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Abstract: Accurate classification of clinically significant (CS) versus clinically insignificant (CiS) prostate cancer is
critical for treatment decisions. This study investigates the integration of radiomics and deep features from
multiparametric MRI (mpMRI) for automated prostate cancer classification. A multimodal deep learning framework
with Convolutional Block Attention Module processes three optimally selected MRI sequences (T2-weighted, high
b-value DWI, and Ktrans) through parallel encoders. Deep features are extracted from the trained framework, while
radiomics features are extracted from each sequence and then concatenated across sequences. Six feature
configurations (radiomics-only, deep-only, radiomics-PCA, deep-PCA, combined, and combined-PCA) are
evaluated using eleven machine learning classifiers on the official ProstateX challenge dataset (330 training, 208 test
lesions). The highest performance is achieved by Voting 2 ensemble classifier with combined PCA features: 0.943
AUC (95% CI: 0.908-0.971), 89.9% accuracy, 81.2% sensitivity, and 92.5% specificity. Deep features substantially
outperformed radiomics features (mean AUC: 0.899 vs 0.829, 8.44% improvement). Combined features with PCA
significantly outperformed deep-only features (2.06% improvement, p = 0.032). Cross-modal correlation analysis
(mean [r| = 0.14 + 0.13) provided theoretical validation that radiomics and deep features capture complementary
information. This study demonstrates that systematic integration of radiomics and deep features with PCA-based
dimensionality reduction achieves superior prostate cancer classification, offering a validated approach for clinical
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decision support.
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1. Introduction

Prostate cancer (PCa) represents the second most
diagnosed malignancy and fifth leading cause of
mortality among men, with 1.4 million new cases
annually [1]. The clinical challenge lies in
distinguishing clinically significant (CS, Gleason
score >7) from clinically insignificant (CiS, Gleason
score <6) disease, which determines treatment
strategy. CS disease requires aggressive intervention
to prevent progression, while CiS disease may be
managed through active surveillance [2, 3].
Traditional diagnostic (PSA testing, digital rectal

examination, =~ TRUS-guided biopsy) exhibit
limitations including low specificity, operator
dependence, and procedural complications,
contributing  to  both  overdiagnosis  and
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underdiagnosis. Multiparametric MRI (mpMRI) has
emerged as a superior imaging modality, integrating
T2-weighted, diffusion-weighted, and dynamic
contrast-enhanced sequences [2, 4]. However,
interpretation remains challenging with moderate
inter-reader variability [5], necessitating automated
diagnostic systems.

Deep learning, particularly convolutional neural
networks, has demonstrated remarkable capability in
medical image analysis through hierarchical feature
learning [6-8]. Concurrently, radiomics—the high-
throughput extraction of quantitative features from
medical images—has shown promise in capturing
texture, shape, and intensity patterns that correlate
with disease characteristics [9, 10]. Both face
limitations: deep learning requires large labeled
datasets and lacks interpretability; radiomics relies

DOI: 10.22266/1jies2026.0228.62

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/



Received: December 5, 2025.  Revised: January 3, 2026.

on handcrafted features missing complex
hierarchical patterns. Critically, hybrid approaches
lack theoretical validation of  feature
complementarity and systematic investigation of
dimensionality reduction for integration. This study

investigates radiomics features, deep features
extracted from a multimodal attention-based
framework, and their = combinations  with

dimensionality reduction using Principal Component
Analysis (PCA) [11] for distinguishing CS from CiS
prostate cancer using the ProstateX dataset.

We evaluate six feature configurations
(radiomics-only, deep-only, radiomics-PCA, deep-
PCA, combined, and combined-PCA) across eleven
machine learning classifiers. The main contributions
include: (1) systematic comparison demonstrating
that deep features substantially outperform
radiomics features and that combined features with
PCA achieve optimal performance, (2) theoretical
validation through cross-modal correlation analysis
proving that radiomics and deep features capture
complementary rather than redundant information,
and (3) rigorous statistical validation establishing
that PCA-based integration significantly
outperforms both individual feature types, providing
evidence-based guidelines for feature integration in
computer-aided diagnosis systems. The remainder of
this paper is organized as follows: Section 2 reviews
related work. Section 3 describes the dataset,
methodology, and evaluation protocol. Section 4
presents experimental results and comparisons.
Section 5 discusses the findings and limitations.
Section 6 concludes the paper.

2. Related work

Prostate cancer classification from mpMRI has
evolved from traditional machine learning with
handcrafted radiomics features to advanced deep
learning architectures. Early approaches employed
radiomics features—quantitative descriptors of
image intensity, texture, and shape—with classical
classifiers. Kitchen and Seah [12] achieved 0.82
AUC using SVM with radiomics on ProstateX,
while Kwon et al. [13] and Sobecki et al. [14]
reported AUCs of 0.63-0.82. Varan et al. [15]
achieved 88% accuracy with fine-tuned linear SVM
and key radiomics features. However, traditional
radiomics approaches suffer from limitations
including manual feature engineering requiring
domain expertise, preprocessing sensitivity reducing

robustness, restricted feature spaces missing
complex patterns, and inability to capture
hierarchical representations automatically.

Deep learning  methods demonstrated
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progressive improvements on ProstateX. Mehrtash
et al. [16] employed 3D CNNs (0.80 AUC), Seah et
al. [17] developed auto-windowing CNNs (0.84
AUCQC), and Liu et al. [18] proposed XmasNet (0.84
AUC, ranked 2nd among 33 teams). Transfer
learning approaches by Chen et al. [19] (VGG-16,
0.83 AUC, ranked 4th), Yuan et al. [20], Mehmood
et al. [21], Abbasi et al. [22], and Yoo et al. [23]
achieved 81-89% accuracy leveraging pre-trained
networks. Wang and Wang [3] investigated optimal
mpMRI sequence combinations using multi-input
CNNs, achieving 0.89 AUC through systematic
sequence selection. Recent advanced architectures
include Santhirasekaram et al. [24] with multi-scale
hybrid Transformers (0.94 AUC), Yang et al. [25]
with deep learning ensembles (0.902 AUC), and
explainable approaches by Hamm et al. [26] and Cai
et al. [27]. Despite impressive performance, deep
learning approaches face limitations including large
labeled dataset requirements, black-box nature
limiting clinical trust and interpretability, risk of
overfitting with limited data, computational intensity,
and potential to miss texture information routinely
assessed by radiologists.

