927 

KNN 0.958 0.042 0.973 0.927 

XGBoost 0.954 0.046 0.962 0.939  
XCOA-MLP 0.978 0.023 0.972 0.960 

Diabetes DT 0.698 0.302 0.778 0.549  
RF 0.714 0.286 0.807 0.538  
SVM 0.744 0.256 0.865 0.516  
KNN 0.721 0.279 0.825 0.527  
XGBoost 0.714 0.286 0.801 0.549  
XCOA-MLP 0.782 0.152 0.870 0.612 

Liver DT 0.678 0.322 0.588 0.746  
RF 0.737 0.263 0.667 0.791  
SVM 0.703 0.297 0.451 0.896  
KNN 0.602 0.398 0.588 0.612  
XGBoost 0.703 0.297 0.686 0.716  
XCOA-MLP 0.710 0.183 0.600 0.861 

Parkinsons DT 0.791 0.209 0.812 0.784  
RF 0.776 0.224 0.750 0.784  
SVM 0.851 0.149 0.500 0.961  
KNN 0.866 0.134 0.625 0.941  
XGBoost 0.910 0.090 0.750 0.961  
XCOA-MLP 0.877 0.096 0.640 0.949 

Vertebral DT 0.783 0.217 0.805 0.724  
RF 0.811 0.189 0.870 0.655  
SVM 0.823 0.186 0.850 0.645  
KNN 0.745 0.255 0.831 0.517  
XGBoost 0.802 0.198 0.831 0.724  
XCOA-MLP 0.851 0.106 0.855 0.824 

 

 

Wilcoxon Signed-Rank Test was conducted on the 

accuracy results over 30 runs against all competitor 

models, as shown in Table 9. The analysis reports 

two-sided p-values, signed effect sizes (r), and 95% 

confidence intervals (CIs) for the median paired 

accuracy differences. A positive r indicates that 

XCOA-MLP outperforms the comparator, while a 

negative r indicates that the competing model 

performs better. Confidence intervals were estimated 

using the normal approximation around the median 

paired difference. 

The results show that in most cases, the obtained 

p-values are below the 0.05 significance threshold, 

indicating that the superiority of XCOA-MLP over 

the compared algorithms is statistically significant. 

The corresponding effect sizes generally exhibit large 

magnitudes, reflecting a strong and practically 

relevant improvement. Moreover, the 95% CIs are 

distinct and non-degenerate, capturing the variability 

of the median paired differences across datasets. 

are strictly positive, which further confirms that 

XCOA-MLP achieves consistently higher accuracy. 

The Friedman test, based on accuracy results, 

produced a statistic of χ² = 33.63, confirming 

significant performance differences among the 

algorithms. As shown in Table 10, XCOA-MLP 

obtained the best rank (2.6), confirming the strength 

of XCOA-MLP over the compared MHA-based 

algorithms. 

To provide a comprehensive evaluation of the 

proposed XCOA-MLP model, its classification 

performance was compared against six widely used 

traditional ML classifiers: DT, RF, SVM, KNN, and 

XGBoost. The results are summarized in Table 11. 

Table 11 shows that XCOA-MLP outperformed 

traditional ML classifiers in most datasets, attaining 

the highest or near-highest accuracy and lowest MSE. 

It also provided superior sensitivity, essential for 

medical diagnosis, while maintaining strong 

specificity. Although XGBoost and KNN were 

competitive, XCOA-MLP achieved a better trade-off 

between accuracy and generalization, confirming the 

effectiveness of the proposed training approach. 

To further validate the effectiveness of XCOA-

MLP, its performance was compared with several 

recent MHA-based models, including MGO-MLP [7], 

FOX-MLP [16], PYYPO [34], GGA-MLP [14], DA-

MLP [35], HOS-MLP [36], and MPA-MLP [37]. 

Table 12 presents the results across the five medical 

datasets. 

 

 
Table 12. Comparison of XCOA-MLP with existing MHA-based models in the literature (results are taken from 

respective papers and may reflect different experimental settings such as preprocessing, data splits, or network sizes) 

Reference / Method Breast cancer Diabetes Liver Parkinson Vertebral 

MGO-MLP 0.976 0.754 0.765 0.870 0.882 

MLP-FOX 0.967 0.780 – 0.871 0.833 

PYYPO 0.977 0.756 0.762 0.876 0.879 

GGA-MLP – 0.769 – 0.866 0.885 

DA-MLP 0.958 – – – – 

HOS-MLP 0.968 0.778 – – 0.924 

MPA-MLP – 0.765 0.710 0.871 0.848 

XCOA-MLP 0.978 0.782 0.710 0.877 0.851 
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The comparison with recent state-of-the-art 

methods in Table 12 is based on their published 

results as reported in the respective studies. Therefore, 

minor variations in preprocessing, data partitioning, 

or network configuration may exist. The results 

highlight the competitiveness of XCOA-MLP, which 

achieved the highest accuracy on Breast cancer, 

Diabetes, and Parkinsons, outperforming recent state-

of-the-art methods. While it was slightly behind on 

Liver and Vertebral datasets, it remained competitive 

and consistently superior to the baseline COA-MLP, 

confirming its robustness as a state-of-the-art 

solution for medical data classification. 

5. Conclusion   

This study introduced XCOA-MLP, a hybrid 

model combining the extended Coyote Optimization 

Algorithm with a Multilayer Perceptron for medical 

data classification. Employing the leader pack 

technique enhanced convergence speed, exploitation, 

and population diversity. Experimental results 

confirmed that the XCOA-MLP model consistently 

outperformed conventional training and 

metaheuristic-based MLPs, achieving accuracies of 

97.8% (Breast cancer), 78.2% (Diabetes), and 87.7% 

(Parkinsons), with lower MSE and balanced 

specificity–sensitivity values. Statistical validation 

using non-parametric tests (p < 0.01) verified the 

significance of these improvements. These results 

highlight the scientific contribution of this work: 

XCOA-MLP establishes an effective and reliable 

training framework for neural networks in medical 

applications, while also providing a general strategy 

for enhancing swarm intelligence algorithms in high-

dimensional optimization problems. 

Future work will explore automated architecture 

selection, dynamic hyperparameter tuning, 

alternative fitness functions (e.g., cross-entropy), and 

integration with deep learning models for larger 

medical datasets. 
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