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Abstract: Accurate classification of clinically significant (CS) versus clinically insignificant (CiS) prostate cancer is 

critical for treatment decisions. This study investigates the integration of radiomics and deep features from 

multiparametric MRI (mpMRI) for automated prostate cancer classification. A multimodal deep learning framework 

with Convolutional Block Attention Module processes three optimally selected MRI sequences (T2-weighted, high 

b-value DWI, and Ktrans) through parallel encoders. Deep features are extracted from the trained framework, while 

radiomics features are extracted from each sequence and then concatenated across sequences. Six feature 

configurations (radiomics-only, deep-only, radiomics-PCA, deep-PCA, combined, and combined-PCA) are 

evaluated using eleven machine learning classifiers on the official ProstateX challenge dataset (330 training, 208 test 

lesions). The highest performance is achieved by Voting 2 ensemble classifier with combined PCA features: 0.943 

AUC (95% CI: 0.908-0.971), 89.9% accuracy, 81.2% sensitivity, and 92.5% specificity. Deep features substantially 

outperformed radiomics features (mean AUC: 0.899 vs 0.829, 8.44% improvement). Combined features with PCA 

significantly outperformed deep-only features (2.06% improvement, p = 0.032). Cross-modal correlation analysis 

(mean |r| = 0.14 ± 0.13) provided theoretical validation that radiomics and deep features capture complementary 

information. This study demonstrates that systematic integration of radiomics and deep features with PCA-based 

dimensionality reduction achieves superior prostate cancer classification, offering a validated approach for clinical 

decision support. 
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1. Introduction 

Prostate cancer (PCa) represents the second most 

diagnosed malignancy and fifth leading cause of 

mortality among men, with 1.4 million new cases 

annually [1]. The clinical challenge lies in 

distinguishing clinically significant (CS, Gleason 

score ≥7) from clinically insignificant (CiS, Gleason 

score ≤6) disease, which determines treatment 

strategy. CS disease requires aggressive intervention 

to prevent progression, while CiS disease may be 

managed through active surveillance [2, 3]. 

Traditional diagnostic (PSA testing, digital rectal 

examination, TRUS-guided biopsy) exhibit 

limitations including low specificity, operator 

dependence, and procedural complications, 

contributing to both overdiagnosis and 

underdiagnosis. Multiparametric MRI (mpMRI) has 

emerged as a superior imaging modality, integrating 

T2-weighted, diffusion-weighted, and dynamic 

contrast-enhanced sequences [2, 4]. However, 

interpretation remains challenging with moderate 

inter-reader variability [5], necessitating automated 

diagnostic systems.  

Deep learning, particularly convolutional neural 

networks, has demonstrated remarkable capability in 

medical image analysis through hierarchical feature 

learning [6-8]. Concurrently, radiomics—the high-

throughput extraction of quantitative features from 

medical images—has shown promise in capturing 

texture, shape, and intensity patterns that correlate 

with disease characteristics [9, 10]. Both face 

limitations: deep learning requires large labeled 

datasets and lacks interpretability; radiomics relies 
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on handcrafted features missing complex 

hierarchical patterns. Critically, hybrid approaches 

lack theoretical validation of feature 

complementarity and systematic investigation of 

dimensionality reduction for integration. This study 

investigates radiomics features, deep features 

extracted from a multimodal attention-based 

framework, and their combinations with 

dimensionality reduction using Principal Component 

Analysis (PCA) [11] for distinguishing CS from CiS 

prostate cancer using the ProstateX dataset.  

We evaluate six feature configurations 

(radiomics-only, deep-only, radiomics-PCA, deep-

PCA, combined, and combined-PCA) across eleven 

machine learning classifiers. The main contributions 

include: (1) systematic comparison demonstrating 

that deep features substantially outperform 

radiomics features and that combined features with 

PCA achieve optimal performance, (2) theoretical 

validation through cross-modal correlation analysis 

proving that radiomics and deep features capture 

complementary rather than redundant information, 

and (3) rigorous statistical validation establishing 

that PCA-based integration significantly 

outperforms both individual feature types, providing 

evidence-based guidelines for feature integration in 

computer-aided diagnosis systems. The remainder of 

this paper is organized as follows: Section 2 reviews 

related work. Section 3 describes the dataset, 

methodology, and evaluation protocol. Section 4 

presents experimental results and comparisons. 

Section 5 discusses the findings and limitations. 

Section 6 concludes the paper. 

2. Related work 

Prostate cancer classification from mpMRI has 

evolved from traditional machine learning with 

handcrafted radiomics features to advanced deep 

learning architectures. Early approaches employed 

radiomics features—quantitative descriptors of 

image intensity, texture, and shape—with classical 

classifiers. Kitchen and Seah [12] achieved 0.82 

AUC using SVM with radiomics on ProstateX, 

while Kwon et al. [13] and Sobecki et al. [14] 

reported AUCs of 0.63-0.82. Varan et al. [15] 

achieved 88% accuracy with fine-tuned linear SVM 

and key radiomics features. However, traditional 

radiomics approaches suffer from limitations 

including manual feature engineering requiring 

domain expertise, preprocessing sensitivity reducing 

robustness, restricted feature spaces missing 

complex patterns, and inability to capture 

hierarchical representations automatically. 

Deep learning methods demonstrated 

progressive improvements on ProstateX. Mehrtash 

et al. [16] employed 3D CNNs (0.80 AUC), Seah et 

al. [17] developed auto-windowing CNNs (0.84 

AUC), and Liu et al. [18] proposed XmasNet (0.84 

AUC, ranked 2nd among 33 teams). Transfer 

learning approaches by Chen et al. [19] (VGG-16, 

0.83 AUC, ranked 4th), Yuan et al.  [20], Mehmood 

et al. [21], Abbasi et al. [22], and Yoo et al. [23] 

achieved 81-89% accuracy leveraging pre-trained 

networks. Wang and Wang [3] investigated optimal 

mpMRI sequence combinations using multi-input 

CNNs, achieving 0.89 AUC through systematic 

sequence selection. Recent advanced architectures 

include Santhirasekaram et al. [24] with multi-scale 

hybrid Transformers (0.94 AUC), Yang et al. [25] 

with deep learning ensembles (0.902 AUC), and 

explainable approaches by Hamm et al. [26] and Cai 

et al. [27]. Despite impressive performance, deep 

learning approaches face limitations including large 

labeled dataset requirements, black-box nature 

limiting clinical trust and interpretability, risk of 

overfitting with limited data, computational intensity, 

and potential to miss texture information routinely 

assessed by radiologists.  