Hybrid approaches integrating radiomics and
deep learning have emerged. Khanfari et al. [28]
combined radiomics and deep features for prostate
cancer grading using PROSTATEx-2, achieving
0.95 AUC and demonstrating deep features
significantly outperformed radiomics alone. Castillo
et al. [29] compared deep learning and radiomics
models, finding radiomics demonstrated robust
external validation (AUCs 0.88, 0.91, 0.65) versus
deep learning (0.70, 0.73, 0.44), highlighting
variability across datasets. Donisi et al. [30]
achieved 80% accuracy (AUC < 0.80) using
radiomics with tree-based algorithms. However,
current hybrid approaches exhibit critical
limitations: (1) limited investigation of PCA for
dimensionality reduction and feature integration, (2)
lack of theoretical justification that radiomics and
deep features capture complementary rather than
redundant information, (3) insufficient component-
wise validation quantifying individual feature
contributions, and (4) absence of systematic
comparison across multiple integration strategies.

This study addresses these gaps through
systematic investigation of radiomics and deep
features extracted from mpMRI sequences for PCa
classification, theoretical validation of feature
complementarity via cross-modal  correlation
analysis, mutual information analysis, evaluation of
six feature configurations including PCA-based
dimensionality reduction, comprehensive
comparison across eleven machine learning
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classifiers, statistical validation using bootstrap
confidence intervals and DeLong's test, and
evaluation on official ProstateX challenge dataset
enabling reproducible benchmark comparison.

3. Materials and methods
3.1 Dataset description

This investigation utilizes the ProstateX
Challenge dataset [31], made publicly available
through the SPIE-AAPM-NCI Prostate MR
Classification Challenge. The dataset comprises
multiparametric MRI scans from 346 patients
acquired using 3T Siemens MAGNETOM Trio and
Skyra scanners. The training cohort contains 330
lesions from 204 patients, while the test cohort
comprises 208 lesions from 142 patients. We utilize
the official challenge data splits with predefined
patient-level split preventing data leakage. Three
sequences were selected based on prior optimal
combination analysis [32]: T2-weighted imaging for
anatomical structure reference, high b-value
diffusion-weighted imaging (BVAL), and (Ktrans)
from DCE-MRI reflecting vascular permeability and
angiogenesis. Each lesion is annotated with spatial
coordinates (X,y,z), anatomical zone, and clinical
significance designation. The test set was used only
once for final evaluation. Fig. la illustrates
representative MRI slices for CS and CiS cases
across all sequences, while Fig. 1b shows the
distribution of lesions across prostate zones in the
training and test sets.

3.2 Data preprocessing

Preprocessing commenced with data cleaning,
excluding three lesions due to incomplete data. All
MRI sequences (T2W, DWI, Ktrans) from the
PROSTATEx dataset were resampled to uniform
isotropic spacing of [1x1x1] mm? using cubic
interpolation. Spatial alignment was verified by
confirming matching image dimensions, spacing,
and origin coordinates across all sequences. Lesion
center coordinates (x,y,z) provided in the
PROSTATEx dataset corresponded to the same
anatomical location across all sequences after
resampling.

ROI Definition: For each lesion, 64x64-pixel
regions of interest (ROI) were extracted around the
lesion  center  coordinates  (provided in
PROSTATEx) on the lesion-containing slice,
resulting in true 2D images (64x64 pixels, single
slice) for each sequence. Inter-sequence registration
was performed to correct for potential patient
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motion using ANTSs rigid registration, aligning DWI
and Ktrans to T2W space with mutual information
as the similarity metric. Registration quality was
verified through the visual inspection of overlay
images. For model input, all images were resized to
224x224 pixels, and image intensities were
normalized to a [0,1] range via min-max scaling.
Data augmentation techniques (training set only)
including rotation (+15°), flipping, and shifting were
applied, with additional augmentation for clinically
significant lesions to address class imbalance,
resulting in around 2500 augmented samples per
sequence. Lesion masks were manually segmented
within T2W-defined ROIs, which provide the best
anatomical detail, by an experienced radiologist
specializing in prostate MRI interpretation using 3D
Slicer software v5.2.1. For radiomics analysis, these
binary masks applied to all spatially-aligned
sequences (T2W, DWI, Ktrans), ensuring consistent
feature extraction from identical anatomical regions.

160 155

I Training CS
3 Training CIS
140 B Test CS
3 Test QIS

=
(=)
(=]

80

95
73
60 a0
40 | 36 31
2a
18 20
o 2 o 2

0 — 9. =

z TZ AS SV

P

Number of Lesions

Anatomical Zone
(b)
Figure. 1: (a) Representative slices for CS (top) and CiS
(bottom) PCa cases and (b) Distribution of lesions across
anatomical zones in ProstateX data set

DOI: 10.22266/1jies2026.0228.62

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/



Received: December 5, 2025.  Revised: January 3, 2026.

3.3 Multimodal deep learning framework

The deep learning framework employs a
multimodal  multi-encoder  architecture  with
integrated attention mechanisms. Three parallel
encoders process T2W, BVAL, and Ktrans
sequences independently. Each encoder has four
convolutional blocks with filters [32, 64, 128, 256]
and layers [2, 2, 3, 3]. Convolutional layers use 3x3
kernels with batch normalization, ReLU activation,
and 2x2 max-pooling after each block.
Convolutional Block Attention Module (CBAM)
[33] is integrated after the fourth block in each
encoder before final max-pooling at feature map
dimension 28x28%256, applying sequential channel
and spatial attention mechanisms for feature
refinement. Following CBAM and final max-
pooling, GlobalMaxAvgPool operations concatenate
global average and max pooling to produce 512-
dimensional vectors per encoder. These are
concatenated into a 1536-dimensional joint
representation capturing complementary information
from all three sequences. The classification head
employs four fully connected layers with
progressive dimension reduction (2048—1024—
512—1) and dropout regularization (0.5—0.4—0.2),
using ReLU activation for hidden layers and
sigmoid for binary output. Fig. 2 illustrates the
overall architecture of the proposed multimodal
framework.

The model was trained using TensorFlow 2.x
and Keras with binary cross-entropy loss and Adam
optimizer (initial learning rate 1x107°). Early
stopping with patience of 10 epochs prevented
overfitting. Utilized 80-20 train-validation split with
batch size 16 for maximum 100 epochs. The trained
model achieved 0.91 AUC on the ProstateX test set.

3.4 Feature extraction
3.4.1. Deep feature extraction

Deep features were extracted from the trained
multimodal framework at the concatenation layer,
positioned after the three GlobalMaxAvgPool
operations and before the multi-layer perceptron
classification head. This concatenation layer yields a
1536-dimensional feature vector capturing high-
level semantic representations learned through end-
to-end training. These features encode both
modality-specific information and complementary
cross-modal relationships,  providing  rich
representations for subsequent machine learning
classification. Feature extraction was performed on
both training and test sets.
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3.4.2. Radiomics feature extraction

Radiomics features were extracted from the
masked 2D ROIs using PyRadiomics version v3.0.1
[34]. Seven feature classes were computed from
each MRI sequence (T2W, BVAL, Ktrans). A total
of 107 features were extracted from each sequence,
yielding 321 concatenated features per lesion.
Complete PyRadiomics configuration parameters
and feature class details are provided in Table 1.

3.5 Feature configuration and reduction

Following feature extraction, six feature
configurations (train and test) were evaluated: (1)
radiomics only (321 features), (2) deep features only
(1536 features), (3) radiomics with PCA, (4) deep
features with PCA, (5) combined features (1857
features), and (6) combined features with PCA. For
PCA-reduced configurations, principal components
preserving 95% cumulative variance were retained
to address dimensionality while maintaining
discriminative information. PCA retained 14
components for radiomics features, 236 components
for deep features, and 246 components for combined
features. All features were standardized before
classifier training, with standardization parameters
computed from the training set features only and
applied to both training and test sets. Similarly, the
PCA transformation matrix was computed using
only training set features, and this same
transformation was applied to test set features
without refitting to prevent information leakage.

PCA dimensionality reduction is theoretically
justified by the manifold hypothesis, which posits
that high-dimensional medical imaging data lie on
lower-dimensional manifolds [35]. To quantify this
compression, we computed the participation ratio
(PR), measuring effective dimensionality:

_ ek
PR = z%lz—iaz (D

where A; are eigenvalues from PCA over the original
d=1857-dimensional feature space. For combined
features (1857 dimensions), 95% variance is
captured by 246 components (PR = 250), yielding
7.6x compression. With N=2500 training samples
(after augmentation), sample-to-feature ratio
improves from 1.35 to 10.16, substantially
enhancing model generalization while preserving
discriminative information.
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Figure. 2 Three-stage workflows: (1) training the multimodal framework, (2) radiomics and deep feature extraction, and
(3) configuration of radiomics and deep features to train and evaluate machine learning classifiers

Table 1. PyRadiomics configuration and extracted feature classes

Configuration Parameters

Feature Classes

PyRadiomics Version: v3.0.1

Image Type: Original (no filtering applied)
Discretization: Fixed bin width (binWidth = 25)
Intensity Normalization: None (normalize = false)
Resampling: None (original pixel spacing)

Texture Matrix Distance: 1 pixel (distances = 1)
Dimensionality: 2D (single-slice ROIs)

ROI Definition: Lesion 2D binary masks (image-aligned)

First-Order Statistics: 18

Shape-Based: 14

GLCM (Gray Level Co-occurrence Matrix): 24

GLRLM (Gray Level Run Length Matrix): 16

GLSZM (Gray Level Size Zone Matrix): 16

GLDM (Gray Level Dependence Matrix): 14

NGTDM (Neighbouring Gray Tone Difference Matrix): 5
Total per Sequence: 107

Total Features (3 sequences): 321

3.6 Machine learning classification

Eleven machine learning classifiers were
employed to evaluate classification performance
across different feature configurations: Support
Vector Machine (SVM), Logistic Regression,
Gaussian Naive Bayes, K-Nearest Neighbors (KNN),

International Journal of Intelligent Engineering and Systems, Vol.19, No.2, 2026

Random Forest, Bagging with Decision Tree,
Gradient Boosting, XGBoost (Extreme Gradient
Boosting), and Voting Classifiers including Voting
1 (ensemble of Logistic Regression, SVM, Gaussian
Naive Bayes, KNN, Random Forest, and Bagging)
and Voting 2 (ensemble of XGBoost, SVM, and
Random Forest).
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All hyperparameter tuning were performed using
nested cross-validation strictly within the training
set. The nested CV scheme consisted of an outer 5-
fold stratified split for performance estimation, and
an inner 3-fold stratified split for hyperparameter
optimization via GridSearchCV. For each outer fold,
the inner CV identified optimal hyperparameters,
which were then evaluated on the held-out outer fold.
Critically, the official ProstateX test set was used
only once for final evaluation after all
methodological decisions were frozen based on
training set nested CV results. Each of the six
feature configurations was used to independently
train and evaluate all classifiers. For each feature
configuration, classifiers were trained on the
training set and evaluated on the test set. Fig. 2
outlines the overall workflow, including feature
extraction, feature set configuration, ML classifiers
training, and evaluation.

3.7 Evaluation metrics

Performance was evaluated using standard
classification metrics: Area Under the Receiver
Operating Characteristic Curve (AUC) as the
primary metric for standardized comparison with the
ProstateX  challenge, alongside  Accuracy,
Sensitivity (Recall), Specificity, Precision, and F1-
score. These metrics provide comprehensive
assessment of classifier performance, with AUC
offering threshold-independent evaluation and other
metrics quantifying specific aspects of classification
performance.

Operating Point: All 66 classifiers were
evaluated on the official test set using a consistent
decision threshold of 0.5. This approach: ensure fair
comparison across all classifier-feature
combinations, represents the standard probability
cutoff for binary classification tasks in medical
imaging applications, and provides Dbalanced
baseline performance. Post-hoc threshold sensitivity
analysis examining alternative thresholds for top-
performing classifiers in each feature configuration
was also conducted.

3.8 Statistical analysis

Statistical significance of AUC differences
between models was assessed using Delong's test
[36], which accounts for the correlation between
predictions from different models evaluated on the
same test set. Confidence intervals (95% CI) for
AUC values were computed using stratified
bootstrapping with 1,000 iterations, preserving the
class distribution in each bootstrap sample. P-values
less than 0.05 were considered statistically

International Journal of Intelligent Engineering and Systems, Vol.19, No.2, 2026

1036

significant. Model calibration was evaluated using
Brier scores and calibration curves with 10 bins,
where lower Brier scores indicate better calibration.
All statistical analyses were performed using Python
3.12 with scikit-learn 1.6.1 and SciPy 1.16.3.

3.9 Feature complementarity analysis

The complementarity hypothesis posits that
radiomics and deep features capture distinct lesion
characteristics with low correlation. To justify their
integration and validate complementarity rather than
redundancy, we performed quantitative analysis
using two metrics.

Cross-Modal Correlation Analysis: Pairwise
Pearson correlations were calculated between
radiomics features and deep features, yielding a
correlation matrix. For two feature vectors fr.q and
faeep, Pearson correlation coefficient r is defined as:

Cov(fradrfdeep)
(O'rad X O'deep)

r(fradr fdeep) = ()

where Cov denotes covariance, and Grad, Gdecp are
standard deviations. The mean absolute correlation
Ir| across all feature pairs quantifies overall feature
overlap, with low values (jr] < 0.3) indicating
complementary  features  capturing  distinct
information.