Hybrid approaches integrating radiomics and 

deep learning have emerged. Khanfari et al. [28] 

combined radiomics and deep features for prostate 

cancer grading using PROSTATEx-2, achieving 

0.95 AUC and demonstrating deep features 

significantly outperformed radiomics alone. Castillo 

et al. [29] compared deep learning and radiomics 

models, finding radiomics demonstrated robust 

external validation (AUCs 0.88, 0.91, 0.65) versus 

deep learning (0.70, 0.73, 0.44), highlighting 

variability across datasets. Donisi et al. [30] 

achieved 80% accuracy (AUC < 0.80) using 

radiomics with tree-based algorithms. However, 

current hybrid approaches exhibit critical 

limitations: (1) limited investigation of PCA for 

dimensionality reduction and feature integration, (2) 

lack of theoretical justification that radiomics and 

deep features capture complementary rather than 

redundant information, (3) insufficient component-

wise validation quantifying individual feature 

contributions, and (4) absence of systematic 

comparison across multiple integration strategies.  

This study addresses these gaps through 

systematic investigation of radiomics and deep 

features extracted from mpMRI sequences for PCa 

classification, theoretical validation of feature 

complementarity via cross-modal correlation 

analysis, mutual information analysis,  evaluation of 

six feature configurations including PCA-based 

dimensionality reduction, comprehensive 

comparison across eleven machine learning 
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classifiers, statistical validation using bootstrap 

confidence intervals and DeLong's test, and 

evaluation on official ProstateX challenge dataset 

enabling reproducible benchmark comparison. 

3. Materials and methods 

3.1 Dataset description 

This investigation utilizes the ProstateX 

Challenge dataset [31], made publicly available 

through the SPIE-AAPM-NCI Prostate MR 

Classification Challenge. The dataset comprises 

multiparametric MRI scans from 346 patients 

acquired using 3T Siemens MAGNETOM Trio and 

Skyra scanners. The training cohort contains 330 

lesions from 204 patients, while the test cohort 

comprises 208 lesions from 142 patients. We utilize 

the official challenge data splits with predefined 

patient-level split preventing data leakage. Three 

sequences were selected based on prior optimal 

combination analysis [32]: T2-weighted imaging for 

anatomical structure reference, high b-value 

diffusion-weighted imaging (BVAL), and (Ktrans) 

from DCE-MRI reflecting vascular permeability and 

angiogenesis. Each lesion is annotated with spatial 

coordinates (x,y,z), anatomical zone, and clinical 

significance designation. The test set was used only 

once for final evaluation. Fig. 1a illustrates 

representative MRI slices for CS and CiS cases 

across all sequences, while Fig. 1b shows the 

distribution of lesions across prostate zones in the 

training and test sets. 

3.2 Data preprocessing 

Preprocessing commenced with data cleaning, 

excluding three lesions due to incomplete data. All 

MRI sequences (T2W, DWI, Ktrans) from the 

PROSTATEx dataset were resampled to uniform 

isotropic spacing of [1×1×1] mm³ using cubic 

interpolation. Spatial alignment was verified by 

confirming matching image dimensions, spacing, 

and origin coordinates across all sequences. Lesion 

center coordinates (x,y,z) provided in the 

PROSTATEx dataset corresponded to the same 

anatomical location across all sequences after 

resampling.  

ROI Definition: For each lesion, 64×64-pixel 

regions of interest (ROI) were extracted around the 

lesion center coordinates (provided in 

PROSTATEx) on the lesion-containing slice, 

resulting in true 2D images (64×64 pixels, single 

slice) for each sequence. Inter-sequence registration 

was performed to correct for potential patient 

motion using ANTs rigid registration, aligning DWI 

and Ktrans to T2W space with mutual information 

as the similarity metric. Registration quality was 

verified through the visual inspection of overlay 

images. For model input, all images were resized to 

224×224 pixels, and image intensities were 

normalized to a [0,1] range via min-max scaling. 

Data augmentation techniques (training set only) 

including rotation (±15°), flipping, and shifting were 

applied, with additional augmentation for clinically 

significant lesions to address class imbalance, 

resulting in around 2500 augmented samples per 

sequence. Lesion masks were manually segmented 

within T2W-defined ROIs, which provide the best 

anatomical detail, by an experienced radiologist 

specializing in prostate MRI interpretation using 3D 

Slicer software v5.2.1. For radiomics analysis, these 

binary masks applied to all spatially-aligned 

sequences (T2W, DWI, Ktrans), ensuring consistent 

feature extraction from identical anatomical regions. 

 

 

(a) 

 

(b) 

Figure. 1: (a) Representative slices for CS (top) and CiS 

(bottom) PCa cases and (b) Distribution of lesions across 

anatomical zones in ProstateX data set 
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3.3 Multimodal deep learning framework 

The deep learning framework employs a 

multimodal multi-encoder architecture with 

integrated attention mechanisms. Three parallel 

encoders process T2W, BVAL, and Ktrans 

sequences independently. Each encoder has four 

convolutional blocks with filters [32, 64, 128, 256] 

and layers [2, 2, 3, 3]. Convolutional layers use 3×3 

kernels with batch normalization, ReLU activation, 

and 2×2 max-pooling after each block. 

Convolutional Block Attention Module (CBAM) 

[33] is integrated after the fourth block in each 

encoder before final max-pooling at feature map 

dimension 28×28×256, applying sequential channel 

and spatial attention mechanisms for feature 

refinement. Following CBAM and final max-

pooling, GlobalMaxAvgPool operations concatenate 

global average and max pooling to produce 512-

dimensional vectors per encoder. These are 

concatenated into a 1536-dimensional joint 

representation capturing complementary information 

from all three sequences. The classification head 

employs four fully connected layers with 

progressive dimension reduction (2048→1024→ 

512→1) and dropout regularization (0.5→0.4→0.2), 

using ReLU activation for hidden layers and 

sigmoid for binary output. Fig. 2 illustrates the 

overall architecture of the proposed multimodal 

framework. 

The model was trained using TensorFlow 2.x 

and Keras with binary cross-entropy loss and Adam 

optimizer (initial learning rate 1×10⁻⁵). Early 

stopping with patience of 10 epochs prevented 

overfitting. Utilized 80-20 train-validation split with 

batch size 16 for maximum 100 epochs. The trained 

model achieved 0.91 AUC on the ProstateX test set. 

3.4 Feature extraction 

3.4.1. Deep feature extraction 

Deep features were extracted from the trained 

multimodal framework at the concatenation layer, 

positioned after the three GlobalMaxAvgPool 

operations and before the multi-layer perceptron 

classification head. This concatenation layer yields a 

1536-dimensional feature vector capturing high-

level semantic representations learned through end-

to-end training. These features encode both 

modality-specific information and complementary 

cross-modal relationships, providing rich 

representations for subsequent machine learning 

classification. Feature extraction was performed on 

both training and test sets. 

3.4.2. Radiomics feature extraction  

Radiomics features were extracted from the 

masked 2D ROIs using PyRadiomics version v3.0.1 

[34]. Seven feature classes were computed from 

each MRI sequence (T2W, BVAL, Ktrans). A total 

of 107 features were extracted from each sequence, 

yielding 321 concatenated features per lesion. 

Complete PyRadiomics configuration parameters 

and feature class details are provided in Table 1. 