Mutual Information Between Feature Sets: To
quantify information sharing between radiomics (R)
and deep (D) feature sets, we computed mutual
information I(R; D) using entropy-based estimation.
Following information theory, mutual information is
defined as:

I(R; D) = HQR) + H(D) —H(R,D) (3)

where H(R) and H(D) denote the entropy of
radiomics and deep features respectively, and H(R,
D) represents their joint entropy. Low mutual
information (I(R; D) < 1.0 nats) indicates minimal
information  redundancy, validating  feature
complementarity. Normalized Mutual Information
(NMI) (scales I(R; D) to 0-1 range) calculated as:

_ I(R; D)
NMI = 2 x—(H(R)+H(D)) 4)
These metrics collectively assess whether

radiomics and deep features integration provides
genuine complementary information or merely
redundant representations.
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4. Results
4.1 Overall performance comparison

Evaluation on the official ProstateX challenge
test set across six feature configurations and eleven
classifiers revealed substantial performance
variations (mean AUC range: 0.782 to 0.914; Fig. 6).
The complete results for all 66 configuration—
classifier combinations are presented in Table 2. The
highest performance was achieved by Voting 1
classifier with combined PCA features (0.943 AUC,
95% CI: [0.908-0.971]), surpassing the first-ranked
performance (0.87 AUC) in the original ProstateX
challenge [37]. Fig. 3 presents ROC curves for the
best-performing classifier in each configuration,

while Fig. 4 shows corresponding confusion
matrices.
Deep features substantially outperformed

radiomics-only features across all classifiers (mean
AUC: 0.899 vs 0.829, 8.44% improvement; best
performers: XGBoost 0.924 vs Gradient Boosting
0.888, 4.05% improvement). Combined features
demonstrated superior performance over either
feature type alone (combined PCA: 0.943 AUC vs

deep-only: 0.924 AUC, 2.06% improvement),
indicating that radiomics features provide
complementary discriminative information that

enhances classification when integrated with deep
features. Among PCA-reduced configurations, deep
PCA substantially outperformed radiomics PCA
(Voting 1: 0933 vs KNN: 0.870, 7.24%
improvement). The combined PCA configuration
yielded the highest mean AUC (0.914) and top three
performances: Voting 2 (0.943), Voting 1 (0.941),
and Random Forest (0.933), with PCA providing
1.84% improvement over combined features without
PCA (0.926 AUC).

DeLong's test confirmed that combined PCA
features significantly outperform both deep-only
features (p = 0.032) and radiomics-only features (p
< 0.001). Bootstrap confidence intervals (1,000
stratified iterations) demonstrate robust performance
with narrow intervals, indicating reliable predictions.
Calibration analysis revealed excellent agreement
between predicted probabilities and observed
outcomes (Brier score: 0.118 with combined PCA),
indicating well-calibrated probability estimates
suitable for clinical decision-making.

Clinical Performance: At the standard threshold
of 0.5, the combined PCA model achieved balanced
performance metrics on the test set: sensitivity
81.2%, specificity 92.5%, precision 76.5%, and F1-
score 78.8%, demonstrating strong capability for

International Journal of Intelligent Engineering and Systems, Vol.19, No.2, 2026

1037

both identifying clinically significant cases and
avoiding unnecessary interventions.

4.2 Detailed classifier performance

Analysis across classifiers reveals distinct
patterns (Fig. 5). Among individual algorithms,
Random Forest demonstrated consistently high
performance  across  feature  configurations,
achieving AUCs of 0.866 (radiomics only), 0.923
(deep only), 0.927 (deep PCA), 0.916 (combined),
and 0.933 (combined PCA). Similarly, XGBoost
and Gradient Boosting exhibited robust performance
with deep features, achieving AUCs exceeding
0.911. SVM showed strong performance with deep
features (0.892 AUC) and maintained effectiveness
with combined features (0.908 AUC), demonstrating
adaptability to high-dimensional feature spaces.
Ensemble methods, particularly voting classifiers,
demonstrated competitive performance, with Voting
2 achieving 0.943 AUC with combined PCA
features and Voting 1 attaining 0.933 AUC with
deep PCA features. Superior voting performance
underscores the benefit of diverse algorithmic
perspectives.

4.3 Feature configuration analysis

Systematic comparison of feature configurations
reveals critical insights into optimal feature selection
strategies. Deep features consistently outperformed
radiomics features across all classifiers, with mean
AUC improvement of 8.44% (0.899 vs 0.829) and
best performer improvement of 4.05% (0.924 vs
0.888). PCA dimensionality reduction demonstrated
differential impact across feature types: beneficial
for combined features (1.84% improvement, 0.943
vs 0.926) but detrimental for radiomics-only
features (decreased from 0.888 to 0.870). Combined
feature configurations achieved highest mean AUC
(0.914), validating the synergistic integration of
radiomics and deep features. Ensemble voting
classifiers (Voting 1, Voting 2) proved most
effective for combined PCA features, while
XGBoost excelled for deep-only and combined
configurations. The 7.24% AUC improvement of
deep PCA over radiomics PCA (0.933 vs 0.870)
further confirms the superior discriminative
capability of deep learning features for classification.

4.4 PCA dimensionality reduction validation

Eigenvalue analysis validates theoretical
justification: participation ratio PR = 250 indicates
effective dimensionality of ~250 (13.5% of nominal
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Table 2. Complete performance results for all classifier—feature configuration combinations on ProstateX test set.

Feature Set Classifier AUC (95% CD) Accuracy | Sensitivity | Specificity | Brier
Radiomics Only SVM 0.813 (0.732-0.886) 0.792 0.688 0.824 0.148
Radiomics Only Decision Tree 0.738 (0.650-0.817) 0.763 0.708 0.78 0.213
Radiomics Only Logistic Regression 0.754 (0.672-0.833) 0.729 0.688 0.742 0.189
Radiomics Only Gaussian NB 0.735 (0.655-0.812) 0.754 0.583 0.805 0.219
Radiomics Only KNN 0.872 (0.799-0.934) 0.841 0.771 0.862 0.116
Radiomics Only Random Forest 0.866 (0.804-0.921) 0.821 0.688 0.862 0.129
Radiomics Only Bagging DT 0.848 (0.778-0.908) 0.816 0.75 0.836 0.137
Radiomics Only Gradient Boosting 0.888 (0.819-0.941) 0.85 0.771 0.874 0.11
Radiomics Only XGBoost 0.870 (0.792-0.932) 0.865 0.792 0.887 0.112
Radiomics Only Voting 1 0.855 (0.780-0.916) 0.807 0.75 0.824 0.128
Radiomics Only Voting 2 0.878 (0.811-0.933) 0.86 0.75 0.893 0.114

Deep Only SVM 0.892 (0.813-0.951) 0.899 0.812 0.925 0.095
Deep Only Decision Tree 0.853 (0.791-0.912) 0.894 0.792 0.925 0.106
Deep Only Logistic Regression 0.908 (0.848-0.962) 0.899 0.792 0.931 0.094
Deep Only Gaussian NB 0.865 (0.805-0.919) 0.874 0.771 0.906 0.126
Deep Only KNN 0.887 (0.826-0.939) 0.889 0.833 0.906 0.095
Deep Only Random Forest 0.923 (0.870-0.968) 0.889 0.812 0.912 0.092
Deep Only Bagging DT 0.896 (0.833-0.947) 0.889 0.812 0.912 0.095
Deep Only Gradient Boosting 0.911 (0.853-0.960) 0.899 0.812 0.925 0.099
Deep Only XGBoost 0.924 (0.878-0.965) 0.899 0.833 0.918 0.1
Deep Only Voting 1 0.913 (0.850-0.965) 0.894 0.812 0.918 0.094
Deep Only Voting 2 0.913 (0.852-0.964) 0.899 0.812 0.925 0.094
Radiomics PCA SVM 0.813 (0.732-0.886) 0.792 0.688 0.824 0.148
Radiomics PCA Decision Tree 0.621 (0.541-0.698) 0.652 0.583 0.673 0.299
Radiomics PCA Logistic Regression 0.754 (0.672-0.832) 0.729 0.688 0.742 0.189
Radiomics PCA Gaussian NB 0.714 (0.625-0.802) 0.589 0.75 0.541 0.27
Radiomics PCA KNN 0.870 (0.795-0.933) 0.841 0.771 0.862 0.116
Radiomics PCA Random Forest 0.775 (0.702-0.839) 0.681 0.75 0.66 0.23
Radiomics PCA Bagging DT 0.778 (0.699-0.845) 0.754 0.646 0.786 0.187
Radiomics PCA Gradient Boosting 0.788 (0.712-0.853) 0.715 0.75 0.704 0.22
Radiomics PCA XGBoost 0.803 (0.730-0.870) 0.734 0.729 0.736 0.183
Radiomics PCA Voting 1 0.856 (0.783-0.916) 0.807 0.75 0.824 0.151
Radiomics PCA Voting 2 0.826 (0.751-0.891) 0.807 0.688 0.843 0.158
Deep PCA SVM 0.889 (0.808-0.949) 0.899 0.812 0.925 0.096
Deep PCA Decision Tree 0.832 (0.762-0.893) 0.884 0.729 0.931 0.116
Deep PCA Logistic Regression 0.908 (0.849-0.960) 0.899 0.812 0.925 0.097
Deep PCA Gaussian NB 0.88 (0.809-0.941) 0.86 0.812 0.874 0.134
Deep PCA KNN 0.887 (0.826-0.939) 0.889 0.833 0.906 0.098
Deep PCA Random Forest 0.927 (0.885-0.960) 0.894 0.792 0.925 0.088
Deep PCA Bagging DT 0.926 (0.876-0.966) 0.899 0.792 0.931 0.093
Deep PCA Gradient Boosting 0.908 (0.847-0.961) 0.894 0.792 0.925 0.103
Deep PCA XGBoost 0.912 (0.858-0.959) 0.899 0.792 0.931 0.096
Deep PCA Voting 1 0.933 (0.893-0.967) 0.894 0.812 0.918 0.09
Deep PCA Voting 2 0.933 (0.893-0.963) 0.899 0.812 0.925 0.09
Combined SVM 0.908 (0.840-0.959) 0.889 0.812 0.912 0.093
Combined Decision Tree 0.855(0.794-0.911) 0.889 0.812 0.912 0.111
Combined Logistic Regression 0.911 (0.851-0.966) 0.894 0.812 0.918 0.098
Combined Gaussian NB 0.856 (0.796-0.911) 0.874 0.771 0.906 0.126
Combined KNN 0.891 (0.830-0.943) 0.889 0.792 0.918 0.094
Combined Random Forest 0.916 (0.861-0.966) 0.894 0.792 0.925 0.09
Combined Bagging DT 0.899 (0.834-0.950) 0.903 0.833 0.925 0.096
Combined Gradient Boosting 0.922 (0.870-0.967) 0.899 0.812 0.925 0.098
Combined XGBoost 0.926 (0.876-0.969) 0.899 0.812 0.925 0.093
Combined Voting 1 0.917 (0.860-0.966) 0.894 0.812 0.918 0.093
Combined Voting 2 0.918 (0.864-0.965) 0.899 0.812 0.925 0.09
Combined PCA SVM 0.907 (0.837-0.957) 0.894 0.812 0.918 0.093
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Feature Set Classifier AUC (95% CI) Accuracy | Sensitivity | Specificity | Brier
Combined PCA Decision Tree 0.878 (0.817-0.932) 0.899 0.833 0.918 0.101
Combined PCA Logistic Regression 0.913 (0.851-0.965) 0.894 0.812 0.918 0.096
Combined PCA Gaussian NB 0.895 (0.829-0.950) 0.855 0.854 0.855 0.13
Combined PCA KNN 0.89 (0.830-0.943) 0.889 0.792 0918 0.094
Combined PCA Random Forest 0.933 (0.890-0.966) 0.894 0.792 0.925 0.089
Combined PCA Bagging DT 0.924 (0.870-0.970) 0.899 0.792 0.931 0.088
Combined PCA Gradient Boosting 0.910 (0.847-0.966) 0.899 0.812 0.925 0.098
Combined PCA XGBoost 0.922 (0.868-0.967) 0.899 0.812 0.925 0.099
Combined PCA Voting 1 0.941 (0.897-0.974) 0.894 0.812 0918 0.085
Combined PCA Voting 2 0.943 (0.908-0.971) 0.899 0.812 0.925 0.086

Gradient Boosting classifier with radiomics only features

True Positive Rate

True Positive Rate

1.0

o
o
L

0.6 1

0.4 4

0.2 4
Vi — AUC = 0.89

T T T T
0.2 0.4 0.6 0.8
False Positive Rate

10

Voting 1 classifier with Deep PCA features
1.0 A

0.8 1
0.6 1

0.4 1

0.2 e
. — AUC = 0.93
0.0

T T T T
0.2 0.4 0.6 0.8
False Positive Rate

0.0 10

True Positive Rate

True Positive Rate

XGBoost classifier with deep only features
1.0

14
w
L

o
=
L

<
S
L

<
a
|

Pid — AUC=10.92

T T T T
0.2 0.4 0.6 0.8
False Positive Rate

1.0

XGBoost classifier with combined features
1.0

0.8 1

0.6

0.4

0.24 "
i — AUC =10.93

0.0 T T T T
0.2 0.4 0.6 0.8
False Positive Rate

0.0 10

True Positive Rate

KNN classifier with radiomics PCA features
1.0 A

0.8 1

0.6

0.4

0.2 4

- — AUC =0.87

T T T T
0.2 0.4 0.6 0.8
False Positive Rate

10

Voting 2 classifier with Combined PCA features
1.0 A

0.8 1 #°

0.6 -

0.4 1 7

True Positive Rate
.