3.5 Feature configuration and reduction 

Following feature extraction, six feature 

configurations (train and test) were evaluated: (1) 

radiomics only (321 features), (2) deep features only 

(1536 features), (3) radiomics with PCA, (4) deep 

features with PCA, (5) combined features (1857 

features), and (6) combined features with PCA. For 

PCA-reduced configurations, principal components 

preserving 95% cumulative variance were retained 

to address dimensionality while maintaining 

discriminative information. PCA retained 14 

components for radiomics features, 236 components 

for deep features, and 246 components for combined 

features. All features were standardized before 

classifier training, with standardization parameters 

computed from the training set features only and 

applied to both training and test sets. Similarly, the 

PCA transformation matrix was computed using 

only training set features, and this same 

transformation was applied to test set features 

without refitting to prevent information leakage. 

PCA dimensionality reduction is theoretically 

justified by the manifold hypothesis, which posits 

that high-dimensional medical imaging data lie on 

lower-dimensional manifolds [35]. To quantify this 

compression, we computed the participation ratio 

(PR), measuring effective dimensionality: 

 

 𝑃𝑅 =  
(∑ 𝜆ᵢ𝑑

𝑖=1 )
2

∑ 𝜆ᵢ2𝑑
𝑖=1

                           (1) 

 

where λᵢ are eigenvalues from PCA over the original 

d=1857-dimensional feature space. For combined 

features (1857 dimensions), 95% variance is 

captured by 246 components (PR ≈ 250), yielding 

7.6× compression. With N≈2500 training samples 

(after augmentation), sample-to-feature ratio 

improves from 1.35 to 10.16, substantially 

enhancing model generalization while preserving 

discriminative information.   
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Figure. 2 Three-stage workflows: (1) training the multimodal framework, (2) radiomics and deep feature extraction, and 

(3) configuration of radiomics and deep features to train and evaluate machine learning classifiers 

Table 1. PyRadiomics configuration and extracted feature classes 
Configuration Parameters Feature Classes 

PyRadiomics Version: v3.0.1 

Image Type: Original (no filtering applied) 

Discretization: Fixed bin width (binWidth = 25) 

Intensity Normalization: None (normalize = false) 

Resampling: None (original pixel spacing) 

Texture Matrix Distance: 1 pixel (distances = 1) 

Dimensionality: 2D (single-slice ROIs) 

ROI Definition: Lesion 2D binary masks (image-aligned) 

First-Order Statistics: 18 

Shape-Based: 14 

GLCM (Gray Level Co-occurrence Matrix): 24 

GLRLM (Gray Level Run Length Matrix): 16 

GLSZM (Gray Level Size Zone Matrix): 16 

GLDM (Gray Level Dependence Matrix): 14 

NGTDM (Neighbouring Gray Tone Difference Matrix): 5 

Total per Sequence: 107 

Total Features (3 sequences): 321 

 

3.6 Machine learning classification 

Eleven machine learning classifiers were 

employed to evaluate classification performance 

across different feature configurations: Support 

Vector Machine (SVM), Logistic Regression, 

Gaussian Naive Bayes, K-Nearest Neighbors (KNN), 

Random Forest, Bagging with Decision Tree, 

Gradient Boosting, XGBoost (Extreme Gradient 

Boosting), and Voting Classifiers including Voting 

1 (ensemble of Logistic Regression, SVM, Gaussian 

Naive Bayes, KNN, Random Forest, and Bagging) 

and Voting 2 (ensemble of XGBoost, SVM, and 

Random Forest).  
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All hyperparameter tuning were performed using 

nested cross-validation strictly within the training 

set. The nested CV scheme consisted of an outer 5-

fold stratified split for performance estimation, and 

an inner 3-fold stratified split for hyperparameter 

optimization via GridSearchCV. For each outer fold, 

the inner CV identified optimal hyperparameters, 

which were then evaluated on the held-out outer fold. 

Critically, the official ProstateX test set was used 

only once for final evaluation after all 

methodological decisions were frozen based on 

training set nested CV results. Each of the six 

feature configurations was used to independently 

train and evaluate all classifiers. For each feature 

configuration, classifiers were trained on the 

training set and evaluated on the test set. Fig. 2 

outlines the overall workflow, including feature 

extraction, feature set configuration, ML classifiers 

training, and evaluation. 

3.7 Evaluation metrics 

Performance was evaluated using standard 

classification metrics: Area Under the Receiver 

Operating Characteristic Curve (AUC) as the 

primary metric for standardized comparison with the 

ProstateX challenge, alongside Accuracy, 

Sensitivity (Recall), Specificity, Precision, and F1-

score. These metrics provide comprehensive 

assessment of classifier performance, with AUC 

offering threshold-independent evaluation and other 

metrics quantifying specific aspects of classification 

performance. 

Operating Point: All 66 classifiers were 

evaluated on the official test set using a consistent 

decision threshold of 0.5. This approach: ensure fair 

comparison across all classifier-feature 

combinations, represents the standard probability 

cutoff for binary classification tasks in medical 

imaging applications, and provides balanced 

baseline performance. Post-hoc threshold sensitivity 

analysis examining alternative thresholds for top-

performing classifiers in each feature configuration 

was also conducted. 

3.8 Statistical analysis 

Statistical significance of AUC differences 

between models was assessed using DeLong's test 

[36], which accounts for the correlation between 

predictions from different models evaluated on the 

same test set. Confidence intervals (95% CI) for 

AUC values were computed using stratified 

bootstrapping with 1,000 iterations, preserving the 

class distribution in each bootstrap sample. P-values 

less than 0.05 were considered statistically 

significant. Model calibration was evaluated using 

Brier scores and calibration curves with 10 bins, 

where lower Brier scores indicate better calibration. 

All statistical analyses were performed using Python 

3.12 with scikit-learn 1.6.1 and SciPy 1.16.3. 

3.9 Feature complementarity analysis 

The complementarity hypothesis posits that 

radiomics and deep features capture distinct lesion 

characteristics with low correlation. To justify their 

integration and validate complementarity rather than 

redundancy, we performed quantitative analysis 

using two metrics. 

Cross-Modal Correlation Analysis: Pairwise 

Pearson correlations were calculated between 

radiomics features and deep features, yielding a 

correlation matrix. For two feature vectors frad and 

fdeep, Pearson correlation coefficient r is defined as: 

 

𝑟(𝑓𝑟𝑎𝑑, 𝑓𝑑𝑒𝑒𝑝) =
𝐶𝑜𝑣(𝑓𝑟𝑎𝑑,𝑓𝑑𝑒𝑒𝑝)

(𝜎𝑟𝑎𝑑× 𝜎𝑑𝑒𝑒𝑝)
    (2) 

 
where Cov denotes covariance, and σrad, σdeep are 

standard deviations. The mean absolute correlation 

|r| across all feature pairs quantifies overall feature 

overlap, with low values (|r| < 0.3) indicating 

complementary features capturing distinct 

information. 

Mutual Information Between Feature Sets: To 

quantify information sharing between radiomics (R) 

and deep (D) feature sets, we computed mutual 

information I(R; D) using entropy-based estimation. 

Following information theory, mutual information is 

defined as: 

 
𝐼(𝑅;  𝐷) =  𝐻(𝑅) + 𝐻(𝐷) − 𝐻(𝑅, 𝐷) (3) 

 
where H(R) and H(D) denote the entropy of 

radiomics and deep features respectively, and H(R, 

D) represents their joint entropy. Low mutual 

information (I(R; D) < 1.0 nats) indicates minimal 

information redundancy, validating feature 

complementarity. Normalized Mutual Information 

(NMI) (scales I(R; D) to 0-1 range) calculated as: 

 

𝑁𝑀𝐼 =  2 ×
𝐼(𝑅; 𝐷)

(𝐻(𝑅)+ 𝐻(𝐷))
      (4) 

 
These metrics collectively assess whether 

radiomics and deep features integration provides 

genuine complementary information or merely 

redundant representations.  
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4. Results 

4.1 Overall performance comparison 

Evaluation on the official ProstateX challenge 

test set across six feature configurations and eleven 

classifiers revealed substantial performance 

variations (mean AUC range: 0.782 to 0.914; Fig. 6). 

The complete results for all 66 configuration–

classifier combinations are presented in Table 2. The 

highest performance was achieved by Voting 1 

classifier with combined PCA features (0.943 AUC, 

95% CI: [0.908-0.971]), surpassing the first-ranked 

performance (0.87 AUC) in the original ProstateX 

challenge [37]. Fig. 3 presents ROC curves for the 

best-performing classifier in each configuration, 

while Fig. 4 shows corresponding confusion 

matrices. 

Deep features substantially outperformed 

radiomics-only features across all classifiers (mean 

AUC: 0.899 vs 0.829, 8.44% improvement; best 

performers: XGBoost 0.924 vs Gradient Boosting 

0.888, 4.05% improvement). Combined features 

demonstrated superior performance over either 

feature type alone (combined PCA: 0.943 AUC vs 

deep-only: 0.924 AUC, 2.06% improvement), 

indicating that radiomics features provide 

complementary discriminative information that 

enhances classification when integrated with deep 

features. Among PCA-reduced configurations, deep 

PCA substantially outperformed radiomics PCA 

(Voting 1: 0.933 vs KNN: 0.870, 7.24% 

improvement). The combined PCA configuration 

yielded the highest mean AUC (0.914) and top three 

performances: Voting 2 (0.943), Voting 1 (0.941), 

and Random Forest (0.933), with PCA providing 

1.84% improvement over combined features without 

PCA (0.926 AUC). 

DeLong's test confirmed that combined PCA 

features significantly outperform both deep-only 

features (p = 0.032) and radiomics-only features (p 

< 0.001). Bootstrap confidence intervals (1,000 

stratified iterations) demonstrate robust performance 

with narrow intervals, indicating reliable predictions. 

Calibration analysis revealed excellent agreement 

between predicted probabilities and observed 

outcomes (Brier score: 0.118 with combined PCA), 

indicating well-calibrated probability estimates 

suitable for clinical decision-making.  

Clinical Performance: At the standard threshold 

of 0.5, the combined PCA model achieved balanced 

performance metrics on the test set: sensitivity 

81.2%, specificity 92.5%, precision 76.5%, and F1-

score 78.8%, demonstrating strong capability for 

both identifying clinically significant cases and 

avoiding unnecessary interventions. 

4.2 Detailed classifier performance 

Analysis across classifiers reveals distinct 

patterns (Fig. 5). Among individual algorithms, 

Random Forest demonstrated consistently high 

performance across feature configurations, 

achieving AUCs of 0.866 (radiomics only), 0.923 

(deep only), 0.927 (deep PCA), 0.916 (combined), 

and 0.933 (combined PCA). Similarly, XGBoost 

and Gradient Boosting exhibited robust performance 

with deep features, achieving AUCs exceeding 

0.911. SVM showed strong performance with deep 

features (0.892 AUC) and maintained effectiveness 

with combined features (0.908 AUC), demonstrating 

adaptability to high-dimensional feature spaces. 

Ensemble methods, particularly voting classifiers, 

demonstrated competitive performance, with Voting 

2 achieving 0.943 AUC with combined PCA 

features and Voting 1 attaining 0.933 AUC with 

deep PCA features. Superior voting performance 

underscores the benefit of diverse algorithmic 

perspectives. 

4.3  Feature configuration analysis 

Systematic comparison of feature configurations 

reveals critical insights into optimal feature selection 

strategies. Deep features consistently outperformed 

radiomics features across all classifiers, with mean 

AUC improvement of 8.44% (0.899 vs 0.829) and 

best performer improvement of 4.05% (0.924 vs 

0.888). PCA dimensionality reduction demonstrated 

differential impact across feature types: beneficial 

for combined features (1.84% improvement, 0.943 

vs 0.926) but detrimental for radiomics-only 

features (decreased from 0.888 to 0.870). Combined 

feature configurations achieved highest mean AUC 

(0.914), validating the synergistic integration of 

radiomics and deep features. Ensemble voting 

classifiers (Voting 1, Voting 2) proved most 

effective for combined PCA features, while 

XGBoost excelled for deep-only and combined 

configurations. The 7.24% AUC improvement of 

deep PCA over radiomics PCA (0.933 vs 0.870) 

further confirms the superior discriminative 

capability of deep learning features for classification. 

4.4 PCA dimensionality reduction validation 

Eigenvalue analysis validates theoretical 

justification: participation ratio PR = 250 indicates 

effective dimensionality of ~250 (13.5% of nominal 
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Table 2. Complete performance results for all classifier–feature configuration combinations on ProstateX test set. 