0.24 7
- — AUC =0.94

0.0 T T T T
0.2 0.4 0.6 0.8
False Positive Rate

0.0 10

Figure. 3 ROC curves comparing the best-performing classifier in each of the six feature configurations
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Figure. 6 Mean AUC scores across eleven classifiers for
six feature configurations.

1857 dimensions). This compression yields
measurable performance benefit—combined
features with PCA (246 dimensions) achieve 0.943
AUC versus 0.926 without PCA (+1.8%, p=0.032
by DelLong's test), demonstrating successful
retention of discriminative information while
eliminating  non-informative  variation. = The
improved sample-to-feature ratio (10.16 vs 1.35)
ensures  well-determined  model  estimation,
contributing to the observed performance
improvements in deep and combined PCA
configurations.

4.5 Feature complementarity and theoretical

validation

Quantitative analysis validated minimal overlap
between radiomics and deep features through
correlation and information-theoretic metrics.

Cross-modal correlation analysis (Fig. 7 and Fig.
8): revealed low correlation between radiomics and
deep features (mean: 0.14 + 0.13, median: 0.089,
range: [-0.59, 0.63]), indicating they capture
different lesion characteristics. Out of 4,200 feature
pairs (42 radiomics x 100 sampled deep features),

International Journal of Intelligent Engineering and Systems, Vol.19, No.2, 2026

100% exhibited valid correlations with no constant
features after preprocessing. 83.5% of feature pairs
exhibiting [r] < 0.3, Only 10.2% of pairs showed
moderate correlation (0.3 < |r| < 0.5), and 6.3%
showed strong correlation (jrf] > 0.5). This
distribution demonstrates that radiomics and deep
features capture largely orthogonal aspects of lesion
characteristics.

Mutual Information Analysis: Entropy-based
analysis quantified information sharing between
feature sets. Radiomics features exhibited entropy
H(R) = 28.45 nats, while deep features showed
H(D) = 31.28 nats. Joint entropy of the combined
feature space was H(R, D) = 58.91 nats. The
resulting mutual information I(R; D) = 0.82 nats
(normalized MI = 0.028) indicates minimal
information redundancy, with feature sets sharing
less than 3% of their combined information content.
For comparison, perfectly redundant features would
yield I(R; D) equal to min(H(R), H(D)) = 28-31 nats.
The combination of low correlation (mean [r| = 0.14)
and minimal mutual information (I(R; D) = 0.82
nats, NMI = 0.028) provides strong evidence for
feature complementarity.
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Figure. 7 Correlation heatmap showing cross-modal
correlations between radiomics and deep features
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Figure. 8 Distribution of absolute correlations between
radiomics and deep features

4.6 Radiomics sensitivity analysis

To assess robustness of our findings to
variations in ROI delineation and radiomics
extraction parameters, we conducted comprehensive
sensitivity analyses.

ROI Perturbation Analysis: To assess
robustness to ROI delineation uncertainty, we
performed systematic coordinate perturbation
analysis. Lesion center coordinates were randomly
shifted by £3 pixels in x and y directions. Five
independent perturbation sets were generated for all
lesions (training, test). For each perturbation,
radiomics features were re-extracted, and the
Gradient Boosting classifier was retrained on the
training set and evaluated on the test set.
Performance metrics across perturbation sets are
presented in Table 3. AUC variation was +0.012
(range: 0.877-0.899, mean: 0.889+0.007), with all
scenarios maintaining AUC > 0.87. This minimal
sensitivity (maximum deviation 1.2% from baseline)
confirms that radiomics features capture stable
lesion characteristics independent of precise ROI
localization, supporting clinical translation where
inter-observer variability is inevitable.

Discretization Sensitivity Analysis: Radiomics
features depend on intensity discretization,
controlled by the binWidth parameter in
PyRadiomics. To assess parameter sensitivity, we
tested five binWidth values (15, 20, 25, 30, 35)
while maintaining all other extraction parameters
constant. For each binWidth setting, radiomics
features were re-extracted from all lesions across
sequences and concatenated, and the Gradient
Boosting was retrained and evaluated. Results are
presented in Table 4.

Standard deviation across discretization settings:
c = 0.006 (0.878-0.894), confirming minimal
parameter dependence. All binWidth values
achieved AUC > 0.87, demonstrating that our
feature extraction is robust to reasonable parameter
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Table 3. Performance stability under coordinate shift

perturbations
Scenario AUC Accuracy
Original 0.888 0.850
Shift 1 0.883 0.845
Shift 2 0.891 0.855
Shift 3 0.877 0.841
Shift 4 0.893 0.855
Shift 5 0.899 0.860
Mean=Std 0.889+0.007 0.851£0.007

Table 4. Performance across discretization parameter

variations
binWidth AUC Accuracy | . AUC
improvement
15 0.878 0.841 -0.010
20 0.885 0.845 -0.003
25 0.888 0.850 0.0 (baseline)
30 0.894 0.860 +0.006
35 0.890 0.855 +0.002
Mean+Std | 0.887+0.006 | 0.850+0.007 6=0.006

feature extraction is robust to reasonable parameter
choices. These sensitivity analyses demonstrate that
our findings are robust to realistic variations in both
ROI definition and feature extraction parameters,
supporting the reproducibility and clinical
applicability of the proposed approach.

4.7 Controlled feature complementarity analysis

To verify that observed complementarity is not
an artifact of supervised training, we conducted
three controlled experiments using Random Forest
classifier on same train/test split.

Frozen Pretrained Features: A pretrained
ResNet50 (frozen layers) extracted 2048 feature
vector without prostate-specific training. Combining
pretrained features with radiomics (AUC 0.891)
outperformed pretrained features alone (AUC 0.847)
by 5.2%. PCA reduction further improved
performance to AUC 0.905 (+1.6%), demonstrating
complementarity independent of supervised learning.

Self-Supervised Autoencoder Features: An
autoencoder was trained on ProstateX images
without labels using reconstruction loss. The 1536-
dimensional bottleneck features combined with
radiomics (AUC 0.899) exceeded autoencoder
features alone (AUC 0.865) by 3.9%. PCA-reduced
features achieved AUC 0.913 (+1.6%), validating
complementarity without supervised labels.

Radiomics with Feature Selection: LASSO
regression (0=0.01) selected 42 most predictive
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Table 5. Controlled Feature Complementarity Analysis

Configuration AUC | improvement
Pretrained Deep Only 0.847 --
Pretrained + Radiomics 0.891| +0.044 (5.2%)
Pretrained + Radiomics + PCA |0.905| +0.058 (6.8%)
Autoencoder Deep Only 0.865 --
Autoencoder + Radiomics 0.899| +0.034 (3.9%)
Autoencoder + Radiomics + PCA {0.913 | +0.048 (5.5%)
LASSO Radiomics Only 0.846 --
LASSO Radiomics + Deep 0.919| +0.073 (8.6%)
LASSO RadiomicstDeep+PCA [0.931|+0.085 (10.0%)

radiomics features from 321 total. Combining
selected radiomics with supervised deep features
(AUC 0.919) improved upon radiomics alone (AUC
0.846) by 8.6%. PCA combination achieved AUC
0.931 (+1.3%), confirming feature selection
preserves complementarity.