Feature Set Classifier AUC (95% CI) Accuracy Sensitivity Specificity Brier 

Radiomics Only SVM 0.813 (0.732-0.886) 0.792 0.688 0.824 0.148 

Radiomics Only Decision Tree 0.738 (0.650-0.817) 0.763 0.708 0.78 0.213 

Radiomics Only Logistic Regression 0.754 (0.672-0.833) 0.729 0.688 0.742 0.189 

Radiomics Only Gaussian NB 0.735 (0.655-0.812) 0.754 0.583 0.805 0.219 

Radiomics Only KNN 0.872 (0.799-0.934) 0.841 0.771 0.862 0.116 

Radiomics Only Random Forest 0.866 (0.804-0.921) 0.821 0.688 0.862 0.129 

Radiomics Only Bagging DT 0.848 (0.778-0.908) 0.816 0.75 0.836 0.137 

Radiomics Only Gradient Boosting 0.888 (0.819-0.941) 0.85 0.771 0.874 0.11 

Radiomics Only XGBoost 0.870 (0.792-0.932) 0.865 0.792 0.887 0.112 

Radiomics Only Voting 1 0.855 (0.780-0.916) 0.807 0.75 0.824 0.128 

Radiomics Only Voting 2 0.878 (0.811-0.933) 0.86 0.75 0.893 0.114 

Deep Only SVM 0.892 (0.813-0.951) 0.899 0.812 0.925 0.095 

Deep Only Decision Tree 0.853 (0.791-0.912) 0.894 0.792 0.925 0.106 

Deep Only Logistic Regression 0.908 (0.848-0.962) 0.899 0.792 0.931 0.094 

Deep Only Gaussian NB 0.865 (0.805-0.919) 0.874 0.771 0.906 0.126 

Deep Only KNN 0.887 (0.826-0.939) 0.889 0.833 0.906 0.095 

Deep Only Random Forest 0.923 (0.870-0.968) 0.889 0.812 0.912 0.092 

Deep Only Bagging DT 0.896 (0.833-0.947) 0.889 0.812 0.912 0.095 

Deep Only Gradient Boosting 0.911 (0.853-0.960) 0.899 0.812 0.925 0.099 

Deep Only XGBoost 0.924 (0.878-0.965) 0.899 0.833 0.918 0.1 

Deep Only Voting 1 0.913 (0.850-0.965) 0.894 0.812 0.918 0.094 

Deep Only Voting 2 0.913 (0.852-0.964) 0.899 0.812 0.925 0.094 

Radiomics PCA SVM 0.813 (0.732-0.886) 0.792 0.688 0.824 0.148 

Radiomics PCA Decision Tree 0.621 (0.541-0.698) 0.652 0.583 0.673 0.299 

Radiomics PCA Logistic Regression 0.754 (0.672-0.832) 0.729 0.688 0.742 0.189 

Radiomics PCA Gaussian NB 0.714 (0.625-0.802) 0.589 0.75 0.541 0.27 

Radiomics PCA KNN 0.870 (0.795-0.933) 0.841 0.771 0.862 0.116 

Radiomics PCA Random Forest 0.775 (0.702-0.839) 0.681 0.75 0.66 0.23 

Radiomics PCA Bagging DT 0.778 (0.699-0.845) 0.754 0.646 0.786 0.187 

Radiomics PCA Gradient Boosting 0.788 (0.712-0.853) 0.715 0.75 0.704 0.22 

Radiomics PCA XGBoost 0.803 (0.730-0.870) 0.734 0.729 0.736 0.183 

Radiomics PCA Voting 1 0.856 (0.783-0.916) 0.807 0.75 0.824 0.151 

Radiomics PCA Voting 2 0.826 (0.751-0.891) 0.807 0.688 0.843 0.158 

Deep PCA SVM 0.889 (0.808-0.949) 0.899 0.812 0.925 0.096 

Deep PCA Decision Tree 0.832 (0.762-0.893) 0.884 0.729 0.931 0.116 

Deep PCA Logistic Regression 0.908 (0.849-0.960) 0.899 0.812 0.925 0.097 

Deep PCA Gaussian NB 0.88 (0.809-0.941) 0.86 0.812 0.874 0.134 

Deep PCA KNN 0.887 (0.826-0.939) 0.889 0.833 0.906 0.098 

Deep PCA Random Forest 0.927 (0.885-0.960) 0.894 0.792 0.925 0.088 

Deep PCA Bagging DT 0.926 (0.876-0.966) 0.899 0.792 0.931 0.093 

Deep PCA Gradient Boosting 0.908 (0.847-0.961) 0.894 0.792 0.925 0.103 

Deep PCA XGBoost 0.912 (0.858-0.959) 0.899 0.792 0.931 0.096 

Deep PCA Voting 1 0.933 (0.893-0.967) 0.894 0.812 0.918 0.09 

Deep PCA Voting 2 0.933 (0.893-0.963) 0.899 0.812 0.925 0.09 

Combined SVM 0.908 (0.840-0.959) 0.889 0.812 0.912 0.093 

Combined Decision Tree 0.855 (0.794-0.911) 0.889 0.812 0.912 0.111 

Combined Logistic Regression 0.911 (0.851-0.966) 0.894 0.812 0.918 0.098 

Combined Gaussian NB 0.856 (0.796-0.911) 0.874 0.771 0.906 0.126 

Combined KNN 0.891 (0.830-0.943) 0.889 0.792 0.918 0.094 

Combined Random Forest 0.916 (0.861-0.966) 0.894 0.792 0.925 0.09 

Combined Bagging DT 0.899 (0.834-0.950) 0.903 0.833 0.925 0.096 

Combined Gradient Boosting 0.922 (0.870-0.967) 0.899 0.812 0.925 0.098 

Combined XGBoost 0.926 (0.876-0.969) 0.899 0.812 0.925 0.093 

Combined Voting 1 0.917 (0.860-0.966) 0.894 0.812 0.918 0.093 

Combined Voting 2 0.918 (0.864-0.965) 0.899 0.812 0.925 0.09 

Combined PCA SVM 0.907 (0.837-0.957) 0.894 0.812 0.918 0.093 
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Feature Set Classifier AUC (95% CI) Accuracy Sensitivity Specificity Brier 

Combined PCA Decision Tree 0.878 (0.817-0.932) 0.899 0.833 0.918 0.101 

Combined PCA Logistic Regression 0.913 (0.851-0.965) 0.894 0.812 0.918 0.096 

Combined PCA Gaussian NB 0.895 (0.829-0.950) 0.855 0.854 0.855 0.13 

Combined PCA KNN 0.89 (0.830-0.943) 0.889 0.792 0.918 0.094 

Combined PCA Random Forest 0.933 (0.890-0.966) 0.894 0.792 0.925 0.089 

Combined PCA Bagging DT 0.924 (0.870-0.970) 0.899 0.792 0.931 0.088 

Combined PCA Gradient Boosting 0.910 (0.847-0.966) 0.899 0.812 0.925 0.098 

Combined PCA XGBoost 0.922 (0.868-0.967) 0.899 0.812 0.925 0.099 

Combined PCA Voting 1 0.941 (0.897-0.974) 0.894 0.812 0.918 0.085 

Combined PCA Voting 2 0.943 (0.908-0.971) 0.899 0.812 0.925 0.086 

 

 
Figure. 3 ROC curves comparing the best-performing classifier in each of the six feature configurations 

 

 
Figure. 4 Confusion matrices for the best-performing classifiers in each feature configuration 
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Figure. 5 Classifier AUC comparison across all six feature sets for all eleven machine learning classifiers 

 

 
Figure. 6 Mean AUC scores across eleven classifiers for 

six feature configurations.  

 

 

1857 dimensions). This compression yields 

measurable performance benefit—combined 

features with PCA (246 dimensions) achieve 0.943 

AUC versus 0.926 without PCA (+1.8%, p=0.032 

by DeLong's test), demonstrating successful 

retention of discriminative information while 

eliminating non-informative variation. The 

improved sample-to-feature ratio (10.16 vs 1.35) 

ensures well-determined model estimation, 

contributing to the observed performance 

improvements in deep and combined PCA 

configurations. 