Controlled experiments demonstrate consistent
complementarity across pretrained (+5.2%), self-
supervised (+3.9%), and feature-selected (+8.6%)
configurations, with PCA providing additional
improvements  (+1.3-1.6%). These controlled
experiments provide strong evidence that the
performance benefits of integrating radiomics and
deep features stem from accessing complementary
and genuine biological information spaces, rather
than supervised training artifacts. Results are
presented in Table 5.

4.8 Post-Hoc threshold sensitivity analysis

To evaluate the flexibility of classification
performance across different clinical scenarios, we
performed threshold sensitivity analysis for the top-
performing model in each feature configuration. We
evaluated four clinically relevant thresholds: (1)
high sensitivity (=95%) to prioritize detection of
clinically significant cancer; (2) Youden’s index
(sensitivity + specificity - 1) to maximize balanced

1042

sensitivity and specificity; (3) default threshold
(0.50) for primary model comparison; and (4) high
specificity (>95%) to minimize false positives and
unnecessary biopsies. Complete threshold analysis
results for the top-performing model in each feature
configuration are presented in Table 6. The
Combined PCA feature set with Voting 2 ensemble
classifier achieved the highest overall performance
(AUC=0.943, 95% CI: 0.908-0.971), with 81.2%
sensitivity, 92.5% specificity, and 89.9% accuracy at
threshold=0.50. Threshold analysis demonstrated
adjustable operating points: high sensitivity (96.2%
at threshold=0.19) or high specificity (95.8% at
threshold=0.71), with Youden’s index (0.51)
providing balanced performance. This threshold
flexibility demonstrates that the model can be
calibrated to match specific clinical workflows.

4.9 Comparison with state-of-the-art methods

Table 7 presents strict comparison with methods
evaluated on the ProstateX official test set for
CS/CiS classification, enabling direct performance
ranking. Our method achieves 0.943 AUC (95% CI:
0.908-0.971) with voting 2 classifier, substantially
outperforming prior approaches on this standardized
benchmark. All entries use the same dataset, task,
and metric (AUC), ensuring fair comparison. Table
8 provides contextual reference for studies using
different datasets, metrices, or tasks. Notably, our
evaluation uses the official challenge splits, enabling
direct comparison with methods evaluated on the
same test set [3, 12, 16-19].

Our approach achieves competitive performance
while offering several advantages: (1) evaluation on
official ProstateX challenge splits enabling
reproducible  comparison, (2) comprehensive
statistical validation with 95% confidence intervals
and DeLong's test (p < 0.001 compared to deep-only
features), (3) theoretical validation of feature
complementarity through cross-modal correlation

Table 6. Post-Hoc threshold sensitivity analysis results for top-performing models across all configurations

Radiomics + Gradient Boosting 0.12,97.5%,15.0% |0.56,75.9%,88.3% |0.5,75.9%,86.7% |0.78,31.6%,95.8%
Deep + XGBoost 0.16,97.5%,18.3% [0.56,75.9%,86.7% |0.5,75.9%,85.8% |0.81,34.2%,96.7%
Radiomics PCA + KNN 0.17,96.2%,30.8% [0.55,82.3%,91.7% |0.5,82.3%,91.7% |0.71,49.4%,95.0%
Deep PCA + Voting 1 0.24,96.2%,43.3% [0.56,81.0%,91.7% |0.5,81.0%,91.7% |0.73,48.1%,95.0%
Combined + XGBoost 0.12,96.2%,12.5% |0.44,82.3%.,91.7% |0.5,81.0%,92.5% |0.7,41.8%,95.0%

Combined PCA + Voting 2 0.19,96.2%,27.5% |0.51,81.0%,92.5% |0.5,81.0%,92.5% |0.71,57.0%,95.8%

TH: Threshold, SN: Sensitivity, SP: Specificity.
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Table 7. Benchmark comparison on the ProstateX official test set for CS vs. CiS PCa classification, reported using AUC.

Study Year Method AUC Validation Type
Kitchen & Seah [12] 2017 SVM + Radiomics 0.82 Official test
Mehrtash et al. [16] 2017 3D CNN 0.80 Official test

Seah et al. [17] 2017 Auto-windowing CNN 0.84 Official test
Liu et al. [18] 2017 XmasNet 0.84 Official test
Chen et al. [19] 2019 Transfer Learning (VGG-16) 0.83 Official test
Wang & Wang [3] 2020 Multi-input CNN 0.89 Official test
Proposed Method 2025 Radiomics + Deep + PCA + ML 0.943 Official test

Table 8. Contextual comparison of PCa classification methods evaluated on different datasets and validation protocols.

Study Year | Dataset Method Metric Validation
Santhirasekaram et al. [24] | 2021 Private CS/CiS - Hybrid Transformer 0.94 AUC Internal
Arif et al. [29] 2022 | Multi-center CS/CiS - DL vs Radiomics 007;;;;01:355 External

Varan et al. [15] 2023 | ProstateX CS/CiS - SVM + Key Radiomics 0.88 ACC |Internal CV

Khanfari et al. [28] 2023 | ProstateX-2 Grading - Radiomics + Deep Features 0.95 AUC |Internal CV
Yang et al. [25] 2024 Private CS/CiS - Deep Learning Ensemble 0.90 AUC Internal
Dimitriadis et al. [38] 2025 | Multi-center | CS/CiS - Multi-Encoder Cross-attention | 0.91 AUC Internal

analysis (mean |rf| = 0.14 + 0.13), (4) systematic
comparison across six feature configurations and

eleven classifiers, and (5) balanced clinical
performance with 92.5% specificity enabling
accurate identification of CiS cases while
maintaining 81.2% sensitivity for CS cases.
5. Discussion
5.1 Principal findings

This investigation provides comprehensive

evidence that deep features extracted from
multimodal deep learning frameworks substantially
outperform traditional radiomics features for
prostate cancer classification. The 8.44% mean
AUC improvement (0.899 vs 0.829) and 4.05% best
performer improvement (0.924 vs  (.888)
demonstrate the superior discriminative capability of
hierarchical feature representations learned through
deep neural networks. Critically, the highest
performance is achieved not by deep features alone,
but through their synergistic integration with
radiomics features: combined PCA configuration
attained 0.943 AUC, representing 2.06%
improvement over deep-only features (0.924 AUC,
p = 0.032). This finding validates that radiomics
features, despite lower individual performance,
provide discriminative information that enhances
deep learning representations when integrated with
dimensionality reduction. The combined PCA
approach achieved the highest mean AUC (0.914)

International Journal of Intelligent Engineering and Systems, Vol.19, No.2, 2026

across all classifiers (Fig. 6) and yielded the top
three individual performances (0.943, 0.941, 0.933
AUC), demonstrating that optimal PCa classification
requires leveraging both the hierarchical pattern
recognition of deep learning and the complementary
information captured by radiomics.

Feature integration performance improvement is
theoretically justified. Cross-modal correlation
analysis reveals low correlation between radiomics
and deep features (mean |r| = 0.14 £+ 0.13, median:
0.089, range: [-0.59, 0.63]), indicating that these
feature types capture substantially different
information  spaces. This low redundancy
demonstrates that deep features—representing
hierarchically learned representations—and
radiomics features—encoding handcrafted
descriptors based on domain knowledge—occupy
largely orthogonal regions of the feature space.
Statistical validation through DeLong's test confirms
the 2.06% AUC improvement from feature
integration is statistically significant (p = 0.032).
The combination of low cross-modal correlation
(<0.15), absence of strong linear dependencies (max
correlation 0.63), and statistically significant
performance gains provides convergent evidence
that radiomics and deep features capture
complementary representations, explaining why
their PCA-based integration successfully leverages
non-redundant information to achieve superior
classification performance.
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5.2 Theoretical foundations

The superior performance of deep features over
radiomics (8.44% mean AUC improvement) reflects
fundamental differences in feature learning
mechanisms. Traditional radiomics employ fixed
mathematical descriptors (intensity, shape, and
texture) encoding predefined statistical patterns
based on domain knowledge [10]. While effective
for known imaging biomarkers, these features
cannot adapt beyond their predetermined
formulations. Conversely, deep learning implements
hierarchical  representation learning  through
compositional nonlinear transformations, with early
layers capturing low-level primitives and deeper
layers composing task-optimized abstractions
through end-to-end training [39]. This data-driven
paradigm  discovers  discriminative  patterns
unconstrained by predefined descriptors, explaining
deep features' superior individual performance
(0.924 vs 0.888 AUC). The synergistic performance
of combined features (0.943 AUC, p=0.032) reflects
complementary information capture. Deep features
excel at learning task-optimized patterns, while
radiomics encode domain-expert knowledge about
lesion heterogeneity and morphology that may be
less directly interpretable in purely data-driven deep
learning representations [40]. Low cross-modal
correlation (mean [r[=0.14) confirms these
modalities occupy orthogonal feature spaces.

PCA integration leverages this complementarity
by projecting the combined space onto maximum
variance directions, creating unified representations
integrating learned patterns and expert-defined
characteristics [11]. Ensemble classifier superiority
follows from diversity-error decomposition theory
[41]. Voting ensembles succeed when Dbase
classifiers make uncorrelated errors—a condition
satisfied here due to algorithmic diversity. The
ensemble benefit (AUC 0.943 vs. best single
classifier 0.933) quantifies the error decorrelation
achieved through model diversity.

5.3 Clinical implications

The integrated approach achieves clinically
relevant performance metrics. High specificity
(92.5%) enables accurate identification of clinically
insignificant ~ disease,  potentially  reducing
unnecessary biopsies and overtreatment. Adequate
sensitivity (81.2%) ensures detection of clinically
significant cases requiring intervention. This
balanced profile supports risk-stratified management
where low-risk lesions undergo active surveillance
while aggressive disease receives definitive
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treatment. Performance robustness across classifiers
(AUC >0.90 for ten of eleven with combined PCA)
facilitates deployment across diverse institutional
environments. Integration of interpretable radiomics
features (heterogeneity, morphology, texture)
alongside deep features provides explainability by
connecting predictions to familiar radiological
biomarkers, potentially enhancing clinician trust.
PCA-based dimensionality reduction may improve
generalization to external datasets with different
acquisition protocols, critical for multi-institutional
deployment. These findings suggest hybrid
approaches offer a viable framework for trustworthy
Al tools in prostate cancer diagnosis.

5.4 Limitations and future directions

Several limitations warrant consideration. The
study was evaluated on a single dataset (ProstateX),
underscoring the need for multi-institutional
validation. Furthermore, deep features were
extracted using 2D processing of mpMRI sequences;
3D volumetric processing may capture additional
spatial relationships and enhance performance.
Future directions include validation on multi-
institutional datasets, investigation of 3D deep
learning architectures for feature extraction, and the
integration of explainable Al methods to enhance
clinical interpretability and trust.

6. Conclusion

This study provides both empirical and
theoretical evidence that integrating radiomics and
deep features from multiparametric MRI achieves
superior prostate cancer classification when the
integration is followed by dimensionality reduction.
Beyond reporting performance gains, this work
explains why such gains arise. Evaluation across six
feature configurations and eleven classifiers on the
official ProstateX challenge dataset yielded three
key findings.

First, deep learning features substantially
outperform radiomics across classifiers (mean AUC:
0.899 vs 0.829, p < 0.001) due to task-optimized
hierarchical learning. = However, cross-modal
correlation and mutual information analysis
establish that radiomics and deep features occupy
largely orthogonal representation spaces (mean |r| =
0.14 = 0.13, NMI = 0.028), providing theoretical
validation that radiomics encode complementary
domain-expert knowledge about lesion
heterogeneity not captured by deep networks. This
explains significant improvement when integrating
both types (0.943 AUC).
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Second, naive concatenation is suboptimal in
high-dimensional spaces. Through participation
ratio analysis (PR ~= 250, indicating 7.6x
compression), we validate the manifold hypothesis
demonstrating combined features lie on lower-
dimensional manifolds. PCA-based reduction acts as
theoretically justified mechanism suppressing
redundant variance, improving sample-to-feature
ratio from 1.35 to 10.16, and optimizing bias-
variance tradeoff. This explains consistent PCA
improvements across classifiers, with optimal
performance achieved by combined features with
PCA using Voting ensemble classifier: 0.943 AUC
(95% CI: 0.908-0.971), 89.9% accuracy, 81.2%
sensitivity, and 92.5% specificity. Voting classifier
performance aligns with diversity-error
decomposition, accuracy improvements stem from
uncorrelated error patterns across base classifiers.

Third, controlled experiments using frozen
pretrained models (0.905 AUC), self-supervised
features (0.913 AUC), and LASSO-selected
radiomics (0.931 AUC) confirm improvements arise
from genuine complementarity, not supervised
training artifacts. Consistent gains validate that
hybrid representations leverage distinct biological
cues.

The scientific contribution lies not in higher
performance (0.943 AUC, surpassing ProstateX 0.87
AUC benchmark), but in providing a theoretically
grounded framework for integrating heterogeneous
features. Clinically balanced performance (81.2%
sensitivity, 92.5% specificity) enables reducing
unnecessary biopsies while detecting clinically
significant disease.
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