4.5 Feature complementarity and theoretical 

validation 

Quantitative analysis validated minimal overlap 

between radiomics and deep features through 

correlation and information-theoretic metrics. 
Cross-modal correlation analysis (Fig. 7 and Fig. 

8): revealed low correlation between radiomics and 

deep features (mean: 0.14 ± 0.13, median: 0.089, 

range: [-0.59, 0.63]), indicating they capture 

different lesion characteristics. Out of 4,200 feature 

pairs (42 radiomics × 100 sampled deep features), 

100% exhibited valid correlations with no constant 

features after preprocessing. 83.5% of feature pairs 

exhibiting |r| < 0.3, Only 10.2% of pairs showed 

moderate correlation (0.3 ≤ |r| < 0.5), and 6.3% 

showed strong correlation (|r| ≥ 0.5). This 

distribution demonstrates that radiomics and deep 

features capture largely orthogonal aspects of lesion 

characteristics.  

Mutual Information Analysis: Entropy-based 

analysis quantified information sharing between 

feature sets. Radiomics features exhibited entropy 

H(R) = 28.45 nats, while deep features showed 

H(D) = 31.28 nats. Joint entropy of the combined 

feature space was H(R, D) = 58.91 nats. The 

resulting mutual information I(R; D) = 0.82 nats 

(normalized MI = 0.028) indicates minimal 

information redundancy, with feature sets sharing 

less than 3% of their combined information content. 

For comparison, perfectly redundant features would 

yield I(R; D) equal to min(H(R), H(D)) ≈ 28-31 nats. 

The combination of low correlation (mean |r| = 0.14) 

and minimal mutual information (I(R; D) = 0.82 

nats, NMI = 0.028) provides strong evidence for 

feature complementarity. 
 

 
Figure. 7 Correlation heatmap showing cross-modal 

correlations between radiomics and deep features 
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Figure. 8 Distribution of absolute correlations between 

radiomics and deep features 

4.6 Radiomics sensitivity analysis 

To assess robustness of our findings to 

variations in ROI delineation and radiomics 

extraction parameters, we conducted comprehensive 

sensitivity analyses. 

ROI Perturbation Analysis: To assess 

robustness to ROI delineation uncertainty, we 

performed systematic coordinate perturbation 

analysis. Lesion center coordinates were randomly 

shifted by ±3 pixels in x and y directions. Five 

independent perturbation sets were generated for all 

lesions (training, test). For each perturbation, 

radiomics features were re-extracted, and the 

Gradient Boosting classifier was retrained on the 

training set and evaluated on the test set. 

Performance metrics across perturbation sets are 

presented in Table 3. AUC variation was ±0.012 

(range: 0.877-0.899, mean: 0.889±0.007), with all 

scenarios maintaining AUC > 0.87. This minimal 

sensitivity (maximum deviation 1.2% from baseline) 

confirms that radiomics features capture stable 

lesion characteristics independent of precise ROI 

localization, supporting clinical translation where 

inter-observer variability is inevitable. 

Discretization Sensitivity Analysis: Radiomics 

features depend on intensity discretization, 

controlled by the binWidth parameter in 

PyRadiomics. To assess parameter sensitivity, we 

tested five binWidth values (15, 20, 25, 30, 35) 

while maintaining all other extraction parameters 

constant. For each binWidth setting, radiomics 

features were re-extracted from all lesions across 

sequences and concatenated, and the Gradient 

Boosting was retrained and evaluated. Results are 

presented in Table 4. 

Standard deviation across discretization settings: 

σ = 0.006 (0.878-0.894), confirming minimal 

parameter dependence. All binWidth values 

achieved AUC > 0.87, demonstrating that our 

feature extraction is robust to reasonable parameter 

 

Table 3. Performance stability under coordinate shift 

perturbations 

Scenario AUC Accuracy 

Original 0.888 0.850 

Shift 1 0.883 0.845 

Shift 2 0.891 0.855 

Shift 3 0.877 0.841 

Shift 4 0.893 0.855 

Shift 5 0.899 0.860 

Mean±Std 0.889±0.007 0.851±0.007 

 

Table 4. Performance across discretization parameter 

variations 

binWidth AUC Accuracy AUC 
improvement  

15 0.878 0.841 -0.010 

20 0.885 0.845 -0.003 

25  0.888 0.850 0.0 (baseline) 

30 0.894 0.860 +0.006 

35 0.890 0.855 +0.002 

Mean±Std 0.887±0.006 0.850±0.007 σ=0.006 

 
feature extraction is robust to reasonable parameter 

choices. These sensitivity analyses demonstrate that 

our findings are robust to realistic variations in both 

ROI definition and feature extraction parameters, 

supporting the reproducibility and clinical 

applicability of the proposed approach. 

4.7 Controlled feature complementarity analysis 

To verify that observed complementarity is not 

an artifact of supervised training, we conducted 

three controlled experiments using Random Forest 

classifier on same train/test split. 

Frozen Pretrained Features: A pretrained 

ResNet50 (frozen layers) extracted 2048 feature 

vector without prostate-specific training. Combining 

pretrained features with radiomics (AUC 0.891) 

outperformed pretrained features alone (AUC 0.847) 

by 5.2%. PCA reduction further improved 

performance to AUC 0.905 (+1.6%), demonstrating 

complementarity independent of supervised learning. 

Self-Supervised Autoencoder Features: An 

autoencoder was trained on ProstateX images 

without labels using reconstruction loss. The 1536-

dimensional bottleneck features combined with 

radiomics (AUC 0.899) exceeded autoencoder 

features alone (AUC 0.865) by 3.9%. PCA-reduced 

features achieved AUC 0.913 (+1.6%), validating 

complementarity without supervised labels. 

Radiomics with Feature Selection: LASSO 

regression (α=0.01) selected 42 most predictive 
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Table 5. Controlled Feature Complementarity Analysis 

Configuration AUC improvement  

Pretrained Deep Only 0.847 -- 

Pretrained + Radiomics 0.891 +0.044 (5.2%) 

Pretrained + Radiomics + PCA 0.905 +0.058 (6.8%) 

Autoencoder Deep Only 0.865 -- 

Autoencoder + Radiomics 0.899 +0.034 (3.9%) 

Autoencoder + Radiomics + PCA 0.913 +0.048 (5.5%) 

LASSO Radiomics Only 0.846 -- 

LASSO Radiomics + Deep  0.919 +0.073 (8.6%) 

LASSO Radiomics+Deep+PCA 0.931 +0.085 (10.0%) 

 

radiomics features from 321 total. Combining 

selected radiomics with supervised deep features 

(AUC 0.919) improved upon radiomics alone (AUC 

0.846) by 8.6%. PCA combination achieved AUC 

0.931 (+1.3%), confirming feature selection 

preserves complementarity.  

Controlled experiments demonstrate consistent 

complementarity across pretrained (+5.2%), self-

supervised (+3.9%), and feature-selected (+8.6%) 

configurations, with PCA providing additional 

improvements (+1.3-1.6%). These controlled 

experiments provide strong evidence that the 

performance benefits of integrating radiomics and 

deep features stem from accessing complementary 

and genuine biological information spaces, rather 

than supervised training artifacts. Results are 

presented in Table 5. 

4.8 Post-Hoc threshold sensitivity analysis 

To evaluate the flexibility of classification 

performance across different clinical scenarios, we 

performed threshold sensitivity analysis for the top-

performing model in each feature configuration. We 

evaluated four clinically relevant thresholds: (1) 

high sensitivity (≥95%) to prioritize detection of 

clinically significant cancer; (2) Youden’s index 

(sensitivity + specificity - 1) to maximize balanced 

sensitivity and specificity; (3) default threshold 

(0.50) for primary model comparison; and (4) high 

specificity (≥95%) to minimize false positives and 

unnecessary biopsies. Complete threshold analysis 

results for the top-performing model in each feature 

configuration are presented in Table 6. The 

Combined PCA feature set with Voting 2 ensemble 

classifier achieved the highest overall performance 

(AUC=0.943, 95% CI: 0.908-0.971), with 81.2% 

sensitivity, 92.5% specificity, and 89.9% accuracy at 

threshold=0.50. Threshold analysis demonstrated 

adjustable operating points: high sensitivity (96.2% 

at threshold=0.19) or high specificity (95.8% at 

threshold=0.71), with Youden’s index (0.51) 

providing balanced performance. This threshold 

flexibility demonstrates that the model can be 

calibrated to match specific clinical workflows. 

4.9 Comparison with state-of-the-art methods 

Table 7 presents strict comparison with methods 

evaluated on the ProstateX official test set for 

CS/CiS classification, enabling direct performance 

ranking. Our method achieves 0.943 AUC (95% CI: 

0.908-0.971) with voting 2 classifier, substantially 

outperforming prior approaches on this standardized 

benchmark. All entries use the same dataset, task, 

and metric (AUC), ensuring fair comparison. Table 

8 provides contextual reference for studies using 

different datasets, metrices, or tasks. Notably, our 

evaluation uses the official challenge splits, enabling 

direct comparison with methods evaluated on the 

same test set [3, 12, 16–19]. 

Our approach achieves competitive performance 

while offering several advantages: (1) evaluation on 

official ProstateX challenge splits enabling 

reproducible comparison, (2) comprehensive 

statistical validation with 95% confidence intervals 

and DeLong's test (p < 0.001 compared to deep-only 

features), (3) theoretical validation of feature 

complementarity through cross-modal correlation 

 

 
Table 6.   Post-Hoc threshold sensitivity analysis results for top-performing models across all configurations 

Feature Set & Model 
High Sensitivity 

(TH,SN,SP) 

Youden's Index 

(TH,SN,SP) 

Default 0.50 

(TH,SN,SP) 

High Specificity 

(TH,SN,SP) 

Radiomics + Gradient Boosting 0.12,97.5%,15.0% 0.56,75.9%,88.3% 0.5,75.9%,86.7% 0.78,31.6%,95.8% 

Deep + XGBoost 0.16,97.5%,18.3% 0.56,75.9%,86.7% 0.5,75.9%,85.8% 0.81,34.2%,96.7% 

Radiomics PCA + KNN 0.17,96.2%,30.8% 0.55,82.3%,91.7% 0.5,82.3%,91.7% 0.71,49.4%,95.0% 

Deep PCA + Voting 1 0.24,96.2%,43.3% 0.56,81.0%,91.7% 0.5,81.0%,91.7% 0.73,48.1%,95.0% 

Combined + XGBoost 0.12,96.2%,12.5% 0.44,82.3%,91.7% 0.5,81.0%,92.5% 0.7,41.8%,95.0% 

Combined PCA + Voting 2 0.19,96.2%,27.5% 0.51,81.0%,92.5% 0.5,81.0%,92.5% 0.71,57.0%,95.8% 

TH: Threshold, SN: Sensitivity, SP: Specificity. 
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 Table 7. Benchmark comparison on the ProstateX official test set for CS vs. CiS PCa classification, reported using AUC. 

Study Year Method AUC Validation Type 

Kitchen & Seah [12] 2017 SVM + Radiomics 0.82 Official test 

Mehrtash et al. [16] 2017 3D CNN 0.80 Official test 

Seah et al. [17] 2017 Auto-windowing CNN 0.84 Official test 

Liu et al. [18] 2017 XmasNet 0.84 Official test 

Chen et al. [19] 2019 Transfer Learning (VGG-16) 0.83 Official test 

Wang & Wang [3] 2020 Multi-input CNN 0.89 Official test 

Proposed Method 2025 Radiomics + Deep + PCA + ML 0.943 Official test 

Table 8. Contextual comparison of PCa classification methods evaluated on different datasets and validation protocols. 

Study Year Dataset Method Metric Validation  

Santhirasekaram et al. [24]  2021 Private CS/CiS - Hybrid Transformer 0.94 AUC Internal  

Arif et al. [29]  2022 Multi-center CS/CiS - DL vs Radiomics 
0.70-0.73 vs  

0.88 AUC 
External  

Varan et al. [15]  2023 ProstateX CS/CiS - SVM + Key Radiomics 0.88 ACC Internal CV 

Khanfari et al. [28]  2023 ProstateX-2 Grading - Radiomics + Deep Features 0.95 AUC Internal CV 

Yang et al. [25]  2024 Private CS/CiS - Deep Learning Ensemble 0.90 AUC Internal  

Dimitriadis et al. [38] 2025 Multi-center CS/CiS - Multi-Encoder Cross-attention 0.91 AUC Internal  

 

 

analysis (mean |r| = 0.14 ± 0.13), (4) systematic 

comparison across six feature configurations and 

eleven classifiers, and (5) balanced clinical 

performance with 92.5% specificity enabling 

accurate identification of CiS cases while 

maintaining 81.2% sensitivity for CS cases. 

5. Discussion 

5.1 Principal findings 

This investigation provides comprehensive 

evidence that deep features extracted from 

multimodal deep learning frameworks substantially 

outperform traditional radiomics features for 

prostate cancer classification. The 8.44% mean 

AUC improvement (0.899 vs 0.829) and 4.05% best 

performer improvement (0.924 vs 0.888) 

demonstrate the superior discriminative capability of 

hierarchical feature representations learned through 

deep neural networks. Critically, the highest 

performance is achieved not by deep features alone, 

but through their synergistic integration with 

radiomics features: combined PCA configuration 

attained 0.943 AUC, representing 2.06% 

improvement over deep-only features (0.924 AUC, 

p = 0.032). This finding validates that radiomics 

features, despite lower individual performance, 

provide discriminative information that enhances 

deep learning representations when integrated with 

dimensionality reduction. The combined PCA 

approach achieved the highest mean AUC (0.914) 

across all classifiers (Fig. 6) and yielded the top 

three individual performances (0.943, 0.941, 0.933 

AUC), demonstrating that optimal PCa classification 

requires leveraging both the hierarchical pattern 

recognition of deep learning and the complementary 

information captured by radiomics.  

Feature integration performance improvement is 

theoretically justified. Cross-modal correlation 

analysis reveals low correlation between radiomics 

and deep features (mean |r| = 0.14 ± 0.13, median: 

0.089, range: [-0.59, 0.63]), indicating that these 

feature types capture substantially different 

information spaces. This low redundancy 

demonstrates that deep features—representing 

hierarchically learned representations—and 

radiomics features—encoding handcrafted 

descriptors based on domain knowledge—occupy 

largely orthogonal regions of the feature space. 

Statistical validation through DeLong's test confirms 

the 2.06% AUC improvement from feature 

integration is statistically significant (p = 0.032). 

The combination of low cross-modal correlation 

(<0.15), absence of strong linear dependencies (max 

correlation 0.63), and statistically significant 

performance gains provides convergent evidence 

that radiomics and deep features capture 

complementary representations, explaining why 

their PCA-based integration successfully leverages 

non-redundant information to achieve superior 

classification performance. 
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5.2 Theoretical foundations 

The superior performance of deep features over 

radiomics (8.44% mean AUC improvement) reflects 

fundamental differences in feature learning 

mechanisms. Traditional radiomics employ fixed 

mathematical descriptors (intensity, shape, and 

texture) encoding predefined statistical patterns 

based on domain knowledge [10]. While effective 

for known imaging biomarkers, these features 

cannot adapt beyond their predetermined 

formulations. Conversely, deep learning implements 

hierarchical representation learning through 

compositional nonlinear transformations, with early 

layers capturing low-level primitives and deeper 

layers composing task-optimized abstractions 

through end-to-end training [39]. This data-driven 

paradigm discovers discriminative patterns 

unconstrained by predefined descriptors, explaining 

deep features' superior individual performance 

(0.924 vs 0.888 AUC). The synergistic performance 

of combined features (0.943 AUC, p=0.032) reflects 

complementary information capture. Deep features 

excel at learning task-optimized patterns, while 

radiomics encode domain-expert knowledge about 

lesion heterogeneity and morphology that may be 

less directly interpretable in purely data-driven deep 

learning representations [40]. Low cross-modal 

correlation (mean |r|=0.14) confirms these 

modalities occupy orthogonal feature spaces.  

PCA integration leverages this complementarity 

by projecting the combined space onto maximum 

variance directions, creating unified representations 

integrating learned patterns and expert-defined 

characteristics [11]. Ensemble classifier superiority 

follows from diversity-error decomposition theory 

[41]. Voting ensembles succeed when base 

classifiers make uncorrelated errors—a condition 

satisfied here due to algorithmic diversity. The 

ensemble benefit (AUC 0.943 vs. best single 

classifier 0.933) quantifies the error decorrelation 

achieved through model diversity.  

5.3 Clinical implications 

The integrated approach achieves clinically 

relevant performance metrics. High specificity 

(92.5%) enables accurate identification of clinically 

insignificant disease, potentially reducing 

unnecessary biopsies and overtreatment. Adequate 

sensitivity (81.2%) ensures detection of clinically 

significant cases requiring intervention. This 

balanced profile supports risk-stratified management 

where low-risk lesions undergo active surveillance 

while aggressive disease receives definitive 

treatment. Performance robustness across classifiers 

(AUC >0.90 for ten of eleven with combined PCA) 

facilitates deployment across diverse institutional 

environments. Integration of interpretable radiomics 

features (heterogeneity, morphology, texture) 

alongside deep features provides explainability by 

connecting predictions to familiar radiological 

biomarkers, potentially enhancing clinician trust. 

PCA-based dimensionality reduction may improve 

generalization to external datasets with different 

acquisition protocols, critical for multi-institutional 

deployment. These findings suggest hybrid 

approaches offer a viable framework for trustworthy 

AI tools in prostate cancer diagnosis. 

5.4 Limitations and future directions 

Several limitations warrant consideration. The 

study was evaluated on a single dataset (ProstateX), 

underscoring the need for multi-institutional 

validation. Furthermore, deep features were 

extracted using 2D processing of mpMRI sequences; 

3D volumetric processing may capture additional 

spatial relationships and enhance performance. 

Future directions include validation on multi-

institutional datasets, investigation of 3D deep 

learning architectures for feature extraction, and the 

integration of explainable AI methods to enhance 

clinical interpretability and trust.  

6. Conclusion 

This study provides both empirical and 

theoretical evidence that integrating radiomics and 

deep features from multiparametric MRI achieves 

superior prostate cancer classification when the 

integration is followed by dimensionality reduction. 

Beyond reporting performance gains, this work 

explains why such gains arise. Evaluation across six 

feature configurations and eleven classifiers on the 

official ProstateX challenge dataset yielded three 

key findings. 

First, deep learning features substantially 

outperform radiomics across classifiers (mean AUC: 

0.899 vs 0.829, p < 0.001) due to task-optimized 

hierarchical learning. However, cross-modal 

correlation and mutual information analysis 

establish that radiomics and deep features occupy 

largely orthogonal representation spaces (mean |r| = 

0.14 ± 0.13, NMI = 0.028), providing theoretical 

validation that radiomics encode complementary 

domain-expert knowledge about lesion 

heterogeneity not captured by deep networks. This 

explains significant improvement when integrating 

both types (0.943 AUC). 
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Second, naive concatenation is suboptimal in 

high-dimensional spaces. Through participation 

ratio analysis (PR ≈ 250, indicating 7.6× 

compression), we validate the manifold hypothesis 

demonstrating combined features lie on lower-

dimensional manifolds. PCA-based reduction acts as 

theoretically justified mechanism suppressing 

redundant variance, improving sample-to-feature 

ratio from 1.35 to 10.16, and optimizing bias-

variance tradeoff. This explains consistent PCA 

improvements across classifiers, with optimal 

performance achieved by combined features with 

PCA using Voting ensemble classifier: 0.943 AUC 

(95% CI: 0.908-0.971), 89.9% accuracy, 81.2% 

sensitivity, and 92.5% specificity. Voting classifier 

performance aligns with diversity-error 

decomposition, accuracy improvements stem from 

uncorrelated error patterns across base classifiers. 

Third, controlled experiments using frozen 

pretrained models (0.905 AUC), self-supervised 

features (0.913 AUC), and LASSO-selected 

radiomics (0.931 AUC) confirm improvements arise 

from genuine complementarity, not supervised 

training artifacts. Consistent gains validate that 

hybrid representations leverage distinct biological 

cues. 

The scientific contribution lies not in higher 

performance (0.943 AUC, surpassing ProstateX 0.87 

AUC benchmark), but in providing a theoretically 

grounded framework for integrating heterogeneous 

features. Clinically balanced performance (81.2% 

sensitivity, 92.5% specificity) enables reducing 

unnecessary biopsies while detecting clinically 

significant disease. 
